1
|
Yoo Y, Cha S, Goo YS. Comparison of modulation efficiency between normal and degenerated primate retina. Front Cell Dev Biol 2024; 12:1419007. [PMID: 39144253 PMCID: PMC11322106 DOI: 10.3389/fcell.2024.1419007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
With electrical stimulation, retinal prostheses bypass dysfunctional photoreceptors and activate the surviving bipolar or retinal ganglion cells (RGCs). Therefore, the effective modulation of RGCs is crucial for developing retinal prostheses. Substantial research has been performed on the ability of an electrical stimulus to generate a reliable RGC response. However, different experimental conditions show varying levels of how well the electrical stimulation evokes RGC spikes. Therefore, in this study, we attempted to extract an indicator to understand how the electrical stimulation effectively evokes RGC spikes. Six cynomolgus monkeys were used: three as controls and three as an N-methyl-N-nitrosourea (MNU)-induced retinal degeneration model. The retinal recordings were performed using 8 × 8 multi-electrode arrays (MEAs). Electrical stimulation consisted of symmetrical biphasic pulses of varying amplitudes and durations. The number of stimulation conditions that resulted in significantly higher post-stimulation firing rates than pre-stimulus firing rates was defined as the modulation efficiency ratio (MER). The MER was significantly lower in degenerated retinas than in normal retinas. We investigated the relationship between the variables and the MER in normal and degenerated primate RGCs. External variables, such as duration and inter-electrode distance, and internal variables, such as average firing rates and statistics (mean, standard deviation, and coefficient of variation [CV]) of inter-spike intervals (ISIs) of spontaneous spikes, were used. External variables had similar effects on MER in normal and degenerated RGCs. In contrast, internal variables affected MER differently in normal and degenerated RGCs. While in normal RGCs, they were not related to MER, in degenerated RGCs, the mean ISIs were positively correlated with MER, and the CV of ISIs was negatively correlated with MER. The most important variable affecting MER was the mean ISI. A shorter ISI indicates hyperactive firing in the degenerated retina, which prevents electrical stimulation from evoking more RGCs. We believe that this hyperactivity in degenerated retinas results in a lower MER than that in the normal retina. Our findings can be used to optimize the selection of stimulation channels for in vitro MEA experiments and practical calibration methods to achieve higher efficiency when testing retinal prostheses.
Collapse
Affiliation(s)
- Yongseok Yoo
- School of Computer Science and Engineering, Soongsil University, Seoul, Republic of Korea
| | - Seongkwang Cha
- Department of Physiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yong Sook Goo
- Department of Physiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater 2024; 31:151-177. [PMID: 37637086 PMCID: PMC10448242 DOI: 10.1016/j.bioactmat.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The outer blood-retina barrier (oBRB), crucial for the survival and the proper functioning of the overlying retinal layers, is disrupted in numerous diseases affecting the retina, leading to the loss of the photoreceptors and ultimately of vision. To study the oBRB and/or its degeneration, many in vitro oBRB models have been developed, notably to investigate potential therapeutic strategies against retinal diseases. Indeed, to this day, most of these pathologies are untreatable, especially once the first signs of degeneration are observed. To cure those patients, a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue. After a description of the oBRB and the related diseases, this review presents an overview of the oBRB models, from the simplest to the most complex. Then, we propose a discussion over the used cell types, for their relevance to study or treat the oBRB. Models designed for in vitro applications are then examined, by paying particular attention to the design evolution in the last years, the development of pathological models and the benefits of co-culture models, including both the retinal pigment epithelium and the choroid. Lastly, this review focuses on the models developed for in vivo implantation, with special emphasis on the choice of the material, its processing and its characterization, before discussing the reported pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
- CECS, Centre D’étude des Cellules Souches, 91100, Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| |
Collapse
|
3
|
Ran RJ, Wang T, Tao MY, Gou YQ, Zhang M. A novel approach for 25-gauge transconjunctival sutureless vitrectomy to evaluate vitreous substitutes in rabbits. Int J Ophthalmol 2023; 16:1568-1573. [PMID: 37854378 PMCID: PMC10559039 DOI: 10.18240/ijo.2023.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
AIM To improve the standard three-port vitrectomy for establishing and evaluating an endotamponade model in rabbits. METHODS Three ports were prepared near the third eyelid of rabbits, and the infusion port was placed at the inferior nasal quadrant with the inserted cannula linking with a self-designed handheld rigid infusion catheter. All right eyes of rabbits underwent a modified 25-gauge vitrectomy and were subsequently filled with balanced salt solution, silicone oil, and eight-arm polyethylene glycols (8-arm PEGs) hydrogel separately for comparison. Ophthalmic examinations were performed regularly to record the changes after the surgery. RESULTS Successful vitrectomy was achieved among 44 chinchilla rabbits. The mean operation time was 4.51±1.25min. Four eyes (9.1%) presented limited lens touch and two eyes (4.5%) showed retinal touch during surgery. Incision leakage was found in three eyes (6.8%) after surgery. There was no endophthalmitis, hemorrhage, or retinal detachment during the observation period and ophthalmic examinations after the implantation of vitreous substitutes. CONCLUSION The modified technique of the standard vitrectomy applied in the endotamponade model in rabbits shows excellent safety and practicality.
Collapse
Affiliation(s)
- Rui-Jin Ran
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Ophthalmology, Minda Hospital of Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Ting Wang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Meng-Ying Tao
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yue-Qin Gou
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
4
|
Choi KE, Cha S, Yun C, Ahn J, Hwang S, Kim YJ, Jung H, Eom H, Shin D, Oh J, Goo YS, Kim SW. Outer retinal degeneration in a non-human primate model using temporary intravitreal tamponade with N-methyl-N-nitrosourea in cynomolgus monkeys. J Neural Eng 2023; 20. [PMID: 36603218 DOI: 10.1088/1741-2552/acb085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Objective:The main objective of this study was to induce and evaluate drug-dose-dependent outer retinal degeneration in cynomolgus monkeys by application of N-methyl-N-nitrosourea (MNU).Approach:Intravitreal temporary tamponade induced outer retinal degeneration with MNU solutions (2-3 mg ml-1) after vitrectomy in five cynomolgus monkeys. Optical coherence tomography (OCT), fundus autofluorescence (FAF), full-field electroretinography (ffERG), and visual evoked potentials (VEP) were performed at baseline and weeks 2, 6, and 12 postoperatively. At week 12, OCT angiography, histology, and immunohistochemistry were performed.Main results:Outer retinal degeneration was observed in four monkeys, especially in the peripheral retina. Anatomical and functional changes occurred at week 2 and persisted until week 12. FAF images showed hypoautofluorescence dots, similar to AF patterns seen in human retinitis pigmentosa. Hyperautofluorescent lesions in the pericentral area were also observed, which corresponded to the loss of the ellipsoid zone on OCT images. OCT revealed thinning of the outer retinal layer adding to the loss of the ellipsoid zone outside the vascular arcade. Histological findings confirmed that the abovementioned changes resulted from a gradual loss of photoreceptors from the perifovea to the peripheral retina. In contrast, the inner retina, including ganglion cell layers, was preserved. Functionally, a decrease or extinction of scotopic ffERGs was observed, which indicated rod-dominant loss. Nevertheless, VEPs were relatively preserved.Significance:Therefore, we can conclude that temporary exposure to intravitreal MNU tamponade after vitrectomy induces rod-dominant outer retinal degeneration in cynomolgus monkeys, especially in the peripheral retina.
Collapse
Affiliation(s)
- Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul 08373, Republic of Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Republic of Korea
| | - Cheolmin Yun
- Department of Ophthalmology, Korea University College of Medicine, Seoul 08373, Republic of Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Republic of Korea
| | - Seil Hwang
- Department of Ophthalmology, Korea University College of Medicine, Seoul 08373, Republic of Korea
| | - Young-Jin Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Chungbuk, Republic of Korea
| | - Hachul Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Chungbuk, Republic of Korea
| | - Heejong Eom
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju 28160, Chungbuk, Republic of Korea
| | - Dongkwan Shin
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju 28160, Chungbuk, Republic of Korea
| | - Jaeryung Oh
- Department of Ophthalmology, Korea University College of Medicine, Seoul 08373, Republic of Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Republic of Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul 08373, Republic of Korea
| |
Collapse
|
5
|
Cha S, Ahn J, Jeong Y, Lee YH, Kim HK, Lee D, Yoo Y, Goo YS. Stage-Dependent Changes of Visual Function and Electrical Response of the Retina in the rd10 Mouse Model. Front Cell Neurosci 2022; 16:926096. [PMID: 35936494 PMCID: PMC9345760 DOI: 10.3389/fncel.2022.926096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
One of the critical prerequisites for the successful development of retinal prostheses is understanding the physiological features of retinal ganglion cells (RGCs) in the different stages of retinal degeneration (RD). This study used our custom-made rd10 mice, C57BL/6-Pde6bem1(R560C)Dkl/Korl mutated on the Pde6b gene in C57BL/6J mouse with the CRISPR/Cas9-based gene-editing method. We selected the postnatal day (P) 45, P70, P140, and P238 as representative ages for RD stages. The optomotor response measured the visual acuity across degeneration stages. At P45, the rd10 mice exhibited lower visual acuity than wild-type (WT) mice. At P140 and older, no optomotor response was observed. We classified RGC responses to the flashed light into ON, OFF, and ON/OFF RGCs via in vitro multichannel recording. With degeneration, the number of RGCs responding to the light stimulation decreased in all three types of RGCs. The OFF response disappeared faster than the ON response with older postnatal ages. We elicited RGC spikes with electrical stimulation and analyzed the network-mediated RGC response in the rd10 mice. Across all postnatal ages, the spikes of rd10 RGCs were less elicited by pulse amplitude modulation than in WT RGCs. The ratio of RGCs showing multiple peaks of spike burst increased in older ages. The electrically evoked RGC spikes by the pulse amplitude modulation differ across postnatal ages. Therefore, degeneration stage-dependent stimulation strategies should be considered for developing retinal prosthesis and successful vision restoration.
Collapse
Affiliation(s)
- Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yurim Jeong
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yong Hee Lee
- Department of Biochemistry, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Hyong Kyu Kim
- Department of Microbiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon, South Korea
- *Correspondence: Yongseok Yoo,
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
- Yong Sook Goo,
| |
Collapse
|
6
|
Ahn J, Cha S, Choi KE, Kim SW, Yoo Y, Goo YS. Correlated Activity in the Degenerate Retina Inhibits Focal Response to Electrical Stimulation. Front Cell Neurosci 2022; 16:889663. [PMID: 35602554 PMCID: PMC9114441 DOI: 10.3389/fncel.2022.889663] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Retinal prostheses have shown some clinical success in patients with retinitis pigmentosa and age-related macular degeneration. However, even after the implantation of a retinal prosthesis, the patient’s visual acuity is at best less than 20/420. Reduced visual acuity may be explained by a decrease in the signal-to-noise ratio due to the spontaneous hyperactivity of retinal ganglion cells (RGCs) found in degenerate retinas. Unfortunately, abnormal retinal rewiring, commonly observed in degenerate retinas, has rarely been considered for the development of retinal prostheses. The purpose of this study was to investigate the aberrant retinal network response to electrical stimulation in terms of the spatial distribution of the electrically evoked RGC population. An 8 × 8 multielectrode array was used to measure the spiking activity of the RGC population. RGC spikes were recorded in wild-type [C57BL/6J; P56 (postnatal day 56)], rd1 (P56), rd10 (P14 and P56) mice, and macaque [wild-type and drug-induced retinal degeneration (RD) model] retinas. First, we performed a spike correlation analysis between RGCs to determine RGC connectivity. No correlation was observed between RGCs in the control group, including wild-type mice, rd10 P14 mice, and wild-type macaque retinas. In contrast, for the RD group, including rd1, rd10 P56, and RD macaque retinas, RGCs, up to approximately 400–600 μm apart, were significantly correlated. Moreover, to investigate the RGC population response to electrical stimulation, the number of electrically evoked RGC spikes was measured as a function of the distance between the stimulation and recording electrodes. With an increase in the interelectrode distance, the number of electrically evoked RGC spikes decreased exponentially in the control group. In contrast, electrically evoked RGC spikes were observed throughout the retina in the RD group, regardless of the inter-electrode distance. Taken together, in the degenerate retina, a more strongly coupled retinal network resulted in the widespread distribution of electrically evoked RGC spikes. This finding could explain the low-resolution vision in prosthesis-implanted patients.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
- *Correspondence: Seong-Woo Kim,
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon, South Korea
- Yongseok Yoo,
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
- Yong Sook Goo,
| |
Collapse
|
7
|
Cha S, Choi KE, Ahn J, Yoo M, Jeong Y, Kim SW, Goo YS. Electrical response of retinal ganglion cells in an N-methyl-N-nitrosourea-induced retinal degeneration porcine model. Sci Rep 2021; 11:24135. [PMID: 34921172 PMCID: PMC8683404 DOI: 10.1038/s41598-021-03439-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Retinal prosthesis is regarded as the treatment for vision restoration in the blind with retinal degeneration (RD) due to the loss of photoreceptors. A strategy for retinal prosthesis is to electrically activate surviving neurons. The retina’s response to electrical stimulation in a larger RD model has not been studied yet. Therefore, in this study, we investigated electrically evoked retinal responses in a previously validated N-methyl-N-nitrosourea (MNU)-induced porcine RD model. Electrically evoked responses were evaluated based on the number of retinal ganglion cell (RGC) spikes via multichannel recordings. Stimulation pulses were applied to degenerative and wild-type retinas with pulse modulation. Compared to wild-type retinas, degenerative retinas showed higher threshold values of pulse amplitude and pulse duration. The rate of increase in the number of RGC spikes relative to stimulus intensity was lower in degenerative retinas than in normal retinas. In severely degenerated retinas, few RGCs showed electrically evoked spikes. Our results suggest that the degenerative porcine retina requires a higher charge than the normal porcine retina. In the early stage of RD, it is easier to induce RGC spikes through electrical stimulation using retinal prosthesis; however, when the degeneration is severe, there may be difficulty recovering patient vision.
Collapse
Affiliation(s)
- Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, 28644, Korea
| | - Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, 08308, Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, 28644, Korea
| | - Minsu Yoo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, 28644, Korea
| | - Yurim Jeong
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, 28644, Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, 08308, Korea.
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, 28644, Korea.
| |
Collapse
|
8
|
Ahn SM, Choi M, Kim SW, Kim YY. Changes After a Month Following Micropulse Cyclophotocoagulation in Normal Porcine Eyes. Transl Vis Sci Technol 2021; 10:11. [PMID: 34751743 PMCID: PMC8590165 DOI: 10.1167/tvst.10.13.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To analyze the effects on the uvea, including the pars plicata and ciliary muscle, and retina in normal porcine eyes after performing micropulse transslceral cyclophotocoagulation (MP-TSCPC) with the different energy levels, and conventional continuous wave transslceral cyclophotocoagulation. Methods MP-TSCPC was performed in a total of 15 eyes at the different energy levels of 60 J, 120 J, 180 J, 240 J, and 300 J, respectively. Continuous wave transslceral cyclophotocoagulation was performed in three eyes and the other three eyes were controls. The eyes were enucleated after a month following the laser treatment and the uvea and retina were analyzed using hematoxylin and eosin staining and immunohistochemistry staining. Results After MP-TSCPC 60 J, the expression of α-smooth muscle actin (α-SMA) and glial fibrillary acidic protein in the ciliary muscle was increased, although there was no structural change in pars plicata. After MP-TSCPC 120 J, partial destruction of the ciliary epithelium was observed in pars plicata, and the retinal thickness was increased. After MP-TSCPC 240 J and 300 J, the structural destruction of the pars plicata and ciliary muscle was observed, and the expression of α-SMA and glial fibrillary acidic protein in pars plicata and the expression of α-SMA in ciliary muscle were increased. Conclusions Histologic changes in the uvea and peripheral retina were different based on the energy levels of MP-TSCPC. In particular, MP-TSCPC with low energy levels mainly affected the ciliary muscle, while MP-TSCPC with high energy levels affected both the ciliary muscle and pars plicata. Our results may imply a possibility of intraocular damage with MP-TSCPC in humans. Translational Relevance Based on our research, it is possible to infer the possibility of intraocular damage in humans according to the different levels of energy in the clinic.
Collapse
Affiliation(s)
- So Min Ahn
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Mihyun Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Yong Yeon Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Wang Z, Feng C, Yang R, Liu T, Chen Y, Chen A, Yan B, Yuan Y, Zhang J. Large-Area Photoreceptor Degeneration Model in Rabbits by Photocoagulation and Oxidative Stress in the Retina. Front Neurosci 2021; 15:617175. [PMID: 34177442 PMCID: PMC8222581 DOI: 10.3389/fnins.2021.617175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
Photocoagulation is used for the treatment of retinal ischemic disease. However, due to the invasive nature of photocoagulation and variety of melanin concentrations between individuals, it is challenging to avoid damaging the adjacent photoreceptors and inducing several side effects. Previous studies indicate the role of laser power, duration, and spot size on retinal lesions, but the effect of interspot distance of the laser pulses needs to be considered in panretinal photocoagulation. In this study, we examine different parameters of photocoagulation on lesions of the retina in rabbit, finding that the lesion level of the outer nuclear layer of the retina depended on the pulse duration and laser spot size, and decreasing interspot distance could completely abolish the photoreceptor layer. The degeneration of the photoreceptor by photocoagulation occurred in 24 h and was not restored afterward. We then conducted panretinal photocoagulation in rabbit and found that oxidative stress was decreased in the inner nuclear layer of the retina, and pupillary light reflex and ERG signals were impaired. Our study could provide a rabbit model to explore the mechanism of photoreceptor degeneration and therapies for the side effects after photocoagulation.
Collapse
Affiliation(s)
- Zhexuan Wang
- State Key Laboratory of Medical Neurobiology, Department of Ophthalmology, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Institute for Brain Science, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and Ent Hospital of Fudan University, Shanghai, China
| | - Chenli Feng
- State Key Laboratory of Medical Neurobiology, Department of Ophthalmology, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Institute for Brain Science, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and Ent Hospital of Fudan University, Shanghai, China
| | - Ruyi Yang
- State Key Laboratory of Medical Neurobiology, Department of Ophthalmology, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Institute for Brain Science, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and Ent Hospital of Fudan University, Shanghai, China
| | - Tingting Liu
- Department of Ophthalmology, Eye and Ent Hospital of Fudan University, Shanghai, China
| | - Yin Chen
- Key Laboratory of Brain Functional Genomics, Primate Research Center, East China Normal University, Shanghai, China
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics, Primate Research Center, East China Normal University, Shanghai, China
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, Department of Ophthalmology, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Institute for Brain Science, Fudan University, Shanghai, China
| | - Yuanzhi Yuan
- State Key Laboratory of Medical Neurobiology, Department of Ophthalmology, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Institute for Brain Science, Fudan University, Shanghai, China
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, Department of Ophthalmology, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Institute for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Kim W, Choi M, Kim SW. The Normative Retinal and Choroidal Thicknesses of the Rabbit as Revealed by Spectral Domain Optical Coherence Tomography. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2021. [DOI: 10.3341/jkos.2021.62.3.354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Choi KE, Anh VTQ, Kim JT, Yun C, Cha S, Ahn J, Goo YS, Kim SW. An experimental pig model with outer retinal degeneration induced by temporary intravitreal loading of N-methyl-N-nitrosourea during vitrectomy. Sci Rep 2021; 11:258. [PMID: 33420119 PMCID: PMC7794530 DOI: 10.1038/s41598-020-79437-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
We aimed to develop an outer retinal degeneration pig model induced by temporary intravitreal loading of N-methyl-N-nitrosourea (MNU) during vitrectomy. In a preliminary experiment involving 5 mini-pig cases to determine the appropriate concentration of MNU, the vitreous cavity of each eye was filled with 4, 8, 10, 12, or 16 mg/mL MNU for 10 min, which was then replaced with a balanced salt solution. Multimodal examinations including spectral-domain optical coherence tomography (OCT) images and full-field electroretinography (ffERG) were obtained at baseline and week 2, week 6, and week 12. The retinal degeneration was classified according to the amplitudes of a dark adaptive (DA) 10.0 a-wave amplitude. The degree of moderate retinal degeneration was defined as DA 10.0 a-wave amplitude ≥ 10% and < 60% of baseline amplitude. The degree of severe degeneration was defined as DA 10.0 a-wave amplitude < 10% of baseline amplitude, noise, or flat signal. Hematoxylin and eosin staining and immunohistochemistry were performed at week 12. The main experiments were conducted first with 10 cases of 5 mg/mL and later with 13 cases of 10 mg/mL. In the preliminary experiment, degree of outer retinal degeneration increased with MNU concentration. Use of 4, 8, 10, 12, and 16 mg/mL MNU showed no, moderate, severe, severe, and atrophic changes, respectively. In the main experiments, there were 9 cases of moderate retinal degeneration and 1 case of severe degeneration in 5 mg/mL MNU group. Two cases of moderate degeneration and 11 of severe degeneration were recorded in 10 mg/mL group. Mean thickness of total retina, inner nuclear layer, and outer nuclear layer decreased at week 2 in both groups. The mean amplitudes on ffERG decreased at week 2. The ffERG and OCT findings did not change from week 2 to week 6 or week 12. The results of staining supported those of ffERG and OCT. Temporal MNU loading in a vitrectomized pig-eye model induced customized outer retinal degeneration with changing the concentration of MNU.
Collapse
Affiliation(s)
- Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Vu Thi Que Anh
- Department of Ophthalmology, Hanoi Medical University, Hanoi, Vietnam
| | - Jee Taek Kim
- Department of Ophthalmology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Cheolmin Yun
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju, South Korea.
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Im M, Kim SW. Neurophysiological and medical considerations for better-performing microelectronic retinal prostheses. J Neural Eng 2020; 17:033001. [PMID: 32329755 DOI: 10.1088/1741-2552/ab8ca9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maesoon Im
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | | |
Collapse
|
13
|
Ahn J, Rueckauer B, Yoo Y, Goo YS. New Features of Receptive Fields in Mouse Retina through Spike-triggered Covariance. Exp Neurobiol 2020; 29:38-49. [PMID: 32122107 PMCID: PMC7075653 DOI: 10.5607/en.2020.29.1.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Retinal ganglion cells (RGCs) encode various spatiotemporal features of visual information into spiking patterns. The receptive field (RF) of each RGC is usually calculated by spike-triggered average (STA), which is fast and easy to understand, but limited to simple and unimodal RFs. As an alternative, spike-triggered covariance (STC) has been proposed to characterize more complex patterns in RFs. This study compares STA and STC for the characterization of RFs and demonstrates that STC has an advantage over STA for identifying novel spatiotemporal features of RFs in mouse RGCs. We first classified mouse RGCs into ON, OFF, and ON/OFF cells according to their response to full-field light stimulus, and then investigated the spatiotemporal patterns of RFs with random checkerboard stimulation, using both STA and STC analysis. We propose five sub-types (T1–T5) in the STC of mouse RGCs together with their physiological implications. In particular, the relatively slow biphasic pattern (T1) could be related to excitatory inputs from bipolar cells. The transient biphasic pattern (T2) allows one to characterize complex patterns in RFs of ON/OFF cells. The other patterns (T3–T5), which are contrasting, alternating, and monophasic patterns, could be related to inhibitory inputs from amacrine cells. Thus, combining STA and STC and considering the proposed sub-types unveil novel characteristics of RFs in the mouse retina and offer a more holistic understanding of the neural coding mechanisms of mouse RGCs.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Bodo Rueckauer
- Institute of Neuroinformatics, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
14
|
Morphologic and electrophysiologic findings of retinal degeneration after intravitreal sodium iodate injection following vitrectomy in canines. Sci Rep 2020; 10:3588. [PMID: 32107442 PMCID: PMC7046695 DOI: 10.1038/s41598-020-60579-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
We developed and characterized a canine model of outer retinal degeneration induced by sodium iodate (SI) intravitreal injection after vitrectomy. In the preliminary study, we repeatedly injected SI intravitreally into the eyes of three canines to develop outer retinal degeneration two weeks after vitrectomy. Based on the preliminary study, a single dose of either 1.2 mg or 1.0 mg SI/0.05 mL was also injected (1.2 mg in n = 5 canines, 1.0 mg in n = 2 canines). Spectral domain-optical coherence tomography (OCT), electroretinography (ERG), and histological examinations were performed at baseline and following intravitreal injection. In the preliminary study, after a 0.5-mg SI injection and a 1.0-mg SI injection and after two 0.8-mg SI injections, retinal degeneration with retinal thinning was observed on OCT imaging. In the second study, after a single 1.0- or 1.2-mg SI injection, outer retinal degeneration was induced. All eyes showed diffuse outer retinal degeneration on OCT and a loss of both cone and rod responses in ERG. Histological examination also showed the loss of outer retinal layer. Intravitreally injected SI (1.0–1.2 mg) in a vitrectomized canine model induced outer retinal degeneration effectively, and could be evaluated through in vivo ophthalmic examination.
Collapse
|
15
|
Cuenca N, Ortuño-Lizarán I, Sánchez-Sáez X, Kutsyr O, Albertos-Arranz H, Fernández-Sánchez L, Martínez-Gil N, Noailles A, López-Garrido JA, López-Gálvez M, Lax P, Maneu V, Pinilla I. Interpretation of OCT and OCTA images from a histological approach: Clinical and experimental implications. Prog Retin Eye Res 2020; 77:100828. [PMID: 31911236 DOI: 10.1016/j.preteyeres.2019.100828] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
Optical coherence tomography (OCT) and OCT angiography (OCTA) have been a technological breakthrough in the diagnosis, treatment, and follow-up of many retinal diseases, thanks to its resolution and its ability to inform of the retinal state in seconds, which gives relevant information about retinal degeneration. In this review, we present an immunohistochemical description of the human and mice retina and we correlate it with the OCT bands in health and pathological conditions. Here, we propose an interpretation of the four outer hyperreflective OCT bands with a correspondence to retinal histology: the first and innermost band as the external limiting membrane (ELM), the second band as the cone ellipsoid zone (EZ), the third band as the outer segment tips phagocytosed by the pigment epithelium (PhaZ), and the fourth band as the mitochondria in the basal portion of the RPE (RPEmitZ). The integrity of these bands would reflect the health of photoreceptors and retinal pigment epithelium. Moreover, we describe how the vascular plexuses vary in different regions of the healthy human and mice retina, using OCTA and immunohistochemistry. In humans, four, three, two or one plexuses can be observed depending on the distance from the fovea. Also, specific structures such as vascular loops in the intermediate capillary plexus, or spider-like structures of interconnected capillaries in the deep capillary plexus are found. In mice, three vascular plexuses occupy the whole retina, except in the most peripheral retina where only two plexuses are found. These morphological issues should be considered when assessing a pathology, as some retinal diseases are associated with structural changes in blood vessels. Therefore, the analysis of OCT bands and OCTA vascular plexuses may be complementary for the diagnosis and prognosis of retinal degenerative processes, useful to assess therapeutic approaches, and it is usually correlated to visual acuity.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain; Institute Ramón Margalef, University of Alicante, Alicante, Spain.
| | | | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | | | | | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Agustina Noailles
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | | | | | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa, University Hospital, Zaragoza, Spain
| |
Collapse
|
16
|
Ahn SM, Ahn J, Cha S, Yun C, Park TK, Kim YJ, Goo YS, Kim SW. The effects of intravitreal sodium iodate injection on retinal degeneration following vitrectomy in rabbits. Sci Rep 2019; 9:15696. [PMID: 31666618 PMCID: PMC6821727 DOI: 10.1038/s41598-019-52172-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/12/2019] [Indexed: 11/17/2022] Open
Abstract
We sought to develop and characterize outer retinal degeneration induced by intravitreal injection of sodium iodate (SI) after vitrectomy in rabbits. To determine the effective dose of SI, the right eyes of 19 male New Zealand white rabbits received an intravitreal injection of SI or sham. Based on the dose-dependence results, 0.4 mg of SI in 0.05 mL of total volume was injected into the right eyes of 10 rabbits at two weeks after vitrectomy. In the dose-dependence study, localized retinal atrophy was observed with 0.3- and 0.4-mg SI injections without vitrectomy. Severe and diffuse retinal atrophy was identified by spectral-domain optical coherence tomography (SD-OCT) at one month after a 0.5-mg SI injection following vitrectomy. In the second experiment, 0.4 mg of SI in 0.05 mL was injected, and the severity of outer retinal degeneration was graded as one of two types according to electroretinography (ERG) response change. There was no response on ERG in complete retinal degeneration, 30% of all 10 rabbits. Intravitreal injection of 0.4 mg of SI into vitrectomized rabbit eyes induces diffuse outer retinal degeneration, and the degree of retinal degeneration can be evaluated through in vivo ophthalmic examination.
Collapse
Affiliation(s)
- So Min Ahn
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Korea
| | - Cheolmin Yun
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Young-Jin Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Korea.
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|