1
|
Yuksel C, Uz YH. Protective effects of N-acetylcysteine against titanium dioxide nanoparticles-induced kidney damage in rats. J Mol Histol 2025; 56:112. [PMID: 40106010 DOI: 10.1007/s10735-025-10395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
The objective of this study was to evaluate the potential protective effect of N-acetylcysteine (NAC) against kidney damage induced by titanium dioxide nanoparticles (TiO2NP) through biochemical, histological, and immunohistochemical analyses. Forty rats were randomly divided into four groups of 10 animals each. Saline was administered intragastrically to control group for 14 days. In NAC group, 150 mg/kg NAC was injected intraperitoneally for 21 days. In TiO2NP group, TiO2NP at a dose of 50 mg/kg/day, dissolved in saline, was administered intragastrically for 14 days. TiO2NP + NAC group received 50 mg/kg/day TiO2NP for 14 days and 150 mg/kg NAC for 21 days, starting 7 days before TiO2NP administration. At the end of experiment, rats were anesthetized, serum samples were collected for biochemical analysis, and kidney tissue was removed for histological and immunohistochemical analyses. There was no significant change in body weight, kidney weight, or serum urea-creatinine levels between the groups. TiO2NP caused a significant increase in vacuolization and brush border loss scores in tubular cells, as well as scores for congestion and leukocyte infiltration. However, NAC supplementation significantly ameliorated these impairments. Additionally, TiO2NP significantly increased NF-kB, TNF-α, and caspase-3 immunoreactivities, as well as the number of PCNA-positive and TUNEL-positive cells. NAC treatment decreased all immunoreactivities and TUNEL-positive cells, but did not change the number of PCNA-positive cells after TiO2NP exposure. The results of the study showed that the toxic effects of TiO2NP on the kidneys, commonly encountered in daily life, can be mitigated by the anti-inflammatory and anti-apoptotic properties of NAC.
Collapse
Affiliation(s)
- Cengiz Yuksel
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kirklareli University, Kirklareli, Turkey
| | - Yesim Hulya Uz
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey.
| |
Collapse
|
2
|
Sousa A, Carvalho F, Fernandes E, Freitas M. Quercetin protective potential against nanoparticle-induced adverse effects. Nanotoxicology 2025; 19:28-49. [PMID: 39815656 DOI: 10.1080/17435390.2024.2446554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
The rapid development of nanotechnology has resulted in the widespread use of nanoparticles (NPs) in various sectors due to their unique properties and diverse applications. However, the increased exposure of humans to NPs raises concerns about their potential negative impact on human health and the environment. The pathways through which NPs exert adverse effects, including inflammation and oxidative stress, are primarily influenced by their size, shape, surface charge, and chemistry, underscoring the critical need to comprehend and alleviate their potential detrimental impacts. In this context, the natural flavonoid quercetin is a promising candidate for counteracting the toxicity induced by NPs due to its anti-inflammatory and antioxidant properties. This review provides an overview of the existing literature on quercetin's protective effects against NPs-induced toxicity, highlighting its therapeutic benefits and mechanisms of action, focusing on its ability to alleviate oxidative stress, inflammation, and cellular damage caused by various types of NPs. Insights from both in vitro and in vivo studies demonstrate the effectiveness of quercetin in preserving cellular function, modulating apoptotic pathways, and maintaining tissue integrity in the presence of NPs. The potential of quercetin as a natural therapeutic agent against NPs-induced toxicity provides valuable insights for safer use of NPs in various daily applications.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Cheng FJ, Huang CE, Chen PS, Tseng YL, Yuan CS, Lai CS. New evidence on the nephrotoxicity of fine particulate matter: Potential toxic components from different emission sources. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117808. [PMID: 39904257 DOI: 10.1016/j.ecoenv.2025.117808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Associations exist between fine particulate matter (PM2.5) exposure and impaired kidney function. However, the specific mechanisms and components causing renal damage remain unclear. PM2.5 was collected from an industrial and a rural area. Mice were categorized according to exposure, and biochemical, western blotting, histological, and immunohistochemical analyses were performed to evaluate the impact of PM2.5 constituents on their kidneys. To assess the impact of different PM2.5 components on inflammatory responses, a study was conducted by exposing the murine macrophage cell line (RAW 264.7). The study used a chelating resin to remove the influence of heavy metals from the water extract and employed a Toll-like receptor 4 (TLR4) antagonist to eliminate the effects of endotoxin, thereby evaluating the cellular inflammatory responses induced by various PM2.5 components. The major metallic elements at the industrial site were Fe, Mg, Zn, and Ca, whereas those at site Rural were Ca, K, and Mg. PM2.5 water extracts from both sites induced inflammatory cytokine upregulation in the lungs and kidneys, and inflammatory cell infiltration, antioxidant activity downregulation, and elevated levels of kidney injury molecule 1 in the kidneys. Exposure to PM2.5 water extract increased the mRNA levels of tumor necrosis factor-α, interleukin-6, and nitrite production in RAW264.7 macrophages. The inflammatory response and nitrite production induced by the industrial-site PM2.5 water extract were significantly suppressed after treatment with a chelating resin, whereas those from the rural area were suppressed by the Toll-like receptor 4 (TLR4) antagonist. These results suggest that heavy metals are crucial factors in PM2.5-induced cellular inflammatory responses in industrial areas, whereas endotoxin receptor--TLR4 mediated inflammatory pathways are the primary factor responsible for this response in rural areas. Furthermore, at equivalent dosages, the renal toxicity induced by the water-soluble components of rural-site PM2.5 may exceed that from industrial areas.
Collapse
Affiliation(s)
- Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung City 833, Taiwan, ROC; Chang Gung University College of Medicine, 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan, ROC
| | - Chien-Er Huang
- Department of Chemical and Materials Engineering, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung City 833, Taiwan, ROC; Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung City 833, Taiwan, ROC
| | - Pei-Shih Chen
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, ROC
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung City 804, Taiwan, ROC
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung City 804, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung City 804, Taiwan, ROC.
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC.
| |
Collapse
|
4
|
Zhao X, Zeng Q, Yu S, Zhu X, Bin Hu, Deng L, Zhang Y, Liu Y. GLP-1R mediates idebenone-reduced blood glucose in mice. Biomed Pharmacother 2024; 178:117202. [PMID: 39053424 DOI: 10.1016/j.biopha.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
GLP-1 receptor agonists (GLP-1RAs) are an innovative class of drugs with significant therapeutic value for type 2 diabetes mellitus (T2DM). The GLP-1RAs currently available on the market are biologic macromolecular peptide agents that are expensive to treat and not easy to take orally. Therefore, the development of small molecule GLP-1RAs is becoming one of the most sought-after research targets for hypoglycemic drugs. In this study, we sought to find a potential oral small molecule GLP-1RA and to evaluate its effect on insulin secretion in rat pancreatic β cells and on blood glucose in mice. We downloaded the mRNA expression profiles of GSE102194 and GSE37936 from the Gene Expression Omnibus database. Subsequently, the small molecule compound idebenone was screened through the connectivity map database. The results of molecular docking, biolayer interferometry, and cellular thermal shift assay indicated that idebenone could bind potently with GLP-1R. Furthermore, ibebenone elevated intracellular cAMP levels. The radioimmunoassay data showed that idebenone enhanced glucose-stimulated insulin secretion via agonism of GLP-1R. Moreover, the results of oral glucose tolerance tests in C57BL/6, Glp-1r-/-, and hGlp-1r mice demonstrated that the glucose-lowering effects of idebenone were mediated by GLP-1R and that there were no species differences in the agonistic effect of idebenone on GLP-1R. In summary, idebenone reduces blood glucose in mice by promoting insulin release through agonism of GLP-1R, suggesting that idebenone is probably a potential GLP-1RA, which is expected to provide a new therapeutic strategy for the prevention and treatment of metabolic diseases such as T2DM.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qingxuan Zeng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Siting Yu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaochan Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Hu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
5
|
Choi Y, Cho YL, Park S, Park M, Hong KS, Park YJ, Lee IA, Chung SW, Lee H, Lee SJ. Anti-Inflammatory Effects of Idebenone Attenuate LPS-Induced Systemic Inflammatory Diseases by Suppressing NF-κB Activation. Antioxidants (Basel) 2024; 13:151. [PMID: 38397749 PMCID: PMC10885939 DOI: 10.3390/antiox13020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammation is a natural protective process through which the immune system responds to injury, infection, or irritation. However, hyperinflammation or long-term inflammatory responses can cause various inflammatory diseases. Although idebenone was initially developed for the treatment of cognitive impairment and dementia, it is currently used to treat various diseases. However, its anti-inflammatory effects and regulatory functions in inflammatory diseases are yet to be elucidated. Therefore, this study aimed to investigate the anti-inflammatory effects of idebenone in cecal ligation puncture-induced sepsis and lipopolysaccharide-induced systemic inflammation. Murine models of cecal ligation puncture-induced sepsis and lipopolysaccharide-induced systemic inflammation were generated, followed by treatment with various concentrations of idebenone. Additionally, lipopolysaccharide-stimulated macrophages were treated with idebenone to elucidate its anti-inflammatory effects at the cellular level. Idebenone treatment significantly improved survival rate, protected against tissue damage, and decreased the expression of inflammatory enzymes and cytokines in mice models of sepsis and systemic inflammation. Additionally, idebenone treatment suppressed inflammatory responses in macrophages, inhibited the NF-κB signaling pathway, reduced reactive oxygen species and lipid peroxidation, and normalized the activities of antioxidant enzyme. Idebenone possesses potential therapeutic application as a novel anti-inflammatory agent in systemic inflammatory diseases and sepsis.
Collapse
Affiliation(s)
- Yumin Choi
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Young-Lai Cho
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
| | - Sujeong Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Minkyung Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Keun-Seok Hong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
| | - Young Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - In-Ah Lee
- Department of Chemistry, Kunsan National University, Gunsan 54150, Republic of Korea;
| | - Su Wol Chung
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea;
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea;
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Liu H, Cao M, Jin Y, Jia B, Wang L, Dong M, Han L, Abankwah J, Liu J, Zhou T, Chen B, Wang Y, Bian Y. Network pharmacology and experimental validation to elucidate the pharmacological mechanisms of Bushen Huashi decoction against kidney stones. Front Endocrinol (Lausanne) 2023; 14:1031895. [PMID: 36864834 PMCID: PMC9971497 DOI: 10.3389/fendo.2023.1031895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
INTRODUCTION Kidney stone disease (KS) is a complicated disease with an increasing global incidence. It was shown that Bushen Huashi decoction (BSHS) is a classic Chinese medicine formula that has therapeutic benefits for patients with KS. However, its pharmacological profile and mechanism of action are yet to be elucidated. METHODS The present study used a network pharmacology approach to characterize the mechanism by which BSHS affects KS. Compounds were retrieved from corresponding databases, and active compounds were selected based on their oral bioavailability (≥30) and drug-likeness index (≥0.18). BSHS potential proteins were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, whereas KS potential genes were obtained from GeneCards and OMIM, TTD, and DisGeNET. Gene ontology and pathway enrichment analysis were used to determine potential pathways associated with genes. The ingredients of BSHS extract were identified by the ultra-high-performance liquid chromatography coupled with quadrupole orbitrap mass spectrometry (UHPLC-Q/Orbitrap MS). The network pharmacology analyses predicted the potential underlying action mechanisms of BSHS on KS, which were further validated experimentally in the rat model of calcium oxalate kidney stones. RESULTS Our study found that BSHS reduced renal crystal deposition and improved renal function in ethylene glycol(EG)+ammonium chloride(AC)-induced rats, and also reversed oxidative stress levels and inhibited renal tubular epithelial cell apoptosis in rats. BSHS upregulated protein and mRNA expression of E2, ESR1, ESR2, BCL2, NRF2, and HO-1 in EG+AC-induced rat kidney while downregulating BAX protein and mRNA expression, consistent with the network pharmacology results. DISCUSSION This study provides evidence that BSHS plays a critical role in anti-KS via regulation of E2/ESR1/2, NRF2/HO-1, and BCL2/BAX signaling pathways, indicating that BSHS is a candidate herbal drug for further investigation in treating KS.
Collapse
Affiliation(s)
- Haizhao Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Cao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beitian Jia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liming Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengxue Dong
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Han
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Joseph Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianwei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baogui Chen
- Wuqing Hospital of Traditional Chinese Medicine Affiliated with Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yiyang Wang, ; Yuhong Bian,
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yiyang Wang, ; Yuhong Bian,
| |
Collapse
|
7
|
Salarbashi D, Tafaghodi M, Rajabi O, Fazli Bazzaz BS, Soheili V. Soluble soybean polysaccharide/
TiO
2
nanocomposites: Biological activity, release behavior, biodegradability, and biosafety. J Food Saf 2022. [DOI: 10.1111/jfs.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research Center, School of Medicine Gonabad University of Medical Sciences Gonabad Iran
- Department of Food Science and Nutrition, School of Medicine Gonabad University of Medical Sciences Gonabad Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutics, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Omid Rajabi
- Department of Drug and Food Control, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Bibi Sedigheh Fazli Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Control, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
8
|
Du G, Qu X, Hu J, Zhang Y, Cai Y. Identification of Taohong Siwu Decoction in Treating Chronic Glomerulonephritis Using Network Pharmacology and Molecular Docking. Nat Prod Commun 2022; 17:1934578X2211399. [DOI: 10.1177/1934578x221139966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Based on network pharmacology and molecular docking technology, the pharmacological mechanism of Taohong Siwu Decoction (THSWD) in the treatment of chronic glomerulonephritis (CGN) was analyzed to provide a theoretical basis for the subsequent development of new drugs and the clinical application of Traditional Chinese Medicine (TCM). Methods: Active ingredients of drugs and disease target genes were obtained from Traditional Chinese Medicine Database and Analysis Platform (TCMSP) database and GeneCards database. The “drug component target” network of THSWD was constructed using Cytoscape version 3.8.2 software. The protein interaction was analyzed using STRING platform, the protein–protein interaction (PPI) network was constructed, and the potential protein function modules in the network were mined. Metascape platform was used to analyze “drug component target” and its biological processes and pathways. The clusterProfiler R package was called to perform kyoto encyclopedia of genes and genomes (KEGG) pathway and gene ontology (GO) function enrichment analysis on CGN-related targets regulated by THSWD. Molecular docking verification was performed by AutoDock Vina software. Results: THSWD has 205 target genes and 45 active components, 104 of which are cross with the CGN inflammatory gene. Its main active ingredients, stigmasterol, kaempferol, and sitosterol, have positive relationships with the inflammatory targets of CGN, tumor necrosis factor (TNF), IL-6, AKT1, and MAPK14. THSWD modulates the biological pathway of CGN and mainly acts on TNF-α signal pathway, interleukin-17 signal pathway, etc., whose main functions are response to lipid sugar, heme binding, G protein-coupled amine receptor activity, etc. The results of molecular docking showed that the main active compounds could bind to the core targets and showed good affinity. Conclusion: The molecular mechanism of THSWD in the treatment of CGN from the perspective of network pharmacology are components such as beta-sitosterol, kaempferol, and quercetin and key action targets such as TNF, IL-6, AKT1 protein kinase, and MAPK14 protein kinase play a synergistic role in autoimmune, infection, and inflammatory response-related pathways.
Collapse
Affiliation(s)
- Guoxia Du
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaohan Qu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Hu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuzhen Zhang
- College of Medical Information and Engineering,Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongming Cai
- College of Medical Information and Engineering,Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Traditional Chinese Medicine Precision Medicine Big Data Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
9
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
10
|
Xie D, Hu J, Wu T, Xu W, Meng Q, Cao K, Luo X. Effects of Flavonoid Supplementation on Nanomaterial-Induced Toxicity: A Meta-Analysis of Preclinical Animal Studies. Front Nutr 2022; 9:929343. [PMID: 35774549 PMCID: PMC9237539 DOI: 10.3389/fnut.2022.929343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/09/2022] Open
Abstract
BackgroundNanomaterials, widely applied in various fields, are reported to have toxic effects on human beings; thus, preventive or therapeutic measures are urgently needed. Given the anti-inflammatory and antioxidant activities, supplementation with flavonoids that are abundant in the human diet has been suggested as a potential strategy to protect against nanomaterial-induced toxicities. However, the beneficial effects of flavonoids remain inconclusive. In the present study, we performed a meta-analysis to comprehensively explore the roles and mechanisms of flavonoids for animals intoxicated with nanomaterials.MethodsA systematic literature search in PubMed, EMBASE, and Cochrane Library databases was performed up to April 2022. STATA 15.0 software was used for meta-analyses.ResultsA total of 26 studies were identified. The results showed that flavonoid supplementation could significantly increase the levels of antioxidative enzymes (superoxide dismutase, catalase, glutathione, glutathione peroxidase, and glutathione-S-transferase), reduce the production of oxidative agents (malonaldehyde) and pro-inflammatory mediators (tumor necrosis factor-α, interleukin-6, IL-1β, C-reactive protein, immunoglobulin G, nitric oxide, vascular endothelial growth factor, and myeloperoxidase), and alleviate cell apoptosis (manifested by decreases in the mRNA expression levels of pro-apoptotic factors, such as caspase-3, Fas cell surface death receptor, and Bax, and increases in the mRNA expression levels of Bcl2), DNA damage (reductions in tail length and tail DNA%), and nanomaterial-induced injuries of the liver (reduced alanine aminotransferase and aspartate aminotransferase activities), kidney (reduced urea, blood urea nitrogen, creatinine, and uric acid concentration), testis (increased testosterone, sperm motility, 17β-hydroxysteroid dehydrogenase type, and reduced sperm abnormalities), and brain (enhanced acetylcholinesterase activities). Most of the results were not changed by subgroup analyses.ConclusionOur findings suggest that appropriate supplementation of flavonoids may be effective to prevent the occupational detriments resulting from nanomaterial exposure.
Collapse
Affiliation(s)
- Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd, Shanghai, China
| | - Wei Xu
- Shanghai Nutri-woods Bio-Technology Co., Ltd, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Daily Chemical Co., Ltd, Shanghai, China
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, Shanghai, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- *Correspondence: Xiaogang Luo,
| |
Collapse
|
11
|
Abdelzaher WY, Mostafa-Hedeab G, Sayed AboBakr Ali AH, Fawzy MA, Ahmed AF, Bahaa El-Deen MA, Welson NN, Aly Labib DA. Idebenone regulates sirt1/Nrf2/TNF-α pathway with inhibition of oxidative stress, inflammation, and apoptosis in testicular torsion/detorsion in juvenile rats. Hum Exp Toxicol 2022; 41:9603271221102515. [PMID: 35593271 DOI: 10.1177/09603271221102515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Testicular torsion is an emergency, mainly in newborn and adolescent males, resulting in testicular ischemia. The current study aimed to evaluate the effect of Idebenone (IDE) on testicular torsion/detorsion (T/D) in juvenile rats. Thirty-two rats were randomized into: (1) the sham group: rats received sham operations with no other interventions; (2) the IDE group: rats received idebenone (100 mg/kg, i. p) without T/D; (3) the T/D group: rats underwent torsion for 2 h and detorsion for 4 h; and (4) the IDE+ T/D group: rats received IDE 1 h before T/D. Testicular malondialdehyde (MDA), total nitrite/nitrate (NOx), total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α), caspase-3, sirtuin type 1 (Sirt1), serum interleukin-1β (IL-1β), total cholesterol, and testosterone were measured. Histological changes, nuclear factor (erythroid-derived 2)-like-2 factors (Nrf2), and proliferating cell nuclear antigen (PCNA) immuno-expressions were assessed. T/D displayed an increase in MDA, NOx, TNF-α, caspase-3, IL-1β, and total cholesterol with a significant decrease in TAC, Sirt1, and testosterone and strong positive Nrf2 and negative PCNA immuno-expressions. IDE could improve all oxidative, inflammatory, and apoptotic indicators. Therefore, IDE significantly reduced testicular ischemia-reperfusion injury in the juvenile rat testicular T/D model by limiting oxidative stress, inflammation, and apoptosis via the Sirt1/Nrf2/TNF-α pathway.
Collapse
Affiliation(s)
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department, Medical College, 125894Jouf University, KSA.,Pharmacology Department, Faculty of Medicine Beni-Suef University, Beni Suef, Egypt
| | | | - Michael Atef Fawzy
- Department of Biochemistry, 68877Faculty of Pharmacy, Minia University, Egypt
| | - Amira F Ahmed
- Department of Histology and Cell Biology, 68877Faculty of Medicine Minia University, Minia, Egypt
| | | | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine Beni-Suef University, Beni Suef, Egypt
| | - Dina A Aly Labib
- Department of Pharmacology, 63527Faculty of Medicine Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Jin M, Ren W, Zhang W, Liu L, Yin Z, Li D. Exploring the Underlying Mechanism of Shenyankangfu Tablet in the Treatment of Glomerulonephritis Through Network Pharmacology, Machine Learning, Molecular Docking, and Experimental Validation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4585-4601. [PMID: 34785888 PMCID: PMC8590514 DOI: 10.2147/dddt.s333209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Purpose This study aimed to explore the underlying mechanisms of Shenyankangfu tablet (SYKFT) in the treatment of glomerulonephritis (GN) based on network pharmacology, machine learning, molecular docking, and experimental validation. Methods The active ingredients and potential targets of SYKFT were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the targets of GN were obtained through GeneCards, etc. Perl and Cytoscape were used to construct an herb-active ingredient–target network. Then, the clusterProfiler package of R was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. We also used the STRING platform and Cytoscape to construct a protein–protein interaction (PPI) network, as well as the SwissTargetPrediction server to predict the target protein of the core active ingredient based on machine-learning model. Molecular-docking analysis was further performed using AutoDock Vina and Pymol. Finally, we verified the effect of SYKFT on GN in vivo. Results A total of 154 active ingredients and 255 targets in SYKFT were screened, and 135 targets were identified to be related to GN. GO enrichment analysis indicated that biological processes were primarily associated with oxidative stress and cell proliferation. KEGG pathway analysis showed that these targets were involved mostly in infection-related and GN-related pathways. PPI network analysis identified 13 core targets of SYKFT. Results of machine-learning model suggested that STAT3 and AKT1 may be the key target. Results of molecular docking suggested that the main active components of SYKFT can be combined with various target proteins. In vivo experiments confirmed that SYKFT may alleviate renal pathological injury by regulating core genes, thereby reducing urinary protein. Conclusion This study demonstrated for the first time the multicomponent, multitarget, and multipathway characteristics of SYKFT for GN treatment.
Collapse
Affiliation(s)
- Meiling Jin
- Department of Nephrology, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.,Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China
| | - Wenwen Ren
- Department of Nephrology, Beijing Ditan Hospital,Capital Medical University, Beijing, 100015, People's Republic of China
| | - Weiguang Zhang
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China
| | - Linchang Liu
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China.,Department of Nephrology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100039, People's Republic of China
| | - Zhiwei Yin
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China.,College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Diangeng Li
- Department of Academic Research, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| |
Collapse
|
13
|
Novel Synthesis of Titanium Oxide Nanoparticles: Biological Activity and Acute Toxicity Study. Bioinorg Chem Appl 2021; 2021:8171786. [PMID: 34422029 PMCID: PMC8376471 DOI: 10.1155/2021/8171786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been attracting numerous research studies due to their activity; however, there is a growing concern about the corresponding toxicity. Here in the present study, titanium oxide nanoparticles were newly synthesized using propolis extract followed by antimicrobial activity, cytotoxicity assay using human cancer cell lines, and acute toxicity study. The physicochemical characterization of the newly synthesized TiO2 NPs had average size = 57.5 nm, PdI = 0.308, and zeta potential = −32.4 mV. Antimicrobial activity assessment proved the superior activity against Gram-positive compared to Gram-negative bacteria and yeast (lowest MIC values 8, 32, and 32, respectively). The newly synthesized TiO2 NPs showed a potent activity against the following human cancer cell lines: liver (HepG-2) (IC50 8.5 µg/mL), colon (Caco-2), and breast (MDA-MB 231) (IC50 11.0 and 18.7 µg/mL). In vivo acute toxicity study was conducted using low (10 mg/kg) and high (1000 mg/kg) doses of the synthesized TiO2 NPs in albino male rats. Biochemistry and histopathology of the liver, kidney, and brain proved the safety of the synthesized TiO2 NPs at low dose while at high dose, there was TiO2 NPs deposit in different vital organs except the cerebral tissue.
Collapse
|
14
|
Akpinar E, Kutlu Z, Kose D, Aydin P, Tavaci T, Bayraktutan Z, Yuksel TN, Yildirim S, Eser G, Dincer B. Protective Effects of Idebenone against Sepsis Induced Acute Lung Damage. J INVEST SURG 2021; 35:560-568. [PMID: 33722148 DOI: 10.1080/08941939.2021.1898063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIMS Sepsis is an uncontrolled systemic infection, withcomplex pathophysiology that may result in acute lung organ damage and cause multiple organ failure. Although much research has been conducted to illuminate sepsis's complex pathophysiology, sepsis treatment protocols are limited, and sepsis remains an important cause of mortality andmorbidity in intensive care units.Various studies have shown that idebenone (IDE) possesses strong antioxidant properties, which inhibit lipid peroxidation and protect cells from oxidative damage. The present study aimed to evaluate the protective effects of IDE against lung injury in a cecal ligation and puncture (CLP)-induced sepsis rat model. METHODS Male albino Wistar rats were used. The animals were divided into a healthy control (no treatment), CLP, IDE control (200 mg/kg), and CLP + IDE subgroups (50 mg/kg, 100 mg/kg, and 200 mg/kg), with nine rats in each group.IDE was administered 1 h after CLP induction.To evaluate the protective effects of IDE, lung tissues were collected 16 h after sepsis for biochemical, immunohistochemical staining, and histopathological examination. RESULTS IDE significantly ameliorated sepsis-induced disturbances in oxidative stress-related factors, with its effects increasing in accordance with the dose.IDE also abolished histopathological changes in lung tissues associated with CLP.Furthermore, interleukin 1 beta (IL-1β)and tumor necrosis factor-alpha (TNF-α) immunopositivity markedly decreased in the septic rats following IDE treatment. CONCLUSIONS IDE largely mitigated the inflammatory response in sepsis-induced lung injury by decreasing free radicals and preventing lipid peroxidation. The results suggest that IDE may represent a potential novel therapeutic drug for sepsis treatment.
Collapse
Affiliation(s)
- Erol Akpinar
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Zerrin Kutlu
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Duygu Kose
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.,Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Pelin Aydin
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.,Department of Anesthesiology and Reanimation, Educational and Research Hospital, Erzurum, Turkey
| | - Taha Tavaci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Zafer Bayraktutan
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Tugba Nurcan Yuksel
- Department of Pharmacology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Gizem Eser
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| |
Collapse
|
15
|
Shastri S, Shinde T, Perera AP, Gueven N, Eri R. Idebenone Protects against Spontaneous Chronic Murine Colitis by Alleviating Endoplasmic Reticulum Stress and Inflammatory Response. Biomedicines 2020; 8:biomedicines8100384. [PMID: 32998266 PMCID: PMC7601570 DOI: 10.3390/biomedicines8100384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
Endoplasmic reticulum (ER) stress in intestinal secretory goblet cells has been linked to the development of ulcerative colitis (UC). Emerging evidence suggests that the short chain quinone drug idebenone displays anti-inflammatory activity in addition to its potent antioxidant and mitochondrial electron donor properties. This study evaluated the impact of idebenone in Winnie mice, that are characterized by spontaneous chronic intestinal inflammation and ER stress caused by a missense mutation in the mucin MUC2 gene. Idebenone (200 mg/kg) was orally administered daily to 5-6 weeks old Winnie mice over a period of 21 days. Idebenone treatment substantially improved body weight gain, disease activity index (DAI), colon length and histopathology score. Immunohistochemistry revealed increased expression of MUC2 protein in goblet cells, consistent with increased MUC2 mRNA levels. Furthermore, idebenone significantly reduced the expression of the ER stress markers C/EBP homologous protein (CHOP), activating transcription factor 6 (ATF6) and X-box binding protein-1 (XBP-1) at both mRNA and protein levels. Idebenone also effectively reduced pro-inflammatory cytokine levels in colonic explants. Taken together, these results indicate that idebenone could represent a potential therapeutic approach against human UC by its strong anti-inflammatory activity and its ability to reduce markers of ER stress.
Collapse
Affiliation(s)
- Sonia Shastri
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Tasmania, Australia; (T.S.); (A.P.P.)
- Correspondence: (S.S.); (R.E.); Tel.: +61-4-4992-4236 (S.S.); +61-3-6226-5017 (R.E.)
| | - Tanvi Shinde
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Tasmania, Australia; (T.S.); (A.P.P.)
- Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston 7250, Tasmania, Australia
| | - Agampodi Promoda Perera
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Tasmania, Australia; (T.S.); (A.P.P.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia;
| | - Rajaraman Eri
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Tasmania, Australia; (T.S.); (A.P.P.)
- Correspondence: (S.S.); (R.E.); Tel.: +61-4-4992-4236 (S.S.); +61-3-6226-5017 (R.E.)
| |
Collapse
|
16
|
Brand W, Peters RJB, Braakhuis HM, Maślankiewicz L, Oomen AG. Possible effects of titanium dioxide particles on human liver, intestinal tissue, spleen and kidney after oral exposure. Nanotoxicology 2020; 14:985-1007. [PMID: 32619159 DOI: 10.1080/17435390.2020.1778809] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies reported adverse liver effects and intestinal tumor formation after oral exposure to titanium dioxide (TiO2). Other oral toxicological studies, however, observed no effects on liver and intestine, despite prolonged exposure and/or high doses. In the present assessment, we aimed to better understand whether TiO2 can induce such effects at conditions relevant for humans. Therefore, we focused not only on the clinical and histopathological observations, but also used Adverse Outcome Pathways (AOPs) to consider earlier steps (Key Events). In addition, aiming for a more accurate risk assessment, the available information on organ concentrations of Ti (resulting from exposure to TiO2) from oral animal studies was compared to recently reported concentrations found in human postmortem organs. The overview obtained with the AOP approach indicates that TiO2 can trigger a number of key events in liver and intestine: Reactive Oxygen Species (ROS) generation, induction of oxidative stress and inflammation. TiO2 seems to be able to exert these early effects in animal studies at Ti liver concentrations that are only a factor of 30 and 6 times higher than the median and highest liver concentration found in humans, respectively. This confirms earlier conclusions that adverse effects on the liver in humans as a result of (oral) TiO2 exposure cannot be excluded. Data for comparison with Ti levels in human intestinal tissue, spleen and kidney with effect concentrations were too limited to draw firm conclusions. The Ti levels, though, are similar or higher than those found in liver, suggesting these tissues may be relevant too.
Collapse
Affiliation(s)
- Walter Brand
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ruud J B Peters
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Hedwig M Braakhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Lidka Maślankiewicz
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Agnes G Oomen
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
17
|
An H, Ling C, Xu M, Hu M, Wang H, Liu J, Song G, Liu J. Oxidative Damage Induced by Nano-titanium Dioxide in Rats and Mice: a Systematic Review and Meta-analysis. Biol Trace Elem Res 2020; 194:184-202. [PMID: 31342340 DOI: 10.1007/s12011-019-01761-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/26/2019] [Indexed: 12/15/2022]
Abstract
Nano-titanium dioxide is a kind of widely used nanomaterial that exhibits various adverse outcomes. However, the role of oxidative stress in this regard remains controversial. This study aimed to evaluate whether oxidative stress is one of the toxicity mechanisms induced by nano-titanium dioxide in rats and mice model. In this meta-analysis, 64 relevant publications were included through detailed database search. The pooled results showed that nano-titanium dioxide exposure could promote the expression of oxidants, such as malonaldehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), superoxide anion (O2-), and hydrogen peroxide (H2O2). Meanwhile, the levels of antioxidant-related enzymes and molecules, such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT), were reduced. Subgroup analysis revealed that different intervention routes, exposure periods, exposure dosages, and sample sources could affect the oxidative stress when exposed to nano-titanium dioxide. It was worth noting that the levels of MDA, 8-OHdG, and GSH significantly increased (P < 0.05) when the particle size of nano-titanium dioxide was < 10 nm, whereas H2O2, SOD, and GPx showed the highest effect at 10-40 nm. This study indicated that nano-titanium dioxide could cause oxidative damage by affecting the levels of enzymes and molecules involved in oxidative stress in rats and mice. And these results could provide a reference for studies of the toxicity mechanism induced by nano-titanium dioxide in the future.
Collapse
Affiliation(s)
- Hongmei An
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Chunmei Ling
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Mengchuan Xu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Mingjuan Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Haixia Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jiaqing Liu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Guangling Song
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jiaming Liu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
18
|
Idebenone Protects against Acute Murine Colitis via Antioxidant and Anti-Inflammatory Mechanisms. Int J Mol Sci 2020; 21:ijms21020484. [PMID: 31940911 PMCID: PMC7013829 DOI: 10.3390/ijms21020484] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is a key player of the inflammatory cascade responsible for the initiation of ulcerative colitis (UC). Although the short chain quinone idebenone is considered a potent antioxidant and a mitochondrial electron donor, emerging evidence suggests that idebenone also displays anti-inflammatory activity. This study evaluated the impact of idebenone in the widely used dextran sodium sulphate (DSS)-induced mouse model of acute colitis. Acute colitis was induced in C57BL/6J mice via continuous exposure to 2.5% DSS over 7 days. Idebenone was co-administered orally at a dose of 200 mg/kg body weight. Idebenone significantly prevented body weight loss and improved the disease activity index (DAI), colon length, and histopathological score. Consistent with its reported antioxidant function, idebenone significantly reduced the colonic levels of malondialdehyde (MDA) and nitric oxide (NO), and increased the expression of the redox factor NAD(P)H (nicotinamide adenine dinucleotide phosphate) dehydrogenase quinone-1 (NQO-1) in DSS-exposed mice. Immunohistochemistry revealed a significantly increased expression of tight junction proteins, which protect and maintain paracellular intestinal permeability. In support of an anti-inflammatory activity, idebenone significantly attenuated the elevated levels of pro-inflammatory cytokines in colon tissue. These results suggest that idebenone could represent a promising therapeutic strategy to interfere with disease pathology in UC by simultaneously inducing antioxidative and anti-inflammatory pathways.
Collapse
|
19
|
Abdou KH, Moselhy WA, Mohamed HM, El-Nahass ES, Khalifa AG. Moringa oleifera Leaves Extract Protects Titanium Dioxide Nanoparticles-Induced Nephrotoxicity via Nrf2/HO-1 Signaling and Amelioration of Oxidative Stress. Biol Trace Elem Res 2019; 187:181-191. [PMID: 29728821 DOI: 10.1007/s12011-018-1366-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/25/2018] [Indexed: 02/02/2023]
Abstract
The efficacy of Moringa oleifera leaf extract (MO) in alleviating nephrotoxicity induced by titanium dioxide nanoparticles (TiO2 NPs) was studied. Rats were divided into four groups. Group I received distilled water. Group II received TiO2NPs. Group III received both TiO2NPs suspension beside MO. Group IV received MO only. Kidney KIM-1, NF-кB TNF-α, and HSP-70 expression were significantly upregulated while both Nrf2 and HO-1were significantly downregulated in TiO2NPs-treated rats. MO decreases expression of KIM-1, NF-кB, TNF-α, and HSP-70. In addition, MO has markedly upregulated the expression of Nrf2 and HO-1. In conclusion, MO can inhibit nephrotoxicity by suppressing oxidative stress and inflammation. These effects are suggested to be mediated by activating Nrf2/HO-1.The biochemical analysis and histopathological finding reinforced these results. These data support the antioxidant properties' nutraceutical role of MO against TiO2NPs-induced toxicity.
Collapse
Affiliation(s)
- K H Abdou
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Walaa A Moselhy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Hanaa M Mohamed
- Genetic & Molecular Biology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahlam G Khalifa
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
20
|
Dorier M, Béal D, Marie-Desvergne C, Dubosson M, Barreau F, Houdeau E, Herlin-Boime N, Carriere M. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress. Nanotoxicology 2017; 11:751-761. [PMID: 28671030 DOI: 10.1080/17435390.2017.1349203] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The whitening and opacifying properties of titanium dioxide (TiO2) are commonly exploited when it is used as a food additive (E171). However, the safety of this additive can be questioned as TiO2 nanoparticles (TiO2-NPs) have been classed at potentially toxic. This study aimed to shed some light on the mechanisms behind the potential toxicity of E171 on epithelial intestinal cells, using two in vitro models: (i) a monoculture of differentiated Caco-2 cells and (ii) a coculture of Caco-2 with HT29-MTX mucus-secreting cells. Cells were exposed to E171 and two different types of TiO2-NPs, either acutely (6-48 h) or repeatedly (three times a week for 3 weeks). Our results confirm that E171 damaged these cells, and that the main mechanism of toxicity was oxidation effects. Responses of the two models to E171 were similar, with a moderate, but significant, accumulation of reactive oxygen species, and concomitant downregulation of the expression of the antioxidant enzymes catalase, superoxide dismutase and glutathione reductase. Oxidative damage to DNA was detected in exposed cells, proving that E171 effectively induces oxidative stress; however, no endoplasmic reticulum stress was detected. E171 effects were less intense after acute exposure compared to repeated exposure, which correlated with higher Ti accumulation. The effects were also more intense in cells exposed to E171 than in cells exposed to TiO2-NPs. Taken together, these data show that E171 induces only moderate toxicity in epithelial intestinal cells, via oxidation.
Collapse
Affiliation(s)
- Marie Dorier
- a Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST) , INAC, SyMMES, University of Grenoble Alpes , Grenoble , France.,b Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST) , CEA, INAC, LCIB , Grenoble , France
| | - David Béal
- a Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST) , INAC, SyMMES, University of Grenoble Alpes , Grenoble , France.,b Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST) , CEA, INAC, LCIB , Grenoble , France
| | - Caroline Marie-Desvergne
- c Nanosafety Platform, Medical Biology Laboratory (LBM) , CEA, University of Grenoble Alpes , Grenoble , France
| | - Muriel Dubosson
- c Nanosafety Platform, Medical Biology Laboratory (LBM) , CEA, University of Grenoble Alpes , Grenoble , France
| | - Frédérick Barreau
- d INSERM, UMR1220 , Institut de Recherche en Santé Digestive , Toulouse , France
| | - Eric Houdeau
- e Toxalim (Research Center in Food Toxicology), Department Intestinal Development , Xeniobiotics and ImmunoToxicology, Université de Toulouse, INRA, ENVT, INP-Purpan , Toulouse , France.,f UPS, UMR1331, Toxalim , Université de Toulouse , Toulouse , France
| | | | - Marie Carriere
- a Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST) , INAC, SyMMES, University of Grenoble Alpes , Grenoble , France.,b Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST) , CEA, INAC, LCIB , Grenoble , France
| |
Collapse
|
21
|
Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5716204. [PMID: 28691026 PMCID: PMC5485304 DOI: 10.1155/2017/5716204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/04/2017] [Indexed: 11/17/2022]
Abstract
Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.
Collapse
|
22
|
Hong F, Yu X, Wu N, Zhang YQ. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol Res (Camb) 2017; 6:115-133. [PMID: 30090482 PMCID: PMC6061230 DOI: 10.1039/c6tx00338a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/09/2016] [Indexed: 01/29/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are inorganic materials with a diameter of 1-100 nm. In recent years, TiO2 NPs have been used in a wide range of products, including food, toothpaste, cosmetics, medicine, paints and printing materials, due to their unique properties (high stability, anti-corrosion, and efficient photocatalysis). Following exposure via various routes including inhalation, injection, dermal deposition and gastrointestinal tract absorption, NPs can be found in various organs in the body potentially inducing toxic effects. Thus more attention to the safety of TiO2 NPs is necessary. Therefore, the present review aims to provide a comprehensive evaluation of the toxic effects induced by TiO2 NPs in the lung, liver, stomach, intestine, kidney, spleen, brain, hippocampus, heart, blood vessels, ovary and testis of mice and rats in in vivo experiments, and evaluate their potential toxic mechanisms. The findings will provide an important reference for human risk evaluation and management following TiO2 NP exposure.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Xiaohong Yu
- School of Basic Medical and Biological Sciences , Soochow University , Suzhou 215123 , China .
| | - Nan Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Yu-Qing Zhang
- School of Basic Medical and Biological Sciences , Soochow University , Suzhou 215123 , China .
| |
Collapse
|
23
|
Guerrero-Beltrán CE, Bernal-Ramírez J, Lozano O, Oropeza-Almazán Y, Castillo EC, Garza JR, García N, Vela J, García-García A, Ortega E, Torre-Amione G, Ornelas-Soto N, García-Rivas G. Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca 2+ handling in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 312:H645-H661. [PMID: 28130337 DOI: 10.1152/ajpheart.00564.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022]
Abstract
Recent evidence has shown that nanoparticles that have been used to improve or create new functional properties for common products may pose potential risks to human health. Silicon dioxide (SiO2) has emerged as a promising therapy vector for the heart. However, its potential toxicity and mechanisms of damage remain poorly understood. This study provides the first exploration of SiO2-induced toxicity in cultured cardiomyocytes exposed to 7- or 670-nm SiO2 particles. We evaluated the mechanism of cell death in isolated adult cardiomyocytes exposed to 24-h incubation. The SiO2 cell membrane association and internalization were analyzed. SiO2 showed a dose-dependent cytotoxic effect with a half-maximal inhibitory concentration for the 7 nm (99.5 ± 12.4 µg/ml) and 670 nm (>1,500 µg/ml) particles, which indicates size-dependent toxicity. We evaluated cardiomyocyte shortening and intracellular Ca2+ handling, which showed impaired contractility and intracellular Ca2+ transient amplitude during β-adrenergic stimulation in SiO2 treatment. The time to 50% Ca2+ decay increased 39%, and the Ca2+ spark frequency and amplitude decreased by 35 and 21%, respectively, which suggest a reduction in sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Moreover, SiO2 treatment depolarized the mitochondrial membrane potential and decreased ATP production by 55%. Notable glutathione depletion and H2O2 generation were also observed. These data indicate that SiO2 increases oxidative stress, which leads to mitochondrial dysfunction and low energy status; these underlie reduced SERCA activity, shortened Ca2+ release, and reduced cell shortening. This mechanism of SiO2 cardiotoxicity potentially plays an important role in the pathophysiology mechanism of heart failure, arrhythmias, and sudden death.NEW & NOTEWORTHY Silica particles are used as novel nanotechnology-based vehicles for diagnostics and therapeutics for the heart. However, their potential hazardous effects remain unknown. Here, the cardiotoxicity of silica nanoparticles in rat myocytes has been described for the first time, showing an impairment of mitochondrial function that interfered directly with Ca2+ handling.
Collapse
Affiliation(s)
- Carlos Enrique Guerrero-Beltrán
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México.,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnológico de Monterrey, San Pedro Garza-García, México
| | - Judith Bernal-Ramírez
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México
| | - Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México.,Namur Nanosafety Centre, Namur Research Institute for Life Sciences, Research Centre for the Physics of Matter and Radiation, University of Namur, Namur, Belgium
| | - Yuriana Oropeza-Almazán
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México
| | - Elena Cristina Castillo
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México
| | - Jesús Roberto Garza
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México
| | - Noemí García
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México.,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnológico de Monterrey, San Pedro Garza-García, México
| | - Jorge Vela
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México
| | - Alejandra García-García
- Centro de Investigación en Materiales Avanzados S.C. Unidad Monterrey, Apodaca Nuevo León, México
| | - Eduardo Ortega
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas
| | - Guillermo Torre-Amione
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México.,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnológico de Monterrey, San Pedro Garza-García, México.,Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, Texas; and
| | - Nancy Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Centro del Agua, Tecnológico de Monterrey, Monterrey, México
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México; .,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnológico de Monterrey, San Pedro Garza-García, México
| |
Collapse
|
24
|
Cao X, Ma C, Gao Z, Zheng J, He L, McClements DJ, Xiao H. Characterization of the Interactions between Titanium Dioxide Nanoparticles and Polymethoxyflavones Using Surface-Enhanced Raman Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9436-9441. [PMID: 27960290 DOI: 10.1021/acs.jafc.6b03906] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanosized titanium dioxide (TiO2) particles are commonly present in TiO2 food additives (E171) and have been associated with potential adverse effects on health. However, little knowledge is available regarding the interactions between TiO2 nanoparticles (NPs) and other food components, such as flavonoids. In this study, we aim to study the molecular interactions between TiO2 anatase NPs and three structurally closely related polymethoxyflavones (PMFs, flavonoids found in citrus fruits), namely, 3',4'-didemethylnobiletin (DDN), 5-demethylnobiletin (5DN), and 5,3',4'-tridemethylnobiletin (TDN), using ultraviolet-visible (UV-vis) spectrometry and surface-enhanced Raman spectroscopy (SERS). In the UV-vis absorption spectra, bathochromic effects were observed after DDN and TDN conjugated with TiO2 NPs. The results from SERS analysis clearly demonstrated that DDN and TDN could bind TiO2 NPs with the functional groups 3'-OH and 4'-OH on ring B and formed charge-transfer complexes. However, 5DN with functional groups C═O on ring C and 5-OH on ring A could not bind TiO2 NPs. Knowledge on the molecular interactions between TiO2 NPs and food components, such as flavonoids, will facilitate the understanding of the fate of TiO2 NPs during food processing and in the gastrointestinal tract after oral consumption.
Collapse
Affiliation(s)
- Xiaoqiong Cao
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Changchu Ma
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Zili Gao
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Jinkai Zheng
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
| | - Lili He
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Qi L, Cao C, Hu L, Chen S, Zhao X, Sun C. Metabonomic analysis of the protective effect of quercetin on the toxicity induced by mixture of organophosphate pesticides in rat urine. Hum Exp Toxicol 2016; 36:494-507. [DOI: 10.1177/0960327116652460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study aims to investigate the protective effect of quercetin against the joint toxic action induced by the mixture of four organophosphate pesticides (mixture-OPs) (dimethoate, acephate, dichlorvos, and phorate) at their corresponding no observed adverse effect level (NOAEL) using metabonomics. Rats were randomly divided into control, quercetin-treated, mixture-OPs-treated, and quercetin plus mixture-OPs-treated groups. Mixture-OPs and quercetin were given to the rats daily through drinking water and intragastric administration, respectively, for 90 days. The metabonomic profiles of rat urine were analyzed using ultra-performance liquid chromatography–mass spectrometry (UPLC/MS). The 14 metabolites significantly changed in the treatment groups compared with the control group, including the biomarkers of OPs exposure (dimethylphosphate, dimethyldithiophosphate, diethylphosphate) and the metabolites of quercetin (quercetin and isorhamnetina). The intensities of gentisic acid, creatinine, suberic acid, hippuric acid, uric acid, and citric acid significantly decreased, whereas the intensities of 7-methylguanine, estrone sulfate, and cholic acid significantly increased, in the mixture-OPs-treated group compared with the control group ( p < 0.01). The variation tendency of the aforementioned metabolites was significantly ameliorated in the high-dose quercetin (50 mg/(kg bw day)) plus mixture-OPs-treated group compared with the mixture-OPs-treated group ( p < 0.05). However, the intensities of these metabolites in the high-dose quercetin plus mixture-OPs-treated group were still significantly different from those of the control group ( p < 0.05). Results indicated that high dose of quercetin elicits a partial protective effect on the toxicity induced by mixture-OPs, including fatty acid and energy metabolism, antioxidant defense system, DNA damage, and liver and kidney function.
Collapse
Affiliation(s)
- L Qi
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - C Cao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - L Hu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - S Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - X Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - C Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
26
|
Iavicoli I, Fontana L, Nordberg G. The effects of nanoparticles on the renal system. Crit Rev Toxicol 2016; 46:490-560. [DOI: 10.1080/10408444.2016.1181047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luca Fontana
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone (Rome), Italy
| | - Gunnar Nordberg
- Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| |
Collapse
|
27
|
Fan L, He C, Jiang L, Bi Y, Dong Y, Jia Y. Brief analysis of causes of sensitive skin and advances in evaluation of anti-allergic activity of cosmetic products. Int J Cosmet Sci 2015; 38:120-7. [DOI: 10.1111/ics.12283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Affiliation(s)
- L. Fan
- Beijing Key Laboratory of Plant Resources Research and Development; School of Science; Beijing Technology and Business University; Beijing 100048 China
| | - C. He
- Beijing Key Laboratory of Plant Resources Research and Development; School of Science; Beijing Technology and Business University; Beijing 100048 China
| | - L. Jiang
- Proya Cosmetic Corporation Limited; Hangzhou 310012 China
| | - Y. Bi
- Proya Cosmetic Corporation Limited; Hangzhou 310012 China
| | - Y. Dong
- Beijing Key Laboratory of Plant Resources Research and Development; School of Science; Beijing Technology and Business University; Beijing 100048 China
| | - Y. Jia
- Beijing Key Laboratory of Plant Resources Research and Development; School of Science; Beijing Technology and Business University; Beijing 100048 China
| |
Collapse
|
28
|
Arend N, Wertheimer C, Laubichler P, Wolf A, Kampik A, Kernt M. Idebenone Prevents Oxidative Stress, Cell Death and Senescence of Retinal Pigment Epithelium Cells by Stabilizing BAX/Bcl-2 Ratio. Ophthalmologica 2015; 234:73-82. [PMID: 26044821 DOI: 10.1159/000381726] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/13/2015] [Indexed: 11/19/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD) is one of the leading causes of blindness. Degeneration of the retinal pigment epithelium (RPE) is pathognomonic for the disease, and oxidative stress plays an important role in the pathogenesis of this disease. This study investigates potential antiapoptotic and cytoprotective effects of idebenone on cultured RPE cells (ARPE-19) under conditions of oxidative stress. METHODS ARPE-19 cells were treated with 1-100 µ<smlcap>M</smlcap> idebenone. Cell viability (MTT assay), induction of intracellular reactive oxygen species (ROS) and histone-associated DNA fragments in mono- and oligonucleosomes, expression of proapoptotic BAX and antiapoptotic Bcl-2 as well as senescence-associated β-galactosidase (SA-β-Gal) activity were investigated under exposure to hydrogen peroxide (H2O2). RESULTS Idebenone concentrations from 1 to 20 µ<smlcap>M</smlcap> showed no toxic effects on ARPE-19 cells. When cells were treated with H2O2, pretreatment with 5, 7.5, 10, and 20 µ<smlcap>M</smlcap> idebenone led to a significant increase in the viability of ARPE-19 cells. In addition, idebenone pretreatment significantly attenuated the induction of SA-β-Gal and intracellular ROS as well as the amount of histone-associated DNA fragments after treatment with H2O2. The reduction of proapoptotic BAX and the elevation of antiapoptotic Bcl-2 under idebenone show that this process is rather mediated by inhibiting H2O2-induced apoptosis, not necrosis. CONCLUSION In this study, idebenone increased survival of ARPE-19 cells and reduced cell death, senescence, and oxidative stress by stabilizing the BAX/Bcl-2 ratio.
Collapse
Affiliation(s)
- Nicole Arend
- Department of Ophthalmology, Ludwig Maximilian University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Quercetin protects against acetaminophen-induced hepatorenal toxicity by reducing reactive oxygen and nitrogen species. PATHOPHYSIOLOGY 2015; 22:49-55. [DOI: 10.1016/j.pathophys.2014.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 11/12/2014] [Accepted: 12/03/2014] [Indexed: 01/18/2023] Open
|
30
|
González-Esquivel AE, Charles-Niño CL, Pacheco-Moisés FP, Ortiz GG, Jaramillo-Juárez F, Rincón-Sánchez AR. Beneficial effects of quercetin on oxidative stress in liver and kidney induced by titanium dioxide (TiO2) nanoparticles in rats. Toxicol Mech Methods 2015; 25:166-75. [DOI: 10.3109/15376516.2015.1006491] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Li X, Li X, Chi X, Luo G, Yuan D, Sun G, Hei Z. Ulinastatin ameliorates acute kidney injury following liver transplantation in rats and humans. Exp Ther Med 2014; 9:411-416. [PMID: 25574207 PMCID: PMC4280962 DOI: 10.3892/etm.2014.2088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 11/05/2014] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) is a common complication following orthotopic liver transplantation (OLT) that evidently affects prognosis. However, no effective treatment exists for AKI. The aim of the present study was to elucidate whether ulinastatin application during OLT in humans can reduce kidney damage and improve renal function. In addition, the underlying mechanisms of ulinastatin were investigated on a rat autologous OLT (AOLT) model. In total, 60 patients undergoing an OLT were randomly selected to receive ulinastatin (U group; n=30) or saline (C group; n=30) during the OLT surgery. The patient demographics, AKI incidence rate, recovery indicators and renal injury indexes were measured during the perioperative period. In addition to the clinical trials, 40 rats were subjected to an AOLT and were divided into the control (C-R), sham-operation and ulinastatin treatment groups. Pathological renal damage, biomarkers of inflammation and oxidative stress were measured to investigate the effects and possible mechanisms of ulinastatin on AKI. In the clinical trials, ulinastatin application was shown to attenuate the incidence of AKI following OLT (P<0.05) and reduce the serum levels of cystatin C and urinary β2 microglobulin within 24 h of the OLT (P<0.05). Furthermore, ulinastatin was found to significantly improve the recovery of patients by reducing the time spent in the intensive care unit (P<0.01 vs. C group), the ventilation time and the hemodialysis rates (P<0.05 vs. C group). In the rat AOLT model, ulinastatin application was also shown to relieve renal pathological damage by reducing the serum cystatin C and creatinine levels. Notably, the levels of tumor necrosis factor-α, interleukin-6, hydrogen peroxide and reactive oxygen species were evidently reduced, while the level of superoxide dismutase was increased in the ulinastatin groups (P<0.05, vs. C-R group). In conclusion, ulinastatin application was demonstrated to protect against AKI following OLT by inhibiting inflammation and oxidation.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiang Li
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xinjin Chi
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Gangjian Luo
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dongdong Yuan
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Guoliang Sun
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ziqing Hei
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
32
|
Zhu W, Xu YF, Feng Y, Peng B, Che JP, Liu M, Zheng JH. Prophylactic effects of quercetin and hyperoside in a calcium oxalate stone forming rat model. Urolithiasis 2014; 42:519-26. [PMID: 25085199 DOI: 10.1007/s00240-014-0695-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/20/2014] [Indexed: 12/19/2022]
Abstract
Quercetin and hyperoside (QH) are the two main constituents of the total flavone glycosides of Flos Abelmoschus manihot, which has been prescribed for treating chronic kidney disease for decades. This study aimed to investigate the effect of QH on calcium oxalate (CaOx) formation in ethylene glycol (EG)-fed rats. Rats were divided into three groups: an untreated stone-forming group, a QH-treated stone-forming group (20 mg/kg/day) and a potassium citrate-treated stone-forming group (potassium citrate was a worldwide-recognized calculi-prophylactic medicine). Ethylene glycol (0.5 %) was administered to the rats during the last week, and vitamin D3 was force-fed to induce hyperoxaluria and kidney calcium oxalate crystal deposition. 24 h urine samples were collected before and after inducing crystal deposits. Rats were killed and both kidneys were harvested after 3 weeks. Bisected kidneys were examined under a polarized light microscope for semi-quantification of the crystal-formation. The renal tissue superoxide dismutase and catalase levels were measured by Western blot. QH and potassium citrate have the ability to alkalinize urine. The number of crystal deposits decreased significantly in the QH-treated stone-forming group as compared to the other groups. Superoxide dismutase and catalase levels also increased significantly in the QH-treated stone-forming group, as compared with the untreated stone-forming group. QH administration has an inhibitory effect on the deposition of CaOx crystal in EG-fed rats and may be effective for preventing stone-forming disease.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Urological Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China,
| | | | | | | | | | | | | |
Collapse
|