1
|
Lee JE, Jung H, Byun SH, Park JM, Yeo J, Jeon Y, Lee SW, Park SS, Lim DG, Kim SO, Kwak KH. Effect of Dexmedetomidine Preconditioning on Hepatic Ischemia-Reperfusion Injury in Acute Hyperglycemic Rats. Transplant Proc 2023; 55:2478-2486. [PMID: 37867004 DOI: 10.1016/j.transproceed.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Acute hyperglycemia frequently occurs in stressful situations, including liver transplantation or hepatic surgery, which may affect the protective effects of dexmedetomidine preconditioning and increase postoperative mortality. Therefore, this study aimed to investigate the effects of dexmedetomidine on hepatic ischemia-reperfusion injury in acute hyperglycemia. METHODS Thirty-six Sprague-Dawley rats were randomly assigned to 6 groups, including a combination between 2 glycemic (normo- and hyperglycemia) and 3 ischemia-reperfusion conditions (sham, ischemia-reperfusion only, and dexmedetomidine plus ischemia-reperfusion). Dexmedetomidine 70 μg/kg was preconditioned 30 minutes before ischemic injury. After 6 hours of reperfusion, serum aminotransferase levels were measured to confirm the hepatic tissue injury. Furthermore, inflammatory (nuclear factor-κb, tumor necrosis factor-α, and interleukin-6) and oxidative stress markers (malondialdehyde and superoxide dismutase) were detected. RESULTS Ischemia-reperfusion injury significantly increased the serum levels of aminotransferase and inflammatory and oxidative stress markers. These ischemia-reperfusion-induced changes were further exacerbated in hyperglycemia and were significantly attenuated by dexmedetomidine preconditioning. However, the effects of dexmedetomidine in hyperglycemia were lesser than those in normoglycemia (P < .05 for aminotransferases, inflammatory markers, malondialdehyde, and superoxide dismutase). CONCLUSIONS These findings suggest that the protective effects of dexmedetomidine preconditioning may be intact against hepatic ischemia-reperfusion injury in acute hyperglycemia. Although its effects appeared to be relatively reduced, this may be because of the increase in oxidative stress and inflammatory response caused by acute hyperglycemia. To determine whether the effects of dexmedetomidine itself would be impaired in hyperglycemia, further study is needed.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Hoon Jung
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Sung-Hye Byun
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jun-Mo Park
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jinseok Yeo
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Younghoon Jeon
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - See Woo Lee
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Sung-Sik Park
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Dong Gun Lim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Si-Oh Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Kyung-Hwa Kwak
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
2
|
Zeng L, Liu J, Zhang T, Liu Y, Liao L, Chen X, Dong S. Study on the protective mechanism of dexmedetomidine on the liver of perioperative diabetic patients: A randomized controlled trial. Medicine (Baltimore) 2022; 101:e30899. [PMID: 36254014 PMCID: PMC9575753 DOI: 10.1097/md.0000000000030899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Although several studies have reported that dexmedetomidine is a highly selective α2-adrenergic receptor agonist that protects liver function in perioperative patients by inhibiting oxidative stress (OS) and inflammatory response, patients with type 2 diabetes mellitus (T2DM) have not been included in the previous studies. The purpose of this study was to investigate the effects of perioperative low-dose dexmedetomidine on perioperative liver function in T2DM patients. METHODS This was a single-center, placebo-controlled randomized trial. Fifty-four T2DM patients scheduled for debridement of lower extremity ulcers were included in this study and randomly divided into 2 groups (n = 27 per group): the dexmedetomidine group (DEX group) and the control group (CON group). Continuous intravenous infusion of dexmedetomidine (DEX group) or normal saline (CON group) was administered from the completion of monitoring to the end of surgery. All participants received femoral and sciatic nerve block with 0.33% ropivacaine. The main result was the activity of liver enzymes (AST, ALT) reflecting liver function. The secondary results included variables reflecting blood glucose (Glu), blood lipids (TG, HDL, LDL, total cholesterol), biomarkers of OS (MDA, SOD), and systemic inflammatory response (TNF-α, IL-6). RESULTS Compared with CON group, DEX group exhibited a reduction in hemodynamic parameters, Glu, systemic inflammatory response, and liver injury indicators. OS response MDA activity was lower in DEX group than in CON group, while SOD was higher than that in CON group. The variables reflecting lipid metabolism function showed no differences between the groups. CONCLUSION SUBSECTIONS Dexmedetomidine administered perioperatively can reduce Glu levels and protect the liver by attenuating OS injury and inflammatory response in T2DM patients without any potential risk.
Collapse
Affiliation(s)
- Lin Zeng
- Shifang People’s Hospital, Shifang, Sichuan Province, China
| | - Juan Liu
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Tianyao Zhang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yusong Liu
- Shifang People’s Hospital, Shifang, Sichuan Province, China
| | - Lumiu Liao
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xuelian Chen
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Shuhua Dong
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- * Correspondence: Shuhua Dong, Department of Anesthesiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China (e-mail: dong. )
| |
Collapse
|
3
|
Sun M, Wang R, Xia R, Xia Z, Wu Z, Wang T. Amelioration of myocardial ischemia/reperfusion injury in diabetes: A narrative review of the mechanisms and clinical applications of dexmedetomidine. Front Pharmacol 2022; 13:949754. [PMID: 36120296 PMCID: PMC9470922 DOI: 10.3389/fphar.2022.949754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms contributing to the pathogenesis of myocardial ischemia-reperfusion (I/R) injury are complex and multifactorial. Many strategies have been developed to ameliorate myocardial I/R injuries based on these mechanisms. However, the cardioprotective effects of these strategies appear to diminish in diabetic states. Diabetes weakens myocardial responses to therapies by disrupting intracellular signaling pathways which may be responsible for enhancing cellular resistance to damage. Intriguingly, it was found that Dexmedetomidine (DEX), a potent and selective α2-adrenergic agonist, appears to have the property to reverse diabetes-related inhibition of most intervention-mediated myocardial protection and exert a protective effect. Several mechanisms were revealed to be involved in DEX’s protection in diabetic rodent myocardial I/R models, including PI3K/Akt and associated GSK-3β pathway stimulation, endoplasmic reticulum stress (ERS) alleviation, and apoptosis inhibition. In addition, DEX could attenuate diabetic myocardial I/R injury by up-regulating autophagy, reducing ROS production, and inhibiting the inflammatory response through HMGB1 pathways. The regulation of autonomic nervous function also appeared to be involved in the protective mechanisms of DEX. In the present review, the evidence and underlying mechanisms of DEX in ameliorating myocardial I/R injury in diabetes are summarized, and the potential of DEX for the treatment/prevention of myocardial I/R injury in diabetic patients is discussed.
Collapse
Affiliation(s)
- Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhilin Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| |
Collapse
|
4
|
Zhou W, Wang J, Yang D, Tian S, Tan C, Yang Y, Sui W, Sun J, Zhang Z. Effects of dexmedetomidine on glucose-related hormones and lactate in non-diabetic patients under general anesthesia: a randomized controlled trial. Minerva Anestesiol 2021; 88:8-15. [PMID: 34709010 DOI: 10.23736/s0375-9393.21.15734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To explore the effects of dexmedetomidine on glucose-related hormones and lactate levels in non-diabetic patients undergoing malignant gastrointestinal tumor radical resection. METHODS Groups D1 and D2 received dexmedetomidine loading dose 1 μg/kg and maintenance dose 0.25 and 0.5 μg/kg/h, respectively. Group C received saline solution. Glucose, lactate, insulin, glucagon, cortisol, epinephrine, norepinephrine and dopamine levels were measured before dexmedetomidine infusion (T1), 1 h after surgery beginning (T2), at surgery ending (T3), and 1 h after transfer to the post-anesthesia care unit (T4). RESULTS Compared with group C, glucose levels increased in group D2 at T2 and reduced in groups D1 and D2 at T4. Lactate levels reduced in groups D1 and D2 at T4. A positive correlation between glucose and lactate levels was found in all groups. Compared with group C, insulin level reduced in group D2 at T2; glucagon levels reduced in groups D1 and D2 at T4; cortisol levels reduced in group D1 at T4 and in group D2 at T3 and T4; epinephrine and norepinephrine levels reduced in group D1 at T4 and in group D2 at T2 and T4; and dopamine level reduced in group D2 at T4. CONCLUSIONS Dexmedetomidine loading dose 1 μg/kg and maintenance dose 0.25 μg/kg/h produces a stable insulin level and significant postoperative decreases in glucagon, cortisol, epinephrine and norepinephrine secretion with stable maintenance of intraoperative and postoperative blood glucose levels and decreased postoperative lactate levels in non-diabetic patients under general anesthesia.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jiahua Wang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, China.,School of Medicine, Yangzhou University, Yangzhou, China
| | - Dawei Yang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Shunping Tian
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Chao Tan
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Yang Yang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Wei Sui
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jianhong Sun
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Zhuan Zhang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, China -
| |
Collapse
|
5
|
Li CJ, Wang BJ, Mu DL, Wang DX. The effect of dexmedetomidine on intraoperative blood glucose homeostasis: secondary analysis of a randomized controlled trial. BMC Anesthesiol 2021; 21:139. [PMID: 33962565 PMCID: PMC8103750 DOI: 10.1186/s12871-021-01360-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose To investigate the effect of dexmedetomidine on intraoperative blood glucose hemostasis in elderly patients undergoing non-cardiac major surgery. Methods This was secondary analysis of a randomized controlled trial. Patients in dexmedetomidine group received a loading dose dexmedetomidine (0.6 μg/kg in 10 min before anaesthesia induction) followed by a continuous infusion (0.5 μg/kg/hr) till 1 h before the end of surgery. Patients in control group received volume-matched normal saline at the same time interval. Primary outcome was the incidence of intraoperative hyperglycemia (blood glucose higher than 10 mmol/L). Results 303 patients in dexmedetomidine group and 306 patients in control group were analysed. The incidence of intraoperative hyperglycemia showed no statistical significance between dexmedetomidine group and control group (27.4% vs. 22.5%, RR = 1.22, 95%CI 0.92–1.60, P = 0.167). Median value of glycemic variation in dexmedetomidine group (2.5, IQR 1.4–3.7, mmol) was slightly lower than that in control group (2.6, IQR 1.5–4.0, mmol), P = 0.034. In multivariable logistic analysis, history of diabetes (OR 3.007, 95%CI 1.826–4.950, P < 0.001), higher baseline blood glucose (OR 1.353, 95%CI 1.174–1.560, P < 0.001) and prolonged surgery time (OR 1.197, 95%CI 1.083–1.324, P < 0.001) were independent risk factors of hyperglycaemia. Conclusions Dexmedetomidine presented no effect on intraoperative hyperglycemia in elderly patients undergoing major non-cardiac surgery. Trial registration Present study was registered at Chinese Clinical Trial Registry on December 1, 2015 (www.chictr.org.cn, registration number ChiCTR-IPR-15007654).
Collapse
Affiliation(s)
- Chun-Jing Li
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Bo-Jie Wang
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Dong-Liang Mu
- Department of Anesthesiology, Peking University First Hospital, Beijing, China.
| | - Dong-Xin Wang
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Tao L, Guo X, Xu M, Wang Y, Xie W, Chen H, Ma M, Li X. Dexmedetomidine ameliorates high-fat diet-induced nonalcoholic fatty liver disease by targeting SCD1 in obesity mice. Pharmacol Res Perspect 2021; 9:e00700. [PMID: 33474802 PMCID: PMC7753983 DOI: 10.1002/prp2.700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no therapeutic drugs approved for this pathology. Insulin resistance (IR) is implicated both in pathogenesis of nonalcoholic fatty liver disease (NAFLD) and in disease progression from steatosis to nonalcoholic steatohepatitis. In this study, we have characterized effects of an α2 -adrenoceptor agonist, dexmedetomidine (DEX), which can alleviate IR in hepatocytes in high-fat diet (HFD)-induced NAFLD mice. The NAFLD mice received a daily intraperitoneal administration of DEX (100 μg·kg-1 ) after 16 days exhibited lower body weight, fewer and smaller fat droplets in the liver, markedly reduced the plasma triglyceride levels, accompanied by improvement of liver damage. This inhibition of lipid accumulation activity in obese mice was associated with a robust reduction in the mRNA and protein expression of the lipogenic enzyme stearyl-coenzyme A desaturase 1 (SCD1), which was probably mediated by the inhibition of C/EBP β, PPAR γ and C/EBP α through suppressing α2A -adrenoceptor (α2A -AR) via negative feedback. Additionally, DEX can also improve IR and inflammation by inhibiting the mitogen-activated protein kinases (MAPK) and nuclear factor kappa beta (NFκB) signaling pathway in vivo. Our findings implicate that DEX may act as a potential anti-steatotic drug which ameliorates obesity-associated fatty liver and improves IR and inflammation, probably by suppressing the expression of SCD1 and the inhibition of MAPK/NFκB pathway and suggest the potential adjuvant use for the treatment of NAFLD.
Collapse
Affiliation(s)
- Linfen Tao
- Biology Science InstitutesChongqing Medical UniversityChongqingChina
- Department of Laboratory MedicineSchool of Medical Technology and EngineeringFujian Medical UniversityFuzhouChina
| | - Xiaolong Guo
- The Department of Clinical LaboratoryZigong First People's HospitalZigongChina
| | - Min Xu
- Biology Science InstitutesChongqing Medical UniversityChongqingChina
| | - Yumeng Wang
- Biology Science InstitutesChongqing Medical UniversityChongqingChina
| | - Wenhua Xie
- Biology Science InstitutesChongqing Medical UniversityChongqingChina
| | - Hong Chen
- Biology Science InstitutesChongqing Medical UniversityChongqingChina
| | - Mengyao Ma
- Biology Science InstitutesChongqing Medical UniversityChongqingChina
| | - Xi Li
- Biology Science InstitutesChongqing Medical UniversityChongqingChina
| |
Collapse
|
7
|
Liu F, Zhu S, Ni L, Huang L, Wang K, Zhou Y. Dexmedetomidine alleviates insulin resistance in hepatocytes by reducing endoplasmic reticulum stress. Endocrine 2020; 67:87-94. [PMID: 31679138 PMCID: PMC6969002 DOI: 10.1007/s12020-019-02118-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Dexmedetomidine (DEX) stabilizes intraoperative blood glucose levels and reduces insulin resistance (IR), a common perioperative complication. However, the molecular mechanisms underlying these effects remain unclear. Since endoplasmic reticulum stress (ERS) is a mechanism of IR, this study sought to examine whether DEX can effectively alleviate IR by reducing ERS. METHODS HepG2 and LO2 cells were treated with different concentrations of insulin. The glucose content assay and Cell Counting Kit-8 (CCK-8) were then employed to determine the optimal insulin concentration capable of inducing IR without affecting cell viability. Insulin-resistant hepatocytes were cultured with different concentrations of DEX for 24 h, and the glucose concentration in the supernatant was measured. ERS was assessed by qPCR and western blotting. The latter was also used to quantify the expression of phosphorylated protein kinase B (p-AKT), phosphoenolpyruvate carboxykinase (PEPCK), and glucose 6 phosphatase (G6Pase), which are key proteins involved in the action of insulin. RESULTS After 48-h of culturing with 10 μg/mL insulin, glucose consumption in hepatocytes was found to be reduced. IR hepatocytes cultured with 10, 100, or 1000 ng/ml DEX for 24 h showed a concentration-dependent increase in glucose consumption. Elevated mRNA and protein levels of ERS markers binding immunoglobulin protein (BIP) and ER protein 29 (ERp29), were reversed by DEX treatment. Moreover, reduced p-AKT and increased PEPCK and G6Pase protein levels in IR hepatocytes were also restored following DEX treatment. CONCLUSION DEX may alleviate IR in hepatocytes by reducing ERS serving to restore insulin action via the IRS-1/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fanfan Liu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Shaojun Zhu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lifeng Ni
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ling'er Huang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Kuirong Wang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yanfeng Zhou
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
8
|
Omar Mostafa M, Makram Botros J, Sayed Khaleel AM. Effect of Dexmedetomidine Versus Nalbuphine as an Adjuvant on Paravertebral Block to Manage Postoperative Pain After Mastectomies. Anesth Pain Med 2018; 8:e13308. [PMID: 30027066 PMCID: PMC6045777 DOI: 10.5812/aapm.13308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Breast cancer is the commonest cancer in women worldwide. Many patients are frequently admitted to the operating theaters for mastectomies. Thoracic paravertebral block (PVB) is increasingly used as an effective means for post-operative pain relief. The present study aimed at evaluating the effectiveness and safety of dexmedetomidine and nalbuphine as an adjuvant to bupivacaine local anesthetic in thoracic paravertebral block in breast cancer surgeries. Methods A total of 60 female patients aged 18 to 78 were included in the study, and ASA I, II, III were scheduled for mastectomy. These patients were unsystematically assigned into three 20-member groups: group PB received bupivacaine (0.3 mL/ kg) + 1 mL (0.9% sodium chloride) normal saline; group PBD received bupivacaine (0.3 mL/kg) + dexmedetomidine 1 μg/kg; and Group PBN received bupivacaine (0.3 mL/kg) and 10 mg (1 mL) nalbuphine. Demographic data, intraoperative SPO2, ETCO2, HR, SBP and DBP, pain scores (at rest and movement), and sedation scores were recorded every 30 minutes during the initial 2 hours and 4, 8, 24, and 48 hours from T0. Also, postoperative tramadol consumption, the time to the first analgesic request, and any complications were also recorded. Results There were no statistically significant differences among the three groups regarding demographic data, SPO2, ETCO2, HR, SBP and DBP intraoperatively. Moreover, no significant difference was found in HR, SBP and DBP postoperatively. Postoperative pain scores were significantly higher in group BP, whether at rest or movement. The sedation was significantly higher in PBD group in the first 12 hours postoperatively. There was a significantly lower postoperative tramadol consumption in PBN group and a significantly longer time to the first analgesic request than other groups. No complications were reported in any group. Conclusions Addition of nalbuphine 10 mg as an adjuvant to bupivacaine local anesthetic in PVB improved the quality of the block and decreased postoperative analgesic requirements than the bupivacaine only group and dexmedetomidine and bupivacaine group. However, adding dexmedetomidine to bupivacaine increased the time to the first analgesic request and more sedation than bupivacaine and bupivacaine and nalbuphine.
Collapse
Affiliation(s)
| | - Joseph Makram Botros
- Anesthesiology, Faculty of Medicine, Fayoum University, Faiyum, Egypt
- Corresponding author: Joseph Makram Botros, Lecturer of Anesthesiology, Faculty of Medicine, Fayoum University, Faiyum, Egypt. E-mail:
| | | |
Collapse
|