1
|
Ge D, Han C, Liu C, Meng Z. Neural Oscillations in the Somatosensory and Motor Cortex Distinguish Dexmedetomidine-Induced Anesthesia and Sleep in Rats. CNS Neurosci Ther 2025; 31:e70262. [PMID: 39963924 PMCID: PMC11833454 DOI: 10.1111/cns.70262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Anesthesia is featured by behavioral and physiological characteristics such as decreased sensory and motor function, loss of consciousness, etc. Some anesthetics such as dexmedetomidine (DEX), induce electroencephalogram signatures close to non-rapid eye movement sleep. Studies have shown that sleep is primarily driven by the activation of subcortical sleep-promoting neural pathways. AIMS However, the neuronal level electrophysiology features of anesthesia and how they differ from sleep is still not fully understood. MATERIALS AND METHODS In the present study, we recorded neuronal activity simultaneously from somatosensory cortex (S1) and motor cortex (M1) during awake, sleep, and DEX-induced anesthesia in rats. RESULTS The results show that DEX increased local field potential (LFP) power across a relatively wide band (1-25 Hz) in both S1 and M1. The coherence between S1 LFP and M1 LFP increased significantly in the delta and alpha bands. Power spectrum analysis during DEX-induced anesthesia revealed relatively high power in the delta and alpha bands, but low power in the theta and beta bands. Overall, the firing rate of individual neurons decreased after DEX. Correlation analysis of firing rate and LFP power indicate that more neurons were correlated, either positively or negatively, with LFPs during DEX-induced anesthesia compared to sleep. DISCUSSION Although these results showed enhancement of cortical LFP power in both DEX-induced anesthesia and sleep, different patterns of spike-field correlation suggest that the two states may be regulated by different cortical mechanisms. CONCLUSION Distinguishing anesthesia from sleep with neural oscillations could lead to more personalized, safer, and more effective approaches to managing consciousness in medical settings, with the potential for broad applications in neuroscience and clinical practice.
Collapse
Affiliation(s)
- Dengyun Ge
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience InstituteThe Chinese University of Hong KongHong KongSARChina
| | - Chang Liu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- CAS Key Laboratory of Brain Connectome and ManipulationChinese Academy of SciencesShenzhenChina
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- CAS Key Laboratory of Brain Connectome and ManipulationChinese Academy of SciencesShenzhenChina
| |
Collapse
|
2
|
Zhao Y, Li K, Wang L, Kuang G, Xie K, Lin S. Dexmedetomidine Mitigates Acute Lung Injury by Enhancing M2 Macrophage Polarization and Inhibiting RAGE/Caspase-11-Mediated Pyroptosis. FRONT BIOSCI-LANDMRK 2024; 29:409. [PMID: 39735987 DOI: 10.31083/j.fbl2912409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI. METHODS In present study, cecal ligation puncture (CLP)-established ALI model mice and lipopolysaccharide (LPS)-stimulated RAW264.7 cell line were established to discover the influence of Dex. The evaluation of lung injury in vivo using histopathology, TUNEL assay, and analysis of inflammatory factors in bronchoalveolar lavage fluid (BALF) and serum. The receptor for advanced glycation end products (RAGE)/Caspase-11-dependent pyroptosis-related proteins and macrophage polarization markers were analyzed using western blot, immunofluorescence, and flow cytometry. Finally, the mechanism of Dex in macrophages was further verified in vitro. RESULTS In vivo, Dex alleviated lung injury and decreased TUNEL-positive cell expression in CLP group. Dex decreased tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and IL-17A levels in BALF and serum, while increasing IL-10 expression. Dex treatment decreased the protein levels of RAGE, caspase-11, IL-1β and Gasdermin-D (GSDMD) in both in cells and in mice. Dex also down-regulated the synthesis of inducible nitric oxide synthase (iNOS) of classical activation phenotype (M1) markers, and up-regulated the synthesis of CD206 and Arg-1 of alternate activation phenotype (M2) markers. CONCLUSIONS Dex treatment can inhibit inflammation and reduce lung injury caused by CLP. It could be associated with mediating M1 and M2 polarization and suppressing RAGE/Caspase-11-depended pyroptosis.
Collapse
Affiliation(s)
- Yisi Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
- The Chongqing Key Laboratory of Translation Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Kefeng Li
- The Chongqing Key Laboratory of Translation Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
- Department of Critical Care Medicine, People's Hospital of Fengjie, 404600 Chongqing, China
| | - Liuyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Gang Kuang
- The Chongqing Key Laboratory of Translation Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
- Department of Critical Care Medicine, Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Ke Xie
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Shihui Lin
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| |
Collapse
|
3
|
Smith SK, Kafashan M, Rios RL, Brown EN, Landsness EC, Guay CS, Palanca BJA. Daytime dexmedetomidine sedation with closed-loop acoustic stimulation alters slow wave sleep homeostasis in healthy adults. BJA OPEN 2024; 10:100276. [PMID: 38571816 PMCID: PMC10990715 DOI: 10.1016/j.bjao.2024.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Background The alpha-2 adrenergic agonist dexmedetomidine induces EEG patterns resembling those of non-rapid eye movement (NREM) sleep. Fulfilment of slow wave sleep (SWS) homeostatic needs would address the assumption that dexmedetomidine induces functional biomimetic sleep states. Methods In-home sleep EEG recordings were obtained from 13 healthy participants before and after dexmedetomidine sedation. Dexmedetomidine target-controlled infusions and closed-loop acoustic stimulation were implemented to induce and enhance EEG slow waves, respectively. EEG recordings during sedation and sleep were staged using modified American Academy of Sleep Medicine criteria. Slow wave activity (EEG power from 0.5 to 4 Hz) was computed for NREM stage 2 (N2) and NREM stage 3 (N3/SWS) epochs, with the aggregate partitioned into quintiles by time. The first slow wave activity quintile served as a surrogate for slow wave pressure, and the difference between the first and fifth quintiles as a measure of slow wave pressure dissipation. Results Compared with pre-sedation sleep, post-sedation sleep showed reduced N3 duration (mean difference of -17.1 min, 95% confidence interval -30.0 to -8.2, P=0.015). Dissipation of slow wave pressure was reduced (P=0.02). Changes in combined durations of N2 and N3 between pre- and post-sedation sleep correlated with total dexmedetomidine dose, (r=-0.61, P=0.03). Conclusions Daytime dexmedetomidine sedation and closed-loop acoustic stimulation targeting EEG slow waves reduced N3/SWS duration and measures of slow wave pressure dissipation on the post-sedation night in healthy young adults. Thus, the paired intervention induces sleep-like states that fulfil certain homeostatic NREM sleep needs in healthy young adults. Clinical trial registration ClinicalTrials.gov NCT04206059.
Collapse
Affiliation(s)
- S. Kendall Smith
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
| | - MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
| | - Rachel L. Rios
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
| | - Emery N. Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric C. Landsness
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Division of Sleep Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christian S. Guay
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ben Julian A. Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Atluri N, Dulko E, Jedrusiak M, Klos J, Osuru HP, Davis E, Beenhakker M, Kapur J, Zuo Z, Lunardi N. Anatomical Substrates of Rapid Eye Movement Sleep Rebound in a Rodent Model of Post-sevoflurane Sleep Disruption. Anesthesiology 2024; 140:729-741. [PMID: 38157434 PMCID: PMC10939895 DOI: 10.1097/aln.0000000000004893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Previous research suggests that sevoflurane anesthesia may prevent the brain from accessing rapid eye movement (REM) sleep. If true, then patterns of neural activity observed in REM-on and REM-off neuronal populations during recovery from sevoflurane should resemble those seen after REM sleep deprivation. In this study, the authors hypothesized that, relative to controls, animals exposed to sevoflurane present with a distinct expression pattern of c-Fos, a marker of neuronal activation, in a cluster of nuclei classically associated with REM sleep, and that such expression in sevoflurane-exposed and REM sleep-deprived animals is largely similar. METHODS Adult rats and Targeted Recombination in Active Populations mice were implanted with electroencephalographic electrodes for sleep-wake recording and randomized to sevoflurane, REM deprivation, or control conditions. Conventional c-Fos immunohistochemistry and genetically tagged c-Fos labeling were used to quantify activated neurons in a group of REM-associated nuclei in the midbrain and basal forebrain. RESULTS REM sleep duration increased during recovery from sevoflurane anesthesia relative to controls (157.0 ± 24.8 min vs. 124.2 ± 27.8 min; P = 0.003) and temporally correlated with increased c-Fos expression in the sublaterodorsal nucleus, a region active during REM sleep (176.0 ± 36.6 cells vs. 58.8 ± 8.7; P = 0.014), and decreased c-Fos expression in the ventrolateral periaqueductal gray, a region that is inactive during REM sleep (34.8 ± 5.3 cells vs. 136.2 ± 19.6; P = 0.001). Fos changes similar to those seen in sevoflurane-exposed mice were observed in REM-deprived animals relative to controls (sublaterodorsal nucleus: 85.0 ± 15.5 cells vs. 23.0 ± 1.2, P = 0.004; ventrolateral periaqueductal gray: 652.8 ± 71.7 cells vs. 889.3 ± 66.8, P = 0.042). CONCLUSIONS In rodents recovering from sevoflurane, REM-on and REM-off neuronal activity maps closely resemble those of REM sleep-deprived animals. These findings provide new evidence in support of the idea that sevoflurane does not substitute for endogenous REM sleep. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Navya Atluri
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Elzbieta Dulko
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Michal Jedrusiak
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Joanna Klos
- Max Planck Institute for Biological Intelligence, Munich, Germany
| | - Hari P Osuru
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Eric Davis
- Department of Internal Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark Beenhakker
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Zhou Y, Yin G, Xu J, Cao X, Ye J. A Novel Method to Classify the Responses of Genioglossus to Negative Pressure in OSA Patients. Otolaryngol Head Neck Surg 2024; 170:586-594. [PMID: 37731270 DOI: 10.1002/ohn.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE This study aims to develop a novel method to classify different genioglossus (GG) responses to upper airway (UA) negative pressure in obstructive sleep apnea (OSA) patients. STUDY DESIGN A single-center, prospective, cohort study. SETTING Sleep Medical Center. METHODS Patients with OSA underwent drug-induced sleep endoscopy with synchronous genioglossus electromyography (ggEMG) and UA pressure monitoring. In spontaneous obstructive apnea events, the value of epiglottis negative pressure at the end of inspiration (Pepi ) and corresponding peak phasic ggEMG were recorded as pairing data for linear regression analysis to classify GG response modes: peak phasic ggEMG-Pepi linear mode (P < .05) were classified as group 1; others (P ≥ .05) were classified as group 2. Using nasopharyngeal tube (NPT) to reopen the palatopharyngeal cavity for comparing the improvement between the OSA patients with different GG response modes. RESULTS Sixty subjects were analyzed for GG response modes: 22 patients were in group 1 (r2 = 0.233-0.867), and 38 patients were in group 2. The proportion of partial (63.16% vs 59.09%) or complete (36.84% vs 22.73%) collapse rate of the tongue base in group 2 was significantly higher (χ2 = 7.823, P = .020). The improvement of the apnea-hypopnea index after NPT placement in group 2 was significantly lower than in group 1 (59.09% vs 31.58%, χ2 = 4.339, P = .037). CONCLUSION This novel method is advantageous for distinguishing OSA patients with different GG response abilities to UA negative pressure, whose GG responses conforming to peak phasic ggEMG-Pepi linear mode might be more suitable for palatopharyngeal surgery.
Collapse
Affiliation(s)
- Yingqian Zhou
- Department of Otolaryngology-Head Neck Surgery, Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, Changping, People's Republic of China
| | - Guoping Yin
- Department of Otolaryngology-Head Neck Surgery, Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, Changping, People's Republic of China
| | - Jinkun Xu
- Department of Otolaryngology-Head Neck Surgery, Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, Changping, People's Republic of China
| | - Xin Cao
- Department of Otolaryngology-Head Neck Surgery, Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, Changping, People's Republic of China
| | - Jingying Ye
- Department of Otolaryngology-Head Neck Surgery, Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, Changping, People's Republic of China
| |
Collapse
|
6
|
Sen A, Erdivanlı B, Tümkaya L, Uydu HA, Mercantepe T, Batcik Ş, Ozdemir A. The effects of dexmedetomidine on trauma-induced secondary injury in rat brain. Neurol Res 2024; 46:23-32. [PMID: 37842946 DOI: 10.1080/01616412.2023.2257446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/29/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND The objective of this study was to investigate the effect of dexmedetomidine (Dex), a sedative drug with little or no depressant effect on respiratory centers, on secondary injury in rat brain tissue by means of the Na+/K+ ATPase enzyme, which maintains the cell membrane ion gradient; malondialdehyde, an indicator of membrane lipid peroxidation; glutathione, an indicator of antioxidant capacity; and histopathological analyses. METHODS Eighteen rats were randomized into three groups: the trauma group received anesthesia, followed by head trauma with a Mild Traumatic Brain Injury Apparatus; the Trauma+Dex group received an additional treatment of 100 µg/kg intraperitoneal dexmedetomidine daily for three days; the Control group received anesthesia only. RESULTS The highest MDA levels compared to the Control group were found in the Trauma group. Mean levels in the Trauma+Dex group were lower, albeit still significantly high compared to the Control group. Glutathione levels were similar in all groups. Na/K-ATPase levels were significantly lower in the Trauma group compared to both the Control group and the Trauma+Dex group. Histopathologic findings of tissue degeneration including edema, vascular congestion and neuronal injury, and cleaved caspase-3 levels were lower in the Trauma+Dex group compared with the Trauma group. CONCLUSIONS Dexmedetomidine administered during the early stage of traumatic brain injury may inhibit caspase-3 cleavageHowever, the mechanism does not seem to be related to the improvement of MDA or GSH levels.
Collapse
Affiliation(s)
- Ahmet Sen
- Department of Anesthesiology and Reanimation, Trabzon Faculty of Medicine, University of Health Sciences, Trabzon, Turkey
| | - Basar Erdivanlı
- Department of Anestjesıology and Reamınatıon, Faculty of Medıcıne, Recep Tayyıp Erdogan Unıversıty
| | - Levent Tümkaya
- Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hüseyin Avni Uydu
- Histology and Embryology and Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Şule Batcik
- Department of Anestjesıology and Reamınatıon, Faculty of Medıcıne, Recep Tayyıp Erdogan Unıversıty
| | - Abdullah Ozdemir
- Department of Anestjesıology and Reamınatıon, Faculty of Medıcıne, Recep Tayyıp Erdogan Unıversıty
| |
Collapse
|
7
|
Carvalho J, Fernandes FF, Shemesh N. Extensive topographic remapping and functional sharpening in the adult rat visual pathway upon first visual experience. PLoS Biol 2023; 21:e3002229. [PMID: 37590177 PMCID: PMC10434970 DOI: 10.1371/journal.pbio.3002229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
Understanding the dynamics of stability/plasticity balances during adulthood is pivotal for learning, disease, and recovery from injury. However, the brain-wide topography of sensory remapping remains unknown. Here, using a first-of-its-kind setup for delivering patterned visual stimuli in a rodent magnetic resonance imaging (MRI) scanner, coupled with biologically inspired computational models, we noninvasively mapped brain-wide properties-receptive fields (RFs) and spatial frequency (SF) tuning curves-that were insofar only available from invasive electrophysiology or optical imaging. We then tracked the RF dynamics in the chronic visual deprivation model (VDM) of plasticity and found that light exposure progressively promoted a large-scale topographic remapping in adult rats. Upon light exposure, the initially unspecialized visual pathway progressively evidenced sharpened RFs (smaller and more spatially selective) and enhanced SF tuning curves. Our findings reveal that visual experience following VDM reshapes both structure and function of the visual system and shifts the stability/plasticity balance in adults.
Collapse
Affiliation(s)
- Joana Carvalho
- Laboratory of Preclinical MRI, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Francisca F. Fernandes
- Laboratory of Preclinical MRI, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Noam Shemesh
- Laboratory of Preclinical MRI, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
8
|
Sitnikova E, Pupikina M, Rutskova E. Alpha2 Adrenergic Modulation of Spike-Wave Epilepsy: Experimental Study of Pro-Epileptic and Sedative Effects of Dexmedetomidine. Int J Mol Sci 2023; 24:9445. [PMID: 37298397 PMCID: PMC10254047 DOI: 10.3390/ijms24119445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In the present report, we evaluated adrenergic mechanisms of generalized spike-wave epileptic discharges (SWDs), which are the encephalographic hallmarks of idiopathic generalized epilepsies. SWDs link to a hyper-synchronization in the thalamocortical neuronal activity. We unclosed some alpha2-adrenergic mechanisms of sedation and provocation of SWDs in rats with spontaneous spike-wave epilepsy (WAG/Rij and Wistar) and in control non-epileptic rats (NEW) of both sexes. Dexmedetomidine (Dex) was a highly selective alpha-2 agonist (0.003-0.049 mg/kg, i.p.). Injections of Dex did not elicit de novo SWDs in non-epileptic rats. Dex can be used to disclose the latent form of spike-wave epilepsy. Subjects with long-lasting SWDs at baseline were at high risk of absence status after activation of alpha2- adrenergic receptors. We create the concept of alpha1- and alpha2-ARs regulation of SWDs via modulation of thalamocortical network activity. Dex induced the specific abnormal state favorable for SWDs-"alpha2 wakefulness". Dex is regularly used in clinical practice. EEG examination in patients using low doses of Dex might help to diagnose the latent forms of absence epilepsy (or pathology of cortico-thalamo-cortical circuitry).
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, 117485 Moscow, Russia (E.R.)
| | | | | |
Collapse
|
9
|
Bosch OG, Dornbierer DA, Bavato F, Quednow BB, Landolt HP, Seifritz E. Dexmedetomidine in Psychiatry: Repurposing of its Fast-Acting Anxiolytic, Analgesic and Sleep Modulating Properties. PHARMACOPSYCHIATRY 2023; 56:44-50. [PMID: 36384232 DOI: 10.1055/a-1970-3453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Drug repurposing is a strategy to identify new indications for already approved drugs. A recent successful example in psychiatry is ketamine, an anesthetic drug developed in the 1960s, now approved and clinically used as a fast-acting antidepressant. Here, we describe the potential of dexmedetomidine as a psychopharmacological repurposing candidate. This α2-adrenoceptor agonist is approved in the US and Europe for procedural sedation in intensive care. It has shown fast-acting inhibitory effects on perioperative stress-related pathologies, including psychomotor agitation, hyperalgesia, and neuroinflammatory overdrive, proving potentially useful in clinical psychiatry. We offer an overview of the pharmacological profile and effects of dexmedetomidine with potential utility for the treatment of neuropsychiatric symptoms. Dexmedetomidine exerts fast-acting and robust sedation, anxiolytic, analgesic, sleep-modulating, and anti-inflammatory effects. Moreover, the drug prevents postoperative agitation and delirium, possibly via neuroprotective mechanisms. While evidence in animals and humans supports these properties, larger controlled trials in clinical samples are generally scarce, and systematic studies with psychiatric patients do not exist. In conclusion, dexmedetomidine is a promising candidate for an experimental treatment targeting stress-related pathologies common in neuropsychiatric disorders such as depression, anxiety disorders, and posttraumatic stress disorder. First small proof-of-concept studies and then larger controlled clinical trials are warranted in psychiatric populations to test the feasibility and efficacy of dexmedetomidine in these conditions.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
| | - Dario A Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse, Zürich
| | - Francesco Bavato
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
| | - Boris B Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse, Zürich
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| |
Collapse
|
10
|
Bibineyshvili Y, Schiff ND, Calderon DP. Dexmedetomidine-mediated sleep phase modulation ameliorates motor and cognitive performance in a chronic blast-injured mouse model. Front Neurol 2022; 13:1040975. [PMID: 36388181 PMCID: PMC9663850 DOI: 10.3389/fneur.2022.1040975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 10/22/2024] Open
Abstract
Multiple studies have shown that blast injury is followed by sleep disruption linked to functional sequelae. It is well established that improving sleep ameliorates such functional deficits. However, little is known about longitudinal brain activity changes after blast injury. In addition, the effects of directly modulating the sleep/wake cycle on learning task performance after blast injury remain unclear. We hypothesized that modulation of the sleep phase cycle in our injured mice would improve post-injury task performance. Here, we have demonstrated that excessive sleep electroencephalographic (EEG) patterns are accompanied by prominent motor and cognitive impairment during acute stage after secondary blast injury (SBI) in a mouse model. Over time we observed a transition to more moderate and prolonged sleep/wake cycle disturbances, including changes in theta and alpha power. However, persistent disruptions of the non-rapid eye movement (NREM) spindle amplitude and intra-spindle frequency were associated with lasting motor and cognitive deficits. We, therefore, modulated the sleep phase of injured mice using subcutaneous (SC) dexmedetomidine (Dex), a common, clinically used sedative. Dex acutely improved intra-spindle frequency, theta and alpha power, and motor task execution in chronically injured mice. Moreover, dexmedetomidine ameliorated cognitive deficits a week after injection. Our results suggest that SC Dex might potentially improve impaired motor and cognitive behavior during daily tasks in patients that are chronically impaired by blast-induced injuries.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
| | - Nicholas D. Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Diany P. Calderon
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
11
|
Kartal S, Şen A, Tümkaya L, Erdivanlı B, Mercantepe T, Yılmaz A. The effect of dexmedetomidine on liver injury secondary to lower extremity ischemia-reperfusion in a diabetic rat model. Clin Exp Hypertens 2021; 43:677-682. [PMID: 34109906 DOI: 10.1080/10641963.2021.1937204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: In this study, we aimed to evaluate the hepatic protective effects of dexmedetomidine in the lower extremity ischemia-reperfusion model in diabetic rats biochemically and histopathologically.Methods: Rats were randomly divided into 4 equal groups (n = 6); Control (C) group, diabetic control group (DM), diabetic ischemia-reperfusion group (IR), group with diabetic IR and dexmedetomidine (DEX). In the IR and DEX groups were performed 120 min reperfusion after 120 min ischemia. In group DEX, 100 µ / kg dexmedetomidine was administered intraperitoneally 30 minutes before renal IR administration. Then, various histopathological and biochemical parameters were evaluated in liver tissue.Results: After ischemia-reperfusion, aspartate amino transaminase, alanine amino transaminase, total oxidant level, and thiobarbituric acid -reactive substances were increased, total thiol group and total antioxidant level were decreased and these parameters were found to improve in the group given dexmedetomidine. It was also observed that there was histopathological deterioration after ischemia-reperfusion and histopathological deterioration was found to be less with dexmedetomidine administration.Conclusion: The effects of lower extremity ischemia-reperfusion on hepatic tissue as distant organs were evaluated in diabetic rats, histopathologically, immunologically, biochemically, and liver damage was determined after ischemia-reperfusion, and dexmedetomidine was found to decrease liver damage.
Collapse
Affiliation(s)
- Seyfi Kartal
- Department of Anesthesiology and Reanimation, Trabzon Kanuni Training and Research Hospital, University of Healthy Sciences, Trabzon, Turkey
| | - Ahmet Şen
- Department of Anesthesiology and Reanimation, Trabzon Kanuni Training and Research Hospital, University of Healthy Sciences, Trabzon, Turkey
| | - Levent Tümkaya
- Department of Medical Sciences Histology Embryology, Faculty of Medicine, University of Recep Tayyip Erdoğan, Rize, Turkey
| | - Basar Erdivanlı
- Department of Anesthesiology and Reanimation, Faculty of Medicine, University of Recep Tayyip Erdoğan, Rize, Turkey
| | - Tolga Mercantepe
- Department of Medical Sciences Histology Embryology, Faculty of Medicine, University of Recep Tayyip Erdoğan, Rize, Turkey
| | - Adnan Yılmaz
- Department of Basic Sciences Biochemistry, Faculty of Medicine, University of Recep Tayyip Erdoğan, Rize, Turkey
| |
Collapse
|
12
|
Wang X, Liu Q. Dexmedetomidine relieved neuropathic pain and inflammation response induced by CCI through HMGB1/TLR4/NF-κB signal pathway. Biol Pharm Bull 2021:b21-00329. [PMID: 34421084 DOI: 10.1248/bpb.b21-00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropathic pain is one of the most intractable diseases. The lack of effective therapy measures remains a critical problem due to the poor understanding of the cause of neuropathic pain. The aim of this study was to investigate the effect of dexmedetomidine (Dex) in trigeminal neuropathic pain and the underlying molecular mechanism in order to identify possible therapeutic targets. We used a chronic constriction injury (CCI) model of mice to investigate whether Dex prevents neuropathic pain and the inflammation response. The α 2-adrenoceptors (α2AR) inhibitor BRL44408 and adenovirus for knocking down High mobility group box 1 (HMGB1) was administrated to confirm whether Dex exert its effect through targeting α2AR and HMGB1. The results indicated that Dex significantly inhibited CCI induced neuropathic pain through targeting α2AR and HMGB1. Dex inhibited the inflammatory response through decreasing the release and the mRNA expression of IL-1β, IL-6, and TNF-ɑ while increasing that of IL-10. Moreover, Dex participates in the regulation of HMGB1, Toll-like receptor 4 (TLR4), NFκb (p-65) expression and the phosphorylation of IκB-ɑ. In conclusion, Dex could relieve neuropathic pain through α2AR and HMGB1 and attenuate inflammation response.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, Affiliated Hospital of traditional Chinese medicine, Southwest Medical University
| | - Qing Liu
- Department of Anesthesiology, Affiliated Hospital of traditional Chinese medicine, Southwest Medical University
| |
Collapse
|
13
|
Yuan X, Fang J, Fu S, Li M. Effects of dexmedetomidine on behavior of and expressions of spinal cord P38 MAPK and spinal cord-related cytokines in rats with neuropathic pain. Minerva Med 2021; 113:733-735. [PMID: 34180645 DOI: 10.23736/s0026-4806.21.07603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaohong Yuan
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jun Fang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shuang Fu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mei Li
- Department of Anaesthesiology, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Jiangsu, China -
| |
Collapse
|
14
|
Dervan LA, Wrede JE, Watson RS. Sleep Architecture in Mechanically Ventilated Pediatric ICU Patients Receiving Goal-Directed, Dexmedetomidine- and Opioid-based Sedation. J Pediatr Intensive Care 2020; 11:32-40. [DOI: 10.1055/s-0040-1719170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022] Open
Abstract
AbstractThis single-center prospective observational study aimed to evaluate sleep architecture in mechanically ventilated pediatric intensive care unit (PICU) patients receiving protocolized light sedation. We enrolled 18 children, 6 months to 17 years of age, receiving mechanical ventilation and standard, protocolized sedation for acute respiratory failure, and monitored them with 24 hours of limited (10 channels) polysomnogram (PSG). The PSG was scored by a sleep technician and reviewed by a pediatric sleep medicine physician. Sixteen children had adequate PSG data for sleep stage scoring. All received continuous opioid infusions, 15 (94%) received dexmedetomidine, and 7 (44%) received intermittent benzodiazepines. Total sleep time was above the age-matched normal reference range (median 867 vs. 641 minutes, p = 0.002), attributable to increased stage N1 and N2 sleep. Diurnal variation was absent, with a median of 47% of sleep occurring during night-time hours. Rapid eye movement (REM) sleep was observed as absent in most patients (n = 12, 75%). Sleep was substantially disrupted, with more awakenings per hour than normal for age (median 2.2 vs. 1.1, p = 0.008), resulting in a median average sleep period duration (sleep before awakening) of only 25 minutes (interquartile range [IQR]: 14–36) versus normal 72 minutes (IQR: 65–86, p = 0.001). Higher ketamine and propofol doses were associated with increased sleep disruption. Children receiving targeted, opioid-, and dexmedetomidine-based sedation to facilitate mechanical ventilation for acute respiratory failure have substantial sleep disruption and abnormal sleep architecture, achieving little to no REM sleep. Dexmedetomidine-based sedation does not ensure quality sleep in this population.
Collapse
Affiliation(s)
- Leslie A. Dervan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Joanna E. Wrede
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington, United States
| | - R. Scott Watson
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, Washington, United States
| |
Collapse
|
15
|
Baer AG, Bourdon AK, Price JM, Campagna SR, Jacobson DA, Baghdoyan HA, Lydic R. Isoflurane anesthesia disrupts the cortical metabolome. J Neurophysiol 2020; 124:2012-2021. [PMID: 33112692 PMCID: PMC7814899 DOI: 10.1152/jn.00375.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Identifying similarities and differences in the brain metabolome during different states of consciousness has broad relevance for neuroscience and state-dependent autonomic function. This study focused on the prefrontal cortex (PFC) as a brain region known to modulate states of consciousness. Anesthesia was used as a tool to eliminate wakefulness. Untargeted metabolomic analyses were performed on microdialysis samples obtained from mouse PFC during wakefulness and during isoflurane anesthesia. Analyses detected 2,153 molecules, 91 of which could be identified. Analytes were grouped as detected during both wakefulness and anesthesia (n = 61) and as unique to wakefulness (n = 23) or anesthesia (n = 7). Data were analyzed using univariate and multivariate approaches. Relative to wakefulness, during anesthesia there was a significant (q < 0.0001) fourfold change in 21 metabolites. During anesthesia 11 of these 21 molecules decreased and 10 increased. The Kyoto Encyclopedia of Genes and Genomes database was used to relate behavioral state-specific changes in the metabolome to metabolic pathways. Relative to wakefulness, most of the amino acids and analogs measured were significantly decreased during isoflurane anesthesia. Nucleosides and analogs were significantly increased during anesthesia. Molecules associated with carbohydrate metabolism, maintenance of lipid membranes, and normal cell functions were significantly decreased during anesthesia. Significant state-specific changes were also discovered among molecules comprising lipids and fatty acids, monosaccharides, and organic acids. Considered together, these molecules regulate point-to-point transmission, volume conduction, and cellular metabolism. The results identify a novel ensemble of candidate molecules in PFC as putative modulators of wakefulness and the loss of wakefulness. NEW & NOTEWORTHY The loss of wakefulness caused by a single concentration of isoflurane significantly altered levels of interrelated metabolites in the prefrontal cortex. The results support the interpretation that states of consciousness reflect dynamic interactions among cortical neuronal networks involving a humbling number of molecules that comprise the brain metabolome.
Collapse
Affiliation(s)
- Aaron G Baer
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
| | - Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Joshua M Price
- Office of Information Technology, University of Tennessee, Knoxville, Tennessee
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee.,Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, Tennessee
| | - Daniel A Jacobson
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Helen A Baghdoyan
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee.,Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Ralph Lydic
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee.,Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
16
|
Kim JL, Bulthuis NE, Cameron HA. The Effects of Anesthesia on Adult Hippocampal Neurogenesis. Front Neurosci 2020; 14:588356. [PMID: 33192273 PMCID: PMC7643675 DOI: 10.3389/fnins.2020.588356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023] Open
Abstract
In animal studies, prolonged sedation with general anesthetics has resulted in cognitive impairments that can last for days to weeks after exposure. One mechanism by which anesthesia may impair cognition is by decreasing adult hippocampal neurogenesis. Several studies have seen a reduction in cell survival after anesthesia in rodents with most studies focusing on two particularly vulnerable age windows: the neonatal period and old age. However, the extent to which sedation affects neurogenesis in young adults remains unclear. Adult neurogenesis in the dentate gyrus (DG) was analyzed in male and female rats 24 h after a 4-h period of sedation with isoflurane, propofol, midazolam, or dexmedetomidine. Three different cell populations were quantified: cells that were 1 week or 1 month old, labeled with the permanent birthdate markers EdU or BrdU, respectively, and precursor cells, identified by their expression of the endogenous dividing cell marker proliferating cell nuclear antigen (PCNA) at the time of sacrifice. Midazolam and dexmedetomidine reduced cell proliferation in the adult DG in both sexes but had no effect on postmitotic cells. Propofol reduced the number of relatively mature, 28-day old, neurons specifically in female rats and had no effects on younger cells. Isoflurane had no detectable effects on any of the cell populations examined. These findings show no general effect of sedation on adult-born neurons but demonstrate that certain sedatives do have drug-specific and sex-specific effects. The impacts observed on different cell populations predict that any cognitive effects of these sedatives would likely occur at different times, with propofol producing a rapid but short-lived impairment and midazolam and dexmedetomidine altering cognition after a several week delay. Taken together, these studies lend support to the hypothesis that decreased neurogenesis in the young adult DG may mediate the effects of sedation on cognitive function.
Collapse
Affiliation(s)
| | | | - Heather A. Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Wen Y, Lv Y, Niu J, Xin C, Cui L, Vetrivelan R, Lu J. Roles of motor and cortical activity in sleep rebound in rat. Eur J Neurosci 2020; 52:4100-4114. [PMID: 32588491 DOI: 10.1111/ejn.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Sleep pressure that builds up gradually during the extended wakefulness results in sleep rebound. Several lines of evidence, however, suggest that wake per se may not be sufficient to drive sleep rebound and that rapid eye movement (REM) and non-rapid eye movement (NREM) sleep rebound may be differentially regulated. In this study, we investigated the relative contribution of brain versus physical activities in REM and NREM sleep rebound by four sets of experiments. First, we forced locomotion in rats in a rotating wheel for 4 hr and examined subsequent sleep rebound. Second, we exposed the rats lacking homeostatic sleep response after prolonged quiet wakefulness and arousal brain activity induced by chemoactivation of parabrachial nucleus to the same rotating wheel paradigm and tested if physical activity could rescue the sleep homeostasis. Third, we varied motor activity levels while concurrently inhibiting the cortical activity by administering ketamine or xylazine (motor inhibitor), or ketamine + xylazine mixture and investigated if motor activity in the absence of activated cortex can cause NREM sleep rebound. Fourth and finally, we manipulated cortical activity by administering ketamine (that induced active wakefulness and waking brain) alone or in combination with atropine (that selectively inhibits the cortex) and studied if cortical inhibition irrespective of motor activity levels can block REM sleep rebound. Our results demonstrate that motor activity but not cortical activity determines NREM sleep rebound whereas cortical activity but not motor activity determines REM sleep rebound.
Collapse
Affiliation(s)
- Yujun Wen
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ningxia Key Laboratory of Craniocerebral Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yudan Lv
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianguo Niu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ningxia Key Laboratory of Craniocerebral Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Christopher Xin
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Li Cui
- Department of Neurology, Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Dexmedetomidine Activation of Dopamine Neurons in the Ventral Tegmental Area Attenuates the Depth of Sedation in Mice. Anesthesiology 2020; 133:377-392. [DOI: 10.1097/aln.0000000000003347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background
Dexmedetomidine induces a sedative response that is associated with rapid arousal. To elucidate the underlying mechanisms, the authors hypothesized that dexmedetomidine increases the activity of dopaminergic neurons in the ventral tegmental area, and that this action contributes to the unique sedative properties of dexmedetomidine.
Methods
Only male mice were used. The activity of ventral tegmental area dopamine neurons was measured by a genetically encoded Ca2+ indicator and patch-clamp recording. Dopamine neurotransmitter dynamics in the medial prefrontal cortex and nucleus accumbens were measured by a genetically encoded dopamine sensor. Ventral tegmental area dopamine neurons were inhibited or activated by a chemogenetic approach, and the depth of sedation was estimated by electroencephalography.
Results
Ca2+ signals in dopamine neurons in the ventral tegmental area increased after intraperitoneal injection of dexmedetomidine (40 μg/kg; dexmedetomidine, 16.917 [14.882; 21.748], median [25%; 75%], vs. saline, –0.745 [–1.547; 0.359], normalized data, P = 0.001; n = 6 mice). Dopamine transmission increased in the medial prefrontal cortex after intraperitoneal injection of dexmedetomidine (40 μg/kg; dexmedetomidine, 10.812 [9.713; 15.104], median [25%; 75%], vs. saline, –0.498 [–0.664; –0.355], normalized data, P = 0.001; n = 6 mice) and in the nucleus accumbens (dexmedetomidine, 8.543 [7.135; 11.828], median [25%; 75%], vs. saline, –0.329 [–1.220; –0.047], normalized data, P = 0.001; n = 6 mice). Chemogenetic inhibition or activation of ventral tegmental area dopamine neurons increased or decreased slow waves, respectively, after intraperitoneal injection of dexmedetomidine (40 μg/kg; delta wave: two-way repeated measures ANOVA, F[2, 33] = 8.016, P = 0.002; n = 12 mice; theta wave: two-way repeated measures ANOVA, F[2, 33] = 22.800, P < 0.0001; n = 12 mice).
Conclusions
Dexmedetomidine activates dopamine neurons in the ventral tegmental area and increases dopamine concentrations in the related forebrain projection areas. This mechanism may explain rapid arousability upon dexmedetomidine sedation.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
19
|
Dexmedetomidine attenuates the induction and reverses the progress of 6-hydroxydopamine- induced parkinsonism; involvement of KATP channels, alpha 2 adrenoceptors and anti-inflammatory mechanisms. Toxicol Appl Pharmacol 2019; 382:114743. [DOI: 10.1016/j.taap.2019.114743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/20/2019] [Accepted: 08/30/2019] [Indexed: 01/18/2023]
|
20
|
Feng ZX, Dong H, Qu WM, Zhang W. Oral Delivered Dexmedetomidine Promotes and Consolidates Non-rapid Eye Movement Sleep via Sleep-Wake Regulation Systems in Mice. Front Pharmacol 2018; 9:1196. [PMID: 30568589 PMCID: PMC6290063 DOI: 10.3389/fphar.2018.01196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/28/2018] [Indexed: 01/11/2023] Open
Abstract
Dexmedetomidine, a highly selective α2-adrenergic agonist, is widely used in clinical anesthesia and ICU sedation. Recent studies have found that dexmedetomidine-induced sedation resembles the recovery sleep that follows sleep deprivation, but whether orally delivered dexmedetomidine can be a candidate for the treatment of insomnia remains unclear. In this study, we estimated the sedative effects of orally delivered dexmedetomidine by spontaneous locomotor activity (LMA), and then evaluated the hypnotic effects of dexmedetomidine on sleep–wake profiles during the dark and light phase using electroencephalography/electromyogram (EEG/EMG), respectively. Using c-Fos staining, we explored the effects of dexmedetomidine on the cerebral cortex and the sub-cortical sleep–wake regulation systems. The results showed that orally delivered dexmedetomidine at 2 h into the dark cycle reduced LMA and wakefulness in a dose-dependent manner, which was consistent with the increase in non-rapid eye movement sleep (NREM sleep). However, dexmedetomidine also induced a rebound in LMA, wake and rapid eye movement sleep (REM sleep) in the later stage. In addition, orally delivered dexmedetomidine 100 μg/kg at 2 h into the light cycle shortened the latency to NREM sleep and increased the duration of NREM sleep for 6 h, while decreased REM sleep for 6 h. Sleep architecture analysis showed that dexmedetomidine stabilized the sleep structure during the light phase by decreasing sleep–wake transition and increasing long-term NREM sleep (durations of 1024–2024 s and >2024 s) while reducing short-term wakefulness (duration of 4–16 s). Unlike the classic hypnotic diazepam, dexmedetomidine also increased the delta power in the EEG spectra of NREM sleep, especially at the frequency of 1.75–3.25 Hz, while ranges of 0.5–1.0 Hz were decreased. Immunohistochemical analysis showed that orally delivered dexmedetomidine 100 μg/kg at 2 h into the dark cycle decreased c-Fos expression in the cerebral cortex and sub-cortical arousal systems, while it increased c-Fos expression in the neurons of the ventrolateral preoptic nucleus. These results indicate that orally delivered dexmedetomidine can induce sedative and hypnotic effects by exciting the sleep-promoting nucleus and inhibiting the wake-promoting areas.
Collapse
Affiliation(s)
- Zhen-Xin Feng
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Dong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Li X, Zhang W. Influence of intrathecal injection with dexmedetomidine on the behavioral ability and analgesic effects on rats with neuropathic pain and expression of protein kinase C in the spinal dorsal horn. Exp Ther Med 2018; 16:3835-3840. [PMID: 30344660 PMCID: PMC6176169 DOI: 10.3892/etm.2018.6664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the influence of intrathecal injection with dexmedetomidine on the behavioral ability and analgesic effects of rat models with chronic neuropathic pain. It also discusses the role that the expression of protein kinase C (PKC) in the spinal dorsal horn plays in the analgesic mechanism of dexmedetomidine. A total of 35 Sprague Dawley rats were selected. Five rats were randomly chosen as the blank control group and the rest were prepared as models with chronic constriction injury, which were divided into the model and the observation group (n=15, each group). The observation group was injected with 10 ml dexmedetomidine intrathecally, while the model group was injected with an equivalent amount of saline. The behavioral abilities were evaluated by cumulative and motor function score. In addition, mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were applied for the detection of pain threshold. Immunohistochemistry staining method was used to test the positive expression of PKC, and western blot analysis was used for the detection of PKC quantitative expression levels. After initiation, the instant cumulative and motor function score of the model and observation groups increased, while the values of MWT and TWL decreased. After initiation, the positive expression of PKC in the spinal dorsal horn of the model and observation groups rose dramatically, and the quantitative expression level was also on the rise. The positive and quantitative expression levels in the observation group reduced gradually over time. Thus, the intrathecal injection of dexmedetomidine may improve the behavioral ability of rats with chronic neuralgia and reduce the degree of pain, which may be associated with the inhibition of the expression of PKC in the spinal dorsal horn.
Collapse
Affiliation(s)
- Xiaoning Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
22
|
Purvis EM, Klein AK, Ettenberg A. Lateral habenular norepinephrine contributes to states of arousal and anxiety in male rats. Behav Brain Res 2018; 347:108-115. [PMID: 29526789 PMCID: PMC5988948 DOI: 10.1016/j.bbr.2018.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 01/16/2023]
Abstract
Recent research has identified the lateral habenula (LHb) as a brain region playing an important role in the production of stressful and anxiogenic states. Additionally, norepinephrine (NE) has long been known to be involved in arousal, stress and anxiety, and NE projections to the LHb have been identified emanating from the locus coeruleus (LC). The current research was devised to test the hypothesis that NE release within the LHb contributes to the occurrence of anxiogenic behaviors. Male rats were implanted with bilateral guide cannula aimed at the LHb and subsequently treated with intracranial (IC) infusions of the selective α2 adrenergic autoreceptor agonist, dexmedetomidine (DEX) (0, 0.5, 1.0 μg/side), prior to assessment of ambulatory and anxiogenic behavior in tests of spontaneous locomotion, open field behavior, and acoustic startle-response. Results demonstrated that DEX administration significantly reduced the overall locomotor behavior of subjects at both doses indicating that infusion of even small doses of this α2 agonist into the LHb can have profound effects on the subjects' general levels of alertness and activity. DEX was also found to attenuate anxiety as evidenced by a reduction in the magnitude of a startle-response to an acoustic 110 dB stimulus. Taken together, these results identify a role for NE release within the LHb in both arousal and anxiety.
Collapse
Affiliation(s)
- Erin M Purvis
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA
| | - Adam K Klein
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA
| | - Aaron Ettenberg
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA.
| |
Collapse
|
23
|
Pharmakologie der Schlafendoskopie. SOMNOLOGIE 2018. [DOI: 10.1007/s11818-018-0163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Abstract
The majority of 20th century investigations into anesthetic effects on the nervous system have used electrophysiology. Yet some fundamental limitations to electrophysiologic recordings, including the invasiveness of the technique, the need to place (potentially several) electrodes in every site of interest, and the difficulty of selectively recording from individual cell types, have driven the development of alternative methods for detecting neuronal activation. Two such alternative methods with cellular scale resolution have matured in the last few decades and will be reviewed here: the transcription of immediate early genes, foremost c-fos, and the influx of calcium into neurons as reported by genetically encoded calcium indicators, foremost GCaMP6. Reporters of c-fos allow detection of transcriptional activation even in deep or distant nuclei, without requiring the accurate targeting of multiple electrodes at long distances. The temporal resolution of c-fos is limited due to its dependence upon the detection of transcriptional activation through immunohistochemical assays, though the development of RT-PCR probes has shifted the temporal resolution of the assay when tissues of interest can be isolated. GCaMP6 has several isoforms that trade-off temporal resolution for signal to noise, but the fastest are capable of resolving individual action potential events, provided the microscope used scans quickly enough. GCaMP6 expression can be selectively targeted to neuronal populations of interest, and potentially thousands of neurons can be captured within a single frame, allowing the neuron-by-neuron reporting of circuit dynamics on a scale that is difficult to capture with electrophysiology, as long as the populations are optically accessible.
Collapse
|
25
|
Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018; 12:4. [PMID: 29434539 PMCID: PMC5790777 DOI: 10.3389/fncir.2018.00004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/11/2018] [Indexed: 01/07/2023] Open
Abstract
Sedatives target just a handful of receptors and ion channels. But we have no satisfying explanation for how activating these receptors produces sedation. In particular, do sedatives act at restricted brain locations and circuitries or more widely? Two prominent sedative drugs in clinical use are zolpidem, a GABAA receptor positive allosteric modulator, and dexmedetomidine (DEX), a selective α2 adrenergic receptor agonist. By targeting hypothalamic neuromodulatory systems both drugs induce a sleep-like state, but in different ways: zolpidem primarily reduces the latency to NREM sleep, and is a controlled substance taken by many people to help them sleep; DEX produces prominent slow wave activity in the electroencephalogram (EEG) resembling stage 2 NREM sleep, but with complications of hypothermia and lowered blood pressure—it is used for long term sedation in hospital intensive care units—under DEX-induced sedation patients are arousable and responsive, and this drug reduces the risk of delirium. DEX, and another α2 adrenergic agonist xylazine, are also widely used in veterinary clinics to sedate animals. Here we review how these two different classes of sedatives, zolpidem and dexmedetomideine, can selectively interact with some nodal points of the circuitry that promote wakefulness allowing the transition to NREM sleep. Zolpidem enhances GABAergic transmission onto histamine neurons in the hypothalamic tuberomammillary nucleus (TMN) to hasten the transition to NREM sleep, and DEX interacts with neurons in the preoptic hypothalamic area that induce sleep and body cooling. This knowledge may aid the design of more precise acting sedatives, and at the same time, reveal more about the natural sleep-wake circuitry.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Nocturnal Dexmedetomidine in Nonintubated, Critically Ill Patients: Sleep or Sedation? Anesthesiology 2017; 127:397-398. [DOI: 10.1097/aln.0000000000001721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Sleep Endoscopy and Anesthetic Considerations in Pediatric Obstructive Sleep Apnea: A Review. Int Anesthesiol Clin 2016; 55:33-41. [PMID: 27930415 DOI: 10.1097/aia.0000000000000128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Effects of dexmedetomidine administered for postoperative analgesia on sleep quality in patients undergoing abdominal hysterectomy. J Clin Anesth 2016; 36:118-122. [PMID: 28183547 DOI: 10.1016/j.jclinane.2016.10.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/27/2016] [Accepted: 10/28/2016] [Indexed: 11/22/2022]
Abstract
STUDY OBJECTIVE To evaluate the effects of postoperative dexmedetomidine infusion on sleep quality in patients undergoing abdominal hysterectomy. DESIGN Randomized, double-blind study. SETTING Postoperative recovery area and ward. PATIENTS Sixty patients of American Society of Anesthesiologists physical status I or II scheduled for elective hysterectomy were enrolled. INTERVENTIONS Patients in group C received sufentanil infusion (a continuous dosage of 0.02 μg kg-1 h-1, a bolus dose of 0.02 μg/kg, a 10-minute lockout interval), and patients in group D received combined infusion of sufentanil with dexmedetomidine (a continuous dosage of sufentanil 0.02 μg kg-1 h-1 with dexmedetomidine 0.05 μg kg-1 h-1, a bolus doses of sufentanil 0.02 μg/kg with dexmedetomidine 0.05 μg/kg, a 10-minute lockout interval). MEASUREMENTS Polysomnography (PSG) was performed on the following 3 nights: the night before surgery (PSG1), the first night after surgery (PSG2), and the second night after surgery (PSG3). Postoperative pain scores using visual analog scoring scale, levels of sedation, and cumulative sufentanil consumptions were also recorded. RESULTS After surgery, patients suffered from significant sleep disturbance with a lower sleep efficiency index and subjective sleep quality and a higher arousal index at PSG2 and PSG3. Compared with group C, postoperative administration of dexmedetomidine significantly improved the sleep efficiency index and subjective sleep quality. Although the rapid eye movement and N3 stage sleep did not differ between the 2 groups, the N1 stage and arousal index were lower and the N2 stage in group D at PSG2 and PSG3 was higher. Compared with group C, patients in group D have better pain relief with a lower visual analog scoring scale and cumulative sufentanil consumptions at 6, 24, and 48 hours after surgery. CONCLUSIONS Dexmedetomidine infusion not only offers effective analgesia but also improves postoperative sleep quality in patients undergoing hysterectomy.
Collapse
|
29
|
Akeju O, Kim SE, Vazquez R, Rhee J, Pavone KJ, Hobbs LE, Purdon PL, Brown EN. Spatiotemporal Dynamics of Dexmedetomidine-Induced Electroencephalogram Oscillations. PLoS One 2016; 11:e0163431. [PMID: 27711165 PMCID: PMC5053525 DOI: 10.1371/journal.pone.0163431] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022] Open
Abstract
An improved understanding of the neural correlates of altered arousal states is fundamental for precise brain state targeting in clinical settings. More specifically, electroencephalogram recordings are now increasingly being used to relate drug-specific oscillatory dynamics to clinically desired altered arousal states. Dexmedetomidine is an anesthetic adjunct typically administered in operating rooms and intensive care units to produce and maintain a sedative brain state. However, a high-density electroencephalogram characterization of the neural correlates of the dexmedetomidine-induced altered arousal state has not been previously accomplished. Therefore, we administered dexmedetomidine (1mcg/kg bolus over 10 minutes, followed by 0.7mcg/kg/hr over 50 minutes) and recorded high-density electroencephalogram signals in healthy volunteers, 18–36 years old (n = 8). We analyzed the data with multitaper spectral and global coherence methods. We found that dexmedetomidine was associated with increased slow-delta oscillations across the entire scalp, increased theta oscillations in occipital regions, increased spindle oscillations in frontal regions, and decreased beta oscillations across the entire scalp. The theta and spindle oscillations were globally coherent. During recovery from this state, these electroencephalogram signatures reverted towards baseline signatures. We report that dexmedetomidine-induced electroencephalogram signatures more closely approximate the human sleep onset process than previously appreciated. We suggest that these signatures may be targeted by real time visualization of the electroencephalogram or spectrogram in clinical settings. Additionally, these signatures may aid the development of control systems for principled neurophysiological based brain-state targeting.
Collapse
Affiliation(s)
- Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Seong-Eun Kim
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Rafael Vazquez
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - James Rhee
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Kara J. Pavone
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Lauren E. Hobbs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Patrick L. Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Emery N. Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
30
|
Shteamer JW, Dedhia RC. Sedative choice in drug-induced sleep endoscopy: A neuropharmacology-based review. Laryngoscope 2016; 127:273-279. [DOI: 10.1002/lary.26132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jack W. Shteamer
- Department of Otolaryngology; Emory University School of Medicine; Atlanta Georgia U.S.A
| | - Raj C. Dedhia
- Department of Otolaryngology; Emory University School of Medicine; Atlanta Georgia U.S.A
- Emory Sleep Center; Emory University School of Medicine; Atlanta Georgia U.S.A
| |
Collapse
|
31
|
Wang Y, Han R, Zuo Z. Dexmedetomidine post-treatment induces neuroprotection via activation of extracellular signal-regulated kinase in rats with subarachnoid haemorrhage. Br J Anaesth 2016; 116:384-92. [PMID: 26865131 DOI: 10.1093/bja/aev549] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dexmedetomidine, a sedative agent, provides neuroprotection when administered during or before brain ischaemia. This study was designed to determine whether dexmedetomidine post-treatment induces neuroprotection against subarachnoid haemorrhage (SAH) and the mechanisms for this effect. METHODS Subarachnoid haemorrhage was induced by endovascular perforation to the junction of the right middle and anterior cerebral arteries in adult rats. Dexmedetomidine was applied immediately or 2 h after onset of SAH. Neurological outcome was evaluated 2 days after SAH. Right frontal cortex area 1 was harvested 24 h after SAH for western blotting. RESULTS Subarachnoid haemorrhage reduced neurological scores and increased brain oedema and blood-brain barrier permeability. These effects were attenuated by dexmedetomidine post-treatment. Neuroprotection by dexmedetomidine was abolished by PD98095, an inhibitor of extracellular signal-regulated kinase (ERK) activation. Phospho-ERK, the activated form of ERK, was increased by dexmedetomidine; this activation was inhibited by PD98095. CONCLUSIONS Dexmedetomidine post-treatment provides neuroprotection against SAH. This effect appears to be mediated by ERK.
Collapse
Affiliation(s)
- Y Wang
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA Department of Anaesthesiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - R Han
- Department of Anaesthesiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Z Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA
| |
Collapse
|
32
|
Zhang H, Wheat H, Wang P, Jiang S, Baghdoyan HA, Neubig RR, Shi XY, Lydic R. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia. Sleep 2016; 39:393-404. [PMID: 26564126 DOI: 10.5665/sleep.5450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/17/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES This study tested the hypothesis that Regulators of G protein Signaling (RGS) proteins contribute to the regulation of wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep, and to sleep disruption caused by volatile anesthetics. METHODS The three groups used in this study included wild-type (WT; n = 7) mice and knock-in mice that were heterozygous (+/GS; n = 7) or homozygous (GS/GS; n = 7) for an RGS-insensitive allele that causes prolonged Gαi2 signaling. Mice were implanted with electrodes for recording sleep and conditioned for 1 week or more to sleep in the laboratory. Using within and between groups designs, 24-h recordings of wakefulness, NREM sleep, and REM sleep were compared across three interventions: (1) baseline (control) and after 3 h of being anesthetized with (2) isoflurane or (3) sevoflurane. RESULTS Baseline recordings during the light phase revealed that relative to WT mice, homozygous RGS-insensitive (GS/GS) mice exhibit significantly increased wakefulness and decreased NREM and REM sleep. During the dark phase, these state-specific differences remained significant but reversed direction of change. After cessation of isoflurane and sevoflurane anesthesia there was a long-lasting and significant disruption of sleep and wakefulness. The durations of average episodes of wakefulness, NREM sleep, and REM sleep were significantly altered as a function of genotype and isoflurane and sevoflurane anesthesia. CONCLUSIONS RGS proteins and Gαi2 play a significant role in regulating states of wakefulness, NREM sleep, and REM sleep. Genotype-specific differences demonstrate that RGS proteins modulate sleep disruption caused by isoflurane and sevoflurane anesthesia. The results also support the conclusion that isoflurane and sevoflurane anesthesia do not satisfy the homeostatic drive for sleep.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI.,Department of Anesthesiology, The Second Artillery General Hospital, Beijing, China
| | - Heather Wheat
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Peter Wang
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Sha Jiang
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Helen A Baghdoyan
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI.,Departments of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI
| | - X Y Shi
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ralph Lydic
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI.,Departments of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN
| |
Collapse
|