1
|
Wang LT, Yin HL, Jin YM, Hu DD, Yang XX, Sheng J, Huang YW, Wang XJ. Ellagic acid ameliorates atherosclerosis by inhibiting PCSK9 through the modulation of FoxO3 and HNF1α. Nutrition 2025; 134:112717. [PMID: 40086009 DOI: 10.1016/j.nut.2025.112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/10/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Proprotein convertase subtilisin/kexin type 9 (PCSK9) hinders the clearance of low-density lipoprotein cholesterol (LDL-C) by promoting the degradation of the low-density lipoprotein receptor (LDLR), leading to the accumulation of LDL-C and thus becoming an important cause of atherosclerosis. Ellagic acid, a naturally occurring polyphenol widely present in fruits, vegetables, and nuts, has attracted significant attention due to its potential role in the prevention and treatment of cardiovascular diseases. However, the molecular mechanisms by which ellagic acid alleviates atherosclerosis by inhibiting PCSK9 are not fully understood. MATERIALS AND METHODS This study further validated the mechanism of action of ellagic acid through in vitro HepG2 cell experiments and a high-fat diet-induced ApoE-/- mouse model. RESULTS The results showed that ellagic acid significantly reduced the expression and secretion of PCSK9 while upregulating LDLR protein levels; its mechanism is related to the inhibition of hepatocyte nuclear factor 1α (HNF1α) expression and the promotion of forkhead box O3 (FoxO3) expression increase. Additionally, ellagic acid reduced aortic plaque deposition in mice induced by a high-fat diet; consistent with the in vitro experimental results, ellagic acid lowered the expression and secretion of PCSK9 and elevated LDLR protein levels by inhibiting HNF1α and increased FoxO3 expression. CONCLUSIONS In summary, this study demonstrates that ellagic acid inhibits PCSK9 by regulating HNF1α and FoxO3, thereby increasing LDLR levels and alleviating atherosclerosis. This finding not only consolidates the scientific basis of plant-based diets for preventing cardiovascular diseases but also provides an important direction for developing functional foods and nutritional intervention strategies based on natural polyphenols.
Collapse
Affiliation(s)
- Li-Tian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; Faculty of basic medical science, Kunming medical university, Kunming, China
| | - Huai-Liu Yin
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ya-Min Jin
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dan-Dan Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Science, Yunnan Agricultural University, Kunming, China
| | - Xiang-Xuan Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Ye-Wei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, China.
| | - Xuan-Jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Resources, Environment, and Chemistry, Chuxiong Normal University, Chuxiong, China.
| |
Collapse
|
2
|
Tan D, Yang X, Yang J, Fan G, Xiong G. PCSK9 in Vascular Aging and Age-Related Diseases. Aging Dis 2025:AD.2024.1713. [PMID: 40354375 DOI: 10.14336/ad.2024.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/27/2025] [Indexed: 05/14/2025] Open
Abstract
The aging process significantly contributes to human disease, and as worldwide life expectancy increases, addressing the challenges of aging and age-related cardiovascular diseases is becoming increasingly urgent. Vascular aging is a key link between aging and the development of age-related diseases. Recent studies indicate that proprotein convertase subtilisin/kexin type 9 (PCSK9), a type of protein involved in the metabolism of lipids, is crucial in modulating vascular aging by affecting the physiological functioning of vascular cells. PCSK9 is linked to lipid metabolism and chronic inflammation and is involved in regulating senescence-related activities, including migration, proliferation, apoptosis, and differentiation. These factors contribute to the aging of vascular cells and age-related vascular diseases, including atherosclerosis, hypertension, coronary artery disease, and cerebrovascular diseases. Given its involvement in these processes, this article provides a comprehensive summary of PCSK9's regulatory functions in vascular aging, highlighting potential therapeutic targets for combating age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Dong Tan
- Department of Vascular Surgery, the Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
| | - Xin Yang
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Gang Fan
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Urology, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong Province, China
| | - Guozuo Xiong
- Department of Vascular Surgery, the Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Hunan Province Thrombotic Disease Prevention and Treatment Clinical Medical Research Center, The Third Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Hunan Province Thrombotic Disease Prevention and Treatment Clinical Medical Research Center, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Chen X, Sun M, Ma X, Ma Y, Chen B. Silencing hepatic PCSK9 via novel chimeric AAV8 mitigates the progression of atherosclerosis by inhibiting inflammation in ApoE -/- mice. Mol Ther Methods Clin Dev 2025; 33:101390. [PMID: 39897642 PMCID: PMC11787523 DOI: 10.1016/j.omtm.2024.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
Adeno-associated virus (AAV) is the most widely utilized vector for gene therapy. Proprotein convertase subtilisin/kexin type 9 (PCSK9), predominantly expressed in the liver, plays a crucial role in lipid regulation and atherosclerosis progression. Here, we developed a novel chimeric AAV8.P-PCSK9 short hairpin RNA (shRNA) vector that incorporates a cross-species specific shRNA targeting PCSK9 to assess its effects on lipid levels and atherosclerosis in mice. AAV8.P demonstrated superior transduction efficiency and safety, achieving about 90% liver transduction and maintaining transgene expression for up to a year. The AAV8.P-PCSK9 shRNA exhibited typical liver-tropism and effectively silenced hepatic PCSK9. Moreover, it significantly lowered serum cholesterol and triglyceride levels while increasing LDL-R level without causing hepatotoxicity in wild-type mice. Additionally, it decreased PCSK9 expression and elevated low-density lipoprotein receptor expression in Apolipoprotein E-deficient mice, leading to early changes in lipid profiles but lacking a sustained impact on circulating lipids. Importantly, silencing PCSK9 resulted in reduced plaque areas with enhanced stability, decreased inflammatory macrophage infiltration, and lower levels of vascular and systemic inflammatory markers. These findings indicate that targeted silencing of hepatic PCSK9 significantly reduces lipid levels and effectively mitigates atherosclerosis progression by inhibiting inflammatory responses via the AAV8.P-PCSK9 shRNA vector, thereby providing critical support for its clinical translation.
Collapse
Affiliation(s)
- Xiaocui Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Minghui Sun
- Department of Nephrology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, P.R. China
| | - Xiang Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
| | - Yitong Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
| | - Bangdang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, P.R. China
| |
Collapse
|
4
|
Allen‐Gondringer A, Gau D, Dutta P, Roy P. Haplo-insufficiency of Profilin1 in vascular endothelial cells is beneficial but not sufficient to confer protection against experimentally induced atherosclerosis. Cytoskeleton (Hoboken) 2025; 82:81-90. [PMID: 38623956 PMCID: PMC11480255 DOI: 10.1002/cm.21859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Actin cytoskeleton plays an important role in various aspects of atherosclerosis, a key driver of ischemic heart disease. Actin-binding protein Profilin1 (Pfn1) is overexpressed in atherosclerotic plaques in human disease, and Pfn1, when partially depleted globally in all cell types, confers atheroprotection in vivo. This study investigates the impact of endothelial cell (EC)-specific partial loss of Pfn1 expression in atherosclerosis development. We utilized mice engineered for conditional heterozygous knockout of the Pfn1 gene in ECs, with atherosclerosis induced by depletion of hepatic LDL receptor by gene delivery of PCSK9 combined with high-cholesterol diet. Our studies show that partial depletion of EC Pfn1 has certain beneficial effects marked by dampening of select pro-atherogenic cytokines (CXCL10 and IL7) with concomitant reduction in cytotoxic T cell abundance but is not sufficient to reduce hyperlipidemia and confer atheroprotection in vivo. In light of these findings, we conclude that atheroprotective phenotype conferred by global Pfn1 haplo-insufficiency requires contributions of additional cell types that are relevant for atherosclerosis progression.
Collapse
Affiliation(s)
| | - David Gau
- BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Partha Dutta
- BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
- MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Partha Roy
- BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
- PathologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Cui YF, Chen XC, Mijiti T, Abudurusuli A, Deng LH, Ma X, Chen B. PCSK9 with a gain of function D374Y mutation aggravates atherosclerosis by inhibiting PPARα expression. Sci Rep 2025; 15:6941. [PMID: 40011664 PMCID: PMC11865302 DOI: 10.1038/s41598-025-91061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
The preprotein convertase, Bacillus subtilis protease/kexin type 9 serine protease (PCSK9), has garnered significant attention as a potential lipid lowering and therapeutic drug target for atherosclerosis (AS). Peroxisome proliferator-activated receptor alpha (PPARα) is expressed in various tissues and has crucial roles in lipid metabolism and the inflammatory response; however, the precise impact of PCSK9 on AS progression through its regulation of PPARα remains uncertain. The present study aimed to examine the impact of introducing stable liver transduction of human derived PCSK9 with a gain of function D374Y mutation (PCSK9DY) into systemic PPARα knockout mice (PPARα-/-) on plasma lipid levels and AS. Enzymatic assays were employed to evaluate plasma lipid concentrations at various time points, and aortic plaque formation and the degree of inflammatory infiltration quantified. Subsequently, we validated our in vivo results using mouse primary peritoneal macrophages (MPMs). Furthermore, AAV8.2-PPARα virus vector was transduced into transgenic mice of human PCSK9(hPCSK9DY-Tg) by tail vein, and the changes of plasma lipid level and AS were detected. PCSK9DY expression exacerbated symptoms of hypercholesterolemia in PPARα-/- mice. En face analysis and quantification of aortic root sections demonstrated a significant increase in aortic plaque area and inflammatory infiltration in PCSK9DY transduced PPARα-/- mice. Secretion of inflammatory cytokines was elevated in PCSK9DY transduced PPARα-/- mice. In vitro, recombinant hPCSK9 protein promotes the foam cell formation and inflammatory cytokines secretion of PPARα-/- MPMs by increasing the expression of SR-A and TLR4/NF-κB pathway proteins. AAV8.2-PPARα virus vector can reduce the plasma lipid level and AS formation in hPCSK9DY-Tg mice. These finding demonstrate that PCSK9DY expression notably facilitated AS progression in PPARα-/- mice by increasing plasma lipid concentrations and inflammation. However, overexpression of PPARα can reduce AS formation in hPCSK9DY-Tg mice.
Collapse
Affiliation(s)
- Yuan Feng Cui
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Xiao Cui Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Tuoluonayi Mijiti
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Abidan Abudurusuli
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Li Hui Deng
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Xiang Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Bangdang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
| |
Collapse
|
6
|
Zhang XY, Lu QQ, Li YJ, Shi SR, Ma CN, Miao M, Guo SD. Conditional knockdown of hepatic PCSK9 ameliorates high-fat diet-induced liver inflammation in mice. Front Pharmacol 2025; 16:1528250. [PMID: 39963241 PMCID: PMC11830812 DOI: 10.3389/fphar.2025.1528250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025] Open
Abstract
Instruction Accumulating evidence has shown that proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with inflammation in the vascular system. However, the roles of PCSK9 in hepatic inflammation remain unclear. Because PCSK9 is mainly expressed in the liver and modulates lipid uptake through low-density lipoprotein receptor family members, the present study aimed to elucidate the effect of conditional knockdown of hepatic PCSK9 on hyperlipidemia-induced inflammation and the underlying mechanisms of action. Methods PCSK9flox/flox mice were bred with ALB-Cre+ mice to obtain hepatic PCSK9 (-/-) , PCSK9 (+/-) , and PCSK9 (+/+) mice. These mice were fed with a high-fat diet for 9 weeks to induce inflammation. The effects of conditional knockdown of hepatic PCSK9 on inflammation and the underlying mechanisms were investigated by molecular biological techniques. Moreover, the findings were verified in vitro using HepG2 cells. Results and Discussion Conditional knockdown of hepatic PCSK9 remarkably decreased plasma levels of total cholesterol and alleviated hyperlipidemia-induced liver injury. Mechanistically, conditional knockdown of hepatic PCSK9 significantly reduced the levels of pro-inflammatory factors by downregulating the expression of Toll-like receptors, mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase/protein kinase B, which subsequently attenuated the expression of downstream molecules, namely nuclear factor kappa-B and activator protein-1. The related mechanisms were confirmed using lipid-loaded HepG2 cells together with PCSK9 siRNA, alirocumab (anti-PCSK9 antibody), and/or a p38-MAPK inhibitor. These findings confirmed that conditional knockdown of hepatic PCSK9 attenuates liver inflammation following hyperlipidemia induction by modulating multiple signaling pathways; this suggests that targeting PCSK9 knockdown/inhibition with appropriate agents is useful not only for treating hyperlipidemia but also for ameliorating hyperlipidemia-induced liver inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| |
Collapse
|
7
|
Miao M, Zhang XY, Yu HX, Shi SR, Ma CN, Guo SD. Mechanisms underlying the effects of the conditional knockdown of hepatic PCSK9 in attenuating lipopolysaccharide-induced acute liver inflammation. Int J Biol Macromol 2025; 291:139066. [PMID: 39716700 DOI: 10.1016/j.ijbiomac.2024.139066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is known to promote hyperlipidemia primarily by inducing the degradation of the low-density lipoprotein receptor. Notably, recent studies have demonstrated that PCSK9 promotes inflammation in the vascular system, however, the roles of PCSK9 in hepatic inflammation remain unclear. As PCSK9 is primarily expressed in the liver, this study aimed to elucidate the roles of PCSK9 and the underlying mechanisms in lipopolysaccharide (LPS)-challenged hepatocytes. Next-generation sequencing analysis revealed that the conditional knockdown of hepatic PCSK9 significantly reduced the plasma levels of total cholesterol and modulated the expression of hundreds of genes. Importantly, PCSK9 knockdown attenuated hepatic inflammation by suppressing several signaling pathways related to inflammation, including the Toll-like receptor, mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase/protein kinase B pathways. This subsequently altered the expression of nuclear factor kappa-B and activator protein 1. The underlying mechanisms were further confirmed by in vitro studies using primary hepatocytes and HepG2 cells, with a p38-MAPK inhibitor, a PCSK9 antibody, and two siRNAs against PCSK9. This study is the first to report that hepatic PCSK9 knockdown ameliorates LPS-induced acute liver inflammation via modulating multiple signaling pathways, thereby suggesting therapeutic potential of PCSK9 inhibitors in treating diseases related to hepatic inflammation.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Hai-Xin Yu
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
8
|
Li WW, Guo ZM, Wang BC, Liu QQ, Zhao WA, Wei XL. PCSK9 induces endothelial cell autophagy by regulating the PI3K/ATK pathway in atherosclerotic coronary heart disease. Clin Hemorheol Microcirc 2025; 89:55-67. [PMID: 38728182 DOI: 10.3233/ch-242172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory disease of the arteries, and its pathogenesis is related to endothelial dysfunction. It has been found that the protein convertase subtilin/kexin9 type (PCSK9) plays an important role in AS, but its specific mechanism is still unclear. METHODS In this study, we first cultured human umbilical vein endothelial cells (HUVECs) with 50 or 100μg/ml oxidized low-density lipoprotein (ox-LDL) for 24 hours to establish a coronary atherosclerosis cell model. RESULTS The results showed that ox-LDL induced HUVEC injury and autophagy and upregulated PCSK9 protein expression in HUVECs in a concentration-dependent manner. Silencing PCSK9 expression with siRNA inhibited ox-LDL-induced HUVEC endothelial dysfunction, inhibited the release of inflammatory factors, promoted HUVEC proliferation and inhibited apoptosis. In addition, ox-LDL increased the expression of LC3B-I and LC3B-II and decreased the expression of p62. However, these processes are reversed by sh-PCSK9. In addition, sh-PCSK9 can inhibit PI3K, AKT and mTOR phosphorylation and promote autophagy. CONCLUSION Taken together, our research shows that silencing PCSK9 inhibits the PI3K/ATK/mTOR pathway to activate ox-LDL-induced autophagy in vascular endothelial cells, alleviating endothelial cell injury and inflammation.
Collapse
Affiliation(s)
- Wei-Wei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ze-Ming Guo
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Bing-Cai Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qing-Quan Liu
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wen-An Zhao
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiao-Lan Wei
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
9
|
Gao JJ, Wu FY, Liu YJ, Li L, Lin YJ, Kang YT, Peng YM, Liu YF, Wang C, Ma ZS, Cao Y, Cao HY, Mo ZW, Li Y, Ou JS, Ou ZJ. Increase of PCSK9 expression in diabetes promotes VEGFR2 ubiquitination to inhibit endothelial function and skin wound healing. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2635-2649. [PMID: 39153050 DOI: 10.1007/s11427-023-2688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 08/19/2024]
Abstract
Diabetic foot ulcers (DFUs) are a serious vascular disease. Currently, no effective methods are available for treating DFUs. Pro-protein convertase subtilisin/kexin type 9 (PCSK9) regulates lipid levels to promote atherosclerosis. However, the role of PCSK9 in DFUs remains unclear. In this study, we found that the expression of PCSK9 in endothelial cells (ECs) increased significantly under high glucose (HG) stimulation and in diabetic plasma and vessels. Specifically, PCSK9 promotes the E3 ubiquitin-protein ligase NEDD4 binding to vascular endothelial growth factor receptor 2 (VEGFR2), which led to the ubiquitination of VEGFR2, resulting in its degradation and downregulation in ECs. Furthermore, PCSK9 suppresses the expression and activation of AKT, endothelial nitric oxide synthase (eNOS), and ERK1/2, leading to decreased nitric oxide (NO) production and increased superoxide anion (O2._) generation, which impairs vascular endothelial function and angiogenesis. Importantly, using evolocumab to limit the increase in PCSK9 expression blocked the HG-induced inhibition of NO production and the increase in O2._ production, as well as inhibited the phosphorylation and expression of AKT, eNOS, and ERK1/2. Moreover, evolocumab improved vascular endothelial function and angiogenesis, and promoted wound healing in diabetes. Our findings suggest that targeting PCSK9 is a novel therapeutic approach for treating DFUs.
Collapse
Affiliation(s)
- Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Fang-Yuan Wu
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu-Jia Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Le Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yi-Jun Lin
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yue-Ting Kang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yi-Fang Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Chen Wang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhen-Sheng Ma
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Hong-Yu Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhi-Wei Mo
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Abduljabbar MH. PCSK9 Inhibitors: Focus on Evolocumab and Its Impact on Atherosclerosis Progression. Pharmaceuticals (Basel) 2024; 17:1581. [PMID: 39770423 PMCID: PMC11676890 DOI: 10.3390/ph17121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
This paper investigates the therapeutic use of PCSK9 inhibitors, particularly Evolocumab, as monoclonal antibodies for the treatment of atherosclerosis based on recent literature reviews. PCSK9 is an outstanding example of a breakthrough in medical science, with advancements in understanding its biological function driving substantial progress in atherosclerosis treatment. Atherosclerotic cardiovascular disease (ASCVD) is a leading global cause of mortality, imposing substantial financial burdens on healthcare systems. Elevated low-density lipoprotein cholesterol (LDL-C), a modifiable risk factor, plays a pivotal role in the development of ASCVD. Emerging treatments such as PCSK9 inhibitors are now being introduced to combat this issue, with the goal of reducing ASCVD risk by directly targeting LDL-C levels. This discovery highlighted the potential of monoclonal antibodies to inhibit PCSK9, thereby enhancing LDL-C receptor activity. This breakthrough led to the development of Alirocumab and Evolocumab inhibitors, which typically reduce LDL-C levels by approximately 50%. This research underscores the importance of PCSK9 inhibitors in treating ASCVD, drawing on evidence from various randomized controlled trials such as FOURIER, ODYSSEY OUTCOMES, and VESALIUS-CV. These trials have also shown that PCSK9 inhibitors are effective and safe for the treatment of several cardiovascular disorders. PCSK9 inhibitors are therefore useful in patients who do not reach their target LDL-C levels when on the highest doses of statins or patients with very high cardiovascular risk who cannot tolerate statins at all.
Collapse
Affiliation(s)
- Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
11
|
Tang J, Ma M, Liu F, Yin X, Shi H, Li Q, Yang K, Yu M. miR-148a-3p mitigation of coronary artery disease through PCSK9/NF-κB inhibition of vascular endothelial cell injury. J Biochem Mol Toxicol 2024; 38:e70011. [PMID: 39400940 DOI: 10.1002/jbt.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/26/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Coronary artery disease (CAD) causes myocardial ischemia, narrowing or occlusion of the lumen. Although great progress has been made in the treatment of CAD, the existing treatment methods do not meet the clinical needs, so it is urgent to find new treatment methods. The aim of this study was to investigate the mechanism of action of miR-148a-3p in alleviating CAD by inhibiting vascular endothelial cell injury and to provide new ideas for the treatment of CAD. A cell model was constructed by lipopolysaccharide (LPS) induction of vascular endothelial cells, and a CAD rat model was established by a high-fat diet and intraperitoneal injection of posterior pituitary hormone. Relevant indices were detected by RT-qPCR, ELISA, Western blot, MTT, and flow cytometry. The results indicate that in LPS-induced vascular endothelial cell assays, miR-148a-3p inhibited the upregulation of PCSK9, thereby suppressing the NF-κB signaling pathway and promoting vascular endothelial cell proliferation. Overexpression of PCSK9 and the addition of NF-κB signaling pathway activator increased vascular endothelial cell apoptosis. In animal experiments, miR-148a-3p alleviated the symptoms of CAD rats, whereas overexpression of PCSK9 promoted apoptosis and increased atheromatous plaque area in CAD rats. In conclusion, miR-148a-3p inhibits the NF-κB signaling pathway through downregulation of PCSK9, thereby protecting vascular endothelial cells and alleviating CAD.
Collapse
Affiliation(s)
- Jiong Tang
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Menghuai Ma
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Fan Liu
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Xiaomei Yin
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Haotian Shi
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Qing Li
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Kai Yang
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Mengyue Yu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical Colleg, Beijing, China
| |
Collapse
|
12
|
Jeswani BM, Sharma S, Rathore SS, Nazir A, Bhatheja R, Kapoor K. PCSK9 Inhibitors: The Evolving Future. Health Sci Rep 2024; 7:e70174. [PMID: 39479289 PMCID: PMC11522611 DOI: 10.1002/hsr2.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction PCSK9 inhibitors are a novel class of medications that lower LDL cholesterol (LDL-C) by increasing LDL receptor activity, promoting clearance of LDL-C from the bloodstream. Over the years, PCSK9 inhibitors have been explored as adjunct therapies to statins or as monotherapy in high-risk cardiovascular patients. Aim This review aims to provide an updated perspective on PCSK9 inhibitors, assessing their clinical efficacy, safety, and significance, especially in light of recent clinical trials. Methods The review examines the role of PCSK9 in cholesterol regulation and summarizes the results of major cardiovascular trials, including FOURIER, SPIRE-1, SPIRE-2, and ODYSSEY Outcomes. It also discusses emerging treatments like small interfering RNA (siRNA) therapies and evaluates PCSK9 inhibitor effects on LDL-C and lipoprotein(a) levels. Results Clinical trials have shown PCSK9 inhibitors reduce LDL-C by up to 60%. In the FOURIER trial, evolocumab reduced LDL-C by 59% and major cardiovascular events by 15%-20%. The SPIRE-2 trial, despite early termination, showed a 21% risk reduction in the primary composite endpoint with bococizumab. The ODYSSEY Outcomes trial reported a 57% LDL-C reduction with alirocumab, alongside a 15% reduction in adverse events. Emerging treatments like Inclisiran offer long-term LDL-C control with fewer doses. PCSK9 inhibitors are generally well-tolerated, with the most common side effect being injection site reactions. Conclusion PCSK9 inhibitors significantly lower LDL-C and reduce cardiovascular events, offering promising therapies for high-risk patients, including those with familial hypercholesterolemia (FH) and those who cannot tolerate statins. Future research will focus on optimizing these inhibitors, integrating complementary therapies, and exploring gene-editing technologies to improve patient outcomes.
Collapse
Affiliation(s)
- Bijay Mukesh Jeswani
- Department of MedicineGCS Medical College, Hospital & Research CentreAhmedabadIndia
| | | | | | - Abubakar Nazir
- Department of MedicineKing Edward Medical UniversityLahorePakistan
- Department of MedicineOli Health Magazine Organization, Research, and EducationKigaliRwanda
| | | | - Kapil Kapoor
- Cardiology, AdventHealth OrlandoOrlandoFloridaUSA
| |
Collapse
|
13
|
Vassiliou VS, Johnson N, Langlands K, Tsampasian V. Genetics of Calcific Aortic Stenosis: A Systematic Review. Genes (Basel) 2024; 15:1309. [PMID: 39457433 PMCID: PMC11508093 DOI: 10.3390/genes15101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Calcific aortic stenosis is the most prevalent valvular abnormality in the Western world. Factors commonly associated with calcific aortic stenosis include advanced age, male sex, hypertension, diabetes and impaired renal function. This review synthesises the existing literature on genetic associations with calcific aortic stenosis. Methods: A systematic search was conducted in the PubMed, Ovid and Cochrane libraries from inception to 21 July 2024 to identify human studies investigating the genetic factors involved in calcific aortic stenosis. From an initial pool of 1392 articles, 78 were selected for full-text review and 31 were included in the final qualitative synthesis. The risk of bias in these studies was assessed using the Newcastle Ottawa Scale. Results: Multiple genes have been associated with calcific aortic stenosis. These genes are involved in different biological pathways, including the lipid metabolism pathway (PLA, LDL, APO, PCSK9, Lp-PLA2, PONS1), the inflammatory pathway (IL-6, IL-10), the calcification pathway (PALMD, TEX41) and the endocrine pathway (PTH, VIT D, RUNX2, CACNA1C, ALPL). Additional genes such as NOTCH1, NAV1 and FADS1/2 influence different pathways. Mechanistically, these genes may promote a pro-inflammatory and pro-calcific environment in the aortic valve itself, leading to increased osteoblastic activity and subsequent calcific degeneration of the valve. Conclusions: Numerous genetic associations contribute to calcific aortic stenosis. Recognition of these associations can enhance risk stratification for individuals and their first-degree relatives, facilitate family screening, and importantly, pave the way for targeted therapeutic interventions focusing on the identified genetic factors. Understanding these genetic factors can also lead to gene therapy to prevent calcific aortic stenosis in the future.
Collapse
Affiliation(s)
- Vassilios S. Vassiliou
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
- Fitzwilliam College, University of Cambridge, Cambridge CB3 0DG, UK
| | - Nicholas Johnson
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
| | - Kenneth Langlands
- Institute of Continuing Education, University of Cambridge, Cambridge CB23 8AQ, UK;
| | - Vasiliki Tsampasian
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
| |
Collapse
|
14
|
Chen L, Qu H, Liu B, Chen BC, Yang Z, Shi DZ, Zhang Y. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front Physiol 2024; 15:1432719. [PMID: 39314624 PMCID: PMC11417040 DOI: 10.3389/fphys.2024.1432719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Endothelial shear stress is a tangential stress derived from the friction of the flowing blood on the endothelial surface of the arterial wall and is expressed in units of force/unit area (dyne/cm2). Branches and bends of arteries are exposed to complex blood flow patterns that generate low or oscillatory endothelial shear stress, which impairs glycocalyx integrity, cytoskeleton arrangement and endothelial junctions (adherens junctions, tight junctions, gap junctions), thus increasing endothelial permeability. The lipoproteins and inflammatory cells penetrating intima due to the increased endothelial permeability characterizes the pathological changes in early stage of atherosclerosis. Endothelial cells are critical sensors of shear stress, however, the mechanisms by which the complex shear stress regulate endothelial permeability in atherosclerosis remain unclear. In this review, we focus on the molecular mechanisms of the endothelial permeability induced by low or oscillatory shear stress, which will shed a novel sight in early stage of atherosclerosis.
Collapse
Affiliation(s)
- Li Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Bin Liu
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Bing-Chang Chen
- Graduate school, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
15
|
Dutka M, Zimmer K, Ćwiertnia M, Ilczak T, Bobiński R. The role of PCSK9 in heart failure and other cardiovascular diseases-mechanisms of action beyond its effect on LDL cholesterol. Heart Fail Rev 2024; 29:917-937. [PMID: 38886277 PMCID: PMC11306431 DOI: 10.1007/s10741-024-10409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a protein that regulates low-density lipoprotein (LDL) cholesterol metabolism by binding to the hepatic LDL receptor (LDLR), ultimately leading to its lysosomal degradation and an increase in LDL cholesterol (LDLc) levels. Treatment strategies have been developed based on blocking PCSK9 with specific antibodies (alirocumab, evolocumab) and on blocking its production with small regulatory RNA (siRNA) (inclisiran). Clinical trials evaluating these drugs have confirmed their high efficacy in reducing serum LDLc levels and improving the prognosis in patients with atherosclerotic cardiovascular diseases. Most studies have focused on the action of PCSK9 on LDLRs and the subsequent increase in LDLc concentrations. Increasing evidence suggests that the adverse cardiovascular effects of PCSK9, particularly its atherosclerotic effects on the vascular wall, may also result from mechanisms independent of its effects on lipid metabolism. PCSK9 induces the expression of pro-inflammatory cytokines contributing to inflammation within the vascular wall and promotes apoptosis, pyroptosis, and ferroptosis of cardiomyocytes and is thus involved in the development and progression of heart failure. The elimination of PCSK9 may, therefore, not only be a treatment for hypercholesterolaemia but also for atherosclerosis and other cardiovascular diseases. The mechanisms of action of PCSK9 in the cardiovascular system are not yet fully understood. This article reviews the current understanding of the mechanisms of PCSK9 action in the cardiovascular system and its contribution to cardiovascular diseases. Knowledge of these mechanisms may contribute to the wider use of PCSK9 inhibitors in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Karolina Zimmer
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Michał Ćwiertnia
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Tomasz Ilczak
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
16
|
Liu SS, Yu T, Qiao YF, Gu SX, Chai XL. Research on Hepatocyte Regulation of PCSK9-LDLR and Its Related Drug Targets. Chin J Integr Med 2024; 30:664-672. [PMID: 36913119 DOI: 10.1007/s11655-023-3545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 03/14/2023]
Abstract
The prevalence of hyperlipidemia has increased significantly due to genetic, dietary, nutritional and pharmacological factors, and has become one of the most common pathological conditions in humans. Hyperlipidemia can lead to a range of diseases such as atherosclerosis, stroke, coronary heart disease, myocardial infarction, diabetes, and kidney failure, etc. High circulating low-density lipoprotein cholesterol (LDL-C) is one of the causes of hyperlipidemia. LDL-C in the blood binds to LDL receptor (LDLR) and regulates cholesterol homeostasis through endocytosis. In contrast, proprotein convertase subtilisin/kexin type 9 (PCSK9) mediates LDLR degradation via the intracellular and extracellular pathways, leading to hyperlipidemia. Targeting PCSK9-synthesizing transcription factors and downstream molecules are important for development of new lipid-lowering drugs. Clinical trials regarding PCSK9 inhibitors have demonstrated a reduction in atherosclerotic cardiovascular disease events. The purpose of this review was to explore the target and mechanism of intracellular and extracellular pathways in degradation of LDLR and related drugs by PCSK9 in order to open up a new pathway for the development of new lipid-lowering drugs.
Collapse
Affiliation(s)
- Su-Su Liu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Tong Yu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Yan-Fang Qiao
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Shu-Xiao Gu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Xin-Lou Chai
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China.
| |
Collapse
|
17
|
Uehara H, Kajiya T, Abe M, Nakata M, Hosogi S, Ueda S. Early and short-term use of proprotein convertase anti-subtilisin-kexin type 9 inhibitors on coronary plaque stability in acute coronary syndrome. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae055. [PMID: 39131906 PMCID: PMC11316204 DOI: 10.1093/ehjopen/oeae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 08/13/2024]
Abstract
Aims Proprotein convertase anti-subtilisin-kexin type 9 inhibitors (PCSK9Is) improve plaque volume and composition and reduce major adverse coronary events in chronic coronary artery disease. We evaluated the effects of the short-term use of PCSK9Is on coronary plaque stability in patients with acute coronary syndrome (ACS) using optical coherence tomography (OCT). Methods and results This is a multicentre, open-label randomized controlled trial. The enrolled 80 subjects met the inclusion criteria. Of these, 52 patients (age 60 ± 11 years, 38 men, 14 women) with ST-elevated ACS had undergone successful primary percutaneous coronary intervention with LDL-cholesterol (LDL-C) levels > 70 mg/dL while receiving high-intensity statins. Participants were randomly assigned to the PCSK9I group (evolocumab 420 mg for 3 months, n = 29) or the standard of care (SoC) group (n = 23). Optical coherence tomography was performed at baseline (BL) and 3 and 9 months after randomization to assess lipid-rich plaques in non-culprit lesions. The change in the minimum fibrous cap thickness (MFCT) from BL to 9 months was the primary endpoint. The percentage change in LDL-C levels from BL to 3 months was significantly greater in the PCSK9I group (-67.8 ± 21.5% in the PCSK9I group vs. -16.3 ± 21.8% in the SoC group; P < 0.0001), and the difference between the two groups disappeared from BL to 9 months (-20.0 ± 37.8% in the PCSK9I group vs. -6.7 ± 34.2% in the SoC group; P = 0.20). The changes in MFCT from BL to 9 months were significantly greater in the PCSK9I group, even after PCSK9I discontinuation {100 μm [interquartile range (IQR): 45-180 μm] vs. 50 μm [IQR: 0-110 μm]; P = 0.032}. Conclusion Combination treatment with PCSK9Is and statins resulted in more marked plaque stabilization after ACS than SoC alone, and this effect persisted for 6 months after PCSK9I discontinuation. Registration Adage-Joto study, UMIN ID No. 26516.
Collapse
Affiliation(s)
- Hiroki Uehara
- Department of Cardiology, Urasoe General Hospital, 1-56-1/Maeda Urasoe City, Okinawa 9012102, Japan
- Department of Clinical Research Education and Management, University of Ryukyus Graduate School of Medicine, 207 Uebaru Nishihara town, Okinawa 9030215, Japan
| | - Takashi Kajiya
- Department of Cardiology, Tenyoukai Central Hospital, Kagoshima, Japan
| | - Masami Abe
- Department of Cardiology, Yuai Medical Center Hospital, Okinawa, Japan
| | - Marohito Nakata
- Department of Cardiology, Naha City Hospital, Okinawa, Japan
| | - Shingo Hosogi
- Department of Cardiology, Hosogi hospital, Kochi, Japan
| | - Shinichiro Ueda
- Department of Clinical Research Education and Management, University of Ryukyus Graduate School of Medicine, 207 Uebaru Nishihara town, Okinawa 9030215, Japan
| |
Collapse
|
18
|
Chong S, Mu G, Cen X, Xiang Q, Cui Y. Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). Int J Mol Med 2024; 53:57. [PMID: 38757360 PMCID: PMC11093556 DOI: 10.3892/ijmm.2024.5381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.
Collapse
Affiliation(s)
- Shan Chong
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Guangyan Mu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
19
|
Rexhaj E, Bär S, Soria R, Ueki Y, Häner JD, Otsuka T, Kavaliauskaite R, Siontis GC, Stortecky S, Shibutani H, Spirk D, Engstrøm T, Lang I, Morf L, Ambühl M, Windecker S, Losdat S, Koskinas KC, Räber L. Effects of alirocumab on endothelial function and coronary atherosclerosis in myocardial infarction: A PACMAN-AMI randomized clinical trial substudy. Atherosclerosis 2024; 392:117504. [PMID: 38513436 DOI: 10.1016/j.atherosclerosis.2024.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND AND AIMS The effects of protein convertase subtilisin/kexin type 9 (PCSK9) inhibitors on endothelial function as assessed by flow-mediated dilation (FMD) in patients with acute myocardial infarction (AMI) are unknown. Therefore, we aimed to investigate the effects of the PCSK9 inhibitor alirocumab added to high-intensity statin on FMD, and its association with coronary atherosclerosis in non-infarct related arteries using intracoronary intravascular ultrasound (IVUS), near-infrared spectroscopy (NIRS), and optical coherence tomography (OCT). METHODS This was a pre-specified substudy among patients recruited at Bern University Hospital, Switzerland, for the randomized-controlled, double-blind, PACMAN-AMI trial, which compared the effects of biweekly alirocumab 150 mg vs. placebo added to rosuvastatin. Brachial artery FMD was measured at 4 and 52 weeks, and intracoronary imaging at baseline and 52 weeks. RESULTS 139/173 patients completed the substudy. There was no difference in FMD at 52 weeks in the alirocumab (n = 68, 5.44 ± 2.24%) versus placebo (n = 71, 5.45 ± 2.19%) group (difference = -0.21%, 95% CI -0.77 to 0.35, p = 0.47). FMD improved throughout 52 weeks in both groups similarly (p < 0.001). There was a significant association between 4 weeks FMD and baseline plaque burden (IVUS) (n = 139, slope = -1.00, p = 0.006), but not with lipid pool (NIRS) (n = 139, slope = -7.36, p = 0.32), or fibrous cap thickness (OCT) (n = 81, slope = -1.57, p = 0.62). CONCLUSIONS Among patients with AMI, the addition of alirocumab did not result in further improvement of FMD as compared to 52 weeks secondary preventative medical therapy including high-intensity statin therapy. FMD was significantly associated with coronary plaque burden at baseline, but not with lipid pool or fibrous cap thickness.
Collapse
MESH Headings
- Humans
- Male
- Female
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Middle Aged
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/diagnostic imaging
- Coronary Artery Disease/complications
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Double-Blind Method
- Aged
- PCSK9 Inhibitors
- Myocardial Infarction/drug therapy
- Myocardial Infarction/complications
- Myocardial Infarction/diagnostic imaging
- Myocardial Infarction/physiopathology
- Ultrasonography, Interventional
- Rosuvastatin Calcium/therapeutic use
- Treatment Outcome
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
- Tomography, Optical Coherence
- Vasodilation/drug effects
- Drug Therapy, Combination
- Spectroscopy, Near-Infrared
- Plaque, Atherosclerotic/drug therapy
- Coronary Vessels/diagnostic imaging
- Coronary Vessels/drug effects
- Coronary Vessels/physiopathology
- Brachial Artery/drug effects
- Brachial Artery/physiopathology
- Brachial Artery/diagnostic imaging
- Time Factors
- Proprotein Convertase 9
Collapse
Affiliation(s)
- Emrush Rexhaj
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Sarah Bär
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Rodrigo Soria
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Yasushi Ueki
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Jonas D Häner
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Tatsuhiko Otsuka
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Raminta Kavaliauskaite
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - George Cm Siontis
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Stefan Stortecky
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Hiroki Shibutani
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - David Spirk
- Institute of Pharmacology, Bern University Hospital and University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland; Sanofi, Suurstofi 2, 6343, Risch-Rotkreuz, Switzerland
| | - Thomas Engstrøm
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 20100, Copenhagen, Denmark
| | - Irene Lang
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Laura Morf
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Maria Ambühl
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Sylvain Losdat
- CTU Bern, University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Konstantinos C Koskinas
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital Inselspital, Freiburgstrasse 18, 3010, Bern, Switzerland.
| |
Collapse
|
20
|
Pawlos A, Khoury E, Gaudet D. Emerging therapies for refractory hypercholesterolemia: a narrative review. Future Cardiol 2024; 20:317-334. [PMID: 38985520 PMCID: PMC11318688 DOI: 10.1080/14796678.2024.2367860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Refractory hypercholesterolemia (RH) is characterized by the failure of patients to achieve therapeutic targets for low-density lipoprotein-cholesterol (LDL-C) despite receiving maximal tolerable doses of standard lipid-lowering treatments. It predominantly impacts individuals with familial hypercholesterolemia (FH), thereby elevating the risk of cardiovascular complications. The prevalence of RH is now recognized to be substantially greater than previously thought. This review provides a comprehensive insight into current and emerging therapies for RH patients, including groundbreaking genetic-based therapeutic approaches. The review places emphasis on the dependency of therapies on low-density lipoprotein receptors (LDLRs) and highlights the critical role of considering LDLR activity in RH patients for individualization of the treatment.
Collapse
Affiliation(s)
- Agnieszka Pawlos
- Department of Internal Diseases & Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347, Lodz, Poland
| | - Etienne Khoury
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| |
Collapse
|
21
|
Allen-Gondringer A, Gau D, Dutta P, Roy P. Haplo-insufficiency of Profilin1 in vascular endothelial cells is beneficial but not sufficient to confer protection against experimentally induced atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570450. [PMID: 38106044 PMCID: PMC10723386 DOI: 10.1101/2023.12.06.570450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Actin cytoskeleton plays an important role in various aspects of atherosclerosis, a key driver of ischemic heart disease. Actin-binding protein Profilin1 (Pfn1) is overexpressed in atherosclerotic plaques in human disease, and Pfn1, when partially depleted globally in all cell types, confers atheroprotection in vivo . This study investigates the impact of endothelial cell (EC)-specific partial loss of Pfn1 expression in atherosclerosis development. We utilized mice engineered for conditional heterozygous knockout of the Pfn1 gene in ECs, with atherosclerosis induced by depletion of hepatic LDL receptor by gene delivery of PCSK9 combined with high-cholesterol diet. Our studies show that partial depletion of EC Pfn1 has certain beneficial effects marked by dampening of select pro-atherogenic cytokines (CXCL10 and IL7) with concomitant reduction in cytotoxic T cell abundance but is not sufficient to reduce hyperlipidemia and confer atheroprotection in vivo . In light of these findings, we conclude that atheroprotective phenotype conferred by global Pfn1 haplo-insufficiency requires contributions of additional cell types that are relevant for atherosclerosis progression.
Collapse
|
22
|
Surma S, Sahebkar A, Banach M. Whether and Why Do We Need a Vaccine Against Atherosclerosis? Can We Expect It Anytime Soon? Curr Atheroscler Rep 2024; 26:59-71. [PMID: 38165521 PMCID: PMC10881686 DOI: 10.1007/s11883-023-01186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of premature death. Lipid disorders, particularly elevated serum low-density lipoprotein cholesterol (LDL-C), contribute significantly to ASCVD. The risk of developing ASCVD is influenced by the duration of exposure to elevated LDL-C concentrations (cholesterol-years concept). Implementing lipid-lowering treatments based on the principles of "the earlier the better," "the lower the better," and "the longer the better" has been shown to reduce cardiovascular risk and significantly extend lifespan. Despite the availability of numerous lipid-lowering drugs, achieving satisfactory control of lipid disorders remains very challenging. Therefore, there is a need for novel approaches to improve treatment adherence. RECENT FINDINGS One promising solution under investigation is the development of an anti-PCSK9 vaccine, which could be administered annually to provide long-term control over LDL-C concentrations. Experimental studies and the sole clinical trial conducted thus far have demonstrated that the anti-PCSK9 vaccine induces a durable immune response associated with lipid-lowering and anti-atherosclerotic effects. Furthermore, it has exhibited good tolerability and a satisfactory safety profile. However, we still need data from phase 2, 3, and cardiovascular outcome trial to confirm its safety and efficacy and add value in the armamentarium of available and perspective lipid-lowering drugs. This article highlights the significance of developing an anti-PCSK9 vaccine and provides an overview of the current knowledge on various anti-PCSK9 vaccines.
Collapse
Affiliation(s)
- Stanisław Surma
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, 40-752, Katowice, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338, Lodz, Poland.
- Cardiovascular Research Centre, University of Zielona Gora, 65-417, Zielona Gora, Poland.
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338, Lodz, Poland.
| |
Collapse
|
23
|
Arsh H, Manoj Kumar FNU, Simran FNU, Tamang S, Rehman MU, Ahmed G, Khan M, Malik J, Mehmoodi A. Role of PCSK9 inhibition during the inflammatory stage of SARS-COV-2: an updated review. Ann Med Surg (Lond) 2024; 86:899-908. [PMID: 38333263 PMCID: PMC10849418 DOI: 10.1097/ms9.0000000000001601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024] Open
Abstract
The potential role of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition in the management of COVID-19 and other medical conditions has emerged as an intriguing area of research. PCSK9 is primarily known for its impact on cholesterol metabolism, but recent studies have unveiled its involvement in various physiological processes, including inflammation, immune regulation, and thrombosis. In this abstract, the authors review the rationale and potential implications of PCSK9 inhibition during the inflammatory stage of SARS-CoV-2 infection. Severe cases of COVID-19 are characterized by an uncontrolled inflammatory response, often referred to as the cytokine storm, which can lead to widespread tissue damage and organ failure. Preclinical studies suggest that PCSK9 inhibition could dampen this inflammatory cascade by reducing the production of pro-inflammatory cytokines. Additionally, PCSK9 inhibition may protect against acute respiratory distress syndrome (ARDS) through its effects on lung injury and inflammation. COVID-19 has been linked to an increased risk of cardiovascular complications, especially in patients with pre-existing cardiovascular conditions or dyslipidemia. PCSK9 inhibitors are known for their ability to lower low-density lipoprotein (LDL) cholesterol levels by enhancing the recycling of LDL receptors in the liver. By reducing LDL cholesterol, PCSK9 inhibition might protect blood vessels from further damage and lower the risk of atherosclerotic plaque formation. Moreover, PCSK9 inhibitors have shown potential antithrombotic effects in preclinical studies, making them a potential avenue to mitigate the increased risk of coagulation disorders and thrombotic events observed in COVID-19. While the potential implications of PCSK9 inhibition are promising, safety considerations and possible risks need careful evaluation. Hypocholesterolemia, drug interactions, and long-term safety are some of the key concerns that should be addressed. Clinical trials are needed to establish the efficacy and safety of PCSK9 inhibitors in COVID-19 patients and to determine the optimal timing and dosing for treatment. Future research opportunities encompass investigating the immune response, evaluating long-term safety, exploring combination therapy possibilities, and advancing personalized medicine approaches. Collaborative efforts from researchers, clinicians, and policymakers are essential to fully harness the therapeutic potential of PCSK9 inhibition and translate these findings into meaningful clinical outcomes.
Collapse
Affiliation(s)
- Hina Arsh
- Department of Medicine, THQ Hospital, Pasrur
| | - FNU Manoj Kumar
- Department of Medicine, Jinnah Sindh Medical College, Karachi
| | - FNU Simran
- Department of Medicine, Jinnah Sindh Medical College, Karachi
| | - Sweta Tamang
- Department of Medicine, Nepal Medical College and Teaching Hospital, Kathmandu, Nepal
| | | | - Gulfam Ahmed
- Department of Medicine, Muhammad Hospital, Lahore
| | - Masood Khan
- Department of Cardiology, Armed Forces Institute of Cardiology, Rawalpindi, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad
| | - Amin Mehmoodi
- Department of Medicine, Ibn e Seena Hospital, Kabul, Afghanistan
| |
Collapse
|
24
|
Polak A, Machnik G, Bułdak Ł, Ruczyński J, Prochera K, Bujak O, Mucha P, Rekowski P, Okopień B. The Application of Peptide Nucleic Acids (PNA) in the Inhibition of Proprotein Convertase Subtilisin/Kexin 9 ( PCSK9) Gene Expression in a Cell-Free Transcription/Translation System. Int J Mol Sci 2024; 25:1463. [PMID: 38338741 PMCID: PMC10855603 DOI: 10.3390/ijms25031463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) is a protein that plays a key role in the metabolism of low-density lipoprotein (LDL) cholesterol. The gain-of-function mutations of the PCSK9 gene lead to a reduced number of surface LDL receptors by binding to them, eventually leading to endosomal degradation. This, in turn, is the culprit of hypercholesterolemia, resulting in accelerated atherogenesis. The modern treatment for hypercholesterolemia encompasses the use of biological drugs against PCSK9, like monoclonal antibodies and gene expression modulators such as inclisiran-a short, interfering RNA (siRNA). Peptide nucleic acid (PNA) is a synthetic analog of nucleic acid that possesses a synthetic peptide skeleton instead of a phosphate-sugar one. This different structure determines the unique properties of PNA (e.g., neutral charge, enzymatic resistance, and an enormously high affinity with complementary DNA and RNA). Therefore, it might be possible to use PNA against PCSK9 in the treatment of hypercholesterolemia. We sought to explore the impact of three selected PNA oligomers on PCSK9 gene expression. Using a cell-free transcription/translation system, we showed that one of the tested PNA strands was able to reduce the PCSK9 gene expression down to 74%, 64%, and 68%, as measured by RT-real-time PCR, Western blot, and HPLC, respectively. This preliminary study shows the high applicability of a cell-free enzymatic environment as an efficient tool in the initial evaluation of biologically active PNA molecules in the field of hypercholesterolemia research. This cell-free approach allows for the omission of the hurdles associated with transmembrane PNA transportation at the early stage of PNA selection.
Collapse
Affiliation(s)
- Agnieszka Polak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Science in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Science in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Science in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | - Jarosław Ruczyński
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.R.); (K.P.)
| | - Katarzyna Prochera
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.R.); (K.P.)
| | - Oliwia Bujak
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.R.); (K.P.)
| | - Piotr Mucha
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.R.); (K.P.)
| | - Piotr Rekowski
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.R.); (K.P.)
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Science in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| |
Collapse
|
25
|
Huang J, Lin Z, Lin J, Xie S, Xia S, Chen G, Zheng Z, Xu Z, Liu F, Wu H, Li S. Causal role of lipid metabolism in pulmonary alveolar proteinosis: an observational and mendelian randomisation study. Thorax 2024; 79:135-143. [PMID: 38124156 DOI: 10.1136/thorax-2023-220789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a rare interstitial lung disease characterised by the accumulation of lipoprotein material in the alveoli. Although dyslipidaemia is a prominet feature, the causal effect of lipid traits on PAP remains unclear. This study aimed to explore the role of lipid traits in PAP and evaluate the potential of lipid-lowering drug targets in PAP. METHODS Clinical outcomes, lipid profiles and lung function tests were analysed in a clinical cohort of diagnosed PAP patients and propensity score-matched healthy controls. Genome-wide association study data on PAP, lipid metabolism, blood cells and variants of genes encoding potential lipid-lowering drug targets were obtained for Mendelian randomisation (MR) and mediation analyses. FINDINGS Observational results showed that higher levels of total cholesterol (TC), triglycerides and low-density lipoprotein (LDL) were associated with increased risks of PAP. Higher levels of TC and LDL were also associated with worse PAP severity. In MR analysis, elevated LDL was associated with an increased risk of PAP (OR: 4.32, 95% CI: 1.63 to 11.61, p=0.018). Elevated monocytes were associated with a lower risk of PAP (OR 0.34, 95% CI: 0.18 to 0.66, p=0.002) and mediated the risk impact of LDL on PAP. Genetic mimicry of PCSK9 inhibition was associated with a reduced risk of PAP (OR 0.03, p=0.007). INTERPRETATION Our results support the crucial role of lipid and metabolism-related traits in PAP risk, emphasising the monocyte-mediated, causal effect of elevated LDL in PAP genetics. PCSK9 mediates the development of PAP by raising LDL. These finding provide evidence for lipid-related mechanisms and promising lipid-lowering drug target for PAP.
Collapse
Affiliation(s)
- Junfeng Huang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zikai Lin
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinsheng Lin
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuojia Xie
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shixin Xia
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gengjia Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziwen Zheng
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhe Xu
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fangcheng Liu
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongkai Wu
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyue Li
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Pan W, Zhang J, Zhang L, Zhang Y, Song Y, Han L, Tan M, Yin Y, Yang T, Jiang T, Li H. Comprehensive view of macrophage autophagy and its application in cardiovascular diseases. Cell Prolif 2024; 57:e13525. [PMID: 37434325 PMCID: PMC10771119 DOI: 10.1111/cpr.13525] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the primary drivers of the growing public health epidemic and the leading cause of premature mortality and economic burden worldwide. With decades of research, CVDs have been proven to be associated with the dysregulation of the inflammatory response, with macrophages playing imperative roles in influencing the prognosis of CVDs. Autophagy is a conserved pathway that maintains cellular functions. Emerging evidence has revealed an intrinsic connection between autophagy and macrophage functions. This review focuses on the role and underlying mechanisms of autophagy-mediated regulation of macrophage plasticity in polarization, inflammasome activation, cytokine secretion, metabolism, phagocytosis, and the number of macrophages. In addition, autophagy has been shown to connect macrophages and heart cells. It is attributed to specific substrate degradation or signalling pathway activation by autophagy-related proteins. Referring to the latest reports, applications targeting macrophage autophagy have been discussed in CVDs, such as atherosclerosis, myocardial infarction, heart failure, and myocarditis. This review describes a novel approach for future CVD therapies.
Collapse
Affiliation(s)
- Wanqian Pan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lei Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yue Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Lianhua Han
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tianke Yang
- Department of Ophthalmology, Eye Institute, Eye & ENT HospitalFudan UniversityShanghaiChina
- Department of OphthalmologyThe First Affiliated Hospital of USTC, University of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
28
|
Imaralu OE, Aluganti Narasimhulu C, Singal PK, Singla DK. Role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in diabetic complications. Can J Physiol Pharmacol 2024; 102:14-25. [PMID: 37748207 DOI: 10.1139/cjpp-2023-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cardiovascular disease (CVD) complications have remained a major cause of death among patients with diabetes. Hence, there is a need for effective therapeutics against diabetes-induced CVD complications. Since its discovery, proprotein convertase subtilisin/kexin type 9 (PCSK9) has been reported to be involved in the pathology of various CVDs, with studies showing a positive association between plasma levels of PCSK9, hyperglycemia, and dyslipidemia. PCSK9 regulates lipid homeostasis by interacting with low-density lipoprotein receptors (LDLRs) present in hepatocytes and subsequently induces LDLR degradation via receptor-mediated endocytosis, thereby reducing LDL uptake from circulation. In addition, PCSK9 also induces pro-inflammatory cytokine expression and apoptotic cell death in diabetic-CVD. Furthermore, therapies designed to inhibit PCSK9 effectively reduces diabetic dyslipidemia with clinical studies reporting reduced cardiovascular events in patients with diabetes and no significant adverse effect on glycemic controls. In this review, we discuss the role of PCSK9 in the pathogenesis of diabetes-induced CVD and the potential mechanisms by which PCSK9 inhibition reduces cardiovascular events in diabetic patients.
Collapse
Affiliation(s)
- Omonzejie E Imaralu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Pawan K Singal
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
29
|
Cecchini AL, Biscetti F, Manzato M, Lo Sasso L, Rando MM, Nicolazzi MA, Rossini E, Eraso LH, Dimuzio PJ, Massetti M, Gasbarrini A, Flex A. Current Medical Therapy and Revascularization in Peripheral Artery Disease of the Lower Limbs: Impacts on Subclinical Chronic Inflammation. Int J Mol Sci 2023; 24:16099. [PMID: 38003290 PMCID: PMC10671371 DOI: 10.3390/ijms242216099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Peripheral artery disease (PAD), coronary artery disease (CAD), and cerebrovascular disease (CeVD) are characterized by atherosclerosis and inflammation as their underlying mechanisms. This paper aims to conduct a literature review on pharmacotherapy for PAD, specifically focusing on how different drug classes target pro-inflammatory pathways. The goal is to enhance the choice of therapeutic plans by considering their impact on the chronic subclinical inflammation that is associated with PAD development and progression. We conducted a comprehensive review of currently published original articles, narratives, systematic reviews, and meta-analyses. The aim was to explore the relationship between PAD and inflammation and evaluate the influence of current pharmacological and nonpharmacological interventions on the underlying chronic subclinical inflammation. Our findings indicate that the existing treatments have added anti-inflammatory properties that can potentially delay or prevent PAD progression and improve outcomes, independent of their effects on traditional risk factors. Although inflammation-targeted therapy in PAD shows promising potential, its benefits have not been definitively proven yet. However, it is crucial not to overlook the pleiotropic properties of the currently available treatments, as they may provide valuable insights for therapeutic strategies. Further studies focusing on the anti-inflammatory and immunomodulatory effects of these treatments could enhance our understanding of the mechanisms contributing to the residual risk in PAD and pave the way for the development of novel therapies.
Collapse
Affiliation(s)
- Andrea Leonardo Cecchini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Matteo Manzato
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Lo Sasso
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Anna Nicolazzi
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Enrica Rossini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luis H. Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J. Dimuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Massimo Massetti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Flex
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
30
|
Ke D, Zhang Z, Liu J, Chen P, Dai Y, Sun X, Chu Y, Li L. RIPK1 and RIPK3 inhibitors: potential weapons against inflammation to treat diabetic complications. Front Immunol 2023; 14:1274654. [PMID: 37954576 PMCID: PMC10639174 DOI: 10.3389/fimmu.2023.1274654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that is characterized by chronic hyperglycemia due to a variety of etiological factors. Long-term metabolic stress induces harmful inflammation leading to chronic complications, mainly diabetic ophthalmopathy, diabetic cardiovascular complications and diabetic nephropathy. With diabetes complications being one of the leading causes of disability and death, the use of anti-inflammatories in combination therapy for diabetes is increasing. There has been increasing interest in targeting significant regulators of the inflammatory pathway, notably receptor-interacting serine/threonine-kinase-1 (RIPK1) and receptor-interacting serine/threonine-kinase-3 (RIPK3), as drug targets for managing inflammation in treating diabetes complications. In this review, we aim to provide an up-to-date summary of current research on the mechanism of action and drug development of RIPK1 and RIPK3, which are pivotal in chronic inflammation and immunity, in relation to diabetic complications which may be benefit for explicating the potential of selective RIPK1 and RIPK3 inhibitors as anti-inflammatory therapeutic agents for diabetic complications.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Yucen Dai
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
31
|
Ayati A, Akbari K, Shafiee A, Zoroufian A, Jalali A, Samimi S, Pashang M, Hosseini K, Bagheri J, Masoudkabir F. Time-varying effect of postoperative cholesterol profile on long-term outcomes of isolated coronary artery bypass graft surgery. Lipids Health Dis 2023; 22:163. [PMID: 37789387 PMCID: PMC10546688 DOI: 10.1186/s12944-023-01927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Controlling cholesterol levels is one of the primary goals of preventing atherosclerotic plaque progression in patients undergoing coronary artery bypass graft (CABG) surgery. This study aimed to investigate the impact of serum cholesterol profile at multiple time points following isolated CABG surgery on long-term patient outcomes. METHOD This retrospective cohort study was conducted on the admission and follow-up data of isolated CABG patients from the Tehran Heart Center registry between 2009 and 2016. The association of low-density lipoprotein (LDL), high-density lipoprotein (HDL), and their ratio as an atherogenic index with major adverse cardiac and cerebrovascular events (MACCE) and all-cause mortality were evaluated using time-varying survival analysis methods. RESULT A total of 18657 patients were included in this analysis. After adjusting for known confounding factors, no significant difference in all-cause mortality and MACCE was observed at different LDL levels. The incidence of acute coronary syndrome (ACS) in patients with LDL > 100 mg/dl and LDL < 50 mg/dl was significantly higher than in the control group (P-value = 0.004 and 0.04, respectively). The incidence of cerebrovascular accidents (CVA) at LDL > 100 mg/dl was also significantly higher compared to the control group (P -value = 0.033). Lower HDL levels were significantly associated with a higher MACCE (P -value < 0.001), all-cause mortality (P -value < 0.001), ACS (P -value = 0.00), and CVA (P -value = 0.014). The atherogenic index was also directly related to MACCE and all its components (all P-values < 0.001). CONCLUSION LDL/HDL ratio is suggested as a better marker for secondary prevention goals compared to LDL alone in patients undergoing CABG surgery.
Collapse
Affiliation(s)
- Aryan Ayati
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Akbari
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Shafiee
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Zoroufian
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Jalali
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Samimi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Pashang
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Bagheri
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Galindo CL, Khan S, Zhang X, Yeh YS, Liu Z, Razani B. Lipid-laden foam cells in the pathology of atherosclerosis: shedding light on new therapeutic targets. Expert Opin Ther Targets 2023; 27:1231-1245. [PMID: 38009300 PMCID: PMC10843715 DOI: 10.1080/14728222.2023.2288272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Lipid-laden foam cells within atherosclerotic plaques are key players in all phases of lesion development including its progression, necrotic core formation, fibrous cap thinning, and eventually plaque rupture. Manipulating foam cell biology is thus an attractive therapeutic strategy at early, middle, and even late stages of atherosclerosis. Traditional therapies have focused on prevention, especially lowering plasma lipid levels. Despite these interventions, atherosclerosis remains a major cause of cardiovascular disease, responsible for the largest numbers of death worldwide. AREAS COVERED Foam cells within atherosclerotic plaques are comprised of macrophages, vascular smooth muscle cells, and other cell types which are exposed to high concentrations of lipoproteins accumulating within the subendothelial intimal layer. Macrophage-derived foam cells are particularly well studied and have provided important insights into lipid metabolism and atherogenesis. The contributions of foam cell-based processes are discussed with an emphasis on areas of therapeutic potential and directions for drug development. EXERT OPINION As key players in atherosclerosis, foam cells are attractive targets for developing more specific, targeted therapies aimed at resolving atherosclerotic plaques. Recent advances in our understanding of lipid handling within these cells provide insights into how they might be manipulated and clinically translated to better treat atherosclerosis.
Collapse
Affiliation(s)
- Cristi L. Galindo
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Saifur Khan
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Yu-Sheng Yeh
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Ziyang Liu
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Pittsburgh VA Medical Center, Pittsburgh, PA
| |
Collapse
|
33
|
Quercetin alleviates atherosclerosis by suppressing oxidized LDL-induced senescence in plaque macrophage via inhibiting the p38MAPK/p16 pathway. J Nutr Biochem 2023; 116:109314. [PMID: 36924853 DOI: 10.1016/j.jnutbio.2023.109314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/10/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023]
Abstract
Quercetin is a widely known and biologically active phytochemical and exerts therapeutic effects against atherosclerosis. The removal of senescent plaque macrophages effectively slows the progression of atherosclerosis and decreases the plaque burden. Still, whether quercetin alleviates atherosclerosis by inhibiting the senescence of plaque macrophages, including the potential mechanisms, remains unclear. ApoE-/- mice were fed with a normal chow diet or high-fat diet (HFD) supplemented or not with quercetin (100 mg/kg of body weight) for 16 weeks. An accumulation of senescent macrophages was observed in the plaque-rich aortic tissues from the mice with HFD, but quercetin supplementation effectively reduced the amount of senescent plaque macrophage, inhibited the secretion of key senescence-associated secretory phenotype (SASP) factors, and alleviated atherosclerosis by inhibiting p38MAPK phosphorylation and p16 expression. In vitro, SB203580 (a specific inhibitor of p38 MAPK) significantly inhibited oxidized low-density lipoprotein (ox-LDL)-induced senescence in mouse RAW264.7 macrophages, as evidenced by decreased senescence-associated markers (SA-β-gal staining positive cells and p16 expression). Furthermore, quercetin not only effectively reversed ox-LDL-induced senescence in RAW264.7 cells but also decreased the mRNA levels of several key SASP factors by suppressing p38 MAPK phosphorylation and p16 expression. The p38 MAPK agonist asiatic acid reversed the effects of quercetin. In conclusion, these findings indicate that quercetin suppresses ox-LDL-induced senescence in plaque macrophage and attenuates atherosclerosis by inhibiting the p38 MAPK/p16 pathway. This study elucidates the mechanisms of quercetin against atherosclerosis and supports quercetin as a nutraceutical for the management of atherosclerosis.
Collapse
|
34
|
Poznyak AV, Sukhorukov VN, Eremin II, Nadelyaeva II, Gutyrchik NA, Orekhov AN. Proprotein Convertase Subtilisin/Kexin 9 as a Modifier of Lipid Metabolism in Atherosclerosis. Biomedicines 2023; 11:biomedicines11020503. [PMID: 36831039 PMCID: PMC9953442 DOI: 10.3390/biomedicines11020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Despite being the most common treatment strategy in the management of atherosclerosis and subsequent cardiovascular disease, classical statin therapy has certain disadvantages, including numerous side effects. In addition, a regimen with daily administration of the drug is hard to comply with. Thus, there is a need for modern and more efficient therapeutic strategies in CVD treatment. There is extensive evidence indicating that PCSK9 promotes atherogenesis through a variety of mechanisms. Thus, new treatment methods can be developed that prevent or alleviate atherosclerotic cardiovascular disease by targeting PCSK9. Comprehensive understanding of its atherogenic properties is a necessary precondition for the establishment of new therapeutic strategies. In this review, we will summarize the available data on the role of PCSK9 in the development and progression of atherosclerosis. In the last section, we will consider existing PCSK9 inhibitors.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Ilya I. Eremin
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Irina I. Nadelyaeva
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Nikita A. Gutyrchik
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
35
|
Vaught AJ, Boyer T, Ziogos E, Amat-Codina N, Minhas A, Darwin K, Debrosse A, Fedarko N, Burd I, Baschat A, Sharma G, Hays AG, Zakaria S, Leucker TM. The role of proprotein convertase subtillisin/kexin type 9 in placental salvage and lipid metabolism in women with preeclampsia. Placenta 2023; 132:1-6. [PMID: 36603351 DOI: 10.1016/j.placenta.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Preeclampsia is associated with decreased maternal low-density lipoprotein cholesterol (LDL-c), which is essential for fetal growth. The underlying mechanisms for decreased LDL-c in preeclampsia remain unknown. Proprotein convertase subtillisin/kexin type 9 (PCSK9) regulates serum LDL-c via LDL receptor (LDL-R) degradation. We describe the possible role of PCSK9 in lipid metabolism in all compartments of the parturient (maternal blood, placental tissue, and fetal blood) in pregnancies with and without preeclampsia. METHODS This is an observational study examining PCSK9 levels in maternal sera, umbilical cord blood, and PCSK9 protein content in placental tissue in three different locations (maternal placental interface, fetal placental interface, and umbilical cord) in women with and without preeclampsia at >23 weeks gestation. RESULTS 68 parturients with preeclampsia and 55 without preeclampsia were enrolled. Maternal serum LDL-c (116.6 ± 48.9 mg/dL vs 146.1 ± 47.1 mg/dL, p = 0.0045) and PCSK9 (83 [61.8127.6] ng/mL vs 105.3 [83.5142.9] ng/mL, p = 0.011) were also reduced in the preeclamptics versus controls. There were no differences in PCSK9 protein content between preeclamptics and controls at comparative placental interfaces. However, PCSK9 protein content increased between the preeclampsia maternal placental interface (1.87 ± 0.62) and the preeclampsia umbilical cord (2.67 ± 1.08, p = 0.0243). DISCUSSION PCSK9 levels are lower in maternal sera in preeclampsia when compared to controls. Placental PCSK9 protein content in preeclampsia increases from the maternal interface to the umbilical cord; however, this is not seen in controls. This suggests a potential compensatory mechanism for PCSK9 which allows for higher circulating fetal LDL-c levels in preeclampsia.
Collapse
Affiliation(s)
- Arthur Jason Vaught
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, USA.
| | - Theresa Boyer
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, USA
| | | | | | - Anum Minhas
- Department of Medicine, Division of Cardiology, USA
| | - Kristin Darwin
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, USA
| | - Alexia Debrosse
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, USA
| | - Neal Fedarko
- Department of Medicine, Division of Geriatric Medicine. the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, USA
| | - Ahmet Baschat
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, USA
| | | | | | | | | |
Collapse
|
36
|
Zeng Q, Xie J, Li F. TRIM59 attenuates ox-LDL-induced endothelial cell inflammation, apoptosis, and monocyte adhesion through AnxA2. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:42. [PMID: 36819529 PMCID: PMC9929822 DOI: 10.21037/atm-22-6044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Background Atherosclerosis (AS), a chronic inflammatory vascular disease, is a cause of heart attack and ischemic stroke. Tripartite motif-containing protein 59 (TRIM59), a member of the tripartite motif family, has been reported to be involved in inflammatory diseases. This study was to investigate the role of TRIM59 in oxidized low-density lipoprotein (ox-LDL)-induced endothelial cells and examine the mechanism of TRIM59. Methods To simulate a cellular model of AS in vitro, varying concentrations of ox-LDL (i.e., 20, 40, 60, 80, and 100 µg/mL) were used to treat the human umbilical vein endothelial cells (HUVECs) for 24 h. The messenger ribonucleic acid (RNA) and protein levels of TRIM59, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and annexin 2 (AnxA2) were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. The transfection efficacy of overexpression (Ov)-TRIM59 and small-interfering RNA-AnxA2 was examined by RT-qPCR and western blot. Cell counting kit-8 assays, lactate dehydrogenase (LDH) assays, enzyme-linked immunosorbent assays, and terminal-deoxynucleotidyl transferase mediated nick end labeling staining were used to examine viability, LDH expression, inflammation, and apoptosis in HUVECs. The protein levels of B-cell lymphoma 2, Bcl-2-associated X (BAX), cleaved caspase3, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 were assessed by western blot. Additionally, the adhesion of THP-1 to ox-LDL-induced HUVECs was detected using monocyte adhesion assays and the binding of TRIM59 and AnxA2 was verified by co-immunoprecipitation. Results This study showed that TRIM59 expression was decreased in the ox-LDL-induced HUVECs while LOX-1 expression was increased. After transfection with Ov-TRIM59, TRIM59 in ox-LDL-induced HUVECs was increased, and TRIM59 overexpression alleviated the viability damage, inflammation, and apoptosis of the ox-LDL-induced HUVECs. In addition, THP-1 adhesion to the ox-LDL-induced HUVECs was also suppressed by TRIM59 overexpression. This study also showed that TRIM59 could bind to AnxA2 and promote AnxA2 expression in ox-LDL-stimulated HUVECs. Moreover, the rescue experiments revealed that TRIM59 suppressed the viability damage, inflammation, apoptosis, and monocyte adhesion of the ox-LDL-induced HUVECs via AnxA2. Conclusions TRIM59 protected against ox-LDL-induced AS by binding to AnxA2.
Collapse
Affiliation(s)
- Qilin Zeng
- General Practice, Fifth Clinical Medical College, Xinjiang Medical University, Urumqi, China
| | - Jingli Xie
- Department of Cardiovascular Medicine, Fifth Clinical Medical College, Xinjiang Medical University, Urumqi, China
| | - Fang Li
- Leshan People’s Hospital ICU, Leshan, China
| |
Collapse
|
37
|
Chen J, Zhao F, Lei C, Qi T, Xue X, Meng Y, Zhang W, Zhang H, Wang J, Zhu H, Cheng C, Wang Q, Bi C, Song B, Jin C, Niu Q, An F, Li B, Huo X, Zhao Y, Li B. Effect of evolocumab on the progression of intraplaque neovascularization of the carotid based on contrast-enhanced ultrasonography (EPIC study): A prospective single-arm, open-label study. Front Pharmacol 2023; 13:999224. [PMID: 36686711 PMCID: PMC9846542 DOI: 10.3389/fphar.2022.999224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background and Purpose: The aim of this study was to explore the effect of half a year of evolocumab plus moderate-intensity statin treatment on carotid intraplaque neovascularization (IPN) and blood lipid levels. Methods: A total of 31 patients with 33 carotid plaques who received evolocumab plus statin treatment were included. Blood lipid levels, B-mode ultrasound and contrast-enhanced ultrasonography (CEUS) at baseline and after half a year of evolocumab plus statin therapy were collected. The area under the curve (AUC) reflected the total amount of acoustic developer entering the plaque or lumen within the 180 s measurement period. The enhanced intensity reflected the peak blood flow intensity during the monitoring period, and the contrast agent area reflected the area of vessels in the plaques. Results: Except for high-density lipoprotein cholesterol (HDL-c), all other lipid indices decreased. Compared with baseline, low-density lipoprotein cholesterol (LDL-c) decreased by approximately 57% (p < 0.001); total cholesterol (TC) decreased by approximately 34% (p < 0.001); small dense low-density lipoprotein (sd-LDL) decreased by approximately 52% (p < 0.001); and HDL-c increased by approximately 20% (p < 0.001). B-mode ultrasonography showed that the length and thickness of the plaque and the hypoechoic area ratio were reduced (p < 0.05). The plaque area, calcified area ratio, and lumen cross-sectional area changed little (p > 0.05). CEUS revealed that the area under the curve of plaque/lumen [AUC (P/L)] decreased from 0.27 ± 0.13 to 0.19 ± 0.11 (p < 0.001). The enhanced intensity ratio of plaque/lumen [intensity ratio (P/L)] decreased from 0.37 ± 0.16 to 0.31 ± 0.14 (p = 0.009). The contrast agent area in plaque/area of plaque decreased from 19.20 ± 13.23 to 12.66 ± 9.59 (p = 0.003). The neovascularization score decreased from 2.64 ± 0.54 to 2.06 ± 0.86 (p < 0.001). Subgroup analysis based on statin duration (<6 months and ≥6 months) showed that there was no significant difference in the AUC (P/L) or intensity ratio (P/L) at baseline or after half a year of evolocumab treatment. Conclusion: This study found that evolocumab combined with moderate-intensity statins significantly improved the blood lipid profile and reduced carotid IPN. Clinical Trial Registration: https://www.clinicaltrials.gov; identifier: NCT04423406.
Collapse
Affiliation(s)
- Ju Chen
- Department of Medical Ultrasonics, Zibo Central Hospital, Zibo, China
| | - Faming Zhao
- Department of Cardiology, Zibo Central Hospital, Zibo, China
- Department of Infectious Disease, Zibo Infectious Disease Hospital, Zibo, China
| | - Chengbin Lei
- Laboratory Department, Zibo Central Hospital, Zibo, China
| | - Tianjun Qi
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Xin Xue
- Laboratory Department, Zibo Central Hospital, Zibo, China
| | - Yuan Meng
- Laboratory Department, Zibo Central Hospital, Zibo, China
| | - Wenzhong Zhang
- Department of Medical Ultrasonics, Zibo Central Hospital, Zibo, China
| | - Hui Zhang
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Jian Wang
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Haijun Zhu
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Cheng Cheng
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Qilei Wang
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Chenglong Bi
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Beibei Song
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Chengwei Jin
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Qiang Niu
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Fengshuang An
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoguang Huo
- Department of Medical Ultrasonics, Zibo Central Hospital, Zibo, China
| | - Yunhe Zhao
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
38
|
Chaulin AM. The Negative Effects of Statin Drugs on Cardiomyocytes: Current Review of Laboratory and Experimental Data (Mini-Review). Cardiovasc Hematol Agents Med Chem 2023; 22:7-16. [PMID: 36918788 DOI: 10.2174/1871525721666230314101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 03/16/2023]
Abstract
Statin drugs have long been used as a key component of lipid-lowering therapy, which is necessary for the prevention and treatment of atherosclerosis and cardiovascular diseases. Many studies focus on finding and refining new effects of statin drugs. In addition to the main lipidlowering effect (blocking cholesterol synthesis), statin drugs have a number of pleiotropic effects, including negative effects. The main beneficial effects of statin drugs on the components of the cardiovascular system are: anti-ischemic, antithrombotic, anti-apoptotic, antioxidant, endothelioprotective, anti-inflammatory properties, and a number of other beneficial effects. Due to these effects, statin drugs are considered one of the main therapeutic agents for the management of patients with cardiovascular pathologies. To date, many review manuscripts have been published on the myotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity and diabetogenic effects of statins. However, there are no review manuscripts considering the negative effect of statin drugs on myocardial contractile cells (cardiomyocytes). The purpose of this review is to discuss the negative effects of statin drugs on cardiomyocytes. Special attention is paid to the cardiotoxic action of statin drugs on cardiomyocytes and the mechanisms of increased serum levels of cardiac troponins. In the process of preparing this review, a detailed analysis of laboratory and experimental data devoted to the study of the negative effects of statin drugs on cardiomyocytes was carried out. The literature search was carried out with the keywords: statin drugs, negative effects, mechanisms, cardiac troponins, oxidative stress, apoptosis. Thus, statin drugs can have a number of negative effects on cardiomyocytes, in particular, increased oxidative stress, endoplasmic reticulum stress, damage to mitochondria and intercalated discs, and inhibition of glucose transport into cardiomyocytes. Additional studies are needed to confirm and clarify the mechanisms and clinical consequences of the negative effects of statin drugs on cardiomyocytes.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara, 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara, 443099, Russia
| |
Collapse
|
39
|
Chaulin A. Cardiotoxicity as a Possible Side Effect of Statins. Rev Cardiovasc Med 2023; 24:22. [PMID: 39076865 PMCID: PMC11270446 DOI: 10.31083/j.rcm2401022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 07/31/2024] Open
Abstract
According to current views, statins have a wide range of beneficial effects (lipid and non-lipid) on the cardiovascular system, so they are one of the most commonly used drugs for the prevention and management of patients with cardiovascular diseases. However, it is important to note that information about many beneficial effects of statins is contradictory. In addition, a number of side effects of statins, in particular, myotoxicity, hepatotoxicity, diabetogenic property, etc., may limit the possibility of using statins or even force doctors to cancel these drugs. Also, some concerns are caused by recent studies reporting cardiotoxicity of statins and increased serum concentrations of biomarkers of myocardial damage (highly sensitive cardiac troponins (hs-cTns)) in patients taking statins. This article discusses in detail the possible mechanisms of cardiotoxicity of statins and outlines the directions for further research in this area.
Collapse
Affiliation(s)
- Aleksey Chaulin
- Department of Histology and Embryology, Samara State Medical University,
443099 Samara, Samara Region, Russia
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical
University, 443099 Samara, Samara Region, Russia
- Research Institute of Cardiology, Samara State Medical University, 443099
Samara, Samara Region, Russia
| |
Collapse
|
40
|
Mongiello P, Petti R, Ciaccia A, Grazia Morgese M, Lombardi R. Analysis of Adherence to anti-PCSK9 Antibody Therapy among Patients from Italy. Cardiovasc Hematol Disord Drug Targets 2023; 23:111-121. [PMID: 37565557 DOI: 10.2174/1871529x23666230810094738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Hypercholesterolemia is one of the main risk factors associated with atherosclerotic cardiovascular disease and coronary heart disease. Statins are the standard cholesterollowering treatment; however, they have shown, in clinical practice, a reduced adherence to therapy (<50%) and a modest achievement of the expected outcomes for treatment. This condition prompt scientific research to develop drugs with different mechanisms of action. In this regard, excellent results have been achieved with therapeutic use of monoclonal antibodies against PCSK9, enzyme involved in recycling of Low density lipoprotein receptors (LDLR) on the hepatocytes surface. Indeed, the reduction in receptor density caused by PCSK9 is associated with increased serum LDL levels. MATERIALS AND METHODS After the data extraction of all Local Health Authority (ASL) of Foggia patients (302) who received, in 2021, at least one administration of Alirocumab or Evolocumab, the therapeutic adherence was calculated, for each individual patient, by indirect method (calculation of the Medication Possession Ratio - MPR). According to scientific literature, patients were classified into: adherents (MPR>80%), average adherents (MPR between 40% and 80%) and non-adherents (MPR<40%). Patients were then stratified by gender and age groups (0-18, 19-49, 50-64, >65). RESULTS The results show that, for both drugs (Alirocumab and Evolocumab), women are more adherent than men and the group of young adults (19-49 years old) is the one with the lowest adherence to therapy, 69% for Alirocumab and 56% for Evolocumab. CONCLUSION According to Italian Drug Agency (AIFA), poor therapeutic adherence is the main cause of ineffectiveness of drug therapies, and it is associated with increased hospitalizations, morbidity and mortality. Data obtained from this study allow to detect the categories of patients who need specific programs about the correct use of drugs, in order to increase therapeutic adherence and facilitate the achievement of the expected outcomes for treatment.
Collapse
Affiliation(s)
- Paolo Mongiello
- Specializzando in Farmacia Ospedaliera presso l'Università degli Studi di Bari e tirocinante presso la Struttura Complessa di Farmacia Territoriale dell'Azienda Sanitaria Locale di Foggia, 71121 Foggia, Italy
| | - Raffaele Petti
- Dirigente Farmacista presso la Struttura Complessa di Farmacia Territoriale dell'Azienda Sanitaria Locale di Foggia, 71121 Foggia, Italy
| | - Andrea Ciaccia
- Dirigente Farmacista presso la Struttura Complessa di Farmacia Territoriale dell'Azienda Sanitaria Locale di Foggia, 71121 Foggia, Italy
| | - Maria Grazia Morgese
- Professoressa presso il Dipartimento di Medicina Clinica e Sperimentale dell'Università degli Studi di Foggia, 71122 Foggia, Italy
| | - Renato Lombardi
- Direttore della Struttura Complessa di Farmacia Territoriale dell'Azienda Sanitaria Locale di Foggia, 71121 Foggia, Italy
| |
Collapse
|
41
|
Giglio RV, Muzurović EM, Patti AM, Toth PP, Agarwal MA, Almahmeed W, Klisic A, Ciaccio M, Rizzo M. Treatment with Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors (PCSK9i): Current Evidence for Expanding the Paradigm? J Cardiovasc Pharmacol Ther 2023; 28:10742484231186855. [PMID: 37448204 DOI: 10.1177/10742484231186855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Background: Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are low-density lipoprotein cholesterol (LDL-C)-lowering drugs that play a critical role in lipoprotein clearance and metabolism. PCSK9i are used in patients with familial hypercholesterolemia and for the secondary prevention of acute cardiovascular events in patients with atherosclerotic cardiovascular disease (CVD). Methods: We focused on the literature from 2015, the year of approval of the PCSK9 monoclonal antibodies, to the present on the use of PCSK9i not only in the lipid field but also by evaluating their effects on metabolic factors. Results: PCSK9 inhibits cholesterol efflux from macrophages and contributes to the formation of macrophage foam cells. PCSK9 has the ability to bind to Toll-like receptors, thus mediating the inflammatory response and binding to scavenger receptor B/cluster of differentiation 36. PCSK9i lower the entire spectrum of apolipoprotein B-100 containing lipoproteins (LDL, very LDLs, intermediate-density lipoproteins, and lipoprotein[a]) in high CVD-risk patients. Moreover, PCSK9 inhibitors are neutral on risk for new-onset diabetes mellitus and might have a beneficial impact on the development of nonalcoholic fatty liver disease by improving lipid and inflammatory biomarker profiles, steatosis biomarkers such as the triglyceride-glucose index, and hepatic steatosis index, although there are no comprehensive studies with long-term follow-up studies. Conclusion: The discovery of PCSK9i has opened a new era in therapeutic management in patients with hypercholesterolemia and high cardiovascular risk. Increasingly, there has been mounting scientific and clinical evidence supporting the safety and tolerability of PCSK9i.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy
| | - Emir M Muzurović
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Podgorica, Montenegro
| | - Angelo Maria Patti
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Italy
| | - Peter P Toth
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manyoo A Agarwal
- Heart and Vascular Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Wael Almahmeed
- Heart and Vascular Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Primary Health Care Center, Podgorica, Montenegro
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine Columbia, Columbia, SC, USA
| |
Collapse
|
42
|
Qian Z, Zhao J. Silencing YY1 Alleviates Ox-LDL-Induced Inflammation and Lipid Accumulation in Macrophages through Regulation of PCSK9/ LDLR Signaling. J Microbiol Biotechnol 2022; 32:1406-1415. [PMID: 36330745 PMCID: PMC9720084 DOI: 10.4014/jmb.2207.07011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The formation of macrophage foam cells stimulated by oxidized low-density lipoprotein (ox-LDL) is deemed an important cause of atherosclerosis. Transcription factor Yin Yang 1 (YY1), which is a universally expressed multifunctional protein, is closely related to cell metabolism disorders such as lipid metabolism, sugar metabolism, and bile acid metabolism. However, whether YY1 is involved in macrophage inflammation and lipid accumulation still remains unknown. After mouse macrophage cell line RAW264.7 cells were induced by ox-LDL, YY1 and proprotein convertase subtilisin/kexin type 9 (PCSK9) expressions were found to be increased while low-density lipoprotein receptor (LDLR) expression was lowly expressed. Subsequently, through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, Oil Red O staining and cholesterol quantification, it turned out that silencing of YY1 attenuated the inflammatory response and lipid accumulation in RAW264.7 cells caused by ox-LDL. Moreover, results from the JASPAR database, chromatin immunoprecipitation (ChIP) assay, luciferase reporter assay and Western blot analysis suggested that YY1 activated PCSK9 by binding to PCSK9 promoter and modulated the expression of LDLR in the downstream of PCSK9. In addition, the results of functional experiments demonstrated that the inhibitory effects of YY1 interference on ox-LDL-mediated macrophage inflammation and lipid accumulation were reversed by PCSK9 overexpression. To sum up, YY1 depletion inhibited its activation of PCSK9, thereby reducing cellular inflammatory response, cholesterol homeostasis imbalance, and lipid accumulation caused by ox-LDL.
Collapse
Affiliation(s)
- Zhengyao Qian
- The Second Department of Cardiology, Tianjin Hospital, No.406, Jiefang South Road, Hexi District, Tianjin 300211, P.R. China,Corresponding author Phone: +86-22-60123231 E-mail:
| | - Jianping Zhao
- The Second Department of Cardiology, Tianjin Hospital, No.406, Jiefang South Road, Hexi District, Tianjin 300211, P.R. China
| |
Collapse
|
43
|
Luo J, Liao W, Wang X, Xu R, Li W, Li W, Liu K, Huang K, Ma Y, Wang T, Yang B, Jiao L. PCSK9 inhibitors for anti-inflammation in atherosclerosis: protocol for a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2022; 12:e062046. [PMID: 36424111 PMCID: PMC9693878 DOI: 10.1136/bmjopen-2022-062046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Atherosclerosis is the leading cause of cardiovascular disease (CVD), which is one of the most common causes of morbidity and mortality worldwide. Lipid accumulation and inflammation play a crucial role in the pathogenesis of atherosclerosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are an emerging lipid-lowering agent reported as a potential anti-inflammation effect in the prevention of CVD. However, the anti-inflammatory effect is still elusive. Therefore, a systematic review and meta-analysis is needed to analyse the anti-inflammatory effect of PCSK9 inhibitors on atherosclerosis in practice. METHODS AND ANALYSIS This protocol was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols. We will include double-blind, randomised controlled trials that reported changes in the levels of inflammatory markers, with an intervention arm of PCSK9 inhibitors and a treatment duration of more than 2 weeks. The following databases will be mainly searched from 1 January 2003 to the formal search date: PubMed, Embase, Web of Science and the Cochrane Central Register of Controlled Trials. The primary aim is to assess the effect of PCSK9 inhibitors on inflammatory markers, including circulating inflammatory markers such as C-reactive protein, high-sensitivity C-reactive protein, white cell counts, IL-1β, IL-6 and TNF-α and local inflammatory markers such as the most diseased segment target-to-background ratio of the index vessel in adult patients with atherosclerosis. We will assess the quality of evidence, heterogeneity and report bias following the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions. ETHICS AND DISSEMINATION Due to the systematic review being based on published studies, no ethics approval is required. The study results will be presented at international conferences and published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42022297710.
Collapse
Affiliation(s)
- Jichang Luo
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wanying Liao
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue Wang
- Medical Library, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Xu
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wei Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Wenjing Li
- National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences, Beijing, China
| | - Kan Liu
- First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Kaixun Huang
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yan Ma
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tao Wang
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Bin Yang
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Liqun Jiao
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Chaulin AM. Review of Recent Laboratory and Experimental Data on Cardiotoxicity of Statins. J Cardiovasc Dev Dis 2022; 9:403. [PMID: 36421938 PMCID: PMC9696927 DOI: 10.3390/jcdd9110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022] Open
Abstract
Due to the fact that statins are among the most high-demand therapeutic agents used for the treatment and prevention of the most common cardiovascular diseases, a significant amount of research is focused on these drugs. As a result, the study and discovery of new effects in statin drugs continues. Research methods are constantly being improved in terms of their sensitivity and specificity, which leads to a change in ideas. In addition to the main lipid-lowering effect, statins have a number of additional effects, which can be conditionally divided into positive (pleiotropic) and negative (side effects). Moreover, information about many of the pleiotropic effects of statins is controversial and may subsequently change as new data become available. To a large extent, this is due to the introduction of new and the improvement of old methods of study: clinical, laboratory and morphological ones. Recent studies report the possibility of statins having potential cardiotoxic properties, which is expressed by an increase in the concentration of highly sensitive cardiac troponins, as well as various adverse changes in cardiac myocytes at the ultrastructural and molecular levels. This paper discusses possible mechanisms of statin cardiotoxicity. This narrative review is based on an analysis of publications in the Medline, PubMed, PubMed Central and Embase databases. The terms "statins", "troponin", "troponin I", "troponin T" in combination with "cardiotoxicity", "false positive", "mechanisms of increase", "pathophysiological mechanisms", "oxidative stress" and "cardiomyocyte apoptosis" were used to search publications.
Collapse
Affiliation(s)
- Aleksey M. Chaulin
- Department of Histology and Embryology, Samara State Medical University, 443099 Samara, Russia; ; Tel.: +7-(927)-770-25-87
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, 443099 Samara, Russia
- Research Institute of Cardiology, Samara State Medical University, 443099 Samara, Russia
| |
Collapse
|
45
|
Liu C, Chen J, Chen H, Zhang T, He D, Luo Q, Chi J, Hong Z, Liao Y, Zhang S, Wu Q, Cen H, Chen G, Li J, Wang L. PCSK9 Inhibition: From Current Advances to Evolving Future. Cells 2022; 11:cells11192972. [PMID: 36230934 PMCID: PMC9562883 DOI: 10.3390/cells11192972] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine protease synthesized primarily by the liver. It mainly promotes the degradation of low-density lipoprotein receptor (LDL-R) by binding LDL-R, reducing low-density lipoprotein cholesterol (LDL-C) clearance. In addition to regulating LDL-R, PCSK9 inhibitors can also bind Toll-like receptors (TLRs), scavenger receptor B (SR-B/CD36), low-density lipoprotein receptor-related protein 1 (LRP1), apolipoprotein E receptor-2 (ApoER2) and very-low-density lipoprotein receptor (VLDL-R) reducing the lipoprotein concentration and slowing thrombosis. In addition to cardiovascular diseases, PCSK9 is also used in pancreatic cancer, sepsis, and Parkinson’s disease. Currently marketed PCSK9 inhibitors include alirocumab, evolocumab, and inclisiran, as well as small molecules, nucleic acid drugs, and vaccines under development. This review systematically summarized the application, preclinical studies, safety, mechanism of action, and latest research progress of PCSK9 inhibitors, aiming to provide ideas for the drug research and development and the clinical application of PCSK9 in cardiovascular diseases and expand its application in other diseases.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510080, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Correspondence: (C.L.); (L.W.)
| | - Jing Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Tong Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qiyuan Luo
- Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiaxin Chi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Zebin Hong
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Yizhong Liao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shihui Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qizhe Wu
- Department of Neurosurgery, Institute of Neuroscience, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Guangzhong Chen
- Department of Neurosurgery, Institute of Neuroscience, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jinxin Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Correspondence: (C.L.); (L.W.)
| |
Collapse
|
46
|
Jia F, Fei SF, Tong DB, Xue C, Li JJ. Sex difference in circulating PCSK9 and its clinical implications. Front Pharmacol 2022; 13:953845. [PMID: 36160427 PMCID: PMC9490038 DOI: 10.3389/fphar.2022.953845] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a proprotein convertase that increases plasma low-density lipoprotein cholesterol (LDL-C) levels by triggering the degradation of LDL receptors (LDLRs). Beyond the regulation of circulating LDL-C, PCSK9 also has direct atherosclerotic effects on the vascular wall and is associated with coronary plaque inflammation. Interestingly, emerging data show that women have higher circulating PCSK9 concentrations than men, suggesting that the potential roles of PCSK9 may have different impacts according to sex. In this review, we summarize the studies concerning sex difference in circulating levels of PCSK9. In addition, we report on the sex differences in the relations of elevated circulating PCSK9 levels to the severity and prognosis of coronary artery disease, the incidence of type 2 diabetes mellitus, and neurological damage after cardiac arrest and liver injury, as well as inflammatory biomarkers and high-density lipoprotein cholesterol (HDL-C). Moreover, sex difference in the clinical efficacy of PCSK9 inhibitors application are reviewed. Finally, the underlying mechanisms of sex difference in circulating PCSK9 concentrations and the clinical implications are also discussed.
Collapse
Affiliation(s)
- Fang Jia
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Si-Fan Fei
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - De-Bing Tong
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cong Xue
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jian-Jun Li
- Cardio-Metabolic Center, Fu Wai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Salekeen R, Haider AN, Akhter F, Billah MM, Islam ME, Didarul Islam KM. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2022; 14:200143. [PMID: 36060286 PMCID: PMC9434419 DOI: 10.1016/j.ijcrp.2022.200143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
A marked increase in the global prevalence of ischemic heart disease demands focused research for novel and more effective therapeutic strategies. At present, atherosclerotic cardiovascular disease (ACVD) is the leading cause of the global incidence of heart attacks and a major contributor to many peripheral cardiac diseases. Decades of research have unearthed the complex and multidimensional pathophysiology of ACVD encompassing oxidative stress, redox imbalance, lipid peroxidation, pro-inflammatory signaling, hyperglycemic stress and diabetes mellitus, chronic low-grade inflammation and aging, immune dysregulation, vascular dysfunction, loss of hemostasis, thrombosis, and fluid shear stress. However, the scientific basis of therapeutic interventions using conventional understandings of the disease mechanisms has been subject to renewed scrutiny with novel findings in recent years. This critical review attempts to revise the pathophysiological mechanisms of atherosclerosis using a recent body of literature, with a focus on lipid metabolism and associated cellular and biochemical processes. The comprehensive study encompasses different molecular perspectives in the development and progression of coronary atherosclerosis. The review also summarizes currently prescribed small molecule therapeutics in inflammation and ACVD, and overviews prospective management measures under development including peptides and microRNA therapeutics. The study provides updated insights into the current knowledge of coronary atherosclerosis, and highlights the need for effective prevention, management and development of novel intervention approaches to overcome this chronic epidemic.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Abu Nasim Haider
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Fouzia Akhter
- Khulna Medical College Hospital, Khulna, 9000, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
48
|
Jaén RI, Povo-Retana A, Rosales-Mendoza C, Capillas-Herrero P, Sánchez-García S, Martín-Sanz P, Mojena M, Prieto P, Boscá L. Functional Crosstalk between PCSK9 Internalization and Pro-Inflammatory Activation in Human Macrophages: Role of Reactive Oxygen Species Release. Int J Mol Sci 2022; 23:9114. [PMID: 36012389 PMCID: PMC9409451 DOI: 10.3390/ijms23169114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a cardiovascular disease caused mainly by dyslipidemia and is characterized by the formation of an atheroma plaque and chronic inflammation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease that induces the degradation of the LDL receptor (LDLR), which contributes to increased levels of LDL cholesterol and the progress of atherosclerosis. Given that macrophages are relevant components of the lipidic and inflammatory environment of atherosclerosis, we studied the effects of PCSK9 treatment on human macrophages. Our data show that human macrophages do not express PCSK9 but rapidly incorporate the circulating protein through the LDLR and also activate the pro-inflammatory TLR4 pathway. Both LDLR and TLR4 are internalized after incubation of macrophages with exogenous PCSK9. PCSK9 uptake increases the production of reactive oxygen species and reduces the expression of genes involved in lipid metabolism and cholesterol efflux, while enhancing the production of pro-inflammatory cytokines through a TLR4-dependent mechanism. Under these conditions, the viability of macrophages is compromised, leading to increased cell death. These results provide novel insights into the role of PCSK9 in the crosstalk of lipids and cholesterol metabolism through the LDLR and on the pro-inflammatory activation of macrophages through TLR4 signaling. These pathways are relevant in the outcome of atherosclerosis and highlight the relevance of PCSK9 as a therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Rafael I. Jaén
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | | | | | | | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marina Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Patricia Prieto
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
49
|
Ilyas I, Little PJ, Liu Z, Xu Y, Kamato D, Berk BC, Weng J, Xu S. Mouse models of atherosclerosis in translational research. Trends Pharmacol Sci 2022; 43:920-939. [PMID: 35902281 DOI: 10.1016/j.tips.2022.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/21/2022]
Abstract
Atherosclerotic cardiovascular disease (CVD), the major cause of premature human mortality, is a chronic and progressive metabolic and inflammatory disease in large- and medium-sized arteries. Mouse models are widely used to gain mechanistic insights into the pathogenesis of atherosclerosis and have facilitated the discovery of anti-atherosclerotic drugs. Despite promising preclinical studies, many drug candidates have not translated to clinical use because of the complexity of disease patho-mechanisms including lipid metabolic traits and inflammatory, genetic, and hemodynamic factors. We review the current preclinical utility and translation potential of traditional [apolipoprotein E (APOE)- and low-density lipoprotein (LDL) receptor (LDLR)-deficient mice] and emerging mouse models that include partial carotid ligation and AAV8-Pcsk9-D377Y injection in atherosclerosis research and drug discovery. This article represents an important resource in atherosclerosis research.
Collapse
Affiliation(s)
- Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Danielle Kamato
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia; Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, Australia
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China; Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China; Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
50
|
Palumbo M, Giammanco A, Purrello F, Pavanello C, Mombelli G, Di Pino A, Piro S, Cefalù AB, Calabresi L, Averna M, Bernini F, Zimetti F, Adorni MP, Scicali R. Effects of PCSK9 inhibitors on HDL cholesterol efflux and serum cholesterol loading capacity in familial hypercholesterolemia subjects: a multi-lipid-center real-world evaluation. Front Mol Biosci 2022; 9:925587. [PMID: 35928226 PMCID: PMC9343790 DOI: 10.3389/fmolb.2022.925587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 01/03/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), beyond regulating LDL cholesterol (LDL-c) plasma levels, exerts several pleiotropic effects by modulating lipid metabolism in extrahepatic cells such as macrophages. Macrophage cholesterol homeostasis depends on serum lipoprotein functions, including the HDL capacity to promote cell cholesterol efflux (CEC) and the serum capacity to promote cell cholesterol loading (CLC). The aim of this observational study was to investigate the effect of PCSK9 inhibitors (PCSK9-i) treatment on HDL-CEC and serum CLC in patients with familial hypercholesterolemia (FH). 31 genetically confirmed FH patients were recruited. Blood was collected and serum isolated at baseline and after 6 months of PCSK9-i treatment. HDL-CEC was evaluated through the main pathways with a radioisotopic cell-based assay. Serum CLC was assessed fluorimetrically in human THP-1 monocyte-derived macrophages. After treatment with PCSK9-i, total cholesterol and LDL-c significantly decreased (−41.6%, p < 0.0001 and −56.7%, p < 0.0001, respectively). Total HDL-CEC was not different between patients before and after treatment. Conversely, despite no changes in HDL-c levels between the groups, ABCG1 HDL-CEC significantly increased after treatment (+22.2%, p < 0.0001) as well as HDL-CEC by aqueous diffusion (+7.8%, p = 0.0008). Only a trend towards reduction of ABCA1 HDL-CEC was observed after treatment. PCSK9-i significantly decreased serum CLC (−6.6%, p = 0.0272). This effect was only partly related to the reduction of LDL-c levels. In conclusion, PCSK9-i treatment significantly increased HDL-CEC through ABCG1 and aqueous diffusion pathways and reduced the serum CLC in FH patients. The favorable effect of PCSK9-i on functional lipid profile could contribute to the cardiovascular benefit of these drugs in FH patients.
Collapse
Affiliation(s)
| | - Antonina Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE)—University of Palermo, Palermo, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
- Centro Dislipidemie, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Giuliana Mombelli
- Centro Dislipidemie, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angelo Baldassare Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE)—University of Palermo, Palermo, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE)—University of Palermo, Palermo, Italy
| | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parma, Italy
- *Correspondence: Francesca Zimetti,
| | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|