1
|
Hwang DJ, Kim JE, Cho JY, Koo JH, Jang Y, Kim TK. Differential behavior responses and genetic alteration underpinning exercise effectiveness in stress-susceptible mice. Sci Rep 2025; 15:14818. [PMID: 40295575 PMCID: PMC12038050 DOI: 10.1038/s41598-025-98630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Stress susceptibility varies across individuals, influenced by genetic, molecular, and environmental factors. Hence, approaches for exercise treatment as an antidepressant and anxiolytic intervention must consider individual variability. Examining individual adaptation to exercise provides insights into the biology of such variations. We investigated the efficacy of voluntary wheel running (VWR) exercise as a disease-modifying treatment for stress-susceptible (SS) mice subjected to chronic restraint stress. A multidimensional behavior analysis revealed significant variability in VWR efficacy among individuals; while some mice showed substantial behavior phenotypic improvements (SES), others displayed limited/no benefits (SER). A transcriptomic profiling of the ventral hippocampus, a brain region critical to emotional regulation, revealed molecular signatures that promote adaptive changes by restoring cellular repair, energy availability, and synaptic plasticity in SS mice. SER mice exhibited limited behavior resilience and distinct transcriptomic profiles enriched in structural adaptation without functional resilience and glial cell differentiation marked by astrocyte activation or differentiation. These findings suggest that while VWR can mitigates multiple behavior symptoms in stress-susceptible mice, its effectiveness is modulated by distinct biological mechanisms. We highlight the importance of a multivariate framework for behavior assessment and genetic underpinnings, clarifying the variability in responses to stress and exercise's therapeutic efficacy in stress-related disorders.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
- Sport Science Institute, Korea National Sport University, 1239, Yangjae-Ro, Songpa-Gu, Seoul, 05541, Korea
| | - Ji-Eun Kim
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
- Sport Science Institute, Korea National Sport University, 1239, Yangjae-Ro, Songpa-Gu, Seoul, 05541, Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
- Department of Exercise Training for Health Care & Management, Korea National Sport University, Seoul, Korea
| | - Jung-Hoon Koo
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
- Department of Exercise Training for Health Care & Management, Korea National Sport University, Seoul, Korea
| | - Yongchul Jang
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
- Department of Exercise Training for Health Care & Management, Korea National Sport University, Seoul, Korea
| | - Tae-Kyung Kim
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea.
- Sport Science Institute, Korea National Sport University, 1239, Yangjae-Ro, Songpa-Gu, Seoul, 05541, Korea.
- Department of Exercise Training for Health Care & Management, Korea National Sport University, Seoul, Korea.
| |
Collapse
|
2
|
Baker EC, San AE, Cilkiz KZ, Littlejohn BP, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Welsh TH, Riley DG. Inter-Individual Variation in DNA Methylation Patterns across Two Tissues and Leukocytes in Mature Brahman Cattle. BIOLOGY 2023; 12:biology12020252. [PMID: 36829529 PMCID: PMC9953534 DOI: 10.3390/biology12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Quantifying the natural inter-individual variation in DNA methylation patterns is important for identifying its contribution to phenotypic variation, but also for understanding how the environment affects variability, and for incorporation into statistical analyses. The inter-individual variation in DNA methylation patterns in female cattle and the effect that a prenatal stressor has on such variability have yet to be quantified. Thus, the objective of this study was to utilize methylation data from mature Brahman females to quantify the inter-individual variation in DNA methylation. Pregnant Brahman cows were transported for 2 h durations at days 60 ± 5; 80 ± 5; 100 ± 5; 120 ± 5; and 140 ± 5 of gestation. A non-transport group was maintained as a control. Leukocytes, amygdala, and anterior pituitary glands were harvested from eight cows born from the non-transport group (Control) and six from the transport group (PNS) at 5 years of age. The DNA harvested from the anterior pituitary contained the greatest variability in DNA methylation of cytosine-phosphate-guanine (mCpG) sites from both the PNS and Control groups, and the amygdala had the least. Numerous variable mCpG sites were associated with retrotransposable elements and highly repetitive regions of the genome. Some of the genomic features that had high variation in DNA methylation are involved in immune responses, signaling, responses to stimuli, and metabolic processes. The small overlap of highly variable CpG sites and features between tissues and leukocytes supports the role of variable DNA methylation in regulating tissue-specific gene expression. Many of the CpG sites that exhibited high variability in DNA methylation were common between the PNS and Control groups within a tissue, but there was little overlap in genomic features with high variability. The interaction between the prenatal environment and the genome could be responsible for the differences in location of the variable DNA methylation.
Collapse
Affiliation(s)
- Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Audrey E. San
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Brittni P. Littlejohn
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Correspondence:
| |
Collapse
|
3
|
Deli SB, Bonab SI, Khakpay R, Khakpai F, Feyzi MH. An interaction between basolateral amygdala orexinergic and endocannabinoid systems in inducing anti-nociception in the rat formalin test. Psychopharmacology (Berl) 2022; 239:3171-3184. [PMID: 35918531 DOI: 10.1007/s00213-022-06199-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Abstract
The amygdala has emerged as the main brain center for the emotional affective dimension of pain and pain modulation. In the amygdala, orexin and cannabinoid receptors are expressed in relatively high concentrations. To investigate the possible interaction between the amygdala orexin and cannabinoid systems on the modulation of inflammatory pain, we conducted formalin, rotarod, and plethysmometer tests, as well as analyzing mRNA expression of orexin and cannabinoid receptors in male rats. The basolateral amygdala (BLA) was unilaterally implanted by a guide cannula. Our results showed that, compared to saline and DMSO/saline, intra-BLA microinjection of orexin-A (50 and 100 µM) decreased flinch response in the early phase, but not in the late phase of the formalin test. However, these injections had no significant effect on the mRNA expression level of BLA, orexin receptor type-1 (Orx1), and cannabinoid receptor type-1 (Cb1). Moreover, intra-BLA administration of Orx1 receptor antagonist (SB-334867; 50 nM) and Cb1 receptor antagonist (AM251; 250 and 500 nM) decreased flinch response only in the early phase of the formalin test as compared to the DMSO group. Although the intra-BLA infusion of orexin-A alone and along with SB-334867 or AM251 decreased flinch response in the early phase of the formalin test, intra-BLA co-microinjection of SB-334867/AM251/OrxA increased flinch response in both early and late phases of the formalin test when compared to the DMSO/OrxA group. Interestingly, in the SB-334867/AM251/OrxA group, the Cb1 receptor was upregulated in all groups in comparison to Orx1 receptors. Our results revealed an interaction between BLA, orexin-A, and Cb1 receptors in inducing anti-nociception in the formalin test.
Collapse
Affiliation(s)
- Soghra Borneh Deli
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Samira Iman Bonab
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Roghaieh Khakpay
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
4
|
He X, Li Y, Zhang N, Huang J, Ming X, Guo R, Hu Y, Ji P, Guo F. Melanin-concentrating hormone promotes anxiety and intestinal dysfunction via basolateral amygdala in mice. Front Pharmacol 2022; 13:906057. [PMID: 36016574 PMCID: PMC9395614 DOI: 10.3389/fphar.2022.906057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The limbic system plays a pivotal role in stress-induced anxiety and intestinal disorders, but how the functional circuits between nuclei within the limbic system are engaged in the processing is still unclear. In our study, the results of fluorescence gold retrograde tracing and fluorescence immunohistochemistry showed that the melanin-concentrating hormone (MCH) neurons of the lateral hypothalamic area (LHA) projected to the basolateral amygdala (BLA). Both chemogenetic activation of MCH neurons and microinjection of MCH into the BLA induced anxiety disorder in mice, which were reversed by intra-BLA microinjection of MCH receptor 1 (MCHR1) blocker SNAP-94847. In the chronic acute combining stress (CACS) stimulated mice, SNAP94847 administrated in the BLA ameliorated anxiety-like behaviors and improved intestinal dysfunction via reducing intestinal permeability and inflammation. In conclusion, MCHergic circuit from the LHA to the BLA participates in the regulation of anxiety-like behavior in mice, and this neural pathway is related to the intestinal dysfunction in CACS mice by regulating intestinal permeability and inflammation.
Collapse
Affiliation(s)
- Xiaoman He
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuhang Li
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinfang Huang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xing Ming
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yang Hu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Pengfei Ji
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
- *Correspondence: Feifei Guo,
| |
Collapse
|
5
|
Kaplan GB, Lakis GA, Zhoba H. Sleep-Wake and Arousal Dysfunctions in Post-Traumatic Stress Disorder:Role of Orexin Systems. Brain Res Bull 2022; 186:106-122. [PMID: 35618150 DOI: 10.1016/j.brainresbull.2022.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related condition that produces distressing fear memory intrusions, avoidance behaviors, hyperarousal/startle, stress responses and insomnia. This review focuses on the importance of the orexin neural system as a novel mechanism related to the pathophysiology of PTSD. Orexinergic neurons originate in the lateral hypothalamus and project widely to key neurotransmitter system neurons, autonomic neurons, the hypothalamic-pituitaryadrenal (HPA) axis, and fear-related neural circuits. After trauma or stress, the basolateral amygdala (BLA) transmits sensory information to the central nucleus of the amygdala (CeA) and in turn to the hypothalamus and other subcortical and brainstem regions to promote fear and threat. Orexin receptors have a prominent role in this circuit as fear conditioned orexin receptor knockout mice show decreased fear expression while dual orexin receptor antagonists (DORAs) inhibit fear acquisition and expression. Orexin activation of an infralimbic-amygdala circuit impedes fear extinction while DORA treatments enhance it. Increased orexin signaling to the amygdalocortical- hippocampal circuit promotes avoidance behaviors. Orexin has an important role in activating sympathetic nervous system (SNS) activity and the HPA axis stress responses. Blockade of orexin receptors reduces fear-conditioned startle responses. In PTSD models, individuals demonstrate sleep disturbances such as increased sleep latency and more transitions to wakefulness. Increased orexin activity impairs sleep by promoting wakefulness and reducing total sleep time while DORA treatments enhance sleep onset and maintenance. The orexinergic neural system provides important mechanisms for understanding multiple PTSD behaviors and provides new medication targets to treat this often persistent and debilitating illness.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118 USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118 USA.
| | - Gabrielle A Lakis
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Undergraduate Program in Neuroscience, Boston University, Boston, MA, 02215 USA
| | - Hryhoriy Zhoba
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA
| |
Collapse
|
6
|
Askari-Zahabi K, Abbasnejad M, Kooshki R, Raoof M, Esmaeili-Mahani S, Pourrahimi AM, Zamyad M. The role of basolateral amygdala orexin 1 receptors on the modulation of pain and psychosocial deficits in nitroglycerin-induced migraine model in adult male rats. Korean J Pain 2022; 35:22-32. [PMID: 34966009 PMCID: PMC8728545 DOI: 10.3344/kjp.2022.35.1.22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Migraine headaches have been associated with sensory hyperactivity and anomalies in social/emotional responses. The main objective of this study was to evaluate the potential involvement of orexin 1 receptors (Orx1R) within the basolateral amygdala (BLA) in the modulation of pain and psychosocial dysfunction in a nitroglycerin (NTG)-induced rat model of migraine. Methods Adult male Wistar rats were injected with NTG (5 mg/kg, intraperitoneal) every second day over nine days to induce migraine. The experiments were done in the following six groups (6 rats per group) untreated control, NTG, NTG plus vehicle, and NTG groups that were post-treated with intra-BLA microinjection of Orx1R antagonist SB-334867 (10, 20, and 40 nM). Thermal hyperalgesia was assessed using the hot plate and tail-flick tests. Moreover, the elevated plus maze (EPM) and open field (OF) tests were used to assess anxiety-like behaviors. The animals’ sociability was evaluated using the three-chamber social task. The NTG-induced photophobia was assessed using a light-dark box. Results We observed no change in NTG-induced thermal hyperalgesia following administration of SB-334867 (10, 20, and 40 nM). However, SB-334867 (20 and 40 nM) aggravated the NTG-induced anxiogenic responses in both the EPM and OF tasks. The NTG-induced social impairment was overpowered by SB-334867 at all doses. Time spent in the dark chamber of light-dark box was significantly increased in rats treated with SB-334867 (20 and 40 nM/rat). Conclusions The findings suggest a role for Orx1R within the BLA in control comorbid affective complaints with migraine in rats.
Collapse
Affiliation(s)
- Khadijeh Askari-Zahabi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
| | - Maryam Raoof
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Mohammad Pourrahimi
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Zamyad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Roy N, Parhar I. Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neurosci Biobehav Rev 2021; 132:870-883. [PMID: 34801259 DOI: 10.1016/j.neubiorev.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The phasic emotion, fear, and the tonic emotion, anxiety, have been conventionally inspected in clinical frameworks to epitomize memory acquisition, storage, and retrieval. However, inappropriate expression of learned fear in a safe environment and its resistance to suppression is a cardinal feature of various fear-related disorders. A significant body of literature suggests the involvement of extra-amygdala circuitry in fear disorders. Consistent with this view, the present review underlies incentives for the association between the habenula and fear memory. G protein-coupled receptors (GPCRs) are important to understand the molecular mechanisms central to fear learning due to their neuromodulatory role. The efficacy of a pharmacological strategy aimed at exploiting habenular-GPCR desensitization machinery can serve as a therapeutic target combating the pathophysiology of fear disorders. Originating from this milieu, the conserved nature of orphan GPCRs in the brain, with some having the highest expression in the habenula can lead to recent endeavors in understanding its functionality in fear circuitry.
Collapse
Affiliation(s)
- Nisa Roy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
8
|
Noorani SK, Hojati V, Akbari E, Ehsani S, Sakurai T, Ardeshiri MR. The role of interaction between orexin receptors and β2 adrenergic receptors in basolateral amygdala in dentate gyrus synaptic plasticity in male rats. Brain Res Bull 2021; 177:164-171. [PMID: 34601056 DOI: 10.1016/j.brainresbull.2021.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022]
Abstract
Orexin receptors expressed in basolateral amygdala (BLA) have been proposed for memory processing and hippocampal plasticity. There are several investigations about the effect of the adrenergic system in BLA on memory enhancement. However, there is no information about the molecular basis of this effect. Adrenergic and orexinergic fibers are found in BLA. In this study, the effects of both adrenergic and orexinergic systems were investigated on the amygdala function. To this end, the selective beta 2 adrenergic agonist (clenbuterol) and orexin receptors' antagonists (OX1R and OX2R, SB-334867-A and TCS-OX2-29, respectively) were administered into the BLA, then the high frequency stimulation (200-Hz) was applied to the perforant pathway and the synaptic plasticity of the dentate granular cells was studied in anaesthetized rats. Clenbuterol injection into the BLA enhanced the population spike (PS) component of LTP in the dentate gyrus (DG), as compared to that observed after dimethyl sulfoxide treatment. In addition, after orexin 1 or 2 receptor antagonists (SB-334867-A and TCS-OX2-29, respectively) injecting into the BLA, the enhancing effect of clenbuterol on PS was reduced. Moreover, the population excitatory post-synaptic potential also decreased in the SB-clenbuterol and TCS- clenbuterol experimental groups. However, the PS amplitude was also decreased in the group treated only by SB or TCS relative to the clenbuterol treated group. The PS amplitude or EPSP slope in the groups treated by both application of orexin receptors' antagonists and clenbuterol was considerably lower relative to the groups treated only by orexin receptors' antagonists. It is concluded that the BLA orexinergic system modulates hippocampal plasticity in relation with the adrenergic system.
Collapse
Affiliation(s)
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Esmaeil Akbari
- Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simin Ehsani
- Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Japan
| | - Motahareh Rouhi Ardeshiri
- Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Escitalopram as a modulator of proopiomelanocortin, kisspeptin, Kiss1R and MCHR1 gene expressions in the male rat brain. Mol Biol Rep 2020; 47:8273-8278. [PMID: 32914264 PMCID: PMC7588374 DOI: 10.1007/s11033-020-05806-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 10/24/2022]
Abstract
Neuropeptides are important, multifunctional regulatory factors of the nervous system, being considered as a novel, atypical sites of antidepressants action. It has already been proven that some of them, such as selective serotonin reuptake inhibitors (SSRI), are able to affect peptidergic pathways in various brain regions. Despite these reports, there is so far no reports regarding the effect of treatment with SSRIs on brain proopiomelanocortin (POMC), kisspeptin, Kiss1R and MCHR1 gene expression. In the current study we examined POMC, kisspeptin, Kiss1R and MCHR1 mRNA expression in the selected brain structures (hypothalamus, hippocampus, amygdala, striatum, cerebellum and brainstem) of rats chronically treated with a 10 mg/kg dose of escitalopram using quantitative Real-Time PCR. Long-term treatment with escitalopram led to the upregulation of MCHR1 expression in the rat amygdala. Kisspeptin mRNA level was also increased in the amygdala, but Kiss1R mRNA expressions were elevated in the hippocampus, hypothalamus and cerebellum. POMC mRNA expressions were in turn decreased in the hippocampus, amygdala, cerebellum and brainstem. These results may support the hypothesis that these neuropeptides may be involved in the site-dependent actions of SSRI antidepressants. This is the first report of the effects of escitalopram on POMC, kisspeptin, Kiss1R and MCHR1 in animal brain. Our findings shed a new light on the pharmacology of SSRIs and may contribute to a better understanding of the alternative, neuropeptide-dependent modes of antidepressant action.
Collapse
|
10
|
Powers KG, Ma XM, Eipper BA, Mains RE. Cell-type specific knockout of peptidylglycine α-amidating monooxygenase reveals specific behavioral roles in excitatory forebrain neurons and cardiomyocytes. GENES BRAIN AND BEHAVIOR 2020; 20:e12699. [PMID: 32902163 DOI: 10.1111/gbb.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023]
Abstract
Neuropeptides and peptide hormones play a crucial role in integrating the many factors that affect physiologic and cognitive processes. The potency of many of these peptides requires an amidated amino acid at the C-terminus; a single enzyme, peptidylglycine α-amidating monooxygenase (PAM), catalyzes this modification. Anxiety-like behavior is known to be altered in mice with a single functional Pam allele (Pam+/- ) and in mice unable to express Pam in excitatory forebrain neurons (PamEmx1-cKO/cKO ) or in cardiomyocytes (PamMyh6-cKO/cKO ). Examination of PAM-positive and glutamic acid decarboxylase 67 (GAD)-positive cells in the amygdala of PamEmx1-cKO/cKO mice demonstrated the absence of PAM in pyramidal neurons and its continued presence in GAD-positive interneurons, suggestive of altered excitatory/inhibitory balance. Additional behavioral tests were used to search for functional alterations in these cell-type specific knockout mice. PamEmx1-cKO/cKO mice exhibited a less focused search pattern for the Barnes Maze escape hole than control or PamMyh6-cKO/cKO mice. While wildtype mice favor interacting with novel objects as opposed to familiar objects, both PamEmx1-cKO/cKO and PamMyh6-cKO/cKO mice exhibited significantly less interest in the novel object. Since PAM levels in the central nervous system of PamMyh6-cKO/cKO mice are unaltered, the behavioral effect observed in these mice may reflect their inability to produce atrial granules and the resulting reduction in serum levels of atrial natriuretic peptide. In the sociability test, male mice of all three genotypes spent more time with same-sex stranger mice; while control females showed no preference for stranger mice, female PamEmx1-cKO/cKO mice showed preference for same-sex stranger mice in all trials.
Collapse
Affiliation(s)
- Kathryn G Powers
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
11
|
Althammer F, Ferreira-Neto HC, Rubaharan M, Roy RK, Patel AA, Murphy A, Cox DN, Stern JE. Three-dimensional morphometric analysis reveals time-dependent structural changes in microglia and astrocytes in the central amygdala and hypothalamic paraventricular nucleus of heart failure rats. J Neuroinflammation 2020; 17:221. [PMID: 32703230 PMCID: PMC7379770 DOI: 10.1186/s12974-020-01892-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cardiovascular diseases, including heart failure, are the most common cause of death globally. Recent studies support a high degree of comorbidity between heart failure and cognitive and mood disorders resulting in memory loss, depression, and anxiety. While neuroinflammation in the hypothalamic paraventricular nucleus contributes to autonomic and cardiovascular dysregulation in heart failure, mechanisms underlying cognitive and mood disorders in this disease remain elusive. The goal of this study was to quantitatively assess markers of neuroinflammation (glial morphology, cytokines, and A1 astrocyte markers) in the central amygdala, a critical forebrain region involved in emotion and cognition, and to determine its time course and correlation to disease severity during the progression of heart failure. METHODS We developed and implemented a comprehensive microglial/astrocyte profiler for precise three-dimensional morphometric analysis of individual microglia and astrocytes in specific brain nuclei at different time points during the progression of heart failure. To this end, we used a well-established ischemic heart failure rat model. Morphometric studies were complemented with quantification of various pro-inflammatory cytokines and A1/A2 astrocyte markers via qPCR. RESULTS We report structural remodeling of central amygdala microglia and astrocytes during heart failure that affected cell volume, surface area, filament length, and glial branches, resulting overall in somatic swelling and deramification, indicative of a change in glial state. These changes occurred in a time-dependent manner, correlated with the severity of heart failure, and were delayed compared to changes in the hypothalamic paraventricular nucleus. Morphometric changes correlated with elevated mRNA levels of pro-inflammatory cytokines and markers of reactive A1-type astrocytes in the paraventricular nucleus and central amygdala during heart failure. CONCLUSION We provide evidence that in addition to the previously described hypothalamic neuroinflammation implicated in sympathohumoral activation during heart failure, microglia, and astrocytes within the central amygdala also undergo structural remodeling indicative of glial shifts towards pro-inflammatory phenotypes. Thus, our studies suggest that neuroinflammation in the amygdala stands as a novel pathophysiological mechanism and potential therapeutic target that could be associated with emotional and cognitive deficits commonly observed at later stages during the course of heart failure.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, USA
| | | | | | - Ranjan K Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, USA
| | - Atit A Patel
- Neuroscience Institute, Georgia State University, Atlanta, USA
| | - Anne Murphy
- Neuroscience Institute, Georgia State University, Atlanta, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, USA
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, USA.
| |
Collapse
|
12
|
Durieux L, Mathis V, Herbeaux K, Muller M, Barbelivien A, Mathis C, Schlichter R, Hugel S, Majchrzak M, Lecourtier L. Involvement of the lateral habenula in fear memory. Brain Struct Funct 2020; 225:2029-2044. [DOI: 10.1007/s00429-020-02107-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
|
13
|
Yang M, Ma H, Jia M, Li Y, Miao D, Cui C, Wu L. The role of the nucleus accumbens OXR1 in cocaine-induced locomotor sensitization. Behav Brain Res 2019; 379:112365. [PMID: 31743729 DOI: 10.1016/j.bbr.2019.112365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/15/2022]
Abstract
Re-exposure to drug or drug-associated cues after withdrawal can induce behavioral sensitization expression in animals or increase in the expected effect to drug in humans, which mean an enhanced drug seeking/taking motivation to trigger relapse after abstinence. The Nucleus accumbens (NAc) is known to play a key role in mediating this motivation. Recently, it has been shown that systemic administration of orexin receptor 1 (OXR1) antagonist attenuates animals' motivation behavior to take drug by self-administration paradigm, which is more effectively than orexin receptor 2 (OXR2) antagonist. However, the effect of OXR1 in the NAc on drug-induced locomotor sensitization remains elusive. The present study was designed to investigate the effect of OXR1 in the NAc on chronic cocaine-induced locomotor sensitization. Rats were given 10 mg/kg cocaine intraperitoneal injection (i.p.) for five consecutive days, followed by 10 mg/kg cocaine re-exposure (challenge) on the 14th day of withdrawal. Results showed that re-exposure to cocaine after withdrawal could induce locomotor sensitization expression in cocaine-sensitized rats. Simultaneously, the number of OXR1 positive neurons and OXR1 membrane protein level in the NAc core but not the shell were significantly increased following the cocaine re-exposure. Further, micro-infusion of SB-334867, an OXR1 selective antagonist, into the NAc core but not the shell before cocaine re-exposure, significantly attenuated the expression of locomotor sensitization in rats. The findings demonstrate that OXR1 in the NAc core partially mediates the expression of chronic cocaine-induced locomotor sensitization.
Collapse
Affiliation(s)
- Mingda Yang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Hui Ma
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Meng Jia
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Yijing Li
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Degen Miao
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Cailian Cui
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China.
| | - Liuzhen Wu
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China.
| |
Collapse
|
14
|
Choi J, Kim YK, Han PL. Extracellular Vesicles Derived from Lactobacillus plantarum Increase BDNF Expression in Cultured Hippocampal Neurons and Produce Antidepressant-like Effects in Mice. Exp Neurobiol 2019; 28:158-171. [PMID: 31138987 PMCID: PMC6526105 DOI: 10.5607/en.2019.28.2.158] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Gut microbiota play a role in regulating mental disorders, but the mechanism by which gut microbiota regulate brain function remains unclear. Gram negative and positive gut bacteria release membrane-derived extracellular vesicles (EVs), which function in microbiota-host intercellular communication. In the present study, we investigated whether Lactobacillus plantarum derived EVs (L-EVs) could have a role in regulating neuronal function and stress-induced depressive-like behaviors. HT22 cells treated with the stress hormone glucocorticoid (GC; corticosterone) had reduced expression of Bdnf and Sirt1, whereas L-EV treatment reversed GC-induced decreased expression of Bdnf and Sirt1. The siRNA-mediated knockdown of Sirt1 in HT22 cells decreased Bdnf4, a splicing variant of Bdnf, and Creb expression, suggesting that Sirt1 plays a role in L-EV-induced increase of BDNF and CREB expression. Mice exposed to restraint for 2-h daily for 14 days (CRST) exhibited depressive-like behaviors, and these CRST-treated mice had reduced expression of Bdnf and Nt4/5 in the hippocampus. In contrast, L-EV injection prior to each restraint treatment blocked the reduced expression of Bdnf and Nt4/5, and stress-induced depressive-like behaviors. Furthermore, L-EV treatment in CRST-treated mice also rescued the reduced expression of Bdnf, and blocked stress-induced depressive-like behaviors. These results suggest that Lactobacillus derived EVs can change the expression of neurotropic factors in the hippocampus and afford antidepressant-like effects in mice with stress-induced depression.
Collapse
Affiliation(s)
- Juli Choi
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | | | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
15
|
Singh MK, Leslie SM, Packer MM, Weisman EF, Gotlib IH. Limbic Intrinsic Connectivity in Depressed and High-Risk Youth. J Am Acad Child Adolesc Psychiatry 2018; 57:775-785.e3. [PMID: 30274652 PMCID: PMC11890206 DOI: 10.1016/j.jaac.2018.06.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/31/2018] [Accepted: 06/21/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Depression runs in families and has been associated with dysfunctional limbic connectivity. Whether aberrant limbic connectivity is a risk factor for or a consequence of depression is unclear. To examine this question, we compared resting state functional connectivity (RSFC) in youth with depressive disorders (DEP), healthy offspring of parents with depression (DEP-risk), and healthy comparison (HC) youth. METHOD Magnetic resonance imaging at rest was acquired from 119 youth, aged 8 to 17 years (DEP, n = 41, DEP-risk, n = 39, and HC, n = 39) and analyzed using seed-based RSFC in bilateral amygdala and nucleus accumbens (NAcc), covarying for age, IQ, and sex. RESULTS We found distinct risk- and disorder-specific patterns of RSFC across groups. DEP-risk and DEP youth shared reduced negative amygdala-right frontal cortex RSFC and reduced positive amygdala-lingual gyrus RSFC compared to HC youth (p < .001). DEP-risk youth had weaker negative amygdala-precuneus RSFC compared to DEP and HC youth (p < .001), suggesting a resilience marker for depression. In contrast, DEP youth had increased positive NAcc-left frontal cortex RSFC and reduced positive NAcc-insula RSFC compared to DEP-risk and HC youth (p < .001), suggestive of disorder-specific features of depression. Greater depression severity was correlated with disorder-specific amygdala and NAcc RSFC (p < .05). CONCLUSION RSFC in the amygdala and NAcc may represent selective disorder- and risk-specific markers in youth with, and at familial risk for, depression. Longitudinal studies are needed to determine whether these patterns predict long-term clinical outcomes.
Collapse
|
16
|
Lee EH, Park JY, Lee Y, Han PL. Sociability and Social Novelty Preference Tests Using a U-shaped Two-choice Field. Bio Protoc 2018; 8:e2853. [DOI: 10.21769/bioprotoc.2853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 11/02/2022] Open
|
17
|
Dastgerdi AH, Radahmadi M, Pourshanazari AA, Dastgerdi HH. Effects of Crocin on Learning and Memory in Rats Under Chronic Restraint Stress with Special Focus on the Hippocampal and Frontal Cortex Corticosterone Levels. Adv Biomed Res 2017; 6:157. [PMID: 29387668 PMCID: PMC5767797 DOI: 10.4103/abr.abr_107_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Chronic stress adversely influences brain functions while crocin, as an effective component of saffron, exhibits positive effects on memory processes. This study investigated the effects of different doses of crocin on the improvement of learning and memory as well as corticosterone (CORT) levels in the hippocampus and frontal cortex of rats subjected to chronic stress. Materials and Methods: Forty male rats were randomly allocated to five different groups (n = 8): Control, sham; stress (6 h/day for 21 days) groups, and two groups receiving daily intraperitoneal injections of one of two doses (30 and 60 mg/kg) of crocin accompanied by 21 days of restraint stress. Latency was evaluated as a brain function using the passive avoidance test before and one-day after a foot shock. CORT levels were measured in the homogenized hippocampus and frontal cortex. Results: Results revealed that chronic stress had a significantly (P < 0.01) negative effect on memory. Crocin (30 and 60 mg/kg), however, gave increase to significantly (P < 0.01 and P < 0.05; respectively) improved memory functions in the stressed rats. Furthermore, the CORT levels in the hippocampus and frontal cortex declined significantly (P < 0.05) in the stress group compared to the control. Only a crocin dose of 30 mg/kg was observed modulate significantly (P < 0.05) the CORT levels in the hippocampus and frontal cortex in the stressed group. Conclusions: It was found that the lower crocin dose (30 mg/kg) had more beneficial effects than its higher (60 mg/kg) dose on learning and memory under chronic stress conditions. Moreover, it was speculated that different doses of crocin act on different neurotransmitters and biochemical factors in the brain.
Collapse
Affiliation(s)
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Asghar Pourshanazari
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
18
|
Xiao J, Song M, Li F, Liu X, Anwar A, Zhao H. Effects of GABA microinjection into dorsal raphe nucleus on behavior and activity of lateral habenular neurons in mice. Exp Neurol 2017; 298:23-30. [DOI: 10.1016/j.expneurol.2017.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 01/23/2023]
|
19
|
Azogu I, Plamondon H. Inhibition of TrkB at the nucleus accumbens, using ANA-12, regulates basal and stress-induced orexin A expression within the mesolimbic system and affects anxiety, sociability and motivation. Neuropharmacology 2017; 125:129-145. [PMID: 28705440 DOI: 10.1016/j.neuropharm.2017.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/05/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
Repeated stress exposure can lead to the development of anxiety and mood disorders. An emerging biological substrate of depression and associated pathology is the nucleus accumbens (NAc), which through interactions with limbic, cognitive and motor circuits can regulate a variety of stress responses. Within these circuits, orexin neurons are involved in arousal and stress adaptability, effects proposed mediated via brain-derived neurotrophic factor signaling. This study tested the hypotheses that 1) repeated exposure to heterotypic stress alters social ability and preference and passive avoidant behaviors, 2) TrkB receptors at the NAc shell regulates stress-induced behavioral responses and orexin expression within the mesocorticolimbic system. Our findings indicate that ANA-12 (0.25 μg/0.5 μl) enhanced sociability during the social interaction test, although treatment had no effect on social preference. The development of conditioned place preference, and fear retention in the passive avoidance test were also facilitated by ANA-12. Biochemical assessments on brain tissues collected within 2 h of a forced swim exposure revealed that ANA-12 increased orexin A immunoreactivity (ir) in the hypothalamic perifornical area, while expression was reduced in the ventral portion of the hippocampal CA1 layer, irrespective of the stress condition. This contrasts changes at the VTA characterized by elevated versus reduced orexin A-ir in ANA-12-treated stress and non-stress rats, respectively. Colocalized orexin A- and tyrosine hydroxylase (TH)-ir at the VTA supports a different temporal expression post stress, TH-ir being unaffected 9 days post stress. These findings support a role for TrkB receptors in regulating basal and stress-induced social, cognitive and motivational behavior, and modulatory actions of BDNF, via TrkB signaling, on orexin A signaling upon stress exposure.
Collapse
Affiliation(s)
- Idu Azogu
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Helene Plamondon
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada.
| |
Collapse
|