1
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
2
|
Nirogi R, Jayarajan P, Benade V, Abraham R, Goyal VK. Hits and misses with animal models of narcolepsy and the implications for drug discovery. Expert Opin Drug Discov 2024; 19:755-768. [PMID: 38747534 DOI: 10.1080/17460441.2024.2354293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Narcolepsy is a chronic and rare neurological disorder characterized by disordered sleep. Based on animal models and further research in humans, the dysfunctional orexin system was identified as a contributing factor to the pathophysiology of narcolepsy. Animal models played a larger role in the discovery of some of the pharmacological agents with established benefit/risk profiles. AREAS COVERED In this review, the authors examine the phenotypes observed in animal models of narcolepsy and the characteristics of clinically used pharmacological agents in these animal models. Additionally, the authors compare the effects of clinically used pharmacological agents on the phenotypes in animal models with those observed in narcolepsy patients. EXPERT OPINION Research in canine and mouse models have linked narcolepsy to the O×R2mutation and orexin deficiency, leading to new diagnostic criteria and a drug development focus. Advancements in pharmacological therapies have significantly improved narcolepsy management, with insights from both clinical experience and from animal models having led to new treatments such as low sodium oxybate and solriamfetol. However, challenges persist in addressing symptoms beyond excessive daytime sleepiness and cataplexy, highlighting the need for further research, including the development of diurnal animal models to enhance understanding and treatment options for narcolepsy.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Drug Discovery & Development, Suven Life Sciences Limited, Hyderabad, India
| | - Pradeep Jayarajan
- Drug Discovery & Development, Suven Life Sciences Limited, Hyderabad, India
| | - Vijay Benade
- Drug Discovery & Development, Suven Life Sciences Limited, Hyderabad, India
| | - Renny Abraham
- Drug Discovery & Development, Suven Life Sciences Limited, Hyderabad, India
| | - Vinod Kumar Goyal
- Drug Discovery & Development, Suven Life Sciences Limited, Hyderabad, India
| |
Collapse
|
3
|
Szabo ST, Hopkins SC, Lew R, Loebel A, Roth T, Koblan KS. A multicenter, double-blind, placebo-controlled, randomized, Phase 1b crossover trial comparing two doses of ulotaront with placebo in the treatment of narcolepsy-cataplexy. Sleep Med 2023; 107:202-211. [PMID: 37209427 DOI: 10.1016/j.sleep.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 04/16/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ulotaront (SEP-363856) is a novel agonist at trace amine-associated receptor 1 and serotonin 5-HT1A receptors in clinical development for the treatment of schizophrenia. Previous studies demonstrated ulotaront suppresses rapid eye movement (REM) sleep in both rodents and healthy volunteers. We assessed acute and sustained treatments of ulotaront on REM sleep and symptoms of cataplexy and alertness in subjects with narcolepsy-cataplexy. METHODS In a multicenter, double-blind, placebo-controlled, randomized, 3-way crossover study, ulotaront was evaluated in 16 adults with narcolepsy-cataplexy. Two oral doses of ulotaront (25 mg and 50 mg) were administered daily for 2 weeks and compared with matching placebo (6-treatment sequence, 3-period, 3-treatment). RESULTS Acute treatment with both 25 mg and 50 mg of ulotaront reduced minutes spent in nighttime REM compared to placebo. A sustained 2-week administration of both doses of ulotaront reduced the mean number of short-onset REM periods (SOREMPs) during daytime multiple sleep latency test (MSLT) compared to placebo. Although cataplexy events decreased from the overall mean baseline during the 2-week treatment period, neither dose of ulotaront statistically separated from placebo (p = 0.76, 25 mg; p = 0.82, 50 mg), and no significant improvement in patient and clinician measures of sleepiness from baseline to end of the 2-week treatment period occurred in any treatment group. CONCLUSIONS Acute and sustained treatment with ulotaront reduced nighttime REM duration and daytime SOREMPs, respectively. The effect of ulotaront on suppression of REM did not demonstrate a statistical or clinically meaningful effect in narcolepsy-cataplexy. REGISTRATION ClinicalTrials.gov identifier: NCT05015673.
Collapse
Affiliation(s)
- Steven T Szabo
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| | - Seth C Hopkins
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| | - Robert Lew
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| | - Antony Loebel
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| | - Thomas Roth
- Sleep Disorders and Research Center, Henry Ford Hospital, 2799 West Grand Boulevard Detroit, MI, 48202, USA.
| | - Kenneth S Koblan
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| |
Collapse
|
4
|
Hung C, Yamanaka A. The role of orexin neuron activity in sleep/wakefulness regulation. Peptides 2023; 165:171007. [PMID: 37030519 DOI: 10.1016/j.peptides.2023.171007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023]
Abstract
Orexin (also known as hypocretin) is a neuropeptide exclusively synthesized in the neurons of the lateral hypothalamus (LH). Initially orexin was thought to be involved in the regulation of feeding behavior. However, it is now known to also be a critical regulator of sleep/wakefulness, especially the maintenance of wakefulness. Although the somas of orexin neurons are exclusively located in the LH, these neurons send axons throughout the brain and spinal cord. Orexin neurons integrate inputs from various brain regions and project to neurons that are involved in the regulation of sleep/wakefulness. Orexin knockout mice have a fragmentation of sleep/wakefulness and cataplexy-like behavior arrest, which is similar to the sleep disorder narcolepsy. Recent progress with manipulation of neural activity of targeted neurons, using experimental tools such as optogenetics and chemogenetics, has emphasized the role of orexin neuron activity on the regulation of sleep/wakefulness. Recording of orexin neuron activity in vivo using electrophysiological and gene-encoded calcium indicator proteins revealed that these cells have specific activity patterns across sleep/wakefulness state changes. Here, we also discuss not only the role of the orexin peptide, but also the role of other co-transmitters that are synthesized and released from orexin neurons and involved in sleep/wakefulness regulation.
Collapse
Affiliation(s)
- Chijung Hung
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akihiro Yamanaka
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing, 102206, China; National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585 Japan; Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
5
|
Neuromodulatory and Protective Effects Induced by the Association of Herbal Extracts from Valeriana officinalis, Ziziphus jujuba, and Humulus lupulus with Melatonin: An Innovative Formulation for Counteracting Sleep Disorders. Processes (Basel) 2022. [DOI: 10.3390/pr10081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The use of herbal extracts could represent an advantageous approach for treating sleeping disorders, especially in mild-to-moderate conditions, before the onset of a specific therapy with first-line drugs. Specifically, the focus was posed about the use of extracts from Valeriana officinalis, Ziziphus jujuba, and Humulus lupulus. Multiple studies demonstrated the efficacy of these medicinal plants to positively manage insomnia symptoms. Additionally, their efficacy in the treatment of sleeping disorders could also be improved by their pharmacological association. In the present study, extracts from Valeriana officinalis, Ziziphus jujuba, Humulus lupulus, melatonin, and their pharmacological association, Vagonotte® MEL, were studied for potential application in the treatment of insomnia. Methods: The extracts and melatonin were tested on hypothalamic neurons and tissue for evaluating biocompatibility and protective and neuromodulatory effects. The neuromodulatory effects were evaluated as orexin A gene expression and serotonin steady state level, in the hypothalamus. Results: The extracts and melatonin, although with evident differences, were effective as antioxidant and anti-inflammatory agents; additionally, they were also able to reduce the hypothalamic gene expression of orexin A and the steady state level of serotonin, playing master roles in wakefulness. It is noteworthy that the formulation displayed all the effects of the single ingredients, without any sign of toxicity and pharmacological interference in the hypothalamus. Conclusions: Concluding, the present study explored the biological effects of melatonin and herbal extracts with phytotherapy interest in V. officinalis, Z. jujuba, and H. lupulus. The study demonstrated their intrinsic scavenging/reducing activity, together with protective and neuromodulatory effects in the hypothalamus, with a significant reduction of both orexin A gene expression and serotonin steady state level. Additionally, the study also considered their pharmacological association, which displayed an overall pharmacological spectrum mirroring, including all the effects of the single ingredients, without showing any sign of toxicity in the brain and interference between the extracts and melatonin.
Collapse
|
6
|
Roles of Neuropeptides in Sleep-Wake Regulation. Int J Mol Sci 2022; 23:ijms23094599. [PMID: 35562990 PMCID: PMC9103574 DOI: 10.3390/ijms23094599] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep and wakefulness are basic behavioral states that require coordination between several brain regions, and they involve multiple neurochemical systems, including neuropeptides. Neuropeptides are a group of peptides produced by neurons and neuroendocrine cells of the central nervous system. Like traditional neurotransmitters, neuropeptides can bind to specific surface receptors and subsequently regulate neuronal activities. For example, orexin is a crucial component for the maintenance of wakefulness and the suppression of rapid eye movement (REM) sleep. In addition to orexin, melanin-concentrating hormone, and galanin may promote REM sleep. These results suggest that neuropeptides play an important role in sleep–wake regulation. These neuropeptides can be divided into three categories according to their effects on sleep–wake behaviors in rodents and humans. (i) Galanin, melanin-concentrating hormone, and vasoactive intestinal polypeptide are sleep-promoting peptides. It is also noticeable that vasoactive intestinal polypeptide particularly increases REM sleep. (ii) Orexin and neuropeptide S have been shown to induce wakefulness. (iii) Neuropeptide Y and substance P may have a bidirectional function as they can produce both arousal and sleep-inducing effects. This review will introduce the distribution of various neuropeptides in the brain and summarize the roles of different neuropeptides in sleep–wake regulation. We aim to lay the foundation for future studies to uncover the mechanisms that underlie the initiation, maintenance, and end of sleep–wake states.
Collapse
|
7
|
Sun Y, Tisdale R, Park S, Ma SC, Heu J, Haire M, Allocca G, Yamanaka A, Morairty SR, Kilduff TS. The development of sleep/wake disruption and cataplexy as hypocretin/orexin neurons degenerate in male vs. female Orexin/tTA; TetO-DTA Mice. Sleep 2022; 45:6532492. [PMID: 35182424 PMCID: PMC9742901 DOI: 10.1093/sleep/zsac039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Indexed: 01/10/2023] Open
Abstract
Narcolepsy Type 1 (NT1), a sleep disorder with similar prevalence in both sexes, is thought to be due to loss of the hypocretin/orexin (Hcrt) neurons. Several transgenic strains have been created to model this disorder and are increasingly being used for preclinical drug development and basic science studies, yet most studies have solely used male mice. We compared the development of narcoleptic symptomatology in male vs. female orexin-tTA; TetO-DTA mice, a model in which Hcrt neuron degeneration can be initiated by removal of doxycycline (DOX) from the diet. EEG, EMG, subcutaneous temperature, gross motor activity, and video recordings were conducted for 24-h at baseline and 1, 2, 4, and 6 weeks after DOX removal. Female DTA mice exhibited cataplexy, the pathognomonic symptom of NT1, by Week 1 in the DOX(-) condition but cataplexy was not consistently present in males until Week 2. By Week 2, both sexes showed an impaired ability to sustain long wake bouts during the active period, the murine equivalent of excessive daytime sleepiness in NT1. Subcutaneous temperature appeared to be regulated at lower levels in both sexes as the Hcrt neurons degenerated. During degeneration, both sexes also exhibited the "Delta State", characterized by sudden cessation of activity, high delta activity in the EEG, maintenance of muscle tone and posture, and the absence of phasic EMG activity. Since the phenotypes of the two sexes were indistinguishable by Week 6, we conclude that both sexes can be safely combined in future studies to reduce cost and animal use.
Collapse
Affiliation(s)
- Yu Sun
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | | | | | - Shun-Chieh Ma
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Jasmine Heu
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Meghan Haire
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | | | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Japan,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Japan
| | | | - Thomas S Kilduff
- Corresponding author. Thomas S. Kilduff, Center for Neuroscience, Biosciences Division SRI International, 333 Ravenswood Ave Menlo Park, CA 94025 USA.
| |
Collapse
|
8
|
Carli G, Farabollini F. Neuromediators and defensive responses including tonic immobility (TI): Brain areas and circuits involved. PROGRESS IN BRAIN RESEARCH 2022; 271:167-189. [DOI: 10.1016/bs.pbr.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Dong YJ, Jiang NH, Zhan LH, Teng X, Fang X, Lin MQ, Xie ZY, Luo R, Li LZ, Li B, Zhang BB, Lv GY, Chen SH. Soporific effect of modified Suanzaoren Decoction on mice models of insomnia by regulating Orexin-A and HPA axis homeostasis. Biomed Pharmacother 2021; 143:112141. [PMID: 34509822 DOI: 10.1016/j.biopha.2021.112141] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
AIM Modified Suanzaoren Decoction (MSZRD) is obtained by improving Suanzaoren Decoction (SZRT), a traditional Chinese herbal prescription that has been used to treat insomnia for more than thousands of years. Our previous study showed that MSZRD can improve the gastrointestinal discomfort related insomnia by regulating Orexin-A. This study is the first study to evaluate the effects and possible mechanisms of MSZRD in mice with insomnia caused by p-chlorophenylalanine (PCPA) combined with multifactor random stimulation. METHODS After 14 days of multifactor stimulation to ICR mice, a PCPA suspension (30 mg/mL) was injected intraperitoneally for two consecutive days to establish an insomnia model. Three different doses of MSZRD (3.6, 7.2, and 14.4 g/kg/day) were given to ICR mice for 24 days. The food intake and back temperature were measured, and behavioral tests and pentobarbital sodium-induced sleep tests were conducted. The levels of Orexin-A, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and adrenocortical hormones (CORT) in the serum and 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) in hypothalamus were measured using enzyme-linked immunosorbent assay (ELISA) kits. The levels of γ-aminobutyric acid (GABA) and glutamic acid (Glu) were measured by high-performance liquid chromatography (HPLC). The expression of 5HT1A receptor (5-HTRIA) and orexin receptor 2 antibody (OX2R) was measured by Western blot (WB) and immunohistochemical staining (ICH). Hematoxylin and eosin (H&E) staining and Nissl staining were used to assess the histological changes in hypothalamus tissue. RESULTS Of note, MSZRD can shorten the sleep latency of insomnia mice (P < 0.05, 0.01), prolonged the sleep duration of mice (P < 0.05, 0.01), and improve the circadian rhythm disorder relative to placebo-treated animals. Furthermore, MSZRD effectively increased the content of 5-HT and 5-HTR1A protein in the hypothalamus of insomnia mice (P < 0.05, 0.01), while downregulated the content of DA and NE (P < 0.05, 0.01). Importantly, serum GABA concentration was increased by treatment with MSZRD (P < 0.05), as reflected by a decreased Glu/GABA ratio (P < 0.05). Moreover, MSZRD decreased the levels of CORT, ACTH, and CRH related hormones in HPA axis (P < 0.05, 0.01). At the same time, MSZRD significantly downregulated the serum Orexin-A content in insomnia mice (P < 0.05), as well as hypothalamic OX2R expression (P < 0.05). In addition, MSZRD also improved the histopathological changes in hypothalamus in insomnia mice. CONCLUSION MSZRD has sleep-improvement effect in mice model of insomnia. The mechanism may be that regulating the expression of Orexin-A affects the homeostasis of HPA axis and the release of related neurotransmitters in mice with insomnia.
Collapse
Affiliation(s)
- Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Nanhu District, Jaxing, Zhejiang 314001, China
| | - Liang-Hui Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Xi Teng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Xi Fang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Min-Qiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Zhi-Yi Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Rong Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Lin-Zi Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Bei-Bei Zhang
- Center for Food Evaluation, State Administrition for Market Regulation, No. 188 Western Road of South Fourth Ring Road, Fengtai District, Beijing 100070, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
10
|
Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021; 44:6031626. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/04/2020] [Indexed: 11/12/2022] Open
Abstract
Animal models have advanced not only our understanding of the etiology and phenotype of the sleep disorder narcolepsy but have also informed sleep/wake regulation more generally. The identification of an inheritable narcolepsy phenotype in dogs in the 1970s allowed the establishment of a breeding colony at Stanford University, resulting in studies that provided the first insights into the genetics and neurotransmitter systems that underlie cataplexy and rapid-eye movement sleep atonia. Although the discovery of the hypocretin/orexin neuropeptides in 1998 initially seemed unrelated to sleep/wake control, the description of the phenotype of the prepro-orexin knockout (KO) mouse as strongly resembling cataplexy, the pathognomonic symptom of narcolepsy, along with identification of a mutation in hypocretin receptor-2 gene as the source of canine narcolepsy, unequivocally established the relationship between this system and narcolepsy. The subsequent discovery of hypocretin neuron degeneration in human narcolepsy demystified a disorder whose etiology had been unknown since its initial description 120 years earlier. These breakthroughs prompted the development of numerous other animal models that have allowed manipulation of the hypocretin/orexin system, thereby advancing our understanding of sleep/wake circuitry. While animal models have greatly informed understanding of this fascinating disorder and the role of the hypocretin/orexin system in sleep/wake control, the question of why these neurons degenerate in human narcolepsy is only beginning to be understood. The development of new immune-mediated narcolepsy models are likely to further inform the etiology of this sleep disorder and animal models will undoubtedly play a critical role in the development of novel narcolepsy therapeutics.
Collapse
Affiliation(s)
- Ryan K Tisdale
- Center for Neuroscience, Biosciences Division, SRI International
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International
| |
Collapse
|
11
|
Sałaciak K, Pytka K. Biased agonism in drug discovery: Is there a future for biased 5-HT 1A receptor agonists in the treatment of neuropsychiatric diseases? Pharmacol Ther 2021; 227:107872. [PMID: 33905796 DOI: 10.1016/j.pharmthera.2021.107872] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Serotonin (5-HT) is one of the fundamental neurotransmitters that contribute to the information essential for an organism's normal, physiological function. Serotonin acts centrally and systemically. The 5-HT1A receptor is the most widespread serotonin receptor, and participates in many brain-related disorders, including anxiety, depression, and cognitive impairments. The 5-HT1A receptor can activate several different biochemical pathways and signals through both G protein-dependent and G protein-independent pathways. Preclinical experiments indicate that distinct signaling pathways in specific brain regions may be crucial for antidepressant-like, anxiolytic-like, and procognitive responses. Therefore, the development of new ligands that selectively target a particular signaling pathway(s) could open new possibilities for more effective and safer pharmacotherapy. This review discusses the current state of preclinical studies focusing on the concept of functional selectivity (biased agonism) regarding the 5-HT1A receptor and its role in antidepressant-like, anxiolytic-like, and procognitive regulation. Such work highlights not only the differential effects of targeted autoreceptors, vs. heteroreceptors, but also the importance of targeting specific downstream intracellular signaling processes, thereby enhancing favorable over unfavorable signaling activation.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
12
|
Winiger EA, Ellingson JM, Morrison CL, Corley RP, Pasman JA, Wall TL, Hopfer CJ, Hewitt JK. Sleep deficits and cannabis use behaviors: an analysis of shared genetics using linkage disequilibrium score regression and polygenic risk prediction. Sleep 2021; 44:zsaa188. [PMID: 32935850 PMCID: PMC7953210 DOI: 10.1093/sleep/zsaa188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
STUDY OBJECTIVES Estimate the genetic relationship of cannabis use with sleep deficits and an eveningness chronotype. METHODS We used linkage disequilibrium score regression (LDSC) to analyze genetic correlations between sleep deficits and cannabis use behaviors. Secondly, we generated sleep deficit polygenic risk score (PRS) and estimated their ability to predict cannabis use behaviors using linear and logistic regression. Summary statistics came from existing genome-wide association studies of European ancestry that were focused on sleep duration, insomnia, chronotype, lifetime cannabis use, and cannabis use disorder (CUD). A target sample for PRS prediction consisted of high-risk participants and participants from twin/family community-based studies (European ancestry; n = 760, male = 64%; mean age = 26.78 years). Target data consisted of self-reported sleep (sleep duration, feeling tired, and taking naps) and cannabis use behaviors (lifetime ever use, number of lifetime uses, past 180-day use, age of first use, and lifetime CUD symptoms). RESULTS Significant genetic correlation between lifetime cannabis use and an eveningness chronotype (rG = 0.24, p < 0.001), as well as between CUD and both short sleep duration (<7 h; rG = 0.23, p = 0.017) and insomnia (rG = 0.20, p = 0.020). Insomnia PRS predicted earlier age of first cannabis use (OR = 0.92, p = 0.036) and increased lifetime CUD symptom count (OR = 1.09, p = 0.012). CONCLUSION Cannabis use is genetically associated with both sleep deficits and an eveningness chronotype, suggesting that there are genes that predispose individuals to both cannabis use and sleep deficits.
Collapse
Affiliation(s)
- Evan A Winiger
- Institute for Behavioral Genetics, University of Colorado Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, CO
| | - Jarrod M Ellingson
- Institute for Behavioral Genetics, University of Colorado Boulder, CO
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO
| | - Claire L Morrison
- Institute for Behavioral Genetics, University of Colorado Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, CO
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado Boulder, CO
| | - Joëlle A Pasman
- Behavioural Science Institute, Radboud University Nijmegen, Amsterdam, The Netherlands
| | - Tamara L Wall
- Department of Psychiatry, University of California, San Diego, CA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, CO
| |
Collapse
|
13
|
Hypocretinergic interactions with the serotonergic system regulate REM sleep and cataplexy. Nat Commun 2020; 11:6034. [PMID: 33247179 PMCID: PMC7699625 DOI: 10.1038/s41467-020-19862-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
Loss of muscle tone triggered by emotions is called cataplexy and is the pathognomonic symptom of narcolepsy, which is caused by hypocretin deficiency. Cataplexy is classically considered to be an abnormal manifestation of REM sleep and is treated by selective serotonin (5HT) reuptake inhibitors. Here we show that deleting the 5HT transporter in hypocretin knockout mice suppressed cataplexy while dramatically increasing REM sleep. Additionally, double knockout mice showed a significant deficit in the buildup of sleep need. Deleting one allele of the 5HT transporter in hypocretin knockout mice strongly increased EEG theta power during REM sleep and theta and gamma powers during wakefulness. Deleting hypocretin receptors in the dorsal raphe neurons of adult mice did not induce cataplexy but consolidated REM sleep. Our results indicate that cataplexy and REM sleep are regulated by different mechanisms and both states and sleep need are regulated by the hypocretinergic input into 5HT neurons. Narcolepsy is characterized by a sudden loss of muscle tone (cataplexy) similar to REM sleep and is caused by hypocretin deficiency. Here, the authors show that deleting the serotonin transporter gene in hypocretin knockout mice suppresses cataplexy while dramatically increasing REM sleep, indicating that these are two different states but are both regulated by hypocretinergic input to serotonergic neurons.
Collapse
|
14
|
Tang H, Zhu Q, Li W, Qin S, Gong Y, Wang H, Shioda S, Li S, Huang J, Liu B, Fang Y, Liu Y, Wang S, Guo Y, Xia Q, Guo Y, Xu Z. Neurophysiology and Treatment of Disorders of Consciousness Induced by Traumatic Brain Injury: Orexin Signaling as a Potential Therapeutic Target. Curr Pharm Des 2020; 25:4208-4220. [PMID: 31663471 DOI: 10.2174/1381612825666191029101830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can cause disorders of consciousness (DOC) by impairing the neuronal circuits of the ascending reticular activating system (ARAS) structures, including the hypothalamus, which are responsible for the maintenance of the wakefulness and awareness. However, the effectiveness of drugs targeting ARAS activation is still inadequate, and novel therapeutic modalities are urgently needed. METHODS The goal of this work is to describe the neural loops of wakefulness, and explain how these elements participate in DOC, with emphasis on the identification of potential new therapeutic options for DOC induced by TBI. RESULTS Hypothalamus has been identified as a sleep/wake center, and its anterior and posterior regions have diverse roles in the regulation of the sleep/wake function. In particular, the posterior hypothalamus (PH) possesses several types of neurons, including the orexin neurons in the lateral hypothalamus (LH) with widespread projections to other wakefulness-related regions of the brain. Orexins have been known to affect feeding and appetite, and recently their profound effect on sleep disorders and DOC has been identified. Orexin antagonists are used for the treatment of insomnia, and orexin agonists can be used for narcolepsy. Additionally, several studies demonstrated that the agonists of orexin might be effective in the treatment of DOC, providing novel therapeutic opportunities in this field. CONCLUSION The hypothalamic-centered orexin has been adopted as the point of entry into the system of consciousness control, and modulators of orexin signaling opened several therapeutic opportunities for the treatment of DOC.
Collapse
Affiliation(s)
- Huiling Tang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiumei Zhu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siru Qin
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinan Gong
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Wang
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Seiji Shioda
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Shanshan Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Huang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Fang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangyang Liu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Xia
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Winiger EA, Huggett SB, Hatoum AS, Friedman NP, Drake CL, Wright KP, Hewitt JK. Onset of regular cannabis use and young adult insomnia: an analysis of shared genetic liability. Sleep 2020; 43:zsz293. [PMID: 31855253 PMCID: PMC7368342 DOI: 10.1093/sleep/zsz293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/22/2019] [Indexed: 01/13/2023] Open
Abstract
STUDY OBJECTIVES Estimate the genetic and environmental influences on the relationship between onset of regular cannabis use and young adult insomnia. METHODS In a population-based twin cohort of 1882 twins (56% female, mean age = 22.99, SD = 2.97) we explored the genetic/environmental etiology of the relationship between onset of regular cannabis use and insomnia-related outcomes via multivariate twin models. RESULTS Controlling for sex, current depression symptoms, and prior diagnosis of an anxiety or depression disorder, adult twins who reported early onset for regular cannabis use (age 17 or younger) were more likely to have insomnia (β = 0.07, p = 0.024) and insomnia with short sleep on weekdays (β = 0.08, p = 0.003) as young adults. We found significant genetic contributions for the onset of regular cannabis use (a2 = 76%, p < 0.001), insomnia (a2 = 44%, p < 0.001), and insomnia with short sleep on weekdays (a2 = 37%, p < 0.001). We found significant genetic correlations between onset of regular use and both insomnia (rA = 0.20, p = 0.047) and insomnia with short sleep on weekdays (rA = 0.25, p = 0.008) but no significant environmental associations between these traits. CONCLUSIONS We found common genetic liabilities for early onset of regular cannabis use and insomnia, implying pleiotropic influences of genes on both traits.
Collapse
Affiliation(s)
- Evan A Winiger
- Institute for Behavioral Genetics, University of Colorado - Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO
| | - Spencer B Huggett
- Institute for Behavioral Genetics, University of Colorado - Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO
| | - Alexander S Hatoum
- Institute for Behavioral Genetics, University of Colorado - Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado - Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO
| | | | - Kenneth P Wright
- Department of Integrative Physiology, University of Colorado - Boulder, Boulder, CO
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado - Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO
| |
Collapse
|
16
|
Williams RH, Black SW, Thomas AM, Piquet J, Cauli B, Kilduff TS. Excitation of Cortical nNOS/NK1R Neurons by Hypocretin 1 is Independent of Sleep Homeostasis. Cereb Cortex 2020; 29:1090-1108. [PMID: 29462275 DOI: 10.1093/cercor/bhy015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/10/2018] [Indexed: 11/14/2022] Open
Abstract
We have proposed that cortical nNOS/NK1R interneurons have a role in sleep homeostasis. The hypocretins (orexins) are wake-promoting neuropeptides and hypocretin/orexin (Hcrt) neurons project to the cortex. Hcrt peptides affect deep layer cortical neurons, and Hcrt receptor 1 (Hcrtr1; Ox1r) mRNA is expressed in cortical nNOS/NK1R cells. Therefore, we investigated whether Hcrt neuron stimulation affects cingulate cortex nNOS/NK1R neurons. Bath application of HCRT1/orexin-A evoked an inward current and membrane depolarization in most nNOS/NK1R cells which persisted in tetrodotoxin; optogenetic stimulation of Hcrt terminals expressing channelrhodopsin-2 confirmed these results, and pharmacological studies determined that HCRTR1 mediated these responses. Single-cell RT-PCR found Hcrtr1 mRNA in 31% of nNOS/NK1R cells without any Hcrtr2 mRNA expression; immunohistochemical studies of Hcrtr1-EGFP mice confirmed that a minority of nNOS/NK1R cells express HCRTR1. When Hcrt neurons degenerated in orexin-tTA;TetO DTA mice, the increased EEG delta power during NREM sleep produced in response to 4 h sleep deprivation and c-FOS expression in cortical nNOS/NK1R cells during recovery sleep were indistinguishable from that of controls. We conclude that Hcrt excitatory input to these deep layer cells is mediated through HCRTR1 but is unlikely to be involved in the putative role of cortical nNOS/NK1R neurons in sleep homeostasis.
Collapse
Affiliation(s)
- Rhîannan H Williams
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA.,Institute for Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Sarah W Black
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Alexia M Thomas
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Juliette Piquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| | - Bruno Cauli
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA
| |
Collapse
|
17
|
Nishimura Y, Mabuchi K, Omura N, Igarashi A, Miura M, Mima N, Negishi H, Morimoto K, Takamata A. Fluoxetine Mimics the Anorectic Action of Estrogen and Its Regulation of Circadian Feeding in Ovariectomized Female Rats. Nutrients 2020; 12:nu12030849. [PMID: 32235766 PMCID: PMC7146435 DOI: 10.3390/nu12030849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/09/2023] Open
Abstract
Our previous study demonstrated that chronic estrogen replacement in ovariectomized rats reduces food intake and augments c-Fos expression in the suprachiasmatic nucleus (SCN), specifically during the light phase. Here, we hypothesized that serotonergic neurons in the central nervous system (CNS), which have anorectic action and play a role in regulating circadian rhythm, mediate the light phase-specific anorectic action of estrogen, and that selective serotonin reuptake inhibitors (SSRIs) mimic the hypophagic action of estrogen. Female Wistar rats were ovariectomized and treated with estradiol (E2) or cholesterol by subcutaneously implanting a silicon capsule containing E2 or cholesterol. Then, half of the cholesterol-treated rats were injected with the SSRI fluoxetine (5 mg/kg) (FLX group), while the remaining rats in the cholesterol-treated group (CON group) and all those in the E2 group were injected with saline subcutaneously twice daily at the onsets of the light and dark phases. Both E2 and FLX reduced food intake during the light phase but not the dark phase, and reduced body weight gain. In addition, both E2 and FLX augmented the c-Fos expression in the SCN, specifically during the light phase. These data indicate that FLX exerts estrogen-like antiobesity and hypophagic actions by modifying circadian feeding patterns, and suggest that estrogen regulates circadian feeding rhythm via serotonergic neurons in the CNS.
Collapse
Affiliation(s)
- Yuri Nishimura
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kaori Mabuchi
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Natsumi Omura
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Ayako Igarashi
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Megumi Miura
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Nanako Mima
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Hiroko Negishi
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Keiko Morimoto
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Akira Takamata
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
- Correspondence: ; Tel./Fax: +81-742-20-3469
| |
Collapse
|
18
|
Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020; 167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hypocretin/orexin neurons are distributed restrictively in the hypothalamus, a brain region known to orchestrate diverse functions including sleep, reward processing, food intake, thermogenesis, and mood. Since the hypocretins/orexins were discovered more than two decades ago, extensive studies have accumulated concrete evidence showing the pivotal role of hypocretin/orexin in diverse neural modulation. New method of viral-mediated tracing system offers the possibility to map the monosynaptic inputs and detailed anatomical connectivity of Hcrt neurons. With the development of powerful research techniques including optogenetics, fiber-photometry, cell-type/pathway specific manipulation and neuronal activity monitoring, as well as single-cell RNA sequencing, the details of how hypocretinergic system execute functional modulation of various behaviors are coming to light. In this review, we focus on the function of neural pathways from hypocretin neurons to target brain regions. Anatomical and functional inputs to hypocretin neurons are also discussed. We further briefly summarize the development of pharmaceutical compounds targeting hypocretin signaling. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Liu M, Min T, Zhang H, Liu Y, Wang Z. Pharmacological Characteristics of Porcine Orexin 2 Receptor and Mutants. Front Endocrinol (Lausanne) 2020; 11:132. [PMID: 32296386 PMCID: PMC7136461 DOI: 10.3389/fendo.2020.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Orexin receptors (OXRs) play a critical regulatory role in central control of food intake, maintenance of sleeping states, energy metabolism, and neuroendocrine homeostasis. However, most previous studies have focused on the sleep-promoting functions of OXRs in human beings, while their potential value in enhancing food intake for livestock breeding has not been fully exploited. In this study, we successfully cloned porcine orexin 2 receptor (pOX2R) complementary DNA and constructed four pOX2R mutants (P10S, P11T, V308I, and T401I) by site-directed mutagenesis, and their functional expressions were further confirmed through Western blotting analysis. Pharmacological characteristics of pOX2R and their mutants were further investigated. These results showed that the P10S, P11T, and T401I mutants had decreased cAMP signaling with orexin A, whereas only the P11T mutant decreased under the stimulation of orexin B. Besides, only P10S displayed a decreased calcium release in response to both orexin ligands. Importantly, these mutants exhibited decreased phosphorylation levels of ERK1/2, p38, and CREB to some degree compared with wild-type pOX2R. Collectively, these findings highlight the critical role of these mutations in pOX2R signaling and expand our understanding of molecular and pharmacological characterization of pOX2R.
Collapse
Affiliation(s)
- Min Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Min
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haijie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yuan Liu
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Zhiqiang Wang
| |
Collapse
|
20
|
Winiger EA, Huggett SB, Hatoum AS, Stallings MC, Hewitt JK. Onset of regular cannabis use and adult sleep duration: Genetic variation and the implications of a predictive relationship. Drug Alcohol Depend 2019; 204:107517. [PMID: 31698253 PMCID: PMC7053256 DOI: 10.1016/j.drugalcdep.2019.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Limited evidence suggests that early cannabis use is associated with sleep problems. Research is needed to understand the developmental impact of early regular cannabis use on later adult sleep duration. METHODS In a sample of 1656 adult twins (56% female, Mean age = 25.79yrs), linear mixed effects models were used to analyze the influence of retrospectively assessed age of onset of regular cannabis use on adult sleep duration controlling for sex, depression, and current substance use. Twin analyses provided genetic and environmental variance estimates as well as insights into the association and potential casual relationships between these traits. RESULTS Earlier age of onset for regular cannabis use was significantly associated with shorter adult sleep duration on both weekdays (β = -0.13, 95% CI = [-0.23, -0.04]) and weekends (β = -0.18, 95% CI = [-0.27, -0.08]). Additive genetics significantly contributed to the onset of regular cannabis use (a2 = 76%, 95% CI = [68, 85]) and adult weekend sleep duration (a2 = 20%, 95% CI = [11, 32]). We found evidence of a significant genetic correlation (rA = -0.31, 95% CI = [-0.41, -0.15]) between these two traits and our best fitting model was consistent with early onset of regular cannabis use causing shorter adult weekend sleep duration (β = -0.11, 95% CI = [-0.18, -0.03]). CONCLUSIONS Our results are consistent with the hypothesis that early onset of regular cannabis use may have a negative impact on adult sleep duration.
Collapse
Affiliation(s)
- Evan A. Winiger
- Institute for Behavioral Genetics, University of Colorado, Boulder, East Campus, 1480 30th Street, Boulder, CO 80309, United States,Department of Psychology and Neuroscience, University of Colorado, Boulder, Muenzinger Psychology Building, 1905 Colorado Ave, Boulder, CO 80309, United States,Corresponding author at: Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, CO 80309, United States. (E.A. Winiger)
| | - Spencer B. Huggett
- Institute for Behavioral Genetics, University of Colorado, Boulder, East Campus, 1480 30th Street, Boulder, CO 80309, United States,Department of Psychology and Neuroscience, University of Colorado, Boulder, Muenzinger Psychology Building, 1905 Colorado Ave, Boulder, CO 80309, United States
| | - Alexander S. Hatoum
- Institute for Behavioral Genetics, University of Colorado, Boulder, East Campus, 1480 30th Street, Boulder, CO 80309, United States,Department of Psychology and Neuroscience, University of Colorado, Boulder, Muenzinger Psychology Building, 1905 Colorado Ave, Boulder, CO 80309, United States
| | - Michael C. Stallings
- Institute for Behavioral Genetics, University of Colorado, Boulder, East Campus, 1480 30th Street, Boulder, CO 80309, United States,Department of Psychology and Neuroscience, University of Colorado, Boulder, Muenzinger Psychology Building, 1905 Colorado Ave, Boulder, CO 80309, United States
| | - John K. Hewitt
- Institute for Behavioral Genetics, University of Colorado, Boulder, East Campus, 1480 30th Street, Boulder, CO 80309, United States,Department of Psychology and Neuroscience, University of Colorado, Boulder, Muenzinger Psychology Building, 1905 Colorado Ave, Boulder, CO 80309, United States
| |
Collapse
|
21
|
Grafe LA, Geng E, Corbett B, Urban K, Bhatnagar S. Sex- and Stress-Dependent Effects on Dendritic Morphology and Spine Densities in Putative Orexin Neurons. Neuroscience 2019; 418:266-278. [PMID: 31442567 DOI: 10.1016/j.neuroscience.2019.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 01/23/2023]
Abstract
We recently found that non-stressed female rats have higher basal prepro-orexin expression and activation of orexinergic neurons compared to non-stressed males, which lead to impaired habituation to repeated restraint stress at the behavioral, neural, and endocrine level. Here, we extended our study of sex differences in the orexin system by examining spine densities and dendritic morphology in putative orexin neurons in adult male and female rats that were exposed to 5 consecutive days of 30-min restraint. Analysis of spine distribution and density indicated that putative orexinergic neurons in control non-stressed females had significantly more dendritic spines than those in control males, and the majority of these were mushroom spines. This morphological finding may suggest more excitatory input onto orexin neurons in female rats. As orexin neurons are known to promote the hypothalamic-pituitary-adrenal response, this morphological change in orexin neurons could underlie the impaired habituation to repeated stress in female rats. Dendritic complexity did not differ between non-stressed males and females, however repeated restraint stress decreased total dendritic length, nodes, and branching primarily in males. Thus, reduced dendritic complexity of putative orexinergic neurons is observed in males but not in females after 5days of repeated restraint stress. This morphological change might be reflective of decreased orexin system function, which may allow males to habituate more fully to repeated restraint than females. These results extend our understanding of the role of orexin neurons in regulating habituation and demonstrate changes in putative orexin cell morphology and spines that may underlie sex differences in habituation.
Collapse
Affiliation(s)
- Laura A Grafe
- Department of Psychology, Bryn Mawr College, Bryn Mawr, PA 19010, USA
| | - Eric Geng
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian Corbett
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kimberly Urban
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Chowdhury S, Hung CJ, Izawa S, Inutsuka A, Kawamura M, Kawashima T, Bito H, Imayoshi I, Abe M, Sakimura K, Yamanaka A. Dissociating orexin-dependent and -independent functions of orexin neurons using novel Orexin-Flp knock-in mice. eLife 2019; 8:44927. [PMID: 31159922 PMCID: PMC6548533 DOI: 10.7554/elife.44927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
Uninterrupted arousal is important for survival during threatening situations. Activation of orexin/hypocretin neurons is implicated in sustained arousal. However, orexin neurons produce and release orexin as well as several co-transmitters including dynorphin and glutamate. To disambiguate orexin-dependent and -independent physiological functions of orexin neurons, we generated a novel Orexin-flippase (Flp) knock-in mouse line. Crossing with Flp-reporter or Cre-expressing mice showed gene expression exclusively in orexin neurons. Histological studies confirmed that orexin was knock-out in homozygous mice. Orexin neurons without orexin showed altered electrophysiological properties, as well as received decreased glutamatergic inputs. Selective chemogenetic activation revealed that both orexin and co-transmitters functioned to increase wakefulness, however, orexin was indispensable to promote sustained arousal. Surprisingly, such activation increased the total time spent in cataplexy. Taken together, orexin is essential to maintain basic membrane properties and input-output computation of orexin neurons, as well as to exert awake-sustaining aptitude of orexin neurons.
Collapse
Affiliation(s)
- Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Chi Jung Hung
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Shuntaro Izawa
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Ayumu Inutsuka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Meiko Kawamura
- Department of Animal Model development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takashi Kawashima
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Itaru Imayoshi
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Manabu Abe
- Department of Animal Model development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| |
Collapse
|
23
|
Kabel AM, Al Thumali AM, Aldowiala KA, Habib RD, Aljuaid SS, Alharthi HA. Sleep disorders in adolescents and young adults: Insights into types, relationship to obesity and high altitude and possible lines of management. Diabetes Metab Syndr 2018; 12:777-781. [PMID: 29673929 DOI: 10.1016/j.dsx.2018.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 01/03/2023]
Abstract
A sleep disorder is a medical disorder of the sleep pattern of a person that may be serious enough to interfere with normal physical, mental and emotional functioning. Disruptions in sleep can be caused by a variety of causes, from teeth grinding to night terrors. Sleep disorders are usually prevalent among adolescents and young adults, possibly due to factors related to life style, dietary habits, hormonal and emotional disturbances. Other factors that may precipitate sleep disorders include environmental, psychological and genetic factors. Sleep disorders may lead to serious psychological and mood disorders and may even affect the immune system. Management of sleep disorders depends on amelioration of the precipitating factors and the use of certain drugs that may help to restore the normal sleep-wake cycle. This review sheds light on sleep disorders in adolescents and young adults regarding their types, etiology, dangers and possible lines of management.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia; Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | | | - Raghad D Habib
- Pharm D, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Shoroq S Aljuaid
- Pharm D, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Huda A Alharthi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
24
|
Kabel AM, Al Thumali AM, Aldowiala KA, Habib RD, Aljuaid SS. Sleep disorders in a sample of students in Taif University, Saudi Arabia: The role of obesity, insulin resistance, anemia and high altitude. Diabetes Metab Syndr 2018; 12:549-554. [PMID: 29622472 DOI: 10.1016/j.dsx.2018.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to assess the incidence of sleep disorders and excessive daytime sleepiness (EDS) among Taif University students and to explore the precipitating factors of these disorders. METHODS This study was carried out on 1066 students in Taif University of both sexes aging from 18 to 25 years. All included individuals were subjected to full history taking and thorough clinical examination, with special concern on anthropometric measurements (weight, height, waist-to-hip ratio and body mass index). Also, fasting blood glucose, fasting serum insulin, homeostatic model assessment (HOMA) index and blood hemoglobin levels were measured. Sleep disorders were assessed using sleep disturbances scale and the Epworth sleepiness scale. RESULTS The overall incidence of sleep disorders and EDS was 31.33% and 15.29% respectively with statistically significant prevalence in females than males. There was significant positive correlation between sleep disturbances scale and Epworth sleepiness scale on one hand and body weight, body mass index, waist-to-hip ratio, the height of the residence place above the sea level, fasting and post-prandial blood glucose, fasting serum insulin and HOMA index on the other hand. Also, there was significant negative correlation between sleep disturbances scale and Epworth sleepiness scale on one hand and blood hemoglobin levels on the other hand. CONCLUSION Sleep disorders and EDS in Taif University students were precipitated by high altitude, anemia, obesity and glucose intolerance. Control of these factors may have a positive impact on the incidence of sleep disorders and EDS in this age group.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia; Pharmacology Department, Faculty of medicine, Tanta University, Tanta, Egypt.
| | | | | | - Raghad D Habib
- Pharm D, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Shoroq S Aljuaid
- Pharm D, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
25
|
Grafe LA, Eacret D, Dobkin J, Bhatnagar S. Reduced Orexin System Function Contributes to Resilience to Repeated Social Stress. eNeuro 2018; 5:ENEURO.0273-17.2018. [PMID: 29662948 PMCID: PMC5900465 DOI: 10.1523/eneuro.0273-17.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022] Open
Abstract
Exposure to stress increases the risk of developing affective disorders such as depression and post-traumatic stress disorder (PTSD). However, these disorders occur in only a subset of individuals, those that are more vulnerable to the effects of stress, whereas others remain resilient. The coping style adopted to deal with the stressor, either passive or active coping, is related to vulnerability or resilience, respectively. Important neural substrates that mediate responses to a stressor are the orexins. These neuropeptides are altered in the cerebrospinal fluid of patients with stress-related illnesses such as depression and PTSD. The present experiments used a rodent social defeat model that generates actively coping rats and passively coping rats, which we have previously shown exhibit resilient and vulnerable profiles, respectively, to examine if orexins play a role in these stress-induced phenotypes. In situ radiolabeling and qPCR revealed that actively coping rats expressed significantly lower prepro-orexin mRNA compared with passively coping rats. This led to the hypothesis that lower levels of orexins contribute to resilience to repeated social stress. To test this hypothesis, rats first underwent 5 d of social defeat to establish active and passive coping phenotypes. Then, orexin neurons were inhibited before each social defeat for three additional days using designer receptors exclusively activated by designer drugs (DREADDs). Inhibition of orexins increased social interaction behavior and decreased depressive-like behavior in the vulnerable population of rats. Indeed, these data suggest that lowering orexins promoted resilience to social defeat and may be an important target for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Laura A. Grafe
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Darrell Eacret
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Jane Dobkin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
26
|
DeKorver NW, Chaudoin TR, Bonasera SJ. Toll-Like Receptor 2 Is a Regulator of Circadian Active and Inactive State Consolidation in C57BL/6 Mice. Front Aging Neurosci 2017; 9:219. [PMID: 28769782 PMCID: PMC5510442 DOI: 10.3389/fnagi.2017.00219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022] Open
Abstract
Regulatory systems required to maintain behavioral arousal remain incompletely understood. We describe a previously unappreciated role that toll-like receptor 2 (Tlr2, a membrane bound pattern recognition receptor that recognizes specific bacterial, viral, and fungal peptides), contributes toward regulation of behavioral arousal. In 4–4.5 month old mice with constitutive loss of Tlr2 function (Tlr2−/− mice), we note a marked consolidation in the circadian pattern of both active and inactive states. Specifically, Tlr2−/− mice demonstrated significantly fewer but longer duration active states during the circadian dark cycle, and significantly fewer but longer duration inactive states during the circadian light cycle. Tlr2−/− mice also consumed less food and water, and moved less during the circadian light cycle. Analysis of circadian rhythms further suggested that Tlr2−/− mice demonstrated less day-to-day variability in feeding, drinking, and movement behaviors. Reevaluation of this same mouse cohort at age 8–8.5 months revealed a clear blunting of these differences. However, Tlr2−/− mice were still noted to have fewer short-duration active states during the circadian dark cycle, and continued to demonstrate significantly less day-to-day variability in feeding, drinking, and movement behaviors. These results suggest that Tlr2 function may have a role in promoting transitions between active and inactive states. Prior studies have demonstrated that Tlr2 regulates sickness behaviors including hypophagia, hyperthermia, and decreased activity. Our work suggests that Tlr2 function also evokes behavioral fragmentation, another aspect of sickness behavior and a clinically significant problem of older adults.
Collapse
Affiliation(s)
- Nicholas W DeKorver
- Division of Geriatrics, Department of Internal Medicine, Durham Research Center II, University of Nebraska Medical CenterOmaha, NE, United States
| | - Tammy R Chaudoin
- Division of Geriatrics, Department of Internal Medicine, Durham Research Center II, University of Nebraska Medical CenterOmaha, NE, United States
| | - Stephen J Bonasera
- Division of Geriatrics, Department of Internal Medicine, Durham Research Center II, University of Nebraska Medical CenterOmaha, NE, United States
| |
Collapse
|
27
|
Ogawa Y, Kanda T, Vogt K, Yanagisawa M. Anatomical and electrophysiological development of the hypothalamic orexin neurons from embryos to neonates. J Comp Neurol 2017; 525:3809-3820. [PMID: 28608460 DOI: 10.1002/cne.24261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 02/01/2023]
Abstract
The amount, quality, and diurnal pattern of sleep change greatly during development. Developmental changes of sleep/wake architecture are in a close relationship to brain development. The fragmentation of wake episodes is one of the salient features in the neonatal period, which is also observed in mature animals and human individuals lacking neuropeptide orexin/hypocretin signaling. This raises the possibility that developmental changes of lateral hypothalamic orexin neurons are relevant to the development of sleep/wake architecture. However, little information is available on morphological and physiological features of developing orexin neurons. To address the cellular basis for maturation of the sleep/wake regulatory system, we investigated the functional development of orexin neurons in the lateral hypothalamus. The anatomical development as well as the changes in the electrophysiological characteristics of orexin neurons was examined from embryonic to postnatal stages in orexin-EGFP mice. Prepro-orexin promoter activity was detectable at embryonic day (E) 12.0, followed by expression of orexin A after E14.0. The number of orexin neurons and their membrane capacitance reached similar levels to adults by postnatal day (P) 7, while their membrane potentials, firing rates, and action potential waveforms were developed by P21. The hyperpolarizing effect of serotonin, which is a major inhibitory signal for adult orexin neurons, was detected after E18.0 and matured at P1. These results suggest that the expression of orexin peptides precedes the maturation of electrophysiological activity of orexin neurons. The function of orexin neurons gradually matures by 3 weeks after birth, coinciding with maturation of sleep/wake architecture.
Collapse
Affiliation(s)
- Yukino Ogawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takeshi Kanda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaspar Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
28
|
Mieda M. The roles of orexins in sleep/wake regulation. Neurosci Res 2017; 118:56-65. [DOI: 10.1016/j.neures.2017.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 10/25/2022]
|
29
|
Chowdhury S, Yamanaka A. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Sci Rep 2016; 6:36039. [PMID: 27824065 PMCID: PMC5099903 DOI: 10.1038/srep36039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/10/2016] [Indexed: 01/23/2023] Open
Abstract
Orexin/hypocretin neurons play a crucial role in the regulation of sleep/wakefulness, primarily in the maintenance of wakefulness. These neurons innervate wide areas of the brain and receive diverse synaptic inputs including those from serotonergic (5-HT) neurons in the raphe nucleus. Previously we showed that pharmacological application of 5-HT directly inhibited orexin neurons via 5-HT1A receptors. However, it was still unclear how 5-HT neurons regulated orexin neurons since 5-HT neurons contain not only 5-HT but also other neurotransmitters. To reveal this, we generated new triple transgenic mice in which orexin neurons express enhanced green fluorescent protein (EGFP) and 5-HT neurons express channelrhodopsin2 (ChR2). Immunohistochemical studies show that nerve endings of ChR2-expressing 5-HT neurons are in close apposition to EGFP-expressing orexin neurons in the lateral hypothalamic area. Using these mice, we could optogenetically activate 5-HT nerve terminals and record postsynaptic effects from orexin neurons. Activation of nerve terminals of 5-HT neurons directly inhibited orexin neurons via the 5HT1A receptor, and also indirectly inhibited orexin neurons by facilitating GABAergic inhibitory inputs without affecting glutamatergic inputs. Increased GABAergic inhibitory inputs in orexin neurons were confirmed by the pharmacological application of 5-HT. These results suggest that orexin neurons are inhibited by 5-HT neurons, primarily via 5-HT, in both direct and indirect manners.
Collapse
Affiliation(s)
- Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
30
|
Role of Lateral Hypothalamic Orexin (Hypocretin) Neurons in Alcohol Use and Abuse: Recent Advances. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40495-016-0069-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Cui SY, Li SJ, Cui XY, Zhang XQ, Yu B, Huang YL, Cao Q, Xu YP, Yang G, Ding H, Song JZ, Ye H, Sheng ZF, Wang ZJ, Zhang YH. Ca(2+) in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats. Mol Brain 2016; 9:71. [PMID: 27456222 PMCID: PMC4960696 DOI: 10.1186/s13041-016-0252-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DRN) are involved in the control of sleep-wake states. Our previous studies have indicated that calcium (Ca(2+)) modulation in the DRN plays an important role in rapid-eye-movement sleep (REMS) and non-REMS (NREMS) regulation during pentobarbital hypnosis. The present study investigated the effects of Ca(2+) in the DRN on sleep-wake regulation and the related neuronal mechanism in freely moving rats. Our results showed that microinjection of CaCl2 (25 or 50 nmol) in the DRN promoted wakefulness and suppressed NREMS including slow wave sleep and REMS in freely moving rats. Application of CaCl2 (25 or 50 nmol) in the DRN significantly increased serotonin in the DRN and hypothalamus, and noradrenaline in the locus coeruleus and hypothalamus. Immunohistochemistry study indicated that application of CaCl2 (25 or 50 nmol) in the DRN significantly increased c-Fos expression ratio in wake-promoting neurons including serotonergic neurons in the DRN, noradrenergic neurons in the locus coeruleus, and orxinergic neurons in the perifornical nucleus, but decreased c-Fos expression ratio of GABAergic sleep-promoting neurons in the ventrolateral preoptic nucleus. These results suggest that Ca(2+) in the DRN exert arousal effects via up-regulating serotonergic functions in the endogenous sleep-wake regulating pathways.
Collapse
Affiliation(s)
- Su-Ying Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Sheng-Jie Li
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Xiang-Yu Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Xue-Qiong Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Bin Yu
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Yuan-Li Huang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Qing Cao
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Ya-Ping Xu
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Guang Yang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Hui Ding
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Jin-Zhi Song
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Hui Ye
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Zhao-Fu Sheng
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Zi-Jun Wang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Yong-He Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| |
Collapse
|
32
|
Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8). Behav Brain Res 2016; 308:187-95. [PMID: 27093926 DOI: 10.1016/j.bbr.2016.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Senescence-accelerated mouse (SAM) is inbred lines of mice originally developed from AKR/J mice. Among the six SAM prone (SAMP) substrains, 8- to 12-month-old SAMP8 have long been used as a model of age-related cognitive impairments. However, little is still known for younger SAMP8 mice. Here, we examined the phenotypical characteristics of 4-month-old SAMP8 using a battery of behavioral tests. Four-month-old SAMP8 mice failed to recognize spatially displaced object in an object recognition task and performed poorly in the probe test of the Morris water maze task compared to SAMR1, suggesting that SAMP8 have impaired spatial memory. In addition, young SAMP8 exhibited enhanced anxiety-like behavior in an open field test and showed depression-like behavior in the forced-swim test. Their circadian rhythm was also disrupted. These abnormal behaviors of young SAMP8 are similar to behavioral alterations also observed in aged mice. In summary, age-related behavioral alterations occur in SAMP8 as young as 4 months old.
Collapse
|
33
|
Lee SY, Hsu HC. Genetic Susceptibility and Sleep Disturbance in Black Mothers of Preterm Infants: An Exploratory Study. SAGE Open Nurs 2016. [DOI: 10.1177/2377960816643326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Serotonin (5HT) is involved in emotion and sleep regulation and the 5HT transporter (5HTT) regulates 5HT function. A common 44-base pair deletion (short allele) or insertion (long allele) polymorphism in the promoter region of 5HTT (5-HTTLPR) is differentially associated with 5HTT transcription efficiency. Under stressful conditions, the short allele of 5-HTTLPR has been associated with depression and sleep disturbance. Black women are at higher risk for preterm labor and depressive symptoms. Thus, this exploratory study aimed to examine whether depressive symptoms and sleep disturbance in Black mothers would vary as a function of the 5-HTTLPR genotype when they faced the stress of infant hospitalization after preterm birth at early postpartum. A total of 30 Black mothers filled out a battery of questionnaires, including the Perceived Stress Scale, Edinburgh Postnatal Depression Scale, and General Sleep Disturbance Scale. A wrist actigraph was used to assess total sleep time and circadian activity rhythms. Buccal cells from saliva were collected to test the 5-HTTLPR genotype. Results showed that about 38% of the mothers were heterozygous for the short (S/L) allele, and 62% were homozygous for the long (L/L) allele. Mothers’ perceived global stress, depressive symptoms, and circadian activity rhythms did not vary with their 5-HTTLPR genotypes. Unexpectedly, mothers with the L/L allele reported greater sleep disturbances than those with the S/L allele. Ethnic specificity in genetic susceptibility to stress was discussed.
Collapse
Affiliation(s)
- Shih-Yu Lee
- Department of Nursing, Hungkuang University, Taichung, Taiwan
- Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
34
|
Abstract
INTRODUCTION Insomnia is typified by a difficulty in sleep initiation, maintenance and/or quality (non-restorative sleep) resulting in significant daytime distress. AREAS COVERED This review summarizes the available efficacy and safety data for drugs currently in the pipeline for treating insomnia. Specifically, the authors performed MEDLINE and internet searches using the keywords 'Phase II' and 'insomnia'. The drugs covered target GABAA (zaleplon-CR, lorediplon, EVT-201), orexin (filorexant, MIN-202), histamine-H1 (LY2624803), serotonin 5-HT2A (ITI-007), melatonin/serotonin5-HT1A (piromelatine) and melatonin (indication expansions of prolonged-release melatonin and tasimelteon for pediatric sleep and circadian rhythm disorders) receptors. EXPERT OPINION Low-priced generic environments and high development costs limit the further development of drugs that treat insomnia. However, the bidirectional link between sleep and certain comorbidities may encourage development of specific drugs for comorbid insomnia. New insomnia therapies will most likely move away from GABAAR receptors' modulation to more subtle neurological pathways that regulate the sleep-wake cycle.
Collapse
Affiliation(s)
- Nava Zisapel
- Tel Aviv University, Department of Neurobiology, The George S Wise Faculty of Life Sciences , Tel Aviv 69978 , Israel +972 3 6409611 ; +972 3 6407643 ;
| |
Collapse
|
35
|
Cun Y, Tang L, Yan J, He C, Li Y, Hu Z, Xia J. Orexin A attenuates the sleep-promoting effect of adenosine in the lateral hypothalamus of rats. Neurosci Bull 2014; 30:877-86. [PMID: 24898402 PMCID: PMC5562583 DOI: 10.1007/s12264-013-1442-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 01/04/2023] Open
Abstract
Orexin neurons within the lateral hypothalamus play a crucial role in the promotion and maintenance of arousal. Studies have strongly suggested that orexin neurons are an important target in endogenous adenosine-regulated sleep homeostasis. Orexin A induces a robust increase in the firing activity of orexin neurons, while adenosine has an inhibitory effect. Whether the excitatory action of orexins in the lateral hypothalamus actually promotes wakefulness and reverses the sleep-producing effect of adenosine in vivo is less clear. In this study, electroencephalographic and electromyographic recordings were used to investigate the effects of orexin A and adenosine on sleep and wakefulness in rats. We found that microinjection of orexin A into the lateral hypothalamus increased wakefulness with a concomitant reduction of sleep during the first 3 h of post-injection recording, and this was completely blocked by a selective antagonist for orexin receptor 1, SB 334867. The enhancement of wakefulness also occurred after application of the excitatory neurotransmitter glutamate in the first 3 h post-injection. However, in the presence of the NMDA receptor antagonist APV, orexin A did not induce any change of sleep and wakefulness in the first 3 h. Further, exogenous application of adenosine into the lateral hypothalamus induced a marked increase of sleep in the first 3-h post-injection. No significant change in sleep and wakefulness was detected after adenosine application followed by orexin A administration into the same brain area. These findings suggest that the sleep-promoting action of adenosine can be reversed by orexin A applied to the lateral hypothalamus, perhaps by exciting glutamatergic input to orexin neurons via the action of orexin receptor 1.
Collapse
Affiliation(s)
- Yanping Cun
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Lin Tang
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Jie Yan
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Yang Li
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Jianxia Xia
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|
36
|
Abstract
γ-Hydroxybutyrate (GHB) is an approved therapeutic for the excessive sleepiness and sudden loss of muscle tone (cataplexy) characteristic of narcolepsy. The mechanism of action for these therapeutic effects is hypothesized to be GABAB receptor dependent. We evaluated the effects of chronic administration of GHB and the GABAB agonist R-baclofen (R-BAC) on arousal state and cataplexy in two models of narcolepsy: orexin/ataxin-3 (Atax) and orexin/tTA; TetO diphtheria toxin mice (DTA). Mice were implanted for EEG/EMG monitoring and dosed with GHB (150 mg/kg), R-BAC (2.8 mg/kg), or vehicle (VEH) bid for 15 d-a treatment paradigm designed to model the twice nightly GHB dosing regimen used by human narcoleptics. In both models, R-BAC increased NREM sleep time, intensity, and consolidation during the light period; wake bout duration increased and cataplexy decreased during the subsequent dark period. GHB did not increase NREM sleep consolidation or duration, although NREM delta power increased in the first hour after dosing. Cataplexy decreased from baseline in 57 and 86% of mice after GHB and R-BAC, respectively, whereas cataplexy increased in 79% of the mice after VEH. At the doses tested, R-BAC suppressed cataplexy to a greater extent than GHB. These results suggest utility of R-BAC-based therapeutics for narcolepsy.
Collapse
|
37
|
Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J Neurosci 2014; 34:6495-509. [PMID: 24806676 DOI: 10.1523/jneurosci.0073-14.2014] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The sleep disorder narcolepsy results from loss of hypothalamic orexin/hypocretin neurons. Although narcolepsy onset is usually postpubertal, current mouse models involve loss of either orexin peptides or orexin neurons from birth. To create a model of orexin/hypocretin deficiency with closer fidelity to human narcolepsy, diphtheria toxin A (DTA) was expressed in orexin neurons under control of the Tet-off system. Upon doxycycline removal from the diet of postpubertal orexin-tTA;TetO DTA mice, orexin neurodegeneration was rapid, with 80% cell loss within 7 d, and resulted in disrupted sleep architecture. Cataplexy, the pathognomic symptom of narcolepsy, occurred by 14 d when ∼5% of the orexin neurons remained. Cataplexy frequency increased for at least 11 weeks after doxycycline. Temporary doxycycline removal followed by reintroduction after several days enabled partial lesion of orexin neurons. DTA-induced orexin neurodegeneration caused a body weight increase without a change in food consumption, mimicking metabolic aspects of human narcolepsy. Because the orexin/hypocretin system has been implicated in the control of metabolism and addiction as well as sleep/wake regulation, orexin-tTA; TetO DTA mice are a novel model in which to study these functions, for pharmacological studies of cataplexy, and to study network reorganization as orexin input is lost.
Collapse
|
38
|
Yamashita A, Hamada A, Suhara Y, Kawabe R, Yanase M, Kuzumaki N, Narita M, Matsui R, Okano H, Narita M. Astrocytic activation in the anterior cingulate cortex is critical for sleep disorder under neuropathic pain. Synapse 2014; 68:235-47. [DOI: 10.1002/syn.21733] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/09/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Akira Yamashita
- Department of Pharmacology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Asami Hamada
- Department of Pharmacology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Yuki Suhara
- Department of Pharmacology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Rui Kawabe
- Department of Pharmacology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Makoto Yanase
- Department of Pharmacology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Naoko Kuzumaki
- Department of Physiology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Michiko Narita
- Department of Pharmacology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Ryosuke Matsui
- Department of Molecular and Systems Biology; Graduate School of Biostudies, Kyoto University; Yoshida Sakyo-ku Kyoto 606-8501 Japan
| | - Hideyuki Okano
- Department of Physiology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Minoru Narita
- Department of Pharmacology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| |
Collapse
|
39
|
Tsunematsu T, Tabuchi S, Tanaka KF, Boyden ES, Tominaga M, Yamanaka A. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 2013; 255:64-74. [PMID: 23707248 DOI: 10.1016/j.bbr.2013.05.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/08/2013] [Accepted: 05/14/2013] [Indexed: 11/24/2022]
Abstract
Orexin/hypocretin neurons have a crucial role in the regulation of sleep and wakefulness. Recent optogenetic studies revealed that the activation or inhibition of orexin neuronal activity affects the probability of sleep/wakefulness transition in the acute phase. To expand our understanding of how orexin neurons maintain wakefulness, we generated new transgenic mice in which orexin neurons expressed archaerhodopsin from Halorubrum strain TP009 (ArchT), a green light-driven neuronal silencer, using the tet-off system (orexin-tTA; TetO ArchT mice). Slice patch clamp recordings of ArchT-expressing orexin neurons demonstrated that long-lasting photic illumination was able to silence the activity of orexin neurons. We further confirmed that green light illumination for 1h in the dark period suppressed orexin neuronal activity in vivo using c-Fos expression. Continuous 1h silencing of orexin neurons in freely moving orexin-tTA; TetO ArchT mice during the night (the active period, 20:00-21:00) significantly increased total time spent in slow-wave sleep (SWS) and decreased total wake time. Additionally, photic inhibition increased sleep/wakefulness state transitions, which is also evident in animals lacking the prepro-orexin gene, orexin neurons, or functional orexin-2 receptors. However, continuous 1h photic illumination produced little effect on sleep/wakefulness states during the day (the inactive period, 12:00-13:00). These results suggest that orexin neuronal activity plays a crucial role in the maintenance of wakefulness especially in the active phase in mice.
Collapse
Affiliation(s)
- Tomomi Tsunematsu
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Okazaki 444-8787, Japan; The Japan Society for the Promotion of Sciences, Tokyo 102-8472, Japan
| | | | | | | | | | | |
Collapse
|