1
|
Jiang YK, Li W, Qiu YY, Yue M. Advances in targeted therapy for human epidermal growth factor receptor 2 positive in advanced gastric cancer. World J Gastrointest Oncol 2024; 16:2318-2334. [PMID: 38994153 PMCID: PMC11236256 DOI: 10.4251/wjgo.v16.i6.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Emerging therapeutic methods represented by targeted therapy are effective supplements to traditional first-line chemoradiotherapy resistance. Human epidermal growth factor receptor 2 (HER2) is one of the most important targets in targeted therapy for gastric cancer. Trastuzumab combined with chemotherapy has been used as the first-line treatment for advanced gastric cancer. The safety and efficacy of pertuzumab and margetuximab in the treatment of gastric cancer have been verified. However, monoclonal antibodies, due to their large molecular weight, inability to penetrate the blood-brain barrier, and drug resistance, lead to decreased therapeutic efficacy, so it is necessary to explore the efficacy of other HER2-targeting therapies in gastric cancer. Small-molecule tyrosine kinase inhibitors, such as lapatinib and pyrrotinib, have the advantages of small molecular weight, penetrating the blood-brain barrier and high oral bioavailability, and are expected to become the drugs of choice for perioperative treatment and neoadjuvant therapy of gastric cancer after validation by large-scale clinical trials in the future. Antibo-drug conjugate, such as T-DM1 and T-DXd, can overcome the resistance of monoclonal antibodies despite their different mechanisms of tumor killing, and are a supplement for the treatment of patients who have failed the treatment of monoclonal antibodies such as trastuzumab. Therefore, after more detailed stratification of gastric cancer patients, various gastric cancer drugs targeting HER2 are expected to play a more significant role.
Collapse
Affiliation(s)
- Ya-Kun Jiang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Wei Li
- Health Management Center, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Meng Yue
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
2
|
Li M, Zhang HY, Zhang RG. MFAP2 enhances cisplatin resistance in gastric cancer cells by regulating autophagy. PeerJ 2023; 11:e15441. [PMID: 37304872 PMCID: PMC10257393 DOI: 10.7717/peerj.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Background Cisplatin (CDDP) is of importance in cancer treatment and widely used in advanced gastric cancer (GC). However, its clinical usage is limited due to its resistance, and the regulatory mechanism of CDDP resistance in GC has not yet been fully elucidated. In this study, we first conducted a comprehensive study to investigate the role of MFAP2 through bioinformatics analysis. Methods The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were applied to downloadgene expression data and clinicopathologic data, and the differentially expressed genes (DEGs) were further analyzed. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and survival analysis were conducted. Furthermore, according to the clinicopathological characteristics of TCGA, clinical correlation analysis was conducted, and a receiver operating characteristic curve (ROC) was plotted. Results We revealed that FAP, INHBA and MFAP2 were good diagnostic factors of GC. However, the mechanism of MFAP2 in GC remains elusive, especially in the aspect of chemotherapy resistance. We developed the CDDP-resistant cell line, and found that MFAP2 was upregulated in CDDP-resistant cells, and MFAP2-knockdown improved CDDP sensitivity. Finally, we found that MFAP2 enhanced CDDP resistance by inducing autophagy in drug-resistant cell lines. Conclusions The above results suggested that MFAP2 could affect the chemotherapy resistance by altering the level of autophagy in GC patients as a potential therapeutic target.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Hong-Yi Zhang
- Department of Stomatology, Beijing Electric Power Hospital, Capital Medical University, Beijing, China
| | - Rong-Gui Zhang
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
3
|
Spirina LV, Avgustinovich AV, Afanas'ev SG, Cheremisina OV, Volkov MY, Choynzonov EL, Gorbunov AK, Usynin EA. Molecular Mechanism of Resistance to Chemotherapy in Gastric Cancers, the Role of Autophagy. Curr Drug Targets 2021; 21:713-721. [PMID: 31775598 DOI: 10.2174/1389450120666191127113854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is biologically and genetically heterogeneous with complex carcinogenesis at the molecular level. Despite the application of multiple approaches in the GC treatment, its 5-year survival is poor. A major limitation of anti-cancer drugs application is intrinsic or acquired resistance, especially to chemotherapeutical agents. It is known that the effectiveness of chemotherapy remains debatable and varies according to the molecular type of GC. Chemotherapy has an established role in the management of GC. Perioperative chemotherapy or postoperative chemotherapy is applied for localized ones. Most of the advanced GC patients have a poor response to treatment and unfavorable outcomes with standard therapies. Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of MAPK, AKT/mTOR, and Wnt/β-catenin signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. We have summarized the mechanisms of resistance development to cisplatin, 5-fluorouracil, and multidrug resistance in the GC management. The complexity of molecular targets and components of signaling cascades altered in the resistance development results in the absence of significant benefits in GC treatment, and its efficacy remains low. The universal process responsible for the failure in the multimodal approach in GC treatment is autophagy. Its dual role in oncogenesis is the most unexplored issue. We have discussed the possible mechanism of autophagy regulation upon the action of endogenous factors and drugs. The experimental data obtained in the cultured GC cells need further verification. To overcome the cancer resistance and to prevent autophagy as the main reason of ineffective treatment, it is suggested the concept of the direct influence of autophagy molecular markers followed by the standard chemotherapy. Dozen of studies have focused on finding the rationale for the benefits of such complex therapy. The perspectives in the molecular-based management of GC are associated with the development of molecular markers predicting the protective autophagy initiation and search for novel targets of effective anticancer therapy.
Collapse
Affiliation(s)
- Liudmila V Spirina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexandra V Avgustinovich
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Olga V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Maxim Yu Volkov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny L Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexey K Gorbunov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny A Usynin
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| |
Collapse
|
4
|
Saralamma VVG, Vetrivel P, Lee HJ, Kim SM, Ha SE, Murugesan R, Kim EH, Heo JD, Kim GS. Comparative proteomic analysis uncovers potential biomarkers involved in the anticancer effect of Scutellarein in human gastric cancer cells. Oncol Rep 2020; 44:939-958. [PMID: 32705238 PMCID: PMC7388386 DOI: 10.3892/or.2020.7677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Scutellarein (SCU), a flavone that belongs to the flavonoid family and abundantly present in Scutellaria baicalensis a flowering plant in the family Lamiaceae, has been reported to exhibit anticancer effects in several cancer cell lines including gastric cancer (GC). Although our previous study documented the mechanisms of Scutellarein‑induced cytotoxic effects, the literature shows that the proteomic changes that are associated with the cellular response to SCU have been poorly understood. To avoid adverse side‑effects and significant toxicity of chemotherapy in patients who react poorly, biomarkers anticipating therapeutic responses are imperative. In the present study, we utilized a comparative proteomic analysis to identify proteins associated with Scutellarein (SCU)‑induced cell death in GC cells (AGS and SNU484), by integrating two‑dimensional gel electrophoresis (2‑DE), mass spectrometry (MS), and bioinformatics to analyze the proteins. Proteomic analysis between SCU‑treated and DMSO (control) samples successfully identified 41 (AGS) and 31 (SNU484) proteins by MALDI‑TOF/MS analysis and protein database search. Comparative proteomics analysis between AGS and SNU484 cells treated with SCU revealed a total of 7 protein identities commonly expressed and western blot analysis validated a subset of identified critical proteins, which were consistent with those of the 2‑DE outcome. Molecular docking studies also confirmed the binding affinity of SCU towards these critical proteins. Phosphatidylinositol 4,5‑bisphosphate 3‑kinase catalytic subunit β isoform (PIK3CB) protein expression was accompanied by a distinct group of cellular functions, including cell growth, and proliferation. Cancerous inhibitor of protein phosphatase 2A (CIP2A), is one of the oncogenic molecules that have been shown to promote tumor growth and resistance to apoptosis and senescence‑inducing therapies. In the present study, both PIK3CB and CIP2A proteins were downregulated in SCU‑treated cells, which boosts our previous results of SCU to induce apoptosis and inhibits GC cell growth by regulating these critical proteins. The comparative proteomic analysis has yielded candidate biomarkers of response to SCU treatment in GC cell models and further validation of these biomarkers will help the future clinical development of SCU as a novel therapeutic drug.
Collapse
Affiliation(s)
- Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Preethi Vetrivel
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Ho Jeong Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, Jinju, Gyeongnam 52834, Republic of Korea
| | - Seong Min Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sang Eun Ha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641043, India
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju, Gyeongnam 52833, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, Jinju, Gyeongnam 52834, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| |
Collapse
|
5
|
Zhang L, Ye J, Luo Q, Kuang M, Mao M, Dai S, Wang X. Prediction of Poor Outcomes in Patients with Colorectal Cancer: Elevated Preoperative Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT). Cancer Manag Res 2020; 12:5373-5384. [PMID: 32753955 PMCID: PMC7342386 DOI: 10.2147/cmar.s246695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background and Objective Tools for the non-invasive assessment of colorectal cancer (CRC) prognosis have profound significance. Although plasma coagulation tests have been investigated in a variety of tumours, the prognostic value of the prothrombin time (PT) and activated partial thromboplastin time (APTT) in CRC has not been discussed. Our study objective was to explore the prognostic significance of preoperative PT and APTT in CRC patients. Patients and Methods A retrospective analysis of preoperative coagulation indexes including PT, PTA, INR, APTT, FIB, TT, PLT, NLR and PLR in 250 patients with CRC was performed. Kaplan–Meier and multivariate Cox regression analysis were used to demonstrate the prognostic value of these preoperative coagulation indexes. Results The overall survival (OS, p<0.05) and disease-free survival (DFS, p<0.05) of CRC patients with lower PT and APTT levels were significantly prolonged. Based on univariate analysis, PT levels (p<0.001, p<0.001), PTA levels (p=0.001, p=0.001), APTT levels (p=0.001, p<0.001), INR levels (p<0.001, p<0.001), fibrinogen levels (p=0.032, p=0.036), tumour status (p=0.005, p=0.003), nodal status (p<0.001, p<0.001), metastasis status (p<0.001, p<0.001) and TNM stages (p<0.001, p<0.001) were remarkably associated with DFS and OS. Multivariate Cox regression analysis suggested that the levels of PT (HR: 2.699, p=0.006) and APTT (HR: 1.942, p=0.015), metastasis status (HR: 2.091, p= 0.015) and TNM stage (HR: 7.086, p=0.006) were independent predictors of survival in CRC. In the whole cohort, the enrolled patients were then divided into three groups according to their PT and APTT levels. The OS and DFS differed notably among the low-risk (PT<11.85 sec and APTT<25.85 sec), medium-risk (PT≥11.85 sec or APTT≥25.85 sec), and high-risk (PT≥11.85 sec and APTT≥25.85 sec) groups. Conclusion Elevated levels of preoperative PT and APTT were predictors of poor outcomes in CRC patients. Moreover, the combination of preoperative PT and APTT can be a new prognostic stratification approach for more precise clinical staging of CRC.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Juan Ye
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People's Republic of China.,Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Qiuyun Luo
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Miaohuan Kuang
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China
| | - Minjie Mao
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China
| | - Shuqin Dai
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China
| | - Xueping Wang
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China
| |
Collapse
|
6
|
Liu T, Liu S, Xu Y, Shu R, Wang F, Chen C, Zeng Y, Luo H. Circular RNA-ZFR Inhibited Cell Proliferation and Promoted Apoptosis in Gastric Cancer by Sponging miR-130a/miR-107 and Modulating PTEN. Cancer Res Treat 2018; 50:1396-1417. [PMID: 29361817 PMCID: PMC6192924 DOI: 10.4143/crt.2017.537] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study aimed to probe into the associations among circular RNA ZFR (circ-ZFR), miR-130a/miR-107, and PTEN, and to investigate the regulatory mechanism of circ-ZFR‒miR-130a/miR-107‒PTEN axis in gastric cancer (GC). MATERIALS AND METHODS GSE89143 microarray data used in the study were acquired from publicly available Gene Expression Omnibus database to identify differentially expressed circular RNAs inGC tissues. The expressions of circ-ZFR, miR-130a, miR-107, and PTEN were examined by real-time reverse transcription polymerase chain reaction, while PTEN protein expression was measured by western blot. The variation of GC cell proliferation and apoptosis was confirmed by cell counting kit-8 assay and flow cytometry analysis. The targeted relationships among circZFR, miR-130a/miR-107, and PTEN were predicted via bioinformatics analysis and demonstrated by dual-luciferase reporter assay and RNA immunoprecipitation assay. The impact of ZFR on gastric tumor was further verified in xenograft mice model experiment. RESULTS Circ-ZFR and PTEN were low-expressed whereas miR-107 and miR-130a were highexpressed in GC tissues and cells. There existed targeted relationships and interactions between miR-130a/miR-107 and ZFR/PTEN. Circ-ZFR inhibited GC cell propagation, cell cycle and promoted apoptosis by sponging miR-107/miR-130a, while miR-107/miR-130a promoted GC cell propagation and impeded apoptosis through targeting PTEN. Circ-ZFR inhibited cell proliferation and facilitated apoptosis in GC by sponging miR-130a/miR-107 and modulating PTEN. Circ-ZFR curbed GC tumor growth and affected p53 protein expression in vivo. CONCLUSION Circ-ZFR restrained GC cell proliferation, induced cell cycle arrest and promoted apoptosis by sponging miR-130a/miR-107 and regulating PTEN.
Collapse
Affiliation(s)
- Tonglei Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuang Liu
- Department of Ultrasonics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Xu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruo Shu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yujian Zeng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huayou Luo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Zhang J, Li SQ, Liao ZH, Jiang YH, Chen QG, Huang B, Liu J, Xu YM, Lin J, Ying HQ, Wang XZ. Prognostic value of a novel FPR biomarker in patients with surgical stage II and III gastric cancer. Oncotarget 2017; 8:75195-75205. [PMID: 29088857 PMCID: PMC5650412 DOI: 10.18632/oncotarget.20661] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/25/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Inflammation and nutrition are two main causes contributing to progression of gastric cancer (GC), and inflammatory biomarker may be presented as its valuable prognostic factor. Thus, this study was carried out to investigate the prognostic significance of preoperative circulating albumin/fibrinogen ratio (AFR), fibrinogen/pre-Albumin ratio (FPR), fibrinogen (Fib), albumin (Alb) and pre-Albumin (pAlb) in surgical GC. MATERIALS AND METHODS Three hundred and sixty surgical stage II and III GC patients from June 2011 to December 2013 were enrolled in this retrospective study. X-tile software, Kaplan-Meier curve and Cox regression model were used to evaluate the prognostic role of them. A predictive nomogram was established to predict prognosis of overall survival (OS), and its accuracy was assessed by concordance index (c-index). RESULTS Decreased Alb, pAlb, AFR and elevated FPR were significantly associated with shorter OS. FPR was identified as the most effective prognostic factor to predict 3-year's OS by time-dependent ROC analysis. A long survival was observed in patients with low level of FPR and the prognosis of stage III FPR-low GC patients undergoing chemotherapy was significantly superior to the patients without the treatment (P=0.002). However, no difference of survival was examined in stage II subgroups stratified by FPR and high FRP of stage III patients with or not the treatment of chemotherapy. C-index of nomogram containing FPR (c-index=0.756) was high in comparison with the nomogram without FPR (c-index =0.748). CONCLUSION Preoperative FPR might be a feasible prognostic biomarker in surgical stage II and III GC and it could precisely distinguish stage III patients who appeared to obviously benefit from adjuvant chemotherapy. Meanwhile established nomogram based on clinical parameters and FPR could improve its predictive efficacy.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shu-Qi Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhi-Hua Liao
- Department of Clinical Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Yu-Huan Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qing-Gen Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yan-Mei Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hou-Qun Ying
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiao-Zhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
8
|
Wang C, Yang C, Ji J, Jiang J, Shi M, Cai Q, Yu Y, Zhu Z, Zhang J. Deubiquitinating enzyme USP20 is a positive regulator of Claspin and suppresses the malignant characteristics of gastric cancer cells. Int J Oncol 2017; 50:1136-1146. [PMID: 28350092 PMCID: PMC5363881 DOI: 10.3892/ijo.2017.3904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/23/2017] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to investigate the clinical significance, the biological function and the mechanisms of USP20 in gastric cancer. The expression of USP20 in 89 pairs of primary gastric cancer and peritumoral gastric tissues specimens were measured by immunohistochemistry. The correlation of USP20 expression with the survival and the clinicopathological characteristics of patients were analyzed. Moreover, the underlying mechanisms of ectopic USP20 expression and its impact on GC cells were also investigated. We found that the expression of USP20 is relatively low in GC tissues and negatively correlated with tumor size, tumor invasion and TNM staging. High expression of USP20 in GC predicted longer survival. Experimentally, small interfering RNA-mediated knockdown of USP20 expression significantly promoted cell proliferation, accelerated G1-S phase transition and attenuated the autophagy activity. Overexpression of USP20 led to the inhibition of proliferation, G1-S cell cycle transition delay and autophagy activation. Mechanistically, we confirmed that silencing the expression of USP20 in GC cells could reduce Claspin protein levels without altering Claspin mRNA levels, which is involved in the antitumor activity of USP20. Furthermore, the expression level of Claspin was relatively higher in peritumoral tissue than that of GC tissues and higher expression of Claspin in GC was also correlated with good prognosis of patients. Given its pivotal role in gastric tumorigenesis and progression, USP20 functioned as the tumor suppressor in GC and possessed promising value to be a therapeutic target for GC.
Collapse
Affiliation(s)
- Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Chen Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Jun Ji
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Qu Cai
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingyan Yu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhenggang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| |
Collapse
|