1
|
Wu H, Dong L, Jin S, Zhao Y, Zhu L. Innovative gene delivery systems for retinal disease therapy. Neural Regen Res 2026; 21:542-552. [PMID: 39665817 DOI: 10.4103/nrr.nrr-d-24-00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
The human retina, a complex and highly specialized structure, includes multiple cell types that work synergistically to generate and transmit visual signals. However, genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness. Treatment options for retinal diseases are limited, and there is an urgent need for innovative therapeutic strategies. Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells. Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration, potentially restoring vision. This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases: viral and non-viral systems. Viral vectors, including lentiviruses and adeno-associated viruses, exploit the innate ability of viruses to infiltrate cells, which is followed by the introduction of therapeutic genetic material into target cells for gene correction. Lentiviruses can accommodate exogenous genes up to 8 kb in length, but their mechanism of integration into the host genome presents insertion mutation risks. Conversely, adeno-associated viruses are safer, as they exist as episomes in the nucleus, yet their limited packaging capacity constrains their application to a narrower spectrum of diseases, which necessitates the exploration of alternative delivery methods. In parallel, progress has also occurred in the development of novel non-viral delivery systems, particularly those based on liposomal technology. Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors. These innovative systems include solid lipid nanoparticles, polymer nanoparticles, dendrimers, polymeric micelles, and polymeric nanoparticles. Compared with their viral counterparts, non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids, mRNA, or protein molecules into cells. This bypasses the need for DNA transcription and processing, which significantly enhances therapeutic efficiency. Nevertheless, the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo . This review explores the various delivery systems for retinal therapies and retinal nerve regeneration, and details the characteristics, advantages, limitations, and clinical applications of each vector type. By systematically outlining these factors, our goal is to guide the selection of the optimal delivery tool for a specific retinal disease, which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Hongguang Wu
- Department of Ophthalmology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
2
|
Hassan ZR, El-Sayed S, Zekry KM, Ahmed SG, Abd-Elhamid AH, Salama DEA, Taha AK, Mahmoud NA, Mohammed SF, Amin MM, Mohamed RE, Eraque AMS, Mohamed SA, Abdelgalil RM, Atta SA, Fahmy NT, Badr MS. Impact of atorvastatin and mesenchymal stem cells combined with ivermectin on murine trichinellosis. Parasitol Res 2023; 123:57. [PMID: 38105357 PMCID: PMC10725854 DOI: 10.1007/s00436-023-08077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Trichinellosis is one of the global food-borne parasitic diseases that can cause severe tissue damage. The traditionally used drugs for the treatment of trichinellosis have limited efficacy against the encysted larvae in the muscular phase of the disease. Therefore, this study aimed to evaluate the role of atorvastatin and mesenchymal stem cells combined with ivermectin against different phases of Trichinella in experimentally infected mice. A total of 120 male Swiss albino mice were divided into two major groups (n = 60 of each), intestinal and muscular phases. Then, each group was subdivided into 10 subgroups (n = 6); non-infected control, infected non-treated control, infected ivermectin treated, infected atorvastatin treated, infected mesenchymal stem cells treated, infected combined ivermectin and atorvastatin treated, infected combined mesenchymal stem cells and ivermectin treated, infected combined mesenchymal stem cells and atorvastatin treated, infected combined mesenchymal stem cells and a full dose of (ivermectin and atorvastatin) treated, and infected combined mesenchymal stem cells and half dose of (ivermectin and atorvastatin) treated. Mice were sacrificed at days 5 and 35 post-infection for the intestinal and muscular phases, respectively. The assessment was performed through many parameters, including counting the adult intestinal worms and muscular encysted larvae, besides histopathological examination of the underlying tissues. Moreover, a biochemical assay for the inflammatory and oxidative stress marker levels was conducted. In addition, levels of immunohistochemical CD31 and VEGF gene expression as markers of angiogenesis during the muscular phase were investigated. The combined mesenchymal stem cells and atorvastatin added to ivermectin showed the highest significant reduction in adult worms and encysted larvae counts, the most noticeable improvement of the histopathological changes, the most potent anti-inflammatory (lowest level of IL-17) and anti-angiogenic (lowest expression of CD31 and VEGF) activities, and also revealed the highly effective one to relieve the oxidative stress (lowest level of SOD, GSH, and lipid peroxidase enzymes). These observed outcomes indicate that adding mesenchymal stem cells and atorvastatin to ivermectin synergistically potentiates its therapeutic efficacy and provides a promising candidate against trichinellosis.
Collapse
Affiliation(s)
- Zeinab R Hassan
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt.
| | - Samar El-Sayed
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Kareman M Zekry
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Samah Gouda Ahmed
- Department of Histology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Asmaa Hassan Abd-Elhamid
- Department of Histology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Doaa E A Salama
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
- Department of Pathology, School of Medicine, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt
| | - Azza Kamal Taha
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Nihal A Mahmoud
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shaymaa Fathy Mohammed
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Mona M Amin
- Department of Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Rasha Elsayed Mohamed
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Ayat M S Eraque
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shimaa A Mohamed
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Ranya M Abdelgalil
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shimaa Attia Atta
- Department of Immunology, Theodor Bilharz Research Institute, 36VF+MJ2, Warraq Al Arab, El Warraq, Giza Governorate, 3863130, Egypt
| | - Nermeen Talaat Fahmy
- Genomics, Egypt Center for Research and Regenerative Medicine (ECRRM), 3 Emtedad Ramses, Al Abbaseyah Al Gharbeyah, El Weili, Cairo Governorate, 4435102, Egypt
| | - Mohamed S Badr
- Molecular Biology and Genetic-Bioinformatics Nano-Robot Diagnostics, Medical Research Centre, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt
| |
Collapse
|
3
|
Transplanted embryonic retinal stem cells have the potential to repair the injured retina in mice. BMC Ophthalmol 2021; 21:26. [PMID: 33422026 PMCID: PMC7797095 DOI: 10.1186/s12886-020-01795-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/26/2020] [Indexed: 01/25/2023] Open
Abstract
Background Stem cell transplantation has been reported as one of the promising strategies to treat retinal degenerative diseases. But, the application and the role of retina stem cells (RSCs) in the treatment of patients with retinal degenerative diseases have not been fully revealed. This study aimed to investigate the potential role of transplantation of the embryo-derived RSCs into the vitreous cavity in repairing the damaged retina in mice. Methods RSCs were isolated from Kunming mice E17 embryonic retina and ciliary body tissues, and labeled with 5-bromo-2’-deoxyuridin (BrdU). Retinal optic nerve crush injury was induced in left eyes in male Kunming mice by ring clamping the optic nerve. The 6th -generation of BrdU-labeled RSCs were transplanted into the damaged retina by the intravitreal injection, and saline injected eyes were used as the control. Hematoxylin and eosin histological staining, and BrdU, Nestin and Pax6 immunostaining were performed. Electroretinogram (ERG) was used for assessing the electrical activity of the retina. Results Embryo-derived RSCs were identified by the positive stains of Pax6 and Nestin. BrdU incorporation was detected in the majority of RSCs. The damaged retina showed cellular nuclear disintegration and fragmentation in the retinal tissue which progressed over the periods of clamping time, and decreased amplitudes of a and b waves in ERG. In the damaged retina with RSCs transplantation, the positive staining for BrdU, Pax6 and Nestin were revealed on the retinal surface. Notably, RSCs migrated into the retinal ganglion cell layer and inner nuclear. Transplanted RSCs significantly elevated the amplitudes of a waves in retina injured eyes. Conclusions Embryonic RSCs have similar characteristics to neural stem cells. Transplantation of RSCs by intravitreal injection would be able to repair the damaged retina.
Collapse
|
4
|
Hasby Saad MA, Hasby EA. Trichinella Spiralis Impact on Mesenchymal Stem Cells: Immunohistochemical Study by Image Analyzer in Murine Model. Exp Mol Pathol 2017; 102:396-407. [PMID: 28456661 DOI: 10.1016/j.yexmp.2017.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/23/2017] [Accepted: 04/11/2017] [Indexed: 02/08/2023]
Abstract
This study aims to elucidate whether Trichinella spiralis infection or its crude antigen administration can stimulate recruitment of CD105+ve/CD45-ve cells that could represent MSCs in intestine and skeletal muscle of experimental BALB/c albino mice compared to healthy control mice. Studied mice were divided into: 20 healthy control, 20 with orally induced T. spiralis infection, 20 received adult worm crude antigen orally and 20 received larval crude antigen intramuscular. According to specific timing schedule, mice were sacrificed and tissue sections were examined for CD105 and CD45 immunohistochemical expression using image J image analyzing software, to compare different study groups. T. spiralis infection induced a significant increase in density of CD105+ve/CD45-ve cells that could represent MSCs in both intestinal and muscle sections, similarly the intramuscular injected larval crude antigen caused more infiltration of such cells in muscles compared to muscle sections from healthy control mice. However, no significant difference was noticed in intestinal sections after oral adult crude antigen administration compared to healthy control mice. So, injected T. spiralis crude antigen might be a successful stimulant to MSCs attraction and recruitment in tissues nearby injection site. This could be beneficial for cell regeneration and tissue repair in case of presence of a disease induced damage.
Collapse
Affiliation(s)
| | - Eiman A Hasby
- Pathology Department, Tanta Faculty of Medicine, Egypt.
| |
Collapse
|
5
|
Mishra A, Das B, Nath M, Iyer S, Kesarwani A, Bhattacharjee J, Arindkar S, Sahay P, Jain K, Sahu P, Sinha P, Velpandian T, Nagarajan P, Upadhyay P. A novel immunodeficient NOD.SCID -rd1 mouse model of retinitis pigmentosa to investigate potential therapeutics and pathogenesis of retinal degeneration. Biol Open 2017; 6:449-462. [PMID: 28258056 PMCID: PMC5399550 DOI: 10.1242/bio.021618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retinitis pigmentosa (RP) is a common retinal degeneration disease caused by mutation in any gene of the photo transduction cascade and results in photoreceptor dystrophy. Over decades, several animal models have been used to address the need for the elucidation of effective therapeutics and factors regulating retinal degeneration to prohibit or renew the damaged retina. However, controversies over the immune privilege of retina during cell transplantation and the role of immune modulation during RP still remain largely uninvestigated because of the lack of suitable animal models. Here, we have developed an immunocompromised mouse model, NOD.SCID-rd1, for retinitis pigmentosa (RP) by crossing CBA/J and NOD SCID mice and selecting homozygous double mutant animals for further breeding. Characterization of the newly developed RP model indicates a similar retinal degeneration pattern as CBA/J, with a decreased apoptosis rate and rhodopsin loss. It also exhibits loss of T cells, B cells and NK cells. The NOD.SCID-rd1 model is extremely useful for allogenic and xenogenic cell-based therapeutics, as indicated by the higher cell integration capacity post transplantation. We dissect the underlying role of the immune system in the progression of RP and the effect of immune deficiency on immune privilege of the eye using comparative qPCR studies of this model and the immune-competent RP model. Summary: NOD.SCID-rd1 is an immune compromised mouse model of retinitis pigmentosa (RP) to investigate cell-based therapeutics for retinal rescue during RP and to study immunological aspects of its pathogenesis and progression.
Collapse
Affiliation(s)
- Alaknanda Mishra
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Barun Das
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Madhu Nath
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Srikanth Iyer
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashwani Kesarwani
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jashdeep Bhattacharjee
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailendra Arindkar
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Preeti Sahay
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kshama Jain
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Parul Sahu
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakriti Sinha
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Perumal Nagarajan
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pramod Upadhyay
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
6
|
Aharony I, Michowiz S, Goldenberg-Cohen N. The promise of stem cell-based therapeutics in ophthalmology. Neural Regen Res 2017; 12:173-180. [PMID: 28400789 PMCID: PMC5361491 DOI: 10.4103/1673-5374.200793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The promising role of cellular therapies in the preservation and restoration of visual function has prompted intensive efforts to characterize embryonic, adult, and induced pluripotent stem cells for regenerative purposes. Three main approaches to the use of stem cells have been described: sustained drug delivery, immunomodulation, and differentiation into various ocular structures. Studies of the differentiation capacity of all three types of stem cells into epithelial, neural, glial and vascular phenotypes have reached proof-of-concept in culture, but the correction of vision is still in the early developmental stages, and the requirements for effective in vivo implementation are still unclear. We present an overview of some of the preclinical findings on stem-cell rescue and regeneration of the cornea and retina in acute injury and degenerative disorders.
Collapse
Affiliation(s)
- Israel Aharony
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shalom Michowiz
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurosurgery, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
7
|
Hirayama M, Kawakita T, Tsubota K, Shimmura S. Challenges and Strategies for Regenerating the Lacrimal Gland. Ocul Surf 2015; 14:135-43. [PMID: 26738799 DOI: 10.1016/j.jtos.2015.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 02/04/2023]
Abstract
The lacrimal gland produces the aqueous component of tears, including electrolytes, peptides, and glycoproteins necessary to maintain homeostasis and optical properties of the ocular surface. Stem cells that contribute to the homeostasis of the lacrimal gland are under extensive study. It is still unclear whether such stem cells are of mesenchymal or epithelial origin. It is also possible that a unique epithelial stem cell undergoes epithelial-mesenchymal transition and contributes to the mesenchyme. Developmental studies in mice have shown that a network of growth factors contributes to epithelial-mesenchymal interaction during morphogenesis of the lacrimal gland. Recently, the developmental process was successfully recapitulated in vitro, providing a valuable tool for study of lacrimal gland development and possibly opening doors to regenerative therapy. While further studies are required to identify and appreciate the potential of lacrimal gland stem cells, advances in stem cell biology in general should become a catalyst towards developing regenerative therapy of the lacrimal gland.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Kawakita
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
8
|
Osaka H, Inoue K. Pathophysiology and emerging therapeutic strategies in Pelizaeus–Merzbacher disease. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1106315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Bioengineered Lacrimal Gland Organ Regeneration in Vivo. J Funct Biomater 2015; 6:634-49. [PMID: 26264034 PMCID: PMC4598675 DOI: 10.3390/jfb6030634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/18/2015] [Accepted: 07/23/2015] [Indexed: 12/23/2022] Open
Abstract
The lacrimal gland plays an important role in maintaining a homeostatic environment for healthy ocular surfaces via tear secretion. Dry eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye disorders and causes ocular discomfort, significant visual disturbances, and a reduced quality of life. Current therapies for dry eye disease, including artificial tear eye drops, are transient and palliative. The lacrimal gland, which consists of acini, ducts, and myoepithelial cells, develops from its organ germ via reciprocal epithelial-mesenchymal interactions during embryogenesis. Lacrimal tissue stem cells have been identified for use in regenerative therapeutic approaches aimed at restoring lacrimal gland functions. Fully functional organ replacement, such as for tooth and hair follicles, has also been developed via a novel three-dimensional stem cell manipulation, designated the Organ Germ Method, as a next-generation regenerative medicine. Recently, we successfully developed fully functional bioengineered lacrimal gland replacements after transplanting a bioengineered organ germ using this method. This study represented a significant advance in potential lacrimal gland organ replacement as a novel regenerative therapy for dry eye disease. In this review, we will summarize recent progress in lacrimal regeneration research and the development of bioengineered lacrimal gland organ replacement therapy.
Collapse
|
10
|
Osakada F, Takahashi M. Challenges in retinal circuit regeneration: linking neuronal connectivity to circuit function. Biol Pharm Bull 2015; 38:341-57. [PMID: 25757915 DOI: 10.1248/bpb.b14-00771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tremendous progress has been made in retinal regeneration, as exemplified by successful transplantation of retinal pigment epithelia and photoreceptor cells in the adult retina, as well as by generation of retinal tissue from embryonic stem cells and induced pluripotent cells. However, it remains unknown how new photoreceptors integrate within retinal circuits and contribute to vision restoration. There is a large gap in our understanding, at both the cellular and behavioral levels, of the functional roles of new neurons in the adult retina. This gap largely arises from the lack of appropriate methods for analyzing the organization and function of new neurons at the circuit level. To bridge this gap and understand the functional roles of new neurons in living animals, it will be necessary to identify newly formed connections, correlate them with function, manipulate their activity, and assess the behavioral outcome of these manipulations. Recombinant viral vectors are powerful tools not only for controlling gene expression and reprogramming cells, but also for tracing cell fates and neuronal connectivity, monitoring biological functions, and manipulating the physiological state of a specific cell population. These virus-based approaches, combined with electrophysiology and optical imaging, will provide circuit-level insight into neural regeneration and facilitate new strategies for achieving vision restoration in the adult retina. Herein, we discuss challenges and future directions in retinal regeneration research.
Collapse
Affiliation(s)
- Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University; Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, California 92037, USA; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | | |
Collapse
|
11
|
Baranov P, Michaelson A, Kundu J, Carrier RL, Young M. Interphotoreceptor matrix-poly(ϵ-caprolactone) composite scaffolds for human photoreceptor differentiation. J Tissue Eng 2014; 5:2041731414554139. [PMID: 25383176 PMCID: PMC4221930 DOI: 10.1177/2041731414554139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/09/2014] [Indexed: 12/24/2022] Open
Abstract
Tissue engineering has been widely applied in different areas of regenerative medicine, including retinal regeneration. Typically, artificial biopolymers require additional surface modification (e.g. with arginine–glycine–aspartate-containing peptides or adsorption of protein, such as fibronectin), before cell seeding. Here, we describe an alternative approach for scaffold design: the manufacture of hybrid interphotoreceptor matrix-poly (ϵ-caprolactone) scaffolds, in which the insoluble extracellular matrix of the retina is incorporated into a biodegradable polymer well suited for transplantation. The incorporation of interphotoreceptor matrix did not change the topography of polycaprolactone film, although it led to a slight increase in hydrophilic properties (water contact angle measurements). This hybrid scaffold provided sufficient stimuli for human retinal progenitor cell adhesion and inhibited proliferation, leading to differentiation toward photoreceptor cells (expression of Crx, Nrl, rhodopsin, ROM1). This scaffold may be used for transplantation of retinal progenitor cells and their progeny to treat retinal degenerative disorders.
Collapse
Affiliation(s)
- Petr Baranov
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Andrew Michaelson
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Joydip Kundu
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Michael Young
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Does the adult human ciliary body epithelium contain "true" retinal stem cells? BIOMED RESEARCH INTERNATIONAL 2013; 2013:531579. [PMID: 24286080 PMCID: PMC3826557 DOI: 10.1155/2013/531579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/26/2013] [Accepted: 08/31/2013] [Indexed: 11/17/2022]
Abstract
Recent reports of retinal stem cells being present in several locations of the adult eye have sparked great hopes that they may be used to treat the millions of people worldwide who suffer from blindness as a result of retinal disease or injury. A population of proliferative cells derived from the ciliary body epithelium (CE) has been considered one of the prime stem cell candidates, and as such they have received much attention in recent years. However, the true nature of these cells in the adult human eye has still not been fully elucidated, and the stem cell claim has become increasingly controversial in light of new and conflicting reports. In this paper, we will try to answer the question of whether the available evidence is strong enough for the research community to conclude that the adult human CE indeed harbors stem cells.
Collapse
|
13
|
Osakada F, Takahashi M. Stem Cells in the Developing and Adult Nervous System. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
14
|
Baba Y, Satoh S, Otsu M, Sasaki E, Okada T, Watanabe S. In vitro cell subtype-specific transduction of adeno-associated virus in mouse and marmoset retinal explant culture. Biochimie 2012; 94:2716-22. [DOI: 10.1016/j.biochi.2012.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/10/2012] [Indexed: 01/22/2023]
|
15
|
Jin ZB, Okamoto S, Xiang P, Takahashi M. Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl Med 2012. [PMID: 23197854 DOI: 10.5966/sctm.2012-0005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated retinitis pigmentosa (RP) caused by a mutation in the gene rhodopsin (RHO) with a patient-specific rod cell model generated from induced pluripotent stem cells (iPSCs) derived from an RP patient. To generate the iPSCs and to avoid the unpredictable side effects associated with retrovirus integration at random loci in the host genome, a nonintegrating Sendai-virus vector was installed with four key reprogramming gene factors (POU5F1, SOX2, KLF4, and c-MYC) in skin cells from an RP patient. Subsequent selection of the iPSC lines was on the basis of karyotype analysis as well as in vitro and in vivo pluripotency tests. Using a serum-free, chemically defined, and stepwise differentiation method, the expressions of specific markers were sequentially induced in a neural retinal progenitor, a retinal pigment epithelial (RPE) progenitor, a photoreceptor precursor, RPE cells, and photoreceptor cells. In the differentiated rod cells, diffused distribution of RHO protein in cytoplasm and expressions of endoplasmic reticulum (ER) stress markers strongly indicated the involvement of ER stress. Furthermore, the rod cell numbers decreased significantly after successive culture, suggesting an in vitro model of rod degeneration. Thus, from integration-free patient-specific iPSCs, RP patient-specific rod cells were generated in vitro that recapitulated the disease feature and revealed evidence of ER stress in this patient, demonstrating its utility for disease modeling in vitro.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Center for Vision Research, School of Ophthalmology and Optometry, Eye Hospital of Wenzhou Medical College, Wenzhou, China.
| | | | | | | |
Collapse
|
16
|
Muraoka Y, Ikeda HO, Nakano N, Hangai M, Toda Y, Okamoto-Furuta K, Kohda H, Kondo M, Terasaki H, Kakizuka A, Yoshimura N. Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography. PLoS One 2012; 7:e36135. [PMID: 22558356 PMCID: PMC3338600 DOI: 10.1371/journal.pone.0036135] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/26/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Recently, a transgenic rabbit with rhodopsin Pro 347 Leu mutation was generated as a model of retinitis pigmentosa (RP), which is characterized by a gradual loss of vision due to photoreceptor degeneration. The purpose of the current study is to noninvasively visualize and assess time-dependent changes in the retinal structures of a rabbit model of retinal degeneration by using speckle noise-reduced spectral-domain optical coherence tomography (SD-OCT). METHODOLOGY/PRINCIPAL FINDINGS Wild type (WT) and RP rabbits (aged 4-20 weeks) were investigated using SD-OCT. The total retinal thickness in RP rabbits decreased with age. The thickness of the outer nuclear layer (ONL) and between the external limiting membrane and Bruch's membrane (ELM-BM) were reduced in RP rabbits around the visual streak, compared to WT rabbits even at 4 weeks of age, and the differences increased with age. However, inner nuclear layer (INL) thickness in RP rabbits did not differ from that of WT during the observation period. The ganglion cell complex (GCC) thickness in RP rabbits increased near the optic nerve head but not around the visual streak in the later stages of the observation period. Hyper-reflective change was widely observed in the inner segments (IS) and outer segments (OS) of the photoreceptors in the OCT images of RP rabbits. Ultrastructural findings in RP retinas included the appearance of small rhodopsin-containing vesicles scattered in the extracellular space around the photoreceptors. CONCLUSIONS/SIGNIFICANCE In the current study, SD-OCT provided the pattern of photoreceptor degeneration in RP rabbits and the longitudinal changes in each retinal layer through the evaluation of identical areas over time. The time-dependent changes in the retinal structure of RP rabbits showed regional and time-stage variations. In vivo imaging of RP rabbit retinas by using SD-OCT is a powerful method for characterizing disease dynamics and for assessing the therapeutic effects of experimental interventions.
Collapse
Affiliation(s)
- Yuki Muraoka
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriko Nakano
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masanori Hangai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshinobu Toda
- Center for Anatomical Studies, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiko Okamoto-Furuta
- Center for Anatomical Studies, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruyasu Kohda
- Center for Anatomical Studies, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University School of Medicine, Tsu, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies and Solution Oriented Research for Science and Technology, Kyoto, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
|
18
|
Abstract
Regeneration of the nervous system requires either the repair or replacement of nerve cells that have been damaged by injury or disease. While lower organisms possess extensive capacity for neural regeneration, evolutionarily higher organisms including humans are limited in their ability to regenerate nerve cells, posing significant issues for the treatment of injury and disease of the nervous system. This chapter focuses on current approaches for neural regeneration, with a discussion of traditional methods to enhance neural regeneration as well as emerging concepts within the field such as stem cells and cellular reprogramming. Stem cells are defined by their ability to self-renew as well as their ability to differentiate into multiple cell types, and hence can serve as a source for cell replacement of damaged neurons. Traditionally, adult stem cells isolated from the hippocampus and subventricular zone have served as a source of neural stem cells for replacement purposes. With the advancement of pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs), new and exciting approaches for neural cell replacement are being developed. Furthermore, with increased understanding of the human genome and epigenetics, scientists have been successful in the direct genetic reprogramming of somatic cells to a neuronal fate, bypassing the intermediary pluripotent stage. Such breakthroughs have accelerated the timing of production of mature neuronal cell types from a patient-specific somatic cell source such as skin fibroblasts or mononuclear blood cells. While extensive hurdles remain to the translational application of such stem cell and reprogramming strategies, these approaches have revolutionized the field of regenerative biology and have provided innovative approaches for the potential regeneration of the nervous system.
Collapse
Affiliation(s)
- Melissa M Steward
- Department of Biology, Indiana University Purdue University, Indianapolis, IN, USA
| | | | | |
Collapse
|
19
|
Stem Cells in the Developing and Adult Nervous System. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
|