1
|
Chen S, Luo Y, Ruan S, Su G, Huang G. RNA binding protein ILF3 increases CEP55 mRNA stability to enhance malignant potential of breast cancer cells and suppress ferroptosis. Hereditas 2025; 162:10. [PMID: 39871389 PMCID: PMC11773698 DOI: 10.1186/s41065-025-00372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Ferroptosis has emerged as a promising therapeutic target in cancer treatment. CEP55, a key regulator of cell mitosis, plays a significant role in the tumorigenesis of many malignancies. In this study, we elucidated the function of CEP55 in the ferroptosis of breast cancer (BC). METHODS The protein levels of CEP55 and ILF3 were detected by immunoblotting or immunohistochemistry, and their mRNA levels were assessed by quantitative PCR. Cell invasion and migration were evaluated by transwell assay. Cell apoptosis and colony formation were tested by flow cytometry and colony formation assays, respectively. RNA immunoprecipitation (RIP) experiment and CEP55 mRNA stability assay were used to validate the relationship between ILF3 and CEP55 mRNA. Subcutaneous xenograft studies were performed to analyze the role of ILF3 depletion in tumor growth. RESULTS CEP55 and ILF3 were upregulated in most of human BC samples and MDA-MB-231 and MCF-7 BC cells. The depletion of CEP55 or ILF3 impaired the growth, invasion, and migration of MDA-MB-231 and MCF-7 cells, while promoted their ferroptosis and apoptosis. Mechanistically, ILF3 stabilized CEP55 mRNA to regulate CEP55 expression in BC cells. CEP55 restoration partially rescued the malignant potential defects of ILF3-depleted BC cells and attenuates their ferroptosis. Moreover, ILF3 depletion enhanced the anti-tumor growth activity of the ferroptosis inducer erastin in MDA-MB-231 subcutaneous xenograft tumors. CONCLUSION Our observations indicate that the depletion of ILF3 impairs the malignant potential of BC cells and promotes their ferroptosis by downregulating CEP55 expression. Silencing ILF3 or CEP55 could represent a potential therapeutic strategy for BC treatment.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China
| | - Yangyong Luo
- Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China
| | - Simin Ruan
- Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China
| | - Guosen Su
- Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China
| | - Guoxing Huang
- Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China.
| |
Collapse
|
2
|
Yu J, Chen X, Ding X, Lin K, Zhang T, Wang K. ALKBH5 activates CEP55 transcription through m6A demethylation in FOXP2 mRNA and expedites cell cycle entry and EMT in ovarian cancer. Biol Direct 2024; 19:105. [PMID: 39511642 PMCID: PMC11546498 DOI: 10.1186/s13062-024-00551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Centrosomal protein of 55 kDa (CEP55) overexpression has been linked to tumor stage, aggressiveness of the tumor, poor prognosis, and metastasis. This study aims to elucidate the action of CEP55 in ovarian cancer (OC) and the regulation by the alpha-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5)/Forkhead box protein P2 (FOXP2) axis. METHODS Differentially expressed genes in OC were identified using in silico identification, followed by prognostic value assessment. Lentiviral vectors were constructed to downregulate CEP55 in OC cells, and colony formation, EdU, TUNEL, flow cytometry, Transwell assays, and Phalloidin staining were conducted. Transcription factors regulating CEP55 were predicted and verified, and rescue experiments were performed. The effect of ALKBH5-mediated demethylation on FOXP2 mRNA stability and OC cell cycle and EMT were analyzed. RESULTS High expression of CEP55 in OC was linked to unsatisfactory prognosis of patients. Knockdown of CEP55 repressed proliferation, invasiveness, and epithelial-mesenchymal transition (EMT) while inducing apoptosis and cell cycle arrest in OC cells. FOXP2 bound to the promoter of CEP55 to repress CEP55 transcription. FOXP2 regulated transcriptional repression of CEP55 to impede the malignant progression of OC and inhibit tumor metastasis. ALKBH5-mediated demethylation modification induced mRNA degradation of FOXP2. Knockdown of ALKBH5 induced cell cycle arrest and inhibited EMT in OC cells. CONCLUSIONS ALKBH5 hinders FOXP2-mediated transcriptional repression of CEP55 to promote the malignant progression of OC via cell cycle and EMT.
Collapse
Affiliation(s)
- Junhui Yu
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang Province, 317000, China
| | - Xing Chen
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang Province, 317000, China
| | - Xiaoxiao Ding
- Department of Hematologic Oncology, Taizhou Central Hospital, (Taizhou University Hospital), Taizhou, Zhejiang Province, 318000, China
| | - Kang Lin
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang Province, 317000, China
| | - Tianxin Zhang
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang Province, 317000, China
| | - Kai Wang
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang Province, 317000, China.
| |
Collapse
|
3
|
Liu Y, Dong M, Jia Y, Yang D, Hui Y, Yang X. SPI1-mediated transcriptional activation of CEP55 promotes the malignant growth of triple-negative breast cancer and M2 macrophage polarization. Pathol Res Pract 2024; 262:155544. [PMID: 39197215 DOI: 10.1016/j.prp.2024.155544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks the expression of three receptors commonly targeted in breast cancer treatment. In this study, the research focused on investigating the role of centrosomal protein 55 (CEP55) in TNBC progression and its interaction with the transcription factor Spi-1 proto-oncogene (SPI1). METHODS Various techniques including qRT-PCR, western blotting, and immunohistochemistry assays were utilized to examine gene expression patterns. Functional assays such as wound-healing assay, transwell invasion assay, 5-Ethynyl-2'-deoxyuridine assay, and metabolic assays were conducted to assess the impact of CEP55 on the behaviors of TNBC cells. CD163-positive macrophages were quantified by flow cytometry. The chromatin immunoprecipitation assay and dual-luciferase reporter assay were performed to assess the association of SPI1 with CEP55. A xenograft mouse model experiment was used to analyze the impact of SPI1 on tumor development in vivo. RESULTS CEP55 and SPI1 expression levels were significantly upregulated in TNBC tissues and cells. The depletion of CEP55 led to decreased TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization, indicating its crucial role in promoting TNBC progression. Moreover, SPI1 transcriptionally activated CEP55 in TNBC cells, and its overexpression was associated with accelerated tumor growth in vivo. Further, CEP55 overexpression relieved SPI1 silencing-induced inhibitory effects on TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization. CONCLUSION SPI1-mediated transcriptional activation of CEP55 plays a key role in enhancing TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization. These insights provide valuable information for potential targeted therapies to combat TNBC progression by modulating the SPI1-CEP55 axis.
Collapse
Affiliation(s)
- Yuanwei Liu
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Ming Dong
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yong Jia
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Dezhen Yang
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yang Hui
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman., Malaysia
| | - Xiaodong Yang
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
4
|
G J, A S. Identification of potential biomarkers for pancreatic ductal adenocarcinoma: a bioinformatics analysis. Comput Methods Biomech Biomed Engin 2024:1-15. [PMID: 38773913 DOI: 10.1080/10255842.2024.2356648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/10/2024] [Indexed: 05/24/2024]
Abstract
PDA is an aggressive cancer with a 5-year survival rate, which is very low. There is no effective prognosis or therapy for PDA because of the lack of target biomarkers. The objective of this article is to identify the target biomarkers for PDA using a bioinformatics approach. In this work, we have analysed the three microarray datasets from the NCBI GEO database. We used the Geo2R tool to analyse the microarray data with the Benjamini and Hochberg false discovery rate method, and the significance level cut-off was set to 0.05. We have identified 659 DEGs from the datasets. There are a total of 15 hub genes that were selected from the PPI network constructed using the STRING application. Furthermore, these 15 genes were evaluated on PDA patients using TCGA and GTEx databases in (GEPIA). The online tool DAVID was used to analyse the functional annotation information for the DEGs. The functional pathway enrichment was performed on the GO and KEGG. The hub genes were mainly enriched for cell division, chromosome segregation, protein binding and microtubule binding. Further, the gene alteration study was performed using the cBioportal tool and screened out six hub genes (ASPM, CENPF, BIRC5, TTK, DLGAP5, and TOP2A) with a high alteration rate in PDA samples. Furthermore, Kaplan-Meier survival analysis was performed on the six hub genes and identified poor-survival outcomes that may be involved in tumorigenesis and PDA development. So, this study concludes that, these six hub genes may be potential prognostic biomarkers for PDA.
Collapse
Affiliation(s)
- JagadeeswaraRao G
- Research scholar, AUTDRH, Andhra University, Visakhapatnam, 530003, India
- Department of IT, Aditya Institute of Technology and Management, Tekkali, 532201, India
| | - SivaPrasad A
- Department of Computer Science, Dr. V.S. Krishna Govt. Degree College, Visakhapatnam, 530003, India
| |
Collapse
|
5
|
Li GS, Zhang W, Huang WY, He RQ, Huang ZG, Gan XY, Yang Z, Dang YW, Kong JL, Zhou HF, Chen G. CEP55: an immune-related predictive and prognostic molecular biomarker for multiple cancers. BMC Pulm Med 2023; 23:166. [PMID: 37173675 PMCID: PMC10182662 DOI: 10.1186/s12890-023-02452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Centrosomal protein 55 (CEP55) plays a significant role in specific cancers. However, comprehensive research on CEP55 is lacking in pan-cancer. METHODS In-house and multi-center samples (n = 15,823) were used to analyze CEP55 in 33 cancers. The variance of CEP55 expression levels among tumor and control groups was evaluated by the Wilcoxon rank-sum test and standardized mean difference (SMD). The clinical value of CEP55 in cancers was assessed using receiver operating characteristic (ROC) curves, Cox regression analysis, and Kaplan-Meier curves. The correlations between CEP55 expression and the immune microenvironment were explored using Spearman's correlation coefficient. RESULTS The data of clustered regularly interspaced short palindromic repeats confirmed that CEP55 was essential for the survival of cancer cells in multiple cancer types. Elevated CEP55 mRNA expression was observed in 20 cancers, including glioblastoma multiforme (p < 0.05). CEP55 mRNA expression made it feasible to distinguish 21 cancer types between cancer specimens and their control samples (AUC = 0.97), indicating the potential of CEP55 for predicting cancer status. Overexpression of CEP55 was correlated with the prognosis of cancer individuals for 18 cancer types, exhibiting its prognostic value. CEP55 expression was relevant to tumor mutation burden, microsatellite instability, neoantigen counts, and the immune microenvironment in various cancers (p < 0.05). The expression level and clinical relevance of CEP55 in cancers were verified in lung squamous cell carcinoma using in-house and multi-center samples (SMD = 4.07; AUC > 0.95; p < 0.05). CONCLUSION CEP55 may be an immune-related predictive and prognostic marker for multiple cancers, including lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021, Nanning, P. R. China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021, Nanning, P. R. China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021, Nanning, P. R. China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021, Nanning, P. R. China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021, Nanning, P. R. China
| | - Xiang-Yu Gan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021, Nanning, P. R. China
| | - Zhen Yang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021, Nanning, P. R. China
| | - Jin-Liang Kong
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, P. R. China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021, Nanning, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021, Nanning, P. R. China.
| |
Collapse
|
6
|
Zaki MSA, Eldeen MA, Abdulsahib WK, Shati AA, Alqahtani YA, Al-Qahtani SM, Otifi HM, Asiri A, Hassan HM, Emam Mohammed Ahmed H, Dawood SA, Negm A, Eid RA. A Comprehensive Pan-Cancer Analysis Identifies CEP55 as a Potential Oncogene and Novel Therapeutic Target. Diagnostics (Basel) 2023; 13:1613. [PMID: 37175004 PMCID: PMC10178510 DOI: 10.3390/diagnostics13091613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023] Open
Abstract
Emerging research findings have shown that a centrosomal protein (CEP55) is a potential oncogene in numerous human malignancies. Nevertheless, no pan-cancer analysis has been conducted to investigate the various aspects and behavior of this oncogene in different human cancerous tissues. Numerous databases were investigated to conduct a detailed analysis of CEP55. Initially, we evaluated the expression of CEP55 in several types of cancers and attempted to find the correlation between that and the stage of the examined malignancies. Then, we conducted a survival analysis to determine the relationship between CEP55 overexpression in malignancies and the patient's survival. Furthermore, we examined the genetic alteration forms and the methylation status of this oncogene. Additionally, the interference of CEP55 expression with immune cell infiltration, the response to various chemotherapeutic agents, and the putative molecular mechanism of CEP55 in tumorigenesis were investigated. The current study found that CEP55 was upregulated in cancerous tissues versus normal controls where this upregulation was correlated with a poor prognosis in multiple forms of human cancers. Additionally, it influenced the level of different immune cell infiltration and several chemokines levels in the tumor microenvironment in addition to the response to several antitumor drugs. Herein, we provide an in-depth understanding of the oncogenic activities of CEP55, identifying it as a possible predictive marker as well as a specific target for developing anticancer therapies.
Collapse
Affiliation(s)
- Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Waleed K. Abdulsahib
- Pharmacology and Toxicology Department, College of Pharmacy, Al Farahidi University, Baghdad 00965, Iraq
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Hassan M. Otifi
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Ashwag Asiri
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Hesham M. Hassan
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | | | - Samy A. Dawood
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| |
Collapse
|
7
|
Abdel-Tawab MS, Fouad H, Yahiya A, Tammam AAE, Fahmy AM, Shaaban S, Abdel-Salam SM, Elazeem NAA. Evaluation of CEP55, SERPINE1 and SMPD3 genes and proteins as diagnostic and prognostic biomarkers in gastric carcinoma in Egyptian patients. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Gastric carcinoma (GC) is a fatal disease. Detection of new biomarkers that can be utilized in the early diagnosis of GC is a pressing need. This present study assessed centrosomal protein-55 (CEP55)’ serpin family E member 1 (SERPINE1) and sphingomyelin phosphodiesterase 3 (SMPD3) genes and proteins in gastric adenocarcinoma with different tumor progression features. Thirty surgically resected gastric tissue samples from thirty patients suffered from gastric cancers were obtained. The gastric tissue samples were divided into tumorous (with different stages and grades) and adjacent non-tumorous samples. CEP55, SERPINE1 and SMPD3 genes were assessed by quantitative qRT-PCR, and their proteins were assessed by ELISA in the gastric tissue samples.
Results
As regards SERPINE1, CEP55 genes and proteins, results revealed significant elevations in the GC samples (p < 0.0001). On the contrary, SMPD3 gene and protein revealed significant decreases as compared to non-tumorous samples. The studied genes and proteins showed highly significant specificity and sensitivity in the early detection of GC. SERPINE1 gene and protein revealed highly significant increases and positive correlations, while SMPD3 gene and protein revealed highly significant decreases and negative correlations as the tumor progresses.
Conclusion
CEP55, SERPINE1 and SMPD3 genes and proteins could be used as useful biomarkers for the early detection of GC. SERPINE1 and SMPD3 genes and proteins might be used as risk and protective prognostic factors in GC, respectively.
Collapse
|
8
|
Shi H, Xu H, Chai C, Qin Z, Zhou W. Integrated bioinformatics analysis of potential biomarkers for pancreatic cancer. J Clin Lab Anal 2022; 36:e24381. [PMID: 35403252 PMCID: PMC9102654 DOI: 10.1002/jcla.24381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDA), is an aggressive malignancy associated with a low 5-year survival rate. Poor outcomes associated with PDA are attributable to late detection and inoperability. Most patients with PDA are diagnosed with locally advanced and metastatic disease. Such cases are primarily treated with chemotherapy and radiotherapy. Because of the lack of effective molecular targets, early diagnosis and successful therapies are limited. The purpose of this study was to screen key candidate genes for PDA using a bioinformatic approach and to research their potential functional, pathway mechanisms associated with PDA progression. It may help to understand the role of associated genes in the development and progression of PDA and identify relevant molecular markers with value for early diagnosis and targeted therapy. MATERIALS AND METHODS To identify novel genes associated with carcinogenesis and progression of PDA, we analyzed the microarray datasets GSE62165, GSE125158, and GSE71989 from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, and the Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A protein-protein interaction (PPI) network was constructed using STRING, and module analysis was performed using Cytoscape. Gene Expression Profiling Interactive Analysis (GEPIA) was used to evaluate the differential expression of hub genes in patients with PDA. In addition, we verified the expression of these genes in PDA cell lines and normal pancreatic epithelial cells. RESULTS A total of 202 DEGs were identified and these were found to be enriched for various functions and pathways, including cell adhesion, leukocyte migration, extracellular matrix organization, extracellular region, collagen trimer, membrane raft, fibronectin-binding, integrin binding, protein digestion, and absorption, and focal adhesion. Among these DEGs, 12 hub genes with high degrees of connectivity were selected. Survival analysis showed that the hub genes (HMMR, CEP55, CDK1, UHRF1, ASPM, RAD51AP1, DLGAP5, KIF11, SHCBP1, PBK, and HMGB2) may be involved in the tumorigenesis and development of PDA, highlighting their potential as diagnostic and therapeutic factors in PDA. CONCLUSIONS In summary, the DEGs and hub genes identified in the present study not only contribute to a better understanding of the molecular mechanisms underlying the carcinogenesis and progression of PDA but may also serve as potential new biomarkers and targets for PDA.
Collapse
Affiliation(s)
- Huaqing Shi
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Hao Xu
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Changpeng Chai
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Zishun Qin
- School of StomatologyLanzhou UniversityLanzhouChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
9
|
Wang C, Guo J, Zhao X, Jia J, Xu W, Wan P, Sun C. Identification of Hub Genes in Pancreatic Ductal Adenocarcinoma Using Bioinformatics Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:2238-2245. [PMID: 35223598 PMCID: PMC8826335 DOI: 10.18502/ijph.v50i11.7578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
Background: To address the biomarkers that correlated with the prognosis of patients with PDCA using bioinformatics analysis. Methods: The raw data of genes were obtained from the Gene Expression Omnibus. We screened differently expressed genes (DEGs) by Rstudio. Database for Annotation, Visualization and Intergrated Discovery was used to investigate their biological function by Gene Ontology(GO) and Kyoto Encyclopedia of Genes (KEGG) analysis. Protein-protein interaction of these DEGs were analyzed based on the Search Tool for the Retrieval of Interacting Genes database (STRING) and visualized by Cytoscape. Genes calculated by Cyto-Hubba with degree >10 were identified as hub genes. Then, the identified hub genes were verified by UALCAN online analysis tool to evaluate the prognostic value in PDCA. Results: Three expression profiles (GSE15471, GSE16515 and GSE32676) were downloaded from GEO database. The three sets of DEGs exhibited an intersection consisting of 223 genes (214 upregulated DEGs and 9 downregulated DEGs). GO analysis showed that the 223 DEGs were significantly enriched in extracellular exosome, plasma membrane and extracellular space. ECM-receptor interaction, PI3K-Akt signaling pathway and Focal adhesion were the most significantly enriched pathway according to KEGG analysis. By combining the results of Cytohubba, 30 hub genes with a high degree of connectivity were picked out. Finally, we candidated 3 biomarkers by UALCAN online survival analysis, including CEP55, ANLN and PRC1. Conclusion: we identified CEP55, ANLN and PRC1 may be the potential biomarkers and therapeutic targets of PDCA, which used for prognostic assessment and scheme selection.
Collapse
Affiliation(s)
- Congcong Wang
- Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan 250100, Shandong, China.,Department of Oncology, Zibo Maternal and Children Hospital, Zibo 255000, Shandong, China
| | - Jianping Guo
- Department of Oncology, Zibo Maternal and Children Hospital, Zibo 255000, Shandong, China.,Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, Shandong, China
| | - Xiaoyang Zhao
- Department of Oncology Surgery, 4th People's Hospital of Zibo, Zibo 255000, Shandong, China
| | - Jia Jia
- Department of Oncology Surgery, 4th People's Hospital of Zibo, Zibo 255000, Shandong, China
| | - Wenting Xu
- Department of Oncology Surgery, 4th People's Hospital of Zibo, Zibo 255000, Shandong, China
| | - Peng Wan
- Department of Gastroenterology, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261053, Shandong, China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang 261053, Shandong, China
| |
Collapse
|
10
|
Zhou X, Xue D, Qiu J. Identification of biomarkers related to glycolysis with weighted gene co-expression network analysis in oral squamous cell carcinoma. Head Neck 2021; 44:89-103. [PMID: 34713497 DOI: 10.1002/hed.26910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common tumor in the oral cavity and maxillofacial region. Increasing evidence suggests that aerobic glycolysis plays an important role in the occurrence, development, and prognosis of OSCC. Therefore, the identification of biomarkers related to glycolysis in OSCC represents considerable potential for improving its treatment. METHODS In the present study, a single-sample gene-set enrichment analysis (ssGSEA) algorithm with weighted gene co-expression network analysis (WGCNA) were used to quantify the degree of glycolysis and identify key modules with the greatest correlation with glycolysis. RESULTS Glycolytic scores significantly correlated with prognosis. In the key module 5 HUB genes were finally selected, which displayed a robust predictive effect. The expressions of key genes were associated with glycolysis. CONCLUSIONS The research comprehensively analyzed the glycolysis of OSCC and identified several biomarkers related to glycolysis. These biomarkers may represent potential therapeutic targets for future OSCC therapy.
Collapse
Affiliation(s)
- Xiongming Zhou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Danfeng Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Ogura T, Azuma K, Sato J, Kinowaki K, Takayama KI, Takeiwa T, Kawabata H, Inoue S. OCT1 Is a Poor Prognostic Factor for Breast Cancer Patients and Promotes Cell Proliferation via Inducing NCAPH. Int J Mol Sci 2021; 22:ijms222111505. [PMID: 34768935 PMCID: PMC8584020 DOI: 10.3390/ijms222111505] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 01/17/2023] Open
Abstract
Octamer transcription factor 1 (OCT1) is a transcriptional factor reported to be a poor prognostic factor in various cancers. However, the clinical value of OCT1 in breast cancer is not fully understood. In the present study, an immunohistochemical study of OCT1 protein was performed using estrogen receptor (ER)-positive breast cancer tissues from 108 patients. Positive OCT1 immunoreactivity (IR) was associated with the shorter disease-free survival (DFS) of patients (p = 0.019). Knockdown of OCT1 inhibited cell proliferation in MCF-7 breast cancer cells as well as its derivative long-term estrogen-deprived (LTED) cells. On the other hand, the overexpression of OCT1 promoted cell proliferation in MCF-7 cells. Using microarray analysis, we identified the non-structural maintenance of chromosomes condensin I complex subunit H (NCAPH) as a novel OCT1-taget gene in MCF-7 cells. Immunohistochemical analysis showed that NCAPH IR was significantly positively associated with OCT1 IR (p < 0.001) and that positive NCAPH IR was significantly related to the poor DFS rate of patients (p = 0.041). The knockdown of NCAPH inhibited cell proliferation in MCF-7 and LTED cells. These results demonstrate that OCT1 and its target gene NCAPH are poor prognostic factors and potential therapeutic targets for patients with ER-positive breast cancer.
Collapse
Affiliation(s)
- Takuya Ogura
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan;
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
| | - Junichiro Sato
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (J.S.); (K.K.)
| | - Keiichi Kinowaki
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (J.S.); (K.K.)
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan;
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
- Correspondence: ; Tel.: +81-3-3964-3241
| |
Collapse
|
12
|
Patil AR, Leung MY, Roy S. Identification of Hub Genes in Different Stages of Colorectal Cancer through an Integrated Bioinformatics Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5564. [PMID: 34070979 PMCID: PMC8197092 DOI: 10.3390/ijerph18115564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer that contributes to cancer-related morbidity. However, the differential expression of genes in different phases of CRC is largely unknown. Moreover, very little is known about the role of stress-survival pathways in CRC. We sought to discover the hub genes and identify their roles in several key pathways, including oxidative stress and apoptosis in the different stages of CRC. To identify the hub genes that may be involved in the different stages of CRC, gene expression datasets were obtained from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) common among the different datasets for each group were obtained using the robust rank aggregation method. Then, gene enrichment analysis was carried out with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Finally, the protein-protein interaction networks were constructed using the Cytoscape software. We identified 40 hub genes and performed enrichment analysis for each group. We also used the Oncomine database to identify the DEGs related to stress-survival and apoptosis pathways involved in different stages of CRC. In conclusion, the hub genes were found to be enriched in several key pathways, including the cell cycle and p53 signaling pathway. Some of the hub genes were also reported in the stress-survival and apoptosis pathways. The hub DEGs revealed from our study may be used as biomarkers and may explain CRC development and progression mechanisms.
Collapse
Affiliation(s)
- Abhijeet R. Patil
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.P.); (M.-Y.L.)
| | - Ming-Ying Leung
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.P.); (M.-Y.L.)
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
13
|
Meng Q, Zhang B, Zhang Y, Wang S, Zhu X. Human bone marrow mesenchymal stem cell-derived extracellular vesicles impede the progression of cervical cancer via the miR-144-3p/CEP55 pathway. J Cell Mol Med 2021; 25:1867-1883. [PMID: 33417281 PMCID: PMC7882924 DOI: 10.1111/jcmm.15573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the most common gynaecological malignancy, with a high incidence rate and mortality rate in middle‐aged women. Human bone marrow mesenchymal stem cells (hBMSCs) have been implicated in the initiation and subsequent development of cancer, along with the involvement of extracellular vesicles (EVs) mediating intracellular communication by delivering microRNAs (miRNAs or miRs). This study is aimed at investigating the physiological mechanisms by which EVs‐encapsulated miR‐144‐3p derived from hBMSCs might mediate the progression of cervical cancer. The expression profiles of centrosomal protein, 55 Kd (CEP55) and miR‐144‐3p in cervical cancer cell lines and tissues, were quantified by RT‐qPCR and Western blot analysis. The binding affinity between miR‐144‐3p and CEP55 was identified using in silico analysis and luciferase activity determination. Cervical cancer cells were co‐cultured with EVs derived from hBMSCs that were treated with either miR‐144‐3p mimic or miR‐144‐3p inhibitor. Cervical cancer cell proliferation, invasion, migration and apoptosis were detected in vitro. The effects of hBMSCs‐miR‐144‐3p on tumour growth were also investigated in vivo. miR‐144‐3p was down‐regulated, whereas CEP55 was up‐regulated in cervical cancer cell lines and tissues. CEP55 was targeted by miR‐144‐3p, which suppressed cervical cancer cell proliferation, invasion and migration and promoted apoptosis via CEP55. Furthermore, similar results were obtained by hBMSCs‐derived EVs carrying miR‐144‐3p. In vivo assays confirmed the tumour‐suppressive effects of miR‐144‐3p in hBMSCs‐derived EVs on cervical cancer. Collectively, hBMSCs‐derived EVs‐loaded miR‐144‐3p impedes the development and progression of cervical cancer through target inhibition of CEP55, therefore providing us with a potential therapeutic target for treating cervical cancer.
Collapse
Affiliation(s)
- Qin Meng
- Department of Obstetrics and Gynecology, Shandong Medical College, Linyi, P. R. China
| | - Baofang Zhang
- Department of Physical Examination, The Third People's Hospital of Linyi, Linyi, P. R. China
| | - Yingming Zhang
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, P. R. China
| | - Shuyan Wang
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, P. R. China
| | - Xiaohui Zhu
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, P. R. China
| |
Collapse
|
14
|
Zhu R, Xue J, Chen H, Zhang Q. Identification and validation of core genes for serous ovarian adenocarcinoma via bioinformatics analysis. Oncol Lett 2020; 20:145. [PMID: 32934713 DOI: 10.3892/ol.2020.12007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer is a fatal gynaecological malignancy in women worldwide, and serous ovarian cancer (SOC) is considered the most common histological subtype of this malignancy. Thus, the present study aimed to identify the core genes for SOC via bioinformatics analysis. The GSE18520 and GSE14407 datasets were downloaded from the Gene Expression Omnibus (GEO) database to screen for differentially expressed genes (DEGs) and perform gene set enrichment analysis (GSEA). A protein-protein interaction (PPI) network was constructed to identify the core genes, while The Cancer Genome Atlas (TCGA) database was used to screen for prognosis-associated DEGs. Furthermore, clinical samples were collected for further validation of kinesin family member 11 (KIF11) gene. In the GEO analysis, a total of 198 DEGs were identified, including 81 upregulated and 117 downregulated genes compared SOC to normal tissue. GSEA across the two datasets demonstrated that 16 gene sets, including those involved in the cell cycle and DNA replication, were notably associated with SOC. A PPI network of the DEGs was constructed with 130 nodes and 387 edges. Subsequently, 20 core genes involved in the same top-ranked module were filtered out by submodule analysis. Survival analysis identified three predictive genes for SOC prognosis, including KIF11, CLDN3 and FGF13. KIF11 was identified as a core and predictive gene and thus was further validated using clinical samples. The results demonstrated that KIF11 was upregulated in tumour tissues compared with adjacent normal tissues and was associated with aggressive factors, including tumour grade, TNM stage and lymph node invasion. In conclusions, the present study identified the core genes and gene sets for SOC, thus extending the understanding of SOC occurrence and progression. Furthermore, KIF11 was identified as a promising tumour-promoting gene and a potential target for the diagnosis and treatment of SOC.
Collapse
Affiliation(s)
- Ruru Zhu
- Department of Gynaecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jisen Xue
- Department of Gynaecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Huijun Chen
- Department of Gynaecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qian Zhang
- Department of Gynaecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
15
|
Rittig AH, Johansen C, Celis P, Odum N, Litman T, Woetmann A, Lindahl LM, Iversen L. Suppressed microRNA-195-5p expression in mycosis fungoides promotes tumor cell proliferation. Exp Dermatol 2020; 30:1141-1149. [PMID: 32492224 DOI: 10.1111/exd.14124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Several cancers, including mycosis fungoides (MF), have reported dysregulation of miR-195-5p. miR-195-5p plays a role in cell cycle regulation in several malignant diseases. OBJECTIVES This study aimed to investigate: (a) the expression level of miR-195-5p in lesional MF skin biopsies and (b) the potential regulatory roles of miR-195-5p in MF. METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was used to determine miR-195-5p expression in MF skin biopsies and cell lines. The effect of miR-195-5p and ADP-ribosylation factor-like protein 2 (ARL2) on cell cycle and apoptosis was measured by flow cytometry assays. Changes in ARL2 expression were determined by RT-qPCR and Western blotting (WB). RESULTS We found lower expression levels of miR-195-5p in lesional skin from MF patients compared with non-lesional MF skin and skin from healthy volunteers. Additionally, miR-195-5p showed lower expression levels in the skin from patients with disease progression compared with patients with stable disease. In vitro studies showed that overexpression of miR-195-5p induced a cell cycle arrest in G0G1. Using microarray analysis, we identified several genes that were regulated after miR-195-5p overexpression. The most downregulated gene after miR-195-5p mimic transfection was ARL2. RT-qPCR and WB analyses confirmed downregulation of ARL2 following transfection with miR-195-5p mimic. Lastly, transfection with siRNA against ARL2 also induced a G0G1 arrest. CONCLUSION Upregulation of miR-195-5p in MF inhibits cycle arrest by downregulation of ARL2. miR-195-5p may thus function as a tumor suppressor in MF and low miR-195-5p expression in lesional MF skin may promote disease progression.
Collapse
Affiliation(s)
- Anne H Rittig
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Pamela Celis
- Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Odum
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Ye Z, Zeng Z, Wang D, Lei S, Shen Y, Chen Z. Identification of key genes associated with the progression of intrahepatic cholangiocarcinoma using weighted gene co-expression network analysis. Oncol Lett 2020; 20:483-494. [PMID: 32565973 PMCID: PMC7286119 DOI: 10.3892/ol.2020.11600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to identify the key genes that are associated with the progression of intrahepatic cholangiocarcinoma through weighted gene co-expression network analysis (WGCNA). A total of three gene datasets were downloaded from the Gene Expression Omnibus database, including GSE107943, GSE119336 and GSE26566. Differentially expressed genes (DEGs) between intrahepatic cholangiocarcinoma tissues and adjacent liver tissues were identified using GSE107943, while tissue specific genes between bile duct and liver tissues were identified using GSE26566. Following the removal of tissue-specific genes, real DEGs were used to construct the WGCNA to investigate the association between gene modules and clinical traits. Following functional analysis, pathway enrichment analysis and the construction of a protein-protein interaction (PPI) network were performed, hub genes were selected and their diagnostic value was verified in GSE119336 using a receiver operating characteristic curve. Finally, the protein levels of the hub genes were also verified in intrahepatic cholangiocarcinoma tissues. A total of 1,643 real DEGs were identified and used to construct the WGCNA. Additionally, a total of seven co-expressed gene modules were identified following WGCNA, while genes in brown and yellow modules were identified to be associated with multiple clinical traits (the number of clinical traits >3) and used as key modules. A total of 63 core key module genes were subsequently identified, and it was indicated that these genes were most enriched in the nucleus (Gene Ontology term) and the cell cycle pathway (Kyoto Encyclopedia of Genes and Genomes term). Finally, a total of eight genes, including cyclin B1, cell division cycle 20, cell division cycle associated 8, cyclin dependent kinase 1, centrosomal protein 55, kinesin family member 2C, DNA topoisomerase IIα and TPX2 microtubule nucleation factor, exhibited the highest score in PPI analysis and had a high diagnostic value for intrahepatic cholangiocarcinoma. In addition, the protein levels of these genes were also revealed to be increased in most intrahepatic cholangiocarcinoma tissues. These eight genes may be used as novel biomarkers for the diagnosis of intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Zi Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China.,Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430060, P.R. China
| | - Shan Lei
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China.,Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yiyi Shen
- Department of Liver-Biliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zubing Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
17
|
Upregulation of CEP55 Predicts Dismal Prognosis in Patients with Liver Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4139320. [PMID: 32337246 PMCID: PMC7153005 DOI: 10.1155/2020/4139320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 02/05/2023]
Abstract
Purpose This study was performed to investigate the association of CEP55 expression with liver cancer and explore potential underlying mechanisms. Materials and Methods. Data obtained from The Cancer Genome Atlas (TCGA) was used to investigate CEP55 expression, its prognostic value, the potential mechanisms of its upregulation, CEP55-related pathways, and its biological functions in liver cancer. Data from Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC) was used to validate survival analysis. The correlation between CEP55 and tumor-infiltrating immune cells (TIICs) in liver cancer was determined by using Tumor Immune Estimation Resource (TIMER). Results CEP55 was significantly overexpressed in the liver tumor sample compared to the adjacent normal liver sample. High CEP55 expression was significantly associated with histological grade, advanced stages, histological type, high T classification, and survival status. High CEP55 expression was significantly related to dismal prognosis compared with low CEP55 expression, which was validated by the GSE54236 dataset and ICGC database. Meanwhile, CEP55 was identified as the risk factor to independently predict overall survival (OS) for patients with liver cancer upon multivariate analysis. Enrichment analysis indicated that cell cycle, DNA replication, pathways in cancer, mTOR signaling pathway, and VEGF signaling pathway were significantly enriched in the high CEP55 expression group. In addition, the CEP55 expression was significantly related to the infiltration level of B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells in hepatocellular carcinoma (HCC). CEP55 methylation level was negatively correlated to its mRNA expression. And patients with CEP55 hypermethylation and low expression can achieve a better prognosis than those with CEP55 hypomethylation and high expression. Conclusion CEP55 may serve as a candidate treatment target for it is a determinant of prognosis and immune infiltration in liver cancer patients. DNA hypomethylation might contribute to the overexpression of CEP55 in liver cancer.
Collapse
|
18
|
Hromic-Jahjefendic A, Lundstrom K. Viral Vector-Based Melanoma Gene Therapy. Biomedicines 2020; 8:E60. [PMID: 32187995 PMCID: PMC7148454 DOI: 10.3390/biomedicines8030060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy applications of oncolytic viruses represent an attractive alternative for cancer treatment. A broad range of oncolytic viruses, including adenoviruses, adeno-associated viruses, alphaviruses, herpes simplex viruses, retroviruses, lentiviruses, rhabdoviruses, reoviruses, measles virus, Newcastle disease virus, picornaviruses and poxviruses, have been used in diverse preclinical and clinical studies for the treatment of various diseases, including colon, head-and-neck, prostate and breast cancer as well as squamous cell carcinoma and glioma. The majority of studies have focused on immunotherapy and several drugs based on viral vectors have been approved. However, gene therapy for malignant melanoma based on viral vectors has not been utilized to its full potential yet. This review represents a summary of the achievements of preclinical and clinical studies using viral vectors, with the focus on malignant melanoma.
Collapse
Affiliation(s)
- Altijana Hromic-Jahjefendic
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | | |
Collapse
|
19
|
Ding X, Duan H, Luo H. Identification of Core Gene Expression Signature and Key Pathways in Colorectal Cancer. Front Genet 2020; 11:45. [PMID: 32153633 PMCID: PMC7046836 DOI: 10.3389/fgene.2020.00045] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Colorectal cancer (CRC) is considered the most prevalent malignant tumor that contributes to high cancer-related mortality. However, the signaling pathways involved in CRC and CRC-driven genes are largely unknown. We sought to discover a novel biomarker in CRC. Materials and Methods All clinical CRC samples (n = 20) were from Renmin Hospital of Wuhan University. We first selected MAD2L1 by integrated bioinformatics analysis of a GSE dataset. Next, the expression of MAD2L1 in tissues and cell lines was verified by quantitative real-time PCR. The effects of MAD2L1 on cell growth, proliferation, the cell cycle, and apoptosis were examined by in vitro assays. Results We identified 683 shared DEGs (420 upregulated and 263 downregulated), and the top twenty genes (CDK1, CCNA2, TOP2A, PLK1, MAD2L1, AURKA, BUB1B, UBE2C, TPX2, RRM2, KIF11, NCAPG, MELK, NUSAP1, MCM4, RFC4, PTTG1, CHEK1, CEP55, DTL) were selected by integrated analysis. These hub genes were significantly overexpressed in CRC samples and were positively correlated. Our data revealed that the expression of MAD2L1 in CRC tissues is higher than that in normal tissues. MAD2L1 knockdown significantly suppressed CRC cell growth by impairing cell cycle progression and inducing cell apoptosis. Conclusion MAD2L1, as a novel oncogenic gene, plays a role in regulating cancer cell growth and apoptosis and could be used as a new biomarker for diagnosis and therapy in CRC.
Collapse
Affiliation(s)
- Xiang Ding
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Houyu Duan
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Li J, Li X. Comprehensive analysis of prognosis-related methylated sites in breast carcinoma. Mol Genet Genomic Med 2020; 8:e1161. [PMID: 32037691 PMCID: PMC7196449 DOI: 10.1002/mgg3.1161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/20/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
Background Breast carcinoma has become a nonnegligible public health problem in China with its increasing incidence and mortality in woman. As a early event regulating tumorigenesis and development, DNA methylation became one of the focuses of current carcinoma researches on potential diagnostic and therapeutic targets. Methods In this study, we comprehensively analyzed the gene expression data and DNA methylation data of breast carcinoma and adjacent normal tissues samples in the Gene Expression Omnibus database. Influences of tumor stage, adjuvant therapy, hormone therapy, and chemotherapy on CpG methylation level were explored by linear regression analysis. Correlations between methylation and gene expression levels were determined by spearman rank correlation analysis. Log‐rank test was applied for determining significance of associations between CpG sites methylation level and breast cancer patients' Kaplan–Meier survival. Results A total of 229 CpG sites were found to be significantly associated with tumor stage or treatment, and eight of which were potential markers that affect the survival of breast carcinoma and negatively correlated with their genes' expression levels. Conclusions We reported eight CpG sites as potential breast cancer prognosis signatures through comprehensively analyzed gene expression and DNA methylation datasets, and excluding influences of tumor stage and treatment. This should be helpful for breast cancer early diagnosis and treatment.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, P.R. China
| | - Xinzheng Li
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, P.R. China
| |
Collapse
|
21
|
Luo J, Pan J, Jin Y, Li M, Chen M. MiR-195-5p Inhibits Proliferation and Induces Apoptosis of Non-Small Cell Lung Cancer Cells by Targeting CEP55. Onco Targets Ther 2019; 12:11465-11474. [PMID: 31920335 PMCID: PMC6935316 DOI: 10.2147/ott.s226921] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Objective This study aims to explore whether miR-195-5p can inhibit proliferation and induce apoptosis of non-small cell lung cancer (NSCLC) cells by targeting CEP55. Methods qRT-PCR was used to measure the expression of miR-195-5p in NSCLC cells. MTT assay, colony formation assay, and flow cytometry were used to detect the role of miR-195-5p in NSCLC cells. Western blot was used to measure the protein expression of CEP55, Bax and Bcl-2 in cells. Dual-Luciferase assay was performed to verify the relationship between miR-195-5p and CEP55. Results The expression of miR-195-5p was higher in human normal lung cell lines than in NSCLC cells. MiR-195-5p overexpression inhibited cell proliferation, which could block the cell cycle of A549 cell line in the G0/G1 phase. Moreover, overexpression of miR-195-5p increased cell apoptotic rate of A549 cell lines, with the expression of pro-apoptotic protein Bax up-regulated and that of the anti-apoptotic protein Bcl-2 down-regulated. The Dual-Luciferase assay showed that miR-195-5p could specifically target CEP55. Furthermore, CEP55 was down-regulated in NSCLC cells. Overexpression of CEP55 enhanced the proliferation and colony formation ability of A549 cell line. Overexpression of CEP55 can reverse the inhibitory effect of miR-195-5p. Conclusion MiR-195-5p inhibits proliferation and induces apoptosis of NSCLC cells by negatively regulating CEP55.
Collapse
Affiliation(s)
- Jianhua Luo
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Junsu Pan
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Yan Jin
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Mengyuan Li
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Miao Chen
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, People's Republic of China
| |
Collapse
|
22
|
Chen Z, Lin Y, Gao J, Lin S, Zheng Y, Liu Y, Chen SQ. Identification of key candidate genes for colorectal cancer by bioinformatics analysis. Oncol Lett 2019; 18:6583-6593. [PMID: 31788116 PMCID: PMC6865583 DOI: 10.3892/ol.2019.10996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers of the digestive tract. Although numerous studies have been conducted to elucidate the cause of CRC, the exact mechanism of CRC development remains to be determined. To identify candidate genes that may be involved in CRC development and progression, the microarray datasets GSE41657, GSE77953 and GSE113513 were downloaded from the Gene Expression Omnibus database. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for functional enrichment analysis of differentially expressed genes (DEGs). A protein-protein interaction network was constructed, and the hub genes were subjected to module analysis and identification using Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape. A total of 142 DEGs were identified, with enriched functions and pathways in the ‘cell cycle’, ‘cell proliferation’, ‘the mitotic cell cycle’ and ‘one-carbon metabolic process’. In addition, 10 hub genes were identified, and functional analysis indicated that these genes are mainly enriched in ‘cell division’, ‘cell cycle’ and functions associated with nucleotide binding processes. Survival analysis demonstrated that DNA topoisomerase II α, cyclin-dependent kinase 1 and CDC28 protein kinase regulatory subunit 2 may be involved in cancer invasion or recurrence. The DEGs identified in the present study may help explain the molecular mechanisms of CRC development and progression.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Yilin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Ji Gao
- School of Nursing, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Suyong Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Yan Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Yisu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Shao Qin Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
23
|
Yanagi K, Sone R, Ohga R, Kawahara A. Involvement of the centrosomal protein 55 (cep55) gene in zebrafish head formation. Genes Cells 2019; 24:642-649. [PMID: 31365163 DOI: 10.1111/gtc.12715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Mammalian CEP55 (centrosomal protein 55 kDa) is a coiled-coil protein localized to the centrosome in interphase cells and is required for cytokinesis. A homozygous non-sense mutation in human CEP55 has been recently identified in perinatal lethal MARCH (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly) syndrome. We have isolated zebrafish cep55 mutants defective in head morphology. The zebrafish cep55 gene was expressed in the head including the retina and the pectoral fin at 1 day post-fertilization (dpf), and extensive cell death was widely observed in the head and tail of the cep55 mutant. In the cep55 mutant, the anterior-posterior distance of the ventral pharyngeal arches was short, and retinal lamination was disorganized. Neural cells, such as islet1-positive cells and pax2-positive cells, and fli1b-positive vascular cells were reduced in the head of the cep55 mutant. Thus, we propose that the zebrafish cep55 mutant is a model organism for human MARCH syndrome.
Collapse
Affiliation(s)
- Kanoko Yanagi
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
| | - Ryota Sone
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
| | - Rie Ohga
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
| |
Collapse
|
24
|
Liao X, Wang X, Huang K, Han C, Deng J, Yu T, Yang C, Huang R, Liu X, Yu L, Zhu G, Su H, Qin W, Zeng X, Han B, Han Q, Liu Z, Zhou X, Gong Y, Liu Z, Huang J, Winkler CA, O'Brien SJ, Ye X, Peng T. Integrated analysis of competing endogenous RNA network revealing potential prognostic biomarkers of hepatocellular carcinoma. J Cancer 2019; 10:3267-3283. [PMID: 31289599 PMCID: PMC6603367 DOI: 10.7150/jca.29986] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: The goal of our study is to identify a competing endogenous RNA (ceRNA) network using dysregulated RNAs between HCC tumors and the adjacent normal liver tissues from The Cancer Genome Atlas (TCGA) datasets, and to investigate underlying prognostic indicators in hepatocellular carcinoma (HCC) patients. Methods: All of the RNA- and miRNA-sequencing datasets of HCC were obtained from TCGA, and dysregulated RNAs between HCC tumors and the adjacent normal liver tissues were investigated by DESeq and edgeR algorithm. Survival analysis was used to confirm underlying prognostic indicators. Results: In the present study, we constructed a ceRNA network based on 16 differentially expressed genes (DEGs), 7 differentially expressed microRNAs and 34 differentially expressed long non-coding RNAs (DELs). Among these dysregulated RNAs, three DELs (AP002478.1, HTR2A-AS1, and ERVMER61-1) and six DEGs (enhancer of zeste homolog 2 [EZH2], kinesin family member 23 [KIF23], chromobox 2 [CBX2], centrosomal protein 55 [CEP55], cell division cycle 25A [CDC25A], and claspin [CLSPN]) were used for construct a prognostic signature for HCC overall survival (OS), and performed well in HCC OS (adjusted P<0.0001, adjusted hazard ratio = 2.761, 95% confidence interval = 1.838-4.147). Comprehensive survival analysis demonstrated that this prognostic signature may be act as an independent prognostic indicator of HCC OS. Functional assessment of these dysregulated DEGs in the ceRNA network and gene set enrichment of this prognostic signature suggest that both were enriched in the biological processes and pathways of the cell cycle, cell division and cell proliferation. Conclusions: Our current study constructed a ceRNA network for HCC, and developed a prognostic signature that may act as an independent indicator for HCC OS.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianlong Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, 537000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bowen Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Quanfa Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Evidence-based Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengtao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, People's Republic of China.,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Jianlv Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Cheryl A Winkler
- Basic Research Laboratory, CCR, NCI and Leidos Biomedical Research, Frederick National Laboratory, Frederick MD. 21702, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, 199004, Russia.,Oceanographic Center, Nova Southeastern University, Ft Lauderdale, 33004, FL, USA
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
25
|
Wu C, Chen M, Zhang Q, Yu L, Zhu J, Gao X. Genomic and GeneChip expression profiling reveals the inhibitory effects of Amorphophalli Rhizoma in TNBC cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:206-218. [PMID: 30731183 DOI: 10.1016/j.jep.2019.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amorphophalli Rhizoma has been widely used as an adjuvant treatment for advanced or metastatic breast cancer, pancreatic cancer, hepatoma, and malignant lymphoma, but its molecular mechanism of action for treatment of metastatic triple-negative breast cancer (TNBC) is generally poorly understood. AIM OF THE STUDY To investigate genomic changes related to the inhibitory effect of Amorphophalli Rhizoma and to elucidate the molecular mechanism of this inhibition in MDA-MB-231 TNBC cells. MATERIALS AND METHODS Gene chip analysis was employed to explore genomic changes caused by Amorphophalli Rhizoma in TNBC cells. Potential classical signaling pathways, upstream regulators, functions, regulatory effects and gene interaction networks were analyzed by Ingenuity Pathway Analysis (IPA). Real-time quantitative PCR (RT-qPCR) and RNA interference (RNAi) assays were used to clarify the roles of potential target genes. RESULTS In total, 536 significantly upregulated and 648 significantly downregulated genes were identified between the group treated with Amorphophalli Rhizoma extract and that treated with vehicle. Many of these differentially expressed genes (DEGs) in TNBC cells are involved in DNA replication, recombination and repair, the cell cycle, and cellular assembly and organization. Attenuation of KNL1, OLFML2A, RTKN2 and SGO1 gene expression by Amorphophalli Rhizoma significantly induced cell cycle arrest and suppressed cell proliferation and migration. CONCLUSIONS The inhibitory effects of Amorphophalli Rhizoma in TNBC cells likely occur through regulation of the spindle checkpoint, chromosomal and centrosomal instability, and cell membrane stability.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Mingcang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuhua Zhang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, China
| | - Linghong Yu
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, China
| | - Jiayan Zhu
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, China
| | - Xiufei Gao
- The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
26
|
Hauptman N, Jevšinek Skok D, Spasovska E, Boštjančič E, Glavač D. Genes CEP55, FOXD3, FOXF2, GNAO1, GRIA4, and KCNA5 as potential diagnostic biomarkers in colorectal cancer. BMC Med Genomics 2019; 12:54. [PMID: 30987631 PMCID: PMC6466812 DOI: 10.1186/s12920-019-0501-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of death by cancer worldwide and in need of novel potential diagnostic biomarkers for early discovery. Methods We conducted a two-step study. We first employed bioinformatics on data from The Cancer Genome Atlas to obtain potential biomarkers and then experimentally validated some of them on our clinical samples. Our aim was to find a methylation alteration common to all clusters, with the potential of becoming a diagnostic biomarker in CRC. Results Unsupervised clustering of methylation data resulted in four clusters, none of which had a known common genetic or epigenetic event, such as mutations or methylation. The intersect among clusters and regulatory regions resulted in 590 aberrantly methylated probes, belonging to 198 differentially expressed genes. After performing pathway and functional analysis on differentially expressed genes, we selected six genes: CEP55, FOXD3, FOXF2, GNAO1, GRIA4 and KCNA5, for further experimental validation on our own clinical samples. In silico analysis demonstrated that CEP55 was hypomethylated in 98.7% and up-regulated in 95.0% of samples. Genes FOXD3, FOXF2, GNAO1, GRIA4 and KCNA5 were hypermethylated in 97.9, 81.1, 80.3, 98.4 and 94.0%, and down-regulated in 98.3, 98.9, 98.1, 98.1 and 98.6% of samples, respectively. Our experimental data show CEP55 was hypomethylated in 97.3% of samples and down-regulated in all samples, while FOXD3, FOXF2, GNAO1, GRIA4 and KCNA5 were hypermethylated in 100.0, 90.2, 100.0, 99.1 and 100.0%, and down-regulated in 68.0, 76.0, 96.0, 95.2 and 84.0% of samples, respectively. Results of in silico and our experimental analyses showed that more than 97% of samples had at least four methylation markers altered. Conclusions Using bioinformatics followed by experimental validation, we identified a set of six genes that were differentially expressed in CRC compared to normal mucosa and whose expression seems to be methylation dependent. Moreover, all of these six genes were common in all methylation clusters and mutation statuses of CRC and as such are believed to be an early event in human CRC carcinogenesis and to represent potential CRC biomarkers. Electronic supplementary material The online version of this article (10.1186/s12920-019-0501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia.
| | - Daša Jevšinek Skok
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia.,Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000, Ljubljana, Slovenia
| | - Elena Spasovska
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia
| | - Damjan Glavač
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
27
|
Zhou L, Liu S, Li X, Yin M, Li S, Long H. Diagnostic and prognostic value of CEP55 in clear cell renal cell carcinoma as determined by bioinformatics analysis. Mol Med Rep 2019; 19:3485-3496. [PMID: 30896867 PMCID: PMC6471254 DOI: 10.3892/mmr.2019.10042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignant adult kidney tumor. Tumor recurrence and metastasis is the primary cause of cancer-associated mortality in patients with ccRCC. Therefore, identification of efficient diagnostic and prognostic molecular markers may improve survival times. The GSE46699, GSE36895, GSE53000 and GSE53757 gene datasets were downloaded from the Gene Expression Omnibus database and contained 196 ccRCC samples and 164 adjacent normal kidney samples. Bioinformatics analysis was used to integrate the four microarray datasets to identify and analyze differentially expressed genes. Functional analysis revealed that there were 12 genes associated with cancer, based on the tumor-associated gene database. Erb-B2 receptor tyrosine kinase 4, centrosomal protein 55 (CEP55) and vascular endothelial growth factor A are oncogenes, all of which were associated with tumor stage, whereas only CEP55 was significantly associated with survival time as determined by Gene Expression Profiling Interactive Analysis. The mRNA expression levels of CEP55 in ccRCC samples were significantly higher than those observed in adjacent normal kidney tissues based on The Cancer Genome Atlas data and reverse transcription-polymerase chain reaction results. The receiver operating characteristic curve analysis revealed that CEP55 may be considered a diagnostic biomarker for ccRCC with an area under the curve of >0.85 in the training and validation sets. High CEP55 expression was strongly associated with sex, histological grade, stage, T classification, N classification and M classification. Univariate and multivariate Cox proportional hazards analyses demonstrated that CEP55 expression was an independent risk factor for poor prognosis. In addition, gene set enrichment analysis indicated that high CEP55 expression was associated with immunization, cell adhesion, inflammation, the Janus kinase/signal transducer and activator of transcription signaling pathway and cell proliferation. In conclusion, CEP55 was increased in ccRCC samples, and may be considered a potential diagnostic and prognostic biomarker for ccRCC.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Urology, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Shibo Liu
- Department of Urology, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Xing Li
- Department of Urology, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Min Yin
- Department of Urology, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Sheng Li
- Department of Urology, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Huimin Long
- Department of Urology, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
28
|
CEP55 promotes epithelial-mesenchymal transition in renal cell carcinoma through PI3K/AKT/mTOR pathway. Clin Transl Oncol 2019; 21:939-949. [PMID: 30607788 DOI: 10.1007/s12094-018-02012-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE To study the detailed mechanisms of tumorigenesis and clinical outcomes of centrosomal protein 55 (CEP55) overexpression in renal cell carcinoma. MATERIALS AND METHODS Microarray analysis was performed to explore differentially expressed genes in five pairs of RCC tissues. Data of CEP55 expression and corresponding clinical information for 532 RCC patients of TCGA database were downloaded from cBioPortal. The expression of CEP55 in RCC tissues and cells was determined by real-time quantitative reverse transcription PCR (qRT-PCR), Western blot analysis and immunohistochemistry (IHC). Cells were transfected with siRNAs or lentivirus to regulate the expression of CEP55. The effects of CEP55 on proliferation, migration, invasion and epithelial-to-mesenchymal transition (EMT) of RCC cells were determined by MTS, migration and invasion assay and Western blot analysis. RESULTS CEP55, one of the most upregulated genes in microarray analysis, was overexpressed in RCC tissues and cells. CEP55 expression was significantly correlated with poor outcome including neoplasm disease stage, histologic grade and TNM status, as well as survival status of patients. In vitro experiments showed that downregulation of CEP55 could dramatically inhibit RCC cell proliferation, migration and invasion, while overexpression of CEP55 could promote these biological behaviors. We further demonstrated that CEP55 knockdown suppressed epithelial-mesenchymal transition (EMT), which was mediated via upregulation of E-cadherin and downregulation of N-cadherin and ZEB1, through PI3K/AKT/mTOR pathway. In contrast, overexpression of CEP55 could promote EMT in RCC cells via the activation of PI3K/AKT/mTOR pathway. Importantly, inhibition of PI3K/AKT/mTOR pathway reduced the effects of CEP55 on the migration, invasion and EMT of RCC cells. CONCLUSION Our study showed that CEP55 could promote EMT through PI3K/AKT/mTOR pathway and might be an effective prognostic marker in RCC.
Collapse
|
29
|
Xu L, Xia C, Sheng F, Sun Q, Xiong J, Wang S. CEP55 promotes the proliferation and invasion of tumour cells via the AKT signalling pathway in osteosarcoma. Carcinogenesis 2018; 39:623-631. [PMID: 29579156 DOI: 10.1093/carcin/bgy017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/02/2018] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanisms underlying the development of osteosarcoma (OS) are not fully understood. In this study, we investigated for the first time the clinical significance and biological activity of centrosomal protein 55 (CEP55) in OS. We found that CEP55 was overexpressed in OS, and the CEP55 expression level in OS was correlated with metastasis and poor prognosis. Through in vitro experiments, we confirmed that CEP55 knockdown significantly induced cell cycle arrest at G1 phase and suppressed OS cell proliferation, migration and invasion. In addition, CEP55 knockdown suppressed OS tumour growth in nude mice. Global gene expression profiling of CEP55-silenced MNNG/HOS cells showed that the AKT pathway might be involved in the regulation of OS cell activity. Two downstream factors of AKT signalling, CCND1 and FN1, were found to have significantly higher expression in tumour tissues, and their mRNA expression levels were strongly correlated with CEP55 expression. To conclude, our data suggest that CEP55 can be used as a prognostic marker for OS, highlighting the significance of CEP55 signalling as a putative therapeutic target.
Collapse
Affiliation(s)
- Leilei Xu
- Department of Orthopedic Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan, Nanjing, China
| | - Chao Xia
- Department of Orthopedic Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan, Nanjing, China
| | - Fei Sheng
- Department of Orthopedic Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan, Nanjing, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan, Nanjing, China
| | - Jin Xiong
- Department of Orthopedic Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan, Nanjing, China
| | - Shoufeng Wang
- Department of Orthopedic Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan, Nanjing, China
| |
Collapse
|
30
|
CEP55 Promotes Cell Motility via JAK2⁻STAT3⁻MMPs Cascade in Hepatocellular Carcinoma. Cells 2018; 7:cells7080099. [PMID: 30096813 PMCID: PMC6115913 DOI: 10.3390/cells7080099] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and has a poor prognosis. Novel diagnostic or prognostic biomarkers and potential therapeutic targets for HCC are thus urgently needed. CEP55 plays a crucial role in regulating physical cytokinesis. Whether, and how, CEP55 contributes to HCC development remains unclear. Herein, we demonstrate that CEP55 is abnormally upregulated in HCC tissue, and these high levels of CEP55 are closely related to the poor prognosis of HCC patients. Knockdown of CEP55 expression significantly inhibits HCC cell migration and invasion. We also demonstrate that CEP55 physiologically interacts with JAK2 and promotes its phosphorylation; thus, it is a novel regulator of JAK2–STAT3 signaling and its target genes MMP2/9. Finally, blocking JAK2 or STAT3 blunts the stimulation of migration and invasion due to CEP55 overexpression. In summary, our results suggest that CEP55, as an oncogene, promotes HCC cell migration and invasion through regulating JAK2–STAT3–MMPs signaling.
Collapse
|
31
|
Jia Y, Xiao Z, Gongsun X, Xin Z, Shang B, Chen G, Wang Z, Jiang W. CEP55 promotes the proliferation, migration and invasion of esophageal squamous cell carcinoma via the PI3K/Akt pathway. Onco Targets Ther 2018; 11:4221-4232. [PMID: 30050313 PMCID: PMC6055835 DOI: 10.2147/ott.s168861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Centrosomal protein 55 (CEP55) is an important prognostic biomarker that plays an essential role in the proliferation, migration and invasion of multiple tumors. We aimed to investigate the prognostic value of CEP55 in pN0 esophageal squamous cell carcinoma (ESCC) and explore its biological function in ESCC cells. Methods We used immunohistochemistry and Western blot analysis to detect the expression of CEP55 in ESCC. Furthermore, both in vitro and in vivo assays were used to determine the effect of CEP55 on malignant behavior in ESCC cells. Results As expected, we found that CEP55 was overexpressed in ESCC. Univariate and multivariate analyses demonstrated that patients with CEP55 overexpression had a poor prognosis. Additionally, the abilities of proliferation, migration and invasion of cells, as well as the epithelial–mesenchymal transition markers, were all altered with the changed CEP55 expression levels in ESCC cells. Further study elucidated that CEP55 facilitated ESCC via the PI3K/Akt pathway. Blockade of this pathway markedly attenuated CEP55-mediated proliferation, migration, invasion and epithelial–mesenchymal transition of ESCC cells. Conclusion Oncogenic CEP55 correlates with a poor prognosis by regulating tumor cell proliferation, migration and invasion via the PI3K/Akt pathway. It can serve as a promising prognostic biomarker and therapeutic target of pN0 ESCC after Ivor-Lewis esophagectomy.
Collapse
Affiliation(s)
- Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Zhaohua Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Xin Gongsun
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Bin Shang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Gang Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Wenpeng Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| |
Collapse
|
32
|
Tsai CY, Dai KY, Fang C, Wu JCC, Chan SHH. PTEN/FLJ10540/PI3K/Akt cascade in experimental brain stem death: A newfound role for a classical tumorigenic signaling pathway. Biochem Pharmacol 2018; 155:207-212. [PMID: 30008438 DOI: 10.1016/j.bcp.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/01/2018] [Indexed: 12/28/2022]
Abstract
Despite great advances in contemporary medicine, brain death still remains enigmatic and its cellular and molecular mechanisms unsettled. This review summarizes recent findings that substantiate the notion that PTEN/FLJ10540/PI3K/Akt cascade, the classical tumorigenic signaling pathway, is actively engaged in experimental brain stem death. These results were based on a clinically relevant animal model that employs the pesticide mevinphos as the experimental insult in Sprague-Dawley rats to mimic brain stem death in patients died of organophosphate poisoning. The neural substrate investigated is the rostral ventrolateral medulla (RVLM), a brain stem site classically known to maintain arterial pressure (AP) and is established to be the origin of a "life-and-death" signal detected from AP, which reflects brain stem cardiovascular dysregulation that precedes death. Activation of PI3K/Akt signaling pathway in the RVLM upregulates the nuclear factor-κB/nitric oxide synthase II/peroxynitrite cascade, resulting in impairment of brain stem cardiovascular regulation that leads to the loss of the "life-and-death" signal in experimental brain stem death. This process is reinforced by FLJ10540, a PI3K-association protein; and is counteracted by PTEN, a negative regulator of PI3K/Akt signaling. The concept that a classical signaling pathway in tumorigenesis is also an active player in cardiovascular dysregulation in brain stem death provides new ramifications for translational medicine. It promulgates the concept that rather than focusing on a particular disease condition, a new vista for future therapeutic strategy against both fatal eventualities should target at this common cellular cascade.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, Republic of China.
| | - Kuang-Yu Dai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, Republic of China
| | - Chi Fang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, Republic of China
| | - Jacqueline C C Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, Republic of China.
| |
Collapse
|
33
|
Surendra L, Haragannavar VC, Rao RS, Prasad K, Sowmya SV, Augustine D, Nambiar S. Prognostic significance of Cep55 in oral squamous cell carcinoma. TRANSLATIONAL RESEARCH IN ORAL ONCOLOGY 2018. [DOI: 10.1177/2057178x18781972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: Currently, oral squamous cell carcinoma (OSCC) is one of the most fatal cancers of all head and neck malignancies. Despite advancements in therapy, the mortality and morbidity remain high. Hence, it is essential to identify useful prognostic markers for high-risk individuals with OSCC to decide on treatment protocols. Centrosomal protein 55 ( Cep55), a regulator of the cell cycle, has been considered to play a role in carcinogenesis. Although there are numerous studies on its role in various other epithelial cancers such as breast, ovarian and lung cancers, its significance in the behaviour of OSCC is yet to be studied. The present study aimed to study Cep55 expression in OSCC and correlate with the tumour characteristics and patient survival. Materials and Methods: Forty pathologically diagnosed cases of OSCC were included in the study: 20 each of early and advanced OSCC cases. Formalin-fixed paraffin-embedded archival samples were used. The sections were immunohistochemically stained with Cep55 antibody. The expression levels of Cep55 were correlated with clinical parameters and disease outcome. Results: A higher expression of Cep55 was observed in advanced stage compared to early stage of OSCC. The Cep55 expression showed no significant relation with respect to clinical staging, pathological grading and site, except for tongue. Cep55 overexpression is significantly associated with poor survival. Conclusion: The present study suggests that Cep55 could play an important role in determining the biological behaviour and survival of OSCC patients independent of tumour staging and pathological grading. Thus, assessment of Cep55 expression could navigate the surgeons to plan an appropriate treatment.
Collapse
Affiliation(s)
- L Surendra
- Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MS Ramaiah Dental College and Hospital, Bengaluru, Karnataka, India
| | - Vanishri C Haragannavar
- Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MS Ramaiah Dental College and Hospital, Bengaluru, Karnataka, India
| | - Roopa S Rao
- Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MS Ramaiah Dental College and Hospital, Bengaluru, Karnataka, India
| | - Kavitha Prasad
- Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MS Ramaiah Dental College and Hospital, Bengaluru, Karnataka, India
| | - SV Sowmya
- Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MS Ramaiah Dental College and Hospital, Bengaluru, Karnataka, India
| | - Dominic Augustine
- Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MS Ramaiah Dental College and Hospital, Bengaluru, Karnataka, India
| | - Shwetha Nambiar
- Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MS Ramaiah Dental College and Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
34
|
Liu X, Zhang L, Liu Y, Cui J, Che S, An X, Song Y, Cao B. Circ-8073 regulates CEP55 by sponging miR-449a to promote caprine endometrial epithelial cells proliferation via the PI3K/AKT/mTOR pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1130-1147. [PMID: 29800603 DOI: 10.1016/j.bbamcr.2018.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 01/26/2023]
Abstract
Circular RNAs (circRNAs) are a large class of endogenous non-coding RNAs that function as regulators in various cells and tissues. Here, the function and mechanism of circRNA8073 (Circ-8073) on endometrial epithelial cells (EECs) and the development of endometrial receptivity were investigated in dairy goats. Circ-8073 could bind to and inhibit miR-449a activity. Circ-8073 binding to the target site of miR-449a had a negative feedback relationship. Centrosomal protein55 (CEP55) was a direct target gene of miR-449a, and Circ-8073 could increase the expression levels of CEP55 by sponging miR-449a in EECs in vitro. Circ-8073/miR-449a/CEP55 could promote EECs proliferation via the PI3K/AKT/mTOR pathway. In addition, CEP55 could regulate the expression levels of vascular endothelial growth factor (VEGF) and forkhead box M1 (FOXM1) in EECs, which contributed to the development of endometrial receptivity. These findings showed that Circ-8073 regulated CEP55 by sponging miR-449a to promote EEC proliferation via the PI3K/AKT/mTOR pathway, suggesting that it could function as a regulator in the development of endometrial receptivity in dairy goats.
Collapse
Affiliation(s)
- Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
35
|
Ma XP, Zhang W, Wu BQ, Qin J. Correlations Between mRNA Levels of Centrosomal Protein 55 (CEP55) and Clinical Features of Patients with Lung Cancer. Med Sci Monit 2018; 24:3093-3097. [PMID: 29750778 PMCID: PMC5973496 DOI: 10.12659/msm.907266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The aim of this study was to investigate the prognostic relevance of CEP55 in lung cancer (LC). Material/Methods LC microarray profile GSE30219 was obtained from the GEO database. The 2-sample t test was performed to clarify the difference in CEP55 expression between LC and normal lung tissue. The chi-square test and logistic regression analysis were preformed to investigate the relationship between CEP55 expression and the clinical features of LC patients. Log-rank test and Cox proportional hazards regression analysis were conducted to evaluate the disease-free survival (DFS) and overall survival (OS) of LC patients. Gene set enrichment analysis was conducted to investigate the related mechanisms. Results CEP55 was significantly increased in LC cells relative to normal lung tissues (P<0.0001). Univariate and multivariate correlation analyses demonstrated that CEP55 expression was associated with advanced T and N staging of LC (P<0.0001). Survival analyses indicated that CEP55 expression was an independent risk factor for DFS (HR: 1.515, 95% CI: 1.277–1.797, P<0.0001) and OS (HR: 1.436, 95% CI: 1.278–1.615). CEP55 might affect the proliferation of LC cells through Myc signaling, DNA repair, and G2M checkpoint. Conclusions Our results indicated that CEP55 was increased in LC cells and was associated with poor clinical outcomes of LC patients, and could be a prognostic biomarker for LC.
Collapse
Affiliation(s)
- Xue-Ping Ma
- Department of General Surgery, Peace Hospital of Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Wenping Zhang
- Department of Cardiothoracic Surgery, Peace Hospital of Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Bu-Qiang Wu
- Department of General Surgery, Peace Hospital of Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Jun Qin
- Department of General Surgery, Peace Hospital of Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| |
Collapse
|
36
|
Yin Y, Cai J, Meng F, Sui C, Jiang Y. MiR-144 suppresses proliferation, invasion, and migration of breast cancer cells through inhibiting CEP55. Cancer Biol Ther 2018; 19:306-315. [PMID: 29561704 PMCID: PMC5902245 DOI: 10.1080/15384047.2017.1416934] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The study aimed to investigate the molecular mechanism of miR-144 and CEP55 as well as the influence of their interaction on the cell proliferation, migration, invasion, cell cycle and cell apoptosis in breast cancer. METHODS In this study, The Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/ ) database was used for microarray analysis. The expressions of miR-144 and CEP55 in 40 adjacent tissues and 36 tumor tissues were examined by western blot, qRT-PCR and immunohistochemistry. The target relationship between miR-144 and CEP55 was predicted and confirmed by TargetScan and luciferase reporter assay. The cell proliferation, cell cycle and cell apoptosis in different groups were detected by MTT and flow cytometry assays, while wound healing and transwell assays were used for the cell migration and invasion tests. The regulatory effects of miR-144 and CEP55 on breast tumor were verified through nude mouse model in vivo experiment. RESULTS MiR-144 was down-regulated in breast cancerous tissues and cells, whereas CEP55 expression was up-regulated in breast cancerous tissues. Moreover, there existed a target relationship between miR-144 and CEP55 and negative correlation on their expressions. MiR-144 could down-regulate CEP55 expression, thereby inhibiting proliferation, invasion, migration, retarding cell cycle and accelerating cell apoptosis. MiR-144 could inhibit cell progression through down-regulating CEP55 in vivo. CONCLUSION MiR-144 suppressed cell proliferation, migration, invasion and induced cell cycle arrest and cell apoptosis by repressing CEP55. This might provide a promising therapy for clinical treatment.
Collapse
Affiliation(s)
- Yuanqin Yin
- Biotherapy Laboratory, Cancer Institute, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingjing Cai
- Department of Medicine, General Hospital of Fushun Mining Bureau, Fushun, Liaoning, China
| | - Fandong Meng
- Biotherapy Laboratory, Cancer Institute, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chengguang Sui
- Biotherapy Laboratory, Cancer Institute, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Youhong Jiang
- Biotherapy Laboratory, Cancer Institute, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
37
|
Li F, Jin D, Tang C, Gao D. CEP55 promotes cell proliferation and inhibits apoptosis via the PI3K/Akt/p21 signaling pathway in human glioma U251 cells. Oncol Lett 2018; 15:4789-4796. [PMID: 29552118 PMCID: PMC5840555 DOI: 10.3892/ol.2018.7934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Human glioma is one of the major malignancies worldwide with an increased mortality rate. Centrosomal protein of 55 kDa (CEP55) is an essential component of the CEP family and has been identified as a prognostic marker for multiple types of cancer. However, the function of CEP55 during glioma tumorigenesis remains unclear. In the present study, the data derived from the Oncomine database indicated that the expression of CEP55 is increased in glioma tissues compared with normal tissues. Furthermore, the expression of CEP55 was also increased at the level of mRNA and protein in glioma cell lines compared with normal human astrocytes. The knockdown of CEP55 expression inhibited the proliferation of glioma U251 cells, whereas overexpression of CEP55 induced the proliferation of U251 cells. Flow cytometric analysis indicated that the knockdown of CEP55 resulted in an increased number of cells arrested at G2/M phase, and apoptosis was promoted. Further investigations revealed that the overexpression of CEP55 increased the phosphorylation of Akt and inhibited the activity of p21. By contrast, the knockdown of CEP55 resulted in the opposite effects. Taken together, the results of the present study suggested that CEP55 regulated the proliferation of glioma cells, further attributing to the carcinogenesis and progression of glioma via the PI3K/Akt/p21 signaling pathway. Therefore, CEP55 may be a novel therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Dan Jin
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Otolaryngology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chuanxi Tang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Dianshuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
38
|
Li X, Wong KC. Multiobjective Patient Stratification Using Evolutionary Multiobjective Optimization. IEEE J Biomed Health Inform 2017; 22:1619-1629. [PMID: 29990162 DOI: 10.1109/jbhi.2017.2769711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the main challenges in modern medic-ine is to stratify patients for personalized care. Many different clustering methods have been proposed to solve the problem in both quantitative and biologically meaningful manners. However, existing clustering algorithms suffer from numerous restrictions such as experimental noises, high dimensionality, and poor interpretability. To overcome those limitations altogether, we propose and formulate a multiobjective framework based on evolutionary multiobjective optimization to balance the feature relevance and redundancy for patient stratification. To demonstrate the effectiveness of our proposed algorithms, we benchmark our algorithms across 55 synthetic datasets based on a real human transcription regulation network model, 35 real cancer gene expression datasets, and two case studies. Experimental results suggest that the proposed algorithms perform better than the recent state-of-the-arts. In addition, time complexity analysis, convergence analysis, and parameter analysis are conducted to demonstrate the robustness of the proposed methods from different perspectives. Finally, the t-Distributed Stochastic Neighbor Embedding (t-SNE) is applied to project the selected feature subsets onto two or three dimensions to visualize the high-dimensional patient stratification data.
Collapse
|
39
|
Li L, Lei Q, Zhang S, Kong L, Qin B. Screening and identification of key biomarkers in hepatocellular carcinoma: Evidence from bioinformatic analysis. Oncol Rep 2017; 38:2607-2618. [PMID: 28901457 PMCID: PMC5780015 DOI: 10.3892/or.2017.5946] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Intense efforts have been made to elucidate the pathogeny, but the molecular mechanisms of HCC are still not well understood. To identify the candidate genes in the carcinogenesis and progression of HCC, microarray datasets GSE19665, GSE33006 and GSE41804 were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and function enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using STRING and Cytoscape. A total of 273 DEGs were identified, consisting of 189 downregulated genes and 84 upregulated genes. The enriched functions and pathways of the DEGs include protein activation cascade, complement activation, carbohydrate binding, complement and coagulation cascades, mitotic cell cycle and oocyte meiosis. Sixteen hub genes were identified and biological process analysis revealed that these genes were mainly enriched in cell division, cell cycle and nuclear division. Survival analysis showed that BUB1, CDC20, KIF20A, RACGAP1 and CEP55 may be involved in the carcinogenesis, invasion or recurrence of HCC. In conclusion, DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the carcinogenesis and progression of HCC, and provide candidate targets for diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Lin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Qingsong Lei
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Lingna Kong
- The Nursing College of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
40
|
BioMed Research International. Retracted: High Expression of PTGR1 Promotes NSCLC Cell Growth via Positive Regulation of Cyclin-Dependent Protein Kinase Complex. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7640820. [PMID: 28932745 PMCID: PMC5592405 DOI: 10.1155/2017/7640820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/22/2023]
Abstract
[This retracts the article DOI: 10.1155/2016/5230642.].
Collapse
|
41
|
Peng T, Zhou W, Guo F, Wu HS, Wang CY, Wang L, Yang ZY. Centrosomal protein 55 activates NF-κB signalling and promotes pancreatic cancer cells aggressiveness. Sci Rep 2017; 7:5925. [PMID: 28724890 PMCID: PMC5517556 DOI: 10.1038/s41598-017-06132-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 01/05/2023] Open
Abstract
Centrosomal protein 55 (CEP55) is a microtubule-bundling protein that participants in cell mitosis. It is overexpressed in several solid tumours and promotes the growth and invasion of cancer cells. However, the role of CEP55 in pancreatic cancer (PANC) remains unclear. Herein, upregulated expression of CEP55 (associated with poor prognosis) was detected in PANC using quantitative real-time reverse transcription PCR, western blotting, and immunohistochemistry. Cell migration, colony formation, wound-healing, and Transwell matrix penetration assays, revealed that upregulation of CEP55 promoted PANC cells proliferation, migration, and invasion in vitro, whereas knockdown of CEP55 attenuated it. In an in vivo murine model, CEP55 overexpression accelerated PANC cells tumourigenicity, together with upregulation of the protein levels of invasion-related proteins matrix metalloproteinase (MMP)2, MMP9, and proliferation-related protein Cyclin D1. Downregulation of CEP55 had the reverse effect. Moreover, the nuclear factor κB (NF-κB)/IκBα signalling pathway, which was activated in CEP55-transduced PANC cells and inhibited in CEP55-silenced PANC cells, contributed to CEP55-mediated PANC cell aggressiveness. This study provided new insights into the oncogenic roles of CEP55 and the mechanism by which the NF-κB pathway is hyperactivated in patients with PANC, indicating that CEP55 is a valuable prognostic factor and a potential therapeutic target in PANC.
Collapse
Affiliation(s)
- Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wei Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - He-Shui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chun-You Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Li Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Zhi-Yong Yang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
42
|
BCIP: a gene-centered platform for identifying potential regulatory genes in breast cancer. Sci Rep 2017; 7:45235. [PMID: 28327601 PMCID: PMC5361122 DOI: 10.1038/srep45235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a disease with high heterogeneity. Many issues on tumorigenesis and progression are still elusive. It is critical to identify genes that play important roles in the progression of tumors, especially for tumors with poor prognosis such as basal-like breast cancer and tumors in very young women. To facilitate the identification of potential regulatory or driver genes, we present the Breast Cancer Integrative Platform (BCIP, http://omics.bmi.ac.cn/bcancer/). BCIP maintains multi-omics data selected with strict quality control and processed with uniform normalization methods, including gene expression profiles from 9,005 tumor and 376 normal tissue samples, copy number variation information from 3,035 tumor samples, microRNA-target interactions, co-expressed genes, KEGG pathways, and mammary tissue-specific gene functional networks. This platform provides a user-friendly interface integrating comprehensive and flexible analysis tools on differential gene expression, copy number variation, and survival analysis. The prominent characteristic of BCIP is that users can perform analysis by customizing subgroups with single or combined clinical features, including subtypes, histological grades, pathologic stages, metastasis status, lymph node status, ER/PR/HER2 status, TP53 mutation status, menopause status, age, tumor size, therapy responses, and prognosis. BCIP will help to identify regulatory or driver genes and candidate biomarkers for further research in breast cancer.
Collapse
|
43
|
Liu L, Mei Q, Zhao J, Dai Y, Fu Q. Suppression of CEP55 reduces cell viability and induces apoptosis in human lung cancer. Oncol Rep 2016; 36:1939-1945. [PMID: 27633074 DOI: 10.3892/or.2016.5059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/12/2016] [Indexed: 11/05/2022] Open
Abstract
Centrosomal protein 55 (CEP55), identified as a centrosome‑associated protein, has been reported to be involved in human malignancies. However, its biological function in human lung cancer remains largely unknown. In the present study, we firstly analyzed the expression of CEP55 in 20 pairs of lung cancer and matched non‑tumor tissues using quantitative RT‑PCR analysis and found that CEP55 mRNA was significantly increased in lung cancer tissues compared with that in matched tumor‑adjacent tissues. Then we performed a loss‑of‑function assay using lung cancer cell lines A549 and 95D. Functionally, knockdown of CEP55 markedly inhibited cell viability and proliferation ability as determined by MTT and colony formation assays. Moreover, CEP55‑silenced cells were obviously arrested in the G0/G1 phase and presented significant cell apoptosis as determined using flow cytometric analysis. Mechanistically, western blot analysis further revealed that knockdown of CEP55 decreased the expression of CDK4, p21 and Bcl‑2, while it increased the expression of pro‑apoptotic protein, Bad, caspase‑3 and PARP in 95D cells. In conclusion, our data highlight the crucial role of CEP55 in promoting lung cancer cell proliferation in vitro and its inhibition may be a novel therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Ligang Liu
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuhong Dai
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|