1
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Moua T, Baqir M, Ryu JH. What Is on the Horizon for Treatments in Idiopathic Pulmonary Fibrosis? J Clin Med 2024; 13:6304. [PMID: 39518443 PMCID: PMC11546700 DOI: 10.3390/jcm13216304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal lung disease most commonly encountered in older individuals. Several decades of research have contributed to a better understanding of its pathogenesis, though only two drugs thus far have shown treatment efficacy, i.e., by slowing the decline of lung function. The pathogenesis of IPF remains incompletely understood and involves multiple complex interactions and mechanisms working in tandem or separately to result in unchecked deposition of extracellular matrix components and collagen characteristic of the disease. These mechanisms include aberrant response to injury in the alveolar epithelium, inappropriate communication between epithelial cells and mesenchymal cells, imbalances between oxidative injury and tissue repair, recruitment of inflammatory pathways that induce fibrosis, and cell senescence leading to sustained activation and proliferation of fibroblasts and myofibroblasts. Targeted approaches to each of these mechanistic pathways have led to recent clinical studies evaluating the safety and efficacy of several agents. This review highlights selected concepts in the pathogenesis of IPF as a rationale for understanding current or future therapeutic approaches, followed by a review of several selected agents and their recent or active clinical studies. Current novel therapies include approaches to attenuating or modifying specific cellular or signaling processes in the fibrotic pathway, modifying inflammatory and metabolic derangements, and minimizing inappropriate cell senescence.
Collapse
Affiliation(s)
- Teng Moua
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; (M.B.); (J.H.R.)
| | | | | |
Collapse
|
3
|
Wang T, Yao Y, Wang Y, Wei W, Yin B, Huang M, Yuan P, Chen R, Wang F, Wu S, Hou H. Evaluating the diagnostic and therapeutic significance of KL-6 in patients with interstitial lung diseases. Heliyon 2024; 10:e27561. [PMID: 38560233 PMCID: PMC10979234 DOI: 10.1016/j.heliyon.2024.e27561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Background This study aimed to assess the diagnostic value of Krebs von den Lungen-6 (KL-6), Surfactant protein-A (SP-A), SP-D and molecular matrixmetalloproteinase-7 (MMP-7) in discriminating patients with interstitial lung diseases (ILDs) from disease control subjects. Methods Serum levels of KL-6, SP-A, SP-D and MMP-7 were measured in both the ILD and non-ILD (NILD) groups. Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the diagnostic potential of these markers and laboratory indices. High-resolution computed tomography (HRCT) fibrosis scores were determined, and their correlation with the serum markers was analyzed. Results Serum levels of KL-6 and MMP-7 were significantly elevated in the ILD group compared to the control group, while no significant differences were observed for SP-A and SP-D. ROC analysis of KL-6 demonstrated superior diagnostic accuracy, with a sensitivity of 76.36%, specificity of 91.07%, and an area under curve (AUC) of 0.902 (95%CI 0.866-0.945). These findings were consistent across an additional cohort. Correlation analysis revealed a link between KL-6 levels at initial diagnosis and HRCT fibrosis scores, indicating disease severity. Moreover, a negative correlation was found between KL-6 and pulmonary function indices, reflecting disease progression. Patients with increased 12-month HRCT fibrosis score showed higher lactate dehydrogenase (LDH) levels, with LDH exhibiting an AUC of 0.767 (95% CI: 0.520-0.927) as a predictor of progression. Conclusions Serum KL-6 detection proves to be a valuable tool for accurately distinguishing ILDs from control subjects. While KL-6 shows a correlation with HRCT fibrosis scores and a negative association with pulmonary function indices, its predictive value for ILDs prognosis is limited. Trial registration This study received retrospective approval from the Ethical Committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (institutional review board ID: TJ-IRB20210331, date: 2021.03.30).
Collapse
Affiliation(s)
- Ting Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihao Yao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Botao Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rujia Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiji Wu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Wu W, Wang Z, Zhang H, Zhang X, Tian H. circGRHPR inhibits aberrant epithelial-mesenchymal transformation progression of lung epithelial cells associated with idiopathic pulmonary fibrosis. Cell Biol Toxicol 2024; 40:7. [PMID: 38267743 PMCID: PMC10808371 DOI: 10.1007/s10565-024-09839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Air pollution has greatly increased the risk of idiopathic pulmonary fibrosis (IPF). Circular RNAs (circRNAs) have been found to play a significant role in the advancement of IPF, but there is limited evidence of correlation between circRNAs and lung epithelial cells (LECs) in IPF. This research aimed to explore the influence of circRNAs on the regulation of EMT progression in LECs, with the objective of elucidating its mechanism and establishing its association with IPF. Our results suggested that the downregulation of circGRHPR in peripheral blood of clinical cases was associated with the diagnosis of IPF. Meanwhile, we found that circGRHPR was downregulated in transforming growth factor-beta1 (TGF-β1)-induced A549 and Beas-2b cells. It is a valid model to study the abnormal EMT progression of IPF-associated LECs in vitro. The overexpression of circGRHPR inhibited the abnormal EMT progression of TGF-β1-induced LECs. Furthermore, as the sponge of miR-665, circGRHPR released the expression of E3 ubiquitin-protein ligase NEDD4-like (NEDD4L), thus promoting its downstream transforming growth factor beta receptor 2 (TGFBR2) ubiquitination. It is helpful to reduce the response of LECs to TGF-β1 signaling. In summary, circGRHPR/miR-665/NEDD4L axis inhibited the abnormal EMT progression of TGF-β1-induced LECs by promoting TGFBR2 ubiquitination, which provides new ideas and potential targets for the treatment of IPF.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China.
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China.
| |
Collapse
|
5
|
Perrot CY, Karampitsakos T, Herazo-Maya JD. Monocytes and macrophages: emerging mechanisms and novel therapeutic targets in pulmonary fibrosis. Am J Physiol Cell Physiol 2023; 325:C1046-C1057. [PMID: 37694283 PMCID: PMC10635664 DOI: 10.1152/ajpcell.00302.2023] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Pulmonary fibrosis results from a plethora of abnormal pathogenetic events. In idiopathic pulmonary fibrosis (IPF), inhalational, environmental, or occupational exposures in genetically and epigenetically predisposed individuals trigger recurrent cycles of alveolar epithelial cell injury, activation of coagulation pathways, chemoattraction, and differentiation of monocytes into monocyte-derived alveolar macrophages (Mo-AMs). When these events happen intermittently and repeatedly throughout the individual's life cycle, the wound repair process becomes aberrant leading to bronchiolization of distal air spaces, fibroblast accumulation, extracellular matrix deposition, and loss of the alveolar-capillary architecture. The role of immune dysregulation in IPF pathogenesis and progression has been underscored in the past mainly after the disappointing results of immunosuppressant use in IPF patients; however, recent reports highlighting the prognostic and mechanistic roles of monocytes and Mo-AMs revived the interest in immune dysregulation in IPF. In this review, we will discuss the role of these cells in the onset and progression of IPF, as well as potential targeted therapies.
Collapse
Affiliation(s)
- Carole Y Perrot
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Theodoros Karampitsakos
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jose D Herazo-Maya
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
6
|
Zhang N, Yao H, Zhang Z, Li Z, Chen X, Zhao Y, Ju R, He J, Pan H, Liu X, Lv Y. Ongoing involvers and promising therapeutic targets of hepatic fibrosis: The hepatic immune microenvironment. Front Immunol 2023; 14:1131588. [PMID: 36875101 PMCID: PMC9978172 DOI: 10.3389/fimmu.2023.1131588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Hepatic fibrosis is often secondary to chronic inflammatory liver injury. During the development of hepatic fibrosis, the damaged hepatocytes and activated hepatic stellate cells (HSCs) caused by the pathogenic injury could secrete a variety of cytokines and chemokines, which will chemotactic innate and adaptive immune cells of liver tissue and peripheral circulation infiltrating into the injury site, mediating the immune response against injury and promoting tissue reparation. However, the continuous release of persistent injurious stimulus-induced inflammatory cytokines will promote HSCs-mediated fibrous tissue hyperproliferation and excessive repair, which will cause hepatic fibrosis development and progression to cirrhosis even liver cancer. And the activated HSCs can secrete various cytokines and chemokines, which directly interact with immune cells and actively participate in liver disease progression. Therefore, analyzing the changes in local immune homeostasis caused by immune response under different pathological states will greatly enrich our understanding of liver diseases' reversal, chronicity, progression, and even deterioration of liver cancer. In this review, we summarized the critical components of the hepatic immune microenvironment (HIME), different sub-type immune cells, and their released cytokines, according to their effect on the development of progression of hepatic fibrosis. And we also reviewed and analyzed the specific changes and the related mechanisms of the immune microenvironment in different chronic liver diseases.Moreover, we retrospectively analyzed whether the progression of hepatic fibrosis could be alleviated by modulating the HIME.We aimed to elucidate the pathogenesis of hepatic fibrosis and provide the possibility for exploring the therapeutic targets for hepatic fibrosis.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huimin Yao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhixuan Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiayi He
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Heli Pan
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoli Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Fu C, Chen L, Cheng Y, Yang W, Zhu H, Wu X, Cai B. Identification of immune biomarkers associated with basement membranes in idiopathic pulmonary fibrosis and their pan-cancer analysis. Front Genet 2023; 14:1114601. [PMID: 36936416 PMCID: PMC10017543 DOI: 10.3389/fgene.2023.1114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease of unknown etiology, characterized by diffuse alveolitis and alveolar structural damage. Due to the short median survival time and poor prognosis of IPF, it is particularly urgent to find new IPF biomarkers. Previous studies have shown that basement membranes (BMs) are associated with the development of IPF and tumor metastasis. However, there is still a lack of research on BMs-related genes in IPF. Therefore, we investigated the expression level of BMs genes in IPF and control groups, and explored their potential as biomarkers for IPF diagnosis. In this study, the GSE32537 and GSE53845 datasets were used as training sets, while the GSE24206, GSE10667 and GSE101286 datasets were used as validation sets. In the training set, seven immune biomarkers related to BMs were selected by differential expression analysis, machine learning algorithm (LASSO, SVM-RFE, Randomforest) and ssGSEA analysis. Further ROC analysis confirmed that seven BMs-related genes played an important role in IPF. Finally, four immune-related Hub genes (COL14A1, COL17A1, ITGA10, MMP7) were screened out. Then we created a logistic regression model of immune-related hub genes (IHGs) and used a nomogram to predict IPF risk. The nomogram model was evaluated to have good reliability and validity, and ROC analysis showed that the AUC value of IHGs was 0.941 in the training set and 0.917 in the validation set. Pan-cancer analysis showed that IHGs were associated with prognosis, immune cell infiltration, TME, and drug sensitivity in 33 cancers, suggesting that IHGs may be potential targets for intervention in human diseases including IPF and cancer.
Collapse
Affiliation(s)
- Chenkun Fu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lina Chen
- Guiyang Public Health Clinical Center, Guiyang, China
- Guizhou Medical University, Guiyang, China
| | - Yiju Cheng
- Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Guiyang, Guiyang, China
- *Correspondence: Yiju Cheng, ; Wenting Yang,
| | - Wenting Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Yiju Cheng, ; Wenting Yang,
| | - Honglan Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiao Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Banruo Cai
- Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
8
|
Sari E, He C, Margaroli C. Plasticity towards Rigidity: A Macrophage Conundrum in Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11443. [PMID: 36232756 PMCID: PMC9570276 DOI: 10.3390/ijms231911443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and ultimately fatal diffuse parenchymal lung disease. The molecular mechanisms of fibrosis in IPF patients are not fully understood and there is a lack of effective treatments. For decades, different types of drugs such as immunosuppressants and antioxidants have been tested, usually with unsuccessful results. Although two antifibrotic drugs (Nintedanib and Pirfenidone) are approved and used for the treatment of IPF, side effects are common, and they only slow down disease progression without improving patients' survival. Macrophages are central to lung homeostasis, wound healing, and injury. Depending on the stimulus in the microenvironment, macrophages may contribute to fibrosis, but also, they may play a role in the amelioration of fibrosis. In this review, we explore the role of macrophages in IPF in relation to the fibrotic processes, epithelial-mesenchymal transition (EMT), and their crosstalk with resident and recruited cells and we emphasized the importance of macrophages in finding new treatments.
Collapse
Affiliation(s)
- Ezgi Sari
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camilla Margaroli
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Yang F, Ma Z, Li W, Kong J, Zong Y, Wendusu B, Wu Q, Li Y, Dong G, Zhao X, Wang J. Identification and immune characteristics of molecular subtypes related to fatty acid metabolism in idiopathic pulmonary fibrosis. Front Nutr 2022; 9:992331. [PMID: 36211517 PMCID: PMC9537386 DOI: 10.3389/fnut.2022.992331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background Although fatty acid metabolism has been confirmed to be involved in the pathological process of idiopathic pulmonary fibrosis (IPF), systematic analyses on the immune process mediated by fatty acid metabolism-related genes (FAMRGs) in IPF remain lacking. Methods The gene expression data of 315 patients with IPF were obtained from Gene Expression Omnibus database and were divided into the training and verification sets. The core FAMRGs of the training set were identified through weighted gene co-expression network analysis. Then, the fatty acid metabolism-related subtypes in IPF were identified on the basis of k-means unsupervised clustering. The scores of fatty acid metabolism and the expression of the fibrosis biomarkers in different subtypes were compared, and functional enrichment analysis was carried out on the differentially expressed genes between subtypes. A random forest model was used to select important FAMRGs as diagnostic markers for distinguishing between subtypes, and a line chart model was constructed and verified by using other datasets and rat models with different degrees of pulmonary fibrosis. The difference in immune cell infiltration among subtypes was evaluated with CIBERSORT, and the correlation between core diagnostic markers and immune cells were analyzed. Results Twenty-four core FAMRGs were differentially expressed between the training set and normal samples, and IPF was divided into two subtypes. Significant differences were observed between the two subtypes in biological processes, such as linoleic acid metabolism, cilium movement, and natural killer (NK) cell activation. The subtype with high fatty acid metabolism had more severe pulmonary fibrosis than the other subtype. A reliable construction line chart model based on six diagnostic markers was constructed, and ABCA3 and CYP24A1 were identified as core diagnostic markers. Significant differences in immune cell infiltration were found between the two subtypes, and ABCA3 and CYP24A1 were closely related to NK cells. Conclusion Fatty acid metabolism and the immune process that it mediates play an important role in the occurrence and development of IPF. The analysis of the role of FAMRGs in IPF may provide a new potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bilige Wendusu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Qinglu Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangda Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Clements D, Miller S, Babaei-Jadidi R, Adam M, Potter SS, Johnson SR. Cross talk between LAM cells and fibroblasts may influence alveolar epithelial cell behavior in lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L283-L293. [PMID: 34936509 DOI: 10.1152/ajplung.00351.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a female-specific cystic lung disease in which tuberous sclerosis complex 2 (TSC2)-deficient LAM cells, LAM-associated fibroblasts (LAFs), and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial (AT2) cells. We hypothesized that the behavior of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in the patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared with parenchymal AT2 cells, demonstrated by increased Ki67 expression. Furthermore, nodular AT2 cells express proteins associated with epithelial activation in other disease states including matrix metalloproteinase 7, and fibroblast growth factor 7 (FGF7). In vitro, LAF-conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair, and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, a potential mediator of fibroblast-epithelial cross talk, in a mechanistic target of rapamycin (mTOR)-dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behavior. Fibroblast-derived FGF7 may contribute to the cross talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.
Collapse
Affiliation(s)
- Debbie Clements
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Suzanne Miller
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Roya Babaei-Jadidi
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Simon R Johnson
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- National Centre for Lymphangioleiomyomatosis, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
11
|
Nieuwenhuis TO, Rosenberg AZ, McCall MN, Halushka MK. Tissue, age, sex, and disease patterns of matrisome expression in GTEx transcriptome data. Sci Rep 2021; 11:21549. [PMID: 34732773 PMCID: PMC8566510 DOI: 10.1038/s41598-021-00943-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
The extracellular matrix (ECM) has historically been explored through proteomic methods. Whether or not global transcriptomics can yield meaningful information on the human matrisome is unknown. Gene expression data from 17,382 samples across 52 tissues, were obtained from the Genotype-Tissue Expression (GTEx) project. Additional datasets were obtained from The Cancer Genome Atlas (TCGA) program and the Gene Expression Omnibus for comparisons. Gene expression levels generally matched proteome-derived matrisome expression patterns. Further, matrisome gene expression properly clustered tissue types, with some matrisome genes including SERPIN family members having tissue-restricted expression patterns. Deeper analyses revealed 382 gene transcripts varied by age and 315 varied by sex in at least one tissue, with expression correlating with digitally imaged histologic tissue features. A comparison of TCGA tumor, TCGA adjacent normal and GTEx normal tissues demonstrated robustness of the GTEx samples as a generalized matrix control, while also determining a common primary tumor matrisome. Additionally, GTEx tissues served as a useful non-diseased control in a separate study of idiopathic pulmonary fibrosis (IPF) matrix changes, while identifying 22 matrix genes upregulated in IPF. Altogether, these findings indicate that the transcriptome, in general, and GTEx in particular, has value in understanding the state of organ ECM.
Collapse
Affiliation(s)
- Tim O Nieuwenhuis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Leong E, Bezuhly M, Marshall JS. Distinct Metalloproteinase Expression and Functions in Systemic Sclerosis and Fibrosis: What We Know and the Potential for Intervention. Front Physiol 2021; 12:727451. [PMID: 34512395 PMCID: PMC8432940 DOI: 10.3389/fphys.2021.727451] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic debilitating idiopathic disorder, characterized by deposition of excessive extracellular matrix (ECM) proteins such as collagen which leads to fibrosis of the skin and other internal organs. During normal tissue repair and remodeling, the accumulation and turnover of ECM proteins are tightly regulated by the interaction of matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of metalloproteinases (TIMPs). SSc is associated with dysregulation of the activity of these proteolytic and inhibitory proteins within the tissue microenvironment, tipping the balance toward fibrosis. The resultant ECM accumulation further perpetuates tissue stiffness and decreased function, contributing to poor clinical outcomes. Understanding the expression and function of these endogenous enzymes and inhibitors within specific tissues is therefore critical to the development of therapies for SSc. This brief review describes recent advances in our understanding of the functions and mechanisms of ECM remodeling by metalloproteinases and their inhibitors in the skin and lungs affected in SSc. It highlights recent progress on potential candidates for intervention and therapeutic approaches for treating SSc fibrosis.
Collapse
Affiliation(s)
- Edwin Leong
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Michael Bezuhly
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Cabrera Cesar E, Lopez-Lopez L, Lara E, Hidalgo-San Juan MV, Parrado Romero C, Palencia JLRS, Martín-Montañez E, Garcia-Fernandez M. Serum Biomarkers in Differential Diagnosis of Idiopathic Pulmonary Fibrosis and Connective Tissue Disease-Associated Interstitial Lung Disease. J Clin Med 2021; 10:3167. [PMID: 34300333 PMCID: PMC8307287 DOI: 10.3390/jcm10143167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The goal of this study is to determine whether Advanced glycosylated end-products (AGE), Advanced oxidation protein products (AOPP) and Matrix metalloproteinase 7 (MMP7) could be used as differential biomarkers for idiopathic pulmonary fibrosis (IPF) and connective tissue disease-associated interstitial lung disease (CTD-ILD). METHOD Seventy-three patients were enrolled: 29 with IPF, 14 with CTD-ILD, and 30 healthy controls. The study included a single visit by participants. A blood sample was drawn and serum was analysed for AGE using spectrofluorimetry, AOPP by spectrophotometry, and MMP7 using sandwich-type enzyme-linked immunosorbent assay. RESULTS AGE, AOPP and MMP7 serum levels were significantly higher in both IPF and CTD-ILD patients versus healthy controls; and AGE was also significantly elevated in CTD-ILD compared to the IPF group. AGE plasma levels clearly distinguished CTD-ILD patients from healthy participants (AUC = 0.95; 95% IC 0.86-1), whereas in IPF patients, the distinction was moderate (AUC = 0.78; 95% IC 0.60-0.97). CONCLUSION In summary, our results provide support for the potential value of serum AGE, AOPP and MMP7 concentrations as diagnostic biomarkers in IPF and CTD-ILD to differentiate between ILD patients and healthy controls. Furthermore, this study provides evidence, for the first time, for the possible use of AGE as a differential diagnostic biomarker to distinguish between IPF and CTD-ILD. The value of these biomarkers as additional tools in a multidisciplinary approach to IPF and CTD-ILD diagnosis needs to be considered and further explored. Multicentre studies are necessary to understand the role of AGE in differential diagnosis.
Collapse
Affiliation(s)
- Eva Cabrera Cesar
- Respiratory Service, Universitary Virgen de la Victoria Hospital, 29010 Málaga, Spain; (L.L.-L.); (M.V.H.-S.J.)
| | - Lidia Lopez-Lopez
- Respiratory Service, Universitary Virgen de la Victoria Hospital, 29010 Málaga, Spain; (L.L.-L.); (M.V.H.-S.J.)
| | - Estrella Lara
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| | | | - Concepcion Parrado Romero
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| | - Jose Luis Royo Sánchez Palencia
- Department of Biochemistry, Biomedical Research Institute of Málaga, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
| | - Elisa Martín-Montañez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain;
| | - Maria Garcia-Fernandez
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| |
Collapse
|
14
|
Furukawa H, Oka S, Higuchi T, Shimada K, Hashimoto A, Matsui T, Tohma S. Biomarkers for interstitial lung disease and acute-onset diffuse interstitial lung disease in rheumatoid arthritis. Ther Adv Musculoskelet Dis 2021; 13:1759720X211022506. [PMID: 34211592 PMCID: PMC8216360 DOI: 10.1177/1759720x211022506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
Interstitial lung disease (ILD) is frequently a complication of rheumatoid arthritis (RA) as an extra-articular manifestation which has a poor prognosis. Acute-onset diffuse ILD (AoDILD) occasionally occurs in RA and includes acute exacerbation of ILD, drug-induced ILD, and Pneumocystis pneumonia. AoDILD also confers a poor prognosis in RA. Previously-established biomarkers for ILD include Krebs von den lungen-6 and surfactant protein-D originally defined in patients with idiopathic pulmonary fibrosis; the sensitivity of these markers for RA-associated ILD (RA-ILD) is low. Although many studies on ILD markers have been performed in idiopathic pulmonary fibrosis, only a few validation studies in RA-ILD or AoDILD have been reported. Biomarkers for RA-ILD and AoDILD are thus still required. Recently, genomic, cytokine, antibody, and metabolomic profiles of RA-ILD or AoDILD have been investigated with the aim of improving biomarkers. In this review, we summarize current preliminary data on these potential biomarkers for RA-ILD or AoDILD. The development of biomarkers on RA-ILD has only just begun. When validated, such candidate biomarkers will provide valuable information on pathogenesis, prognosis, and drug responses in RA-ILD in future.
Collapse
Affiliation(s)
- Hiroshi Furukawa
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose 204-8585, Japan
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
| | - Shomi Oka
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
| | - Takashi Higuchi
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
- Department of Nephrology, Ushiku Aiwa General Hospital, Ushiku, Japan
| | - Kota Shimada
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
- Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Fuchu, Japan
| | - Atsushi Hashimoto
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
- Department of Internal Medicine, Sagami Seikyou Hospital, Minami-ku, Sagamihara, Japan
| | - Toshihiro Matsui
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
| | - Shigeto Tohma
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
| |
Collapse
|
15
|
Terraneo S, Lesma E, Ancona S, Imeri G, Palumbo G, Torre O, Giuliani L, Centanni S, Peron A, Tresoldi S, Cetrangolo P, Di Marco F. Exploring the Role of Matrix Metalloproteinases as Biomarkers in Sporadic Lymphangioleiomyomatosis and Tuberous Sclerosis Complex. A Pilot Study. Front Med (Lausanne) 2021; 8:605909. [PMID: 33981713 PMCID: PMC8107231 DOI: 10.3389/fmed.2021.605909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Lymphangioleiomyomatosis can develop in a sporadic form (S-LAM) or in women with tuberous sclerosis complex (TSC). The matrix metalloproteinases (MMPs) are extracellular matrix-degrading enzymes potentially involved in cystic lung destruction, and in the process of migration of LAM cells. The aim of the study was to explore the role of MMP-2 and MMP-7, such as vascular endothelial growth factor (VEGF) -C and -D in women with LAM, including patients with minor pulmonary disease (i.e., <10 lung cysts), and TSC with or without LAM. Methods: We evaluated 50 patients: 13 individuals affected by S-LAM, 20 with TSC-LAM, of whom six with minor pulmonary disease, and 17 with TSC without pulmonary involvement. Sixteen healthy women were used as controls. Results: MMP-2 resulted higher in LAM compared to healthy volunteers, and TSC patients (p = 0.040). MMP-7 was higher in TSC-LAM patient, with even greater values in patients with TSC-LAM minor pulmonary disease, than in S-LAM patients, and in controls (p = 0.001). VEGF-D level was lower than 800 pg/mL in all healthy controls and resulted higher in S-LAM and TSC-LAM than in TSC patients and controls (p < 0.001). VEGF-C values were not statistically different in the study population (p = 0.354). The area under ROC curves (AUCs) of MMP-2, and MMP-7 for predicting LAM diagnosis were of 0.756 ± 0.079 (p = 0.004), and 0.828 ± 0.060 (p < 0.001), respectively. Considering only patients with TSC, the AUCs for MMP-2, and MMP-7 in predicting LAM were 0.694 ± 0.088 (p = 0.044), and 0.713 ± 0.090 (p = 0.027), respectively. Conclusions: Our data suggest that MMP-2 and MMP-7 could be promising biomarkers for LAM diagnosis.
Collapse
Affiliation(s)
- Silvia Terraneo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy.,Respiratory Unit, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Elena Lesma
- Laboratory of Pharmacology, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Ancona
- Laboratory of Pharmacology, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Gianluca Imeri
- Respiratory Unit, Azienda Socio Sanitaria Territoriale - Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giuseppina Palumbo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy.,Respiratory Unit, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Olga Torre
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy.,Respiratory Unit, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Lisa Giuliani
- Respiratory Unit, Azienda Socio Sanitaria Territoriale - Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Stefano Centanni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy.,Respiratory Unit, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Angela Peron
- Human Pathology and Medical Genetics, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Child Neuropsychiatry Unit - Epilepsy Center, Department of Health Sciences, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, Milan, Italy.,Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Silvia Tresoldi
- Radiology Unit - Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Paola Cetrangolo
- Laboratory of Pharmacology, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Fabiano Di Marco
- Respiratory Unit, Azienda Socio Sanitaria Territoriale - Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
16
|
Interstitial Score and Concentrations of IL-4Rα, PAR-2, and MMP-7 in Bronchoalveolar Lavage Fluid Could Be Useful Markers for Distinguishing Idiopathic Interstitial Pneumonias. Diagnostics (Basel) 2021; 11:diagnostics11040693. [PMID: 33924683 PMCID: PMC8070528 DOI: 10.3390/diagnostics11040693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 01/28/2023] Open
Abstract
Idiopathic interstitial pneumonia (IIP) entails a variable group of lung diseases of unknown etiology. Idiopathic pulmonary fibrosis, nonspecific interstitial pneumonia, interstitial lung diseases related to connective tissue disease (CTD-ILD), and hypersensitivity pneumonitis (HP) can manifest with similar clinical, radiological, and histopathological features. In a differential diagnosis, biomarkers can play a significant role. We assume that levels of specific cyto- or chemokines or their receptors can signal pathogenetic processes in the lungs. Eighty patients with different types of idiopathic interstitial pneumonia were enrolled in this study. Cell counts and concentrations of tumor necrosis factor (TNF)-α, interleukin-4 receptor α, proteinase-activated receptor (PAR)-2, matrix metalloproteinase (MMP)-7, and B cell-activating factor were measured in bronchoalveolar lavage fluid using commercial ELISA kits. High resolution computer tomography results were evaluated using alveolar and interstitial (IS) score scales. Levels of TNF-α were significantly higher in HP compared to fibrosing IIP (p < 0.0001) and CTD-ILD (p = 0.0381). Concentrations of IL-4Rα, PAR-2, and MMP-7 were positively correlated with IS (p = 0.0009; p = 0.0256; p = 0.0015, respectively). Since TNF-α plays a major role in inflammation, our results suggest that HP is predominantly an inflammatory disease. From the positive correlation with IS we believe that IL-4Rα, PAR-2, and MMP-7 could serve as fibroproliferative biomarkers in differential diagnosis of IIP.
Collapse
|
17
|
Nomden M, Beljaars L, Verkade HJ, Hulscher JBF, Olinga P. Current Concepts of Biliary Atresia and Matrix Metalloproteinase-7: A Review of Literature. Front Med (Lausanne) 2020; 7:617261. [PMID: 33409288 PMCID: PMC7779410 DOI: 10.3389/fmed.2020.617261] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Biliary atresia (BA) is a rare cholangiopathy of infancy in which the bile ducts obliterate, leading to profound cholestasis and liver fibrosis. BA is hypothesized to be caused by a viral insult that leads to over-activation of the immune system. Patients with BA are surgically treated with a Kasai portoenterostomy (KPE), which aims to restore bile flow from the liver to the intestines. After KPE, progressive liver fibrosis is often observed in BA patients, even despite surgical success and clearance of their jaundice. The innate immune response is involved during the initial damage to the cholangiocytes and further differentiation of the adaptive immune response into a T-helper 1 cell (Th1) response. Multiple studies have shown that there is continuing elevation of involved cytokines that can lead to the progressive liver fibrosis. However, the mechanism by which the progressive injury occurs is not fully elucidated. Recently, matrix metalloproteinase-7 (MMP-7) has been investigated to be used as a biomarker to diagnose BA. MMPs are involved in extracellular matrix (ECM) turnover, but also have non-ECM related functions. The role of MMP-7 and other MMPs in liver fibrosis is just starting to be elucidated. Multiple studies have shown that serum MMP-7 measurements are able to accurately diagnose BA in a cohort of cholestatic patients while hepatic MMP-7 expression correlated with BA-related liver fibrosis. While the mechanism by which MMP-7 can be involved in the pathophysiology of BA is unclear, MMP-7 has been investigated in other fibrotic pathologies such as renal and idiopathic pulmonary fibrosis. MMP-7 is involved in Wnt/β-catenin signaling, reducing cell-to-cell contact by shedding of E-cadherin, amplifying inflammation and fibrosis via osteopontin (OPN) and TNF-α while it also appears to play a role in induction of angiogenesis This review aims to describe the current understandings of the pathophysiology of BA. Subsequently, we describe how MMP-7 is involved in other pathologies, such as renal and pulmonary fibrosis. Then, we propose how MMP-7 can potentially be involved in BA. By doing this, we aim to describe the putative role of MMP-7 as a prognostic biomarker in BA and to provide possible new therapeutic and research targets that can be investigated in the future.
Collapse
Affiliation(s)
- Mark Nomden
- Divison of Pediatric Surgery, Department of Surgery, University of Groningen, Groningen, Netherlands
| | - Leonie Beljaars
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Henkjan J Verkade
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan B F Hulscher
- Divison of Pediatric Surgery, Department of Surgery, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Gong GC, Song SR, Su J. Pulmonary fibrosis alters gut microbiota and associated metabolites in mice: An integrated 16S and metabolomics analysis. Life Sci 2020; 264:118616. [PMID: 33098825 DOI: 10.1016/j.lfs.2020.118616] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Abstract
AIMS The "gut-lung axis" reflects intimate connection and bidirectional effect between gut and lung, involving numerous lung diseases. Pulmonary fibrosis is a progressive interstitial lung disease with high fatality rate, so far, its association with gut remains unexplored. We investigated the correlation between pulmonary fibrosis and gut microbiota. MATERIALS AND METHODS We collected feces from two pulmonary fibrotic models respectively, and performed a combinatory study using 16S rDNA sequencing and non-targeted metabonomics. Correlation matrix was used to indicate the correlation between microbiome, metabolites and fibrotic indicators, and the possibility of gut microbiota in identifying pulmonary fibrosis was assessed by ROC analysis. KEY FINDINGS 412 genera of microflora and 26 kinds of metabolites were synchronously altered with same trend in two models but differed observably with control. Among these, 7 microorganisms and 9 metabolites were the typical representatives, which were correlated significantly and highly correlated with fibrotic indicators shown by correlation matrix. ROC analysis indicated that it was dependable to identify pulmonary fibrosis by using gut microorganisms and metabolites in both models (AUC > 0.85, p < 0.01). SIGNIFICANCE In summary, our findings first revealed a previously unknown correlation between gut and pulmonary fibrosis in mouse models, which creates novel insights of the interaction between pulmonary fibrosis and gut microbiota.
Collapse
Affiliation(s)
- Gen-Cheng Gong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510030, PR China
| | - Sheng-Ren Song
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510030, PR China; Department of Respiratory Medicine Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, PR China
| | - Jin Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510030, PR China.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To provide an overview of recent studies that could be helpful in a better understanding of rheumatoid arthritis-associated interstitial lung disease (RA-ILD) and to facilitate the clinical management of this severe complication of RA. RECENT FINDINGS The advances in deciphering the genetic architecture of RA-ILD support the hypothesis of RA-ILD as a complex disease with a complex phenotype encompassing at least the usual interstitial pneumonia (UIP) high-resolution CT pattern and non-UIP. Genetics studies have provided evidence for a shared genetic background in idiopathic pulmonary fibrosis (IPF) and RA-ILD, and more specifically RA-UIP, a disease with high morbidity and mortality. These findings support the rationale for common pathogenic pathways opening new avenues for future intervention in RA-ILD, notably with - drugs that proved active in IPF. In agreement, a recent controlled trial suggests efficacy of nintedanib, an antifibrotic drug, in patients with progressive lung fibrosis, including RA-ILD. However, there is a substantial gap in RA-ILD treatment, notably evaluating the effect of the RA treatments on the ILD course because of no controlled trial yet. SUMMARY The phenotypical, environmental, and genetic similarities between IPF and RA-ILD have led to a better understanding of the underlying pathogenesis of RA-ILD. Despite the identification of several biomarkers and useful screening tools, several questions remain unanswered regarding the identification of patients with RA at increased risk of ILD and risk of progression. Other substantial gaps are the lack of recommendations for how high-risk patients should be screened and which specific therapeutic strategy should be initiated. International collaborative efforts are needed to address these issues and develop specific recommendations for RA-ILD.
Collapse
|
20
|
Liu Z, Tan RJ, Liu Y. The Many Faces of Matrix Metalloproteinase-7 in Kidney Diseases. Biomolecules 2020; 10:960. [PMID: 32630493 PMCID: PMC7356035 DOI: 10.3390/biom10060960] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted zinc-dependent endopeptidase that is implicated in regulating kidney homeostasis and diseases. MMP-7 is produced as an inactive zymogen, and proteolytic cleavage is required for its activation. MMP-7 is barely expressed in normal adult kidney but upregulated in acute kidney injury (AKI) and chronic kidney disease (CKD). The expression of MMP-7 is transcriptionally regulated by Wnt/β-catenin and other cues. As a secreted protein, MMP-7 is present and increased in the urine of patients, and its levels serve as a noninvasive biomarker for predicting AKI prognosis and monitoring CKD progression. Apart from degrading components of the extracellular matrix, MMP-7 also cleaves a wide range of substrates, such as E-cadherin, Fas ligand, and nephrin. As such, it plays an essential role in regulating many cellular processes, such as cell proliferation, apoptosis, epithelial-mesenchymal transition, and podocyte injury. The function of MMP-7 in kidney diseases is complex and context-dependent. It protects against AKI by priming tubular cells for survival and regeneration but promotes kidney fibrosis and CKD progression. MMP-7 also impairs podocyte integrity and induces proteinuria. In this review, we summarized recent advances in our understanding of the regulation, role, and mechanisms of MMP-7 in the pathogenesis of kidney diseases. We also discussed the potential of MMP-7 as a biomarker and therapeutic target in a clinical setting.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Roderick J. Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
21
|
Wong AH, Tran T. CD151 in Respiratory Diseases. Front Cell Dev Biol 2020; 8:64. [PMID: 32117989 PMCID: PMC7020194 DOI: 10.3389/fcell.2020.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
The tetraspanin, Cluster of Differentiation 151 (CD151), is ubiquitously expressed in adult tissue, especially in the lungs where it has been implicated in lung cancer, asthma, influenza, and idiopathic pulmonary fibrosis (IPF). CD151 interacts with laminin-binding integrins and growth factor receptors, and is reported in cancer-promoting processes such as tumor initiation, metastasis, and angiogenesis. In asthma, CD151 was shown to promote airways hyperresponsiveness through calcium signaling whereas in influenza, CD151 was shown to be a novel host factor for nuclear viral export signaling. Furthermore, CD151 was shown to be associated with increased disease severity and poorer survival outcome in asthma and lung cancer, respectively. In this review, we provide an update on the current understanding of CD151 with regards to its contribution to lung pathophysiology. We also summarize factors that have been shown to regulate CD151 expression and identify key areas that need to be taken into consideration for its utility as a screening or prognostic tool in disease management and/or as a therapeutic target for the treatment of lung diseases.
Collapse
Affiliation(s)
- Amanda H Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Jee AS, Sahhar J, Youssef P, Bleasel J, Adelstein S, Nguyen M, Corte TJ. Review: Serum biomarkers in idiopathic pulmonary fibrosis and systemic sclerosis associated interstitial lung disease – frontiers and horizons. Pharmacol Ther 2019; 202:40-52. [DOI: 10.1016/j.pharmthera.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/24/2019] [Indexed: 02/02/2023]
|
23
|
Wu AC, Kiley JP, Noel PJ, Amur S, Burchard EG, Clancy JP, Galanter J, Inada M, Jones TK, Kropski JA, Loyd JE, Nogee LM, Raby BA, Rogers AJ, Schwartz DA, Sin DD, Spira A, Weiss ST, Young LR, Himes BE. Current Status and Future Opportunities in Lung Precision Medicine Research with a Focus on Biomarkers. An American Thoracic Society/National Heart, Lung, and Blood Institute Research Statement. Am J Respir Crit Care Med 2019; 198:e116-e136. [PMID: 30640517 DOI: 10.1164/rccm.201810-1895st] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Thousands of biomarker tests are either available or under development for lung diseases. In many cases, adoption of these tests into clinical practice is outpacing the generation and evaluation of sufficient data to determine clinical utility and ability to improve health outcomes. There is a need for a systematically organized report that provides guidance on how to understand and evaluate use of biomarker tests for lung diseases. METHODS We assembled a diverse group of clinicians and researchers from the American Thoracic Society and leaders from the National Heart, Lung, and Blood Institute with expertise in various aspects of precision medicine to review the current status of biomarker tests in lung diseases. Experts summarized existing biomarker tests that are available for lung cancer, pulmonary arterial hypertension, idiopathic pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, sepsis, acute respiratory distress syndrome, cystic fibrosis, and other rare lung diseases. The group identified knowledge gaps that future research studies can address to efficiently translate biomarker tests into clinical practice, assess their cost-effectiveness, and ensure they apply to diverse, real-life populations. RESULTS We found that the status of biomarker tests in lung diseases is highly variable depending on the disease. Nevertheless, biomarker tests in lung diseases show great promise in improving clinical care. To efficiently translate biomarkers into tests used widely in clinical practice, researchers need to address specific clinical unmet needs, secure support for biomarker discovery efforts, conduct analytical and clinical validation studies, ensure tests have clinical utility, and facilitate appropriate adoption into routine clinical practice. CONCLUSIONS Although progress has been made toward implementation of precision medicine for lung diseases in clinical practice in certain settings, additional studies focused on addressing specific unmet clinical needs are required to evaluate the clinical utility of biomarkers; ensure their generalizability to diverse, real-life populations; and determine their cost-effectiveness.
Collapse
|
24
|
Ammar R, Sivakumar P, Jarai G, Thompson JR. A robust data-driven genomic signature for idiopathic pulmonary fibrosis with applications for translational model selection. PLoS One 2019; 14:e0215565. [PMID: 30998768 PMCID: PMC6472794 DOI: 10.1371/journal.pone.0215565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease affecting ~5 million people globally. We have constructed an accurate model of IPF disease status using elastic net regularized regression on clinical gene expression data. Leveraging whole transcriptome microarray data from 230 IPF and 89 control samples from Yang et al. (2013), sourced from the Lung Tissue Research Consortium (LTRC) and National Jewish Health (NJH) cohorts, we identify an IPF gene expression signature. We performed optimal feature selection to reduce the number of transcripts required by our model to a parsimonious set of 15. This signature enables our model to accurately separate IPF patients from controls. Our model outperforms existing published models when tested with multiple independent clinical cohorts. Our study underscores the utility of elastic nets for gene signature/panel selection which can be used for the construction of a multianalyte biomarker of disease. We also filter the gene sets used for model input to construct a model reliant on secreted proteins. Using this approach, we identify the preclinical bleomycin rat model that is most congruent with human disease at day 21 post-bleomycin administration, contrasting with earlier timepoints suggested by other studies.
Collapse
Affiliation(s)
- Ron Ammar
- Translational Bioinformatics, Translational Medicine, Bristol-Myers Squibb, Princeton, NJ, United States of America
- * E-mail:
| | - Pitchumani Sivakumar
- Fibrosis, Translational Research & Development, Bristol-Myers Squibb, Princeton, NJ, United States of America
| | - Gabor Jarai
- Fibrosis, Translational Research & Development, Bristol-Myers Squibb, Princeton, NJ, United States of America
| | - John Ryan Thompson
- Translational Bioinformatics, Translational Medicine, Bristol-Myers Squibb, Princeton, NJ, United States of America
| |
Collapse
|
25
|
Cryptotanshinone Ameliorates Radiation-Induced Lung Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1908416. [PMID: 30915142 PMCID: PMC6402207 DOI: 10.1155/2019/1908416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
Cryptotanshinone (CTS) was reported to repress a variety of systemic inflammation and alleviate cardiac fibrosis, but it is still unclear whether CTS could prevent radiation-induced lung injury (RILI). Here, we investigated the effects and underlying mechanisms of CTS on a RILI rat model. Our data revealed that CTS could efficiently preserve pulmonary function in RILI rats and reduce early pulmonary inflammation infiltration elicited, along with marked decreased levels of IL-6 and IL-10. Moreover, we found that CTS is superior to prednisone in attenuating collagen deposition and pulmonary fibrosis, in parallel with a marked drop of HYP (a collagen indicator) and α-SMA (a myofibroblast marker). Mechanistically, CTS inhibited profibrotic signals TGF-β1 and NOX-4 expressions, while enhancing the levels of antifibrotic enzyme MMP-1 in lung tissues. It is noteworthy that CTS treatment, in consistent with trichrome staining analysis, exhibited a clear advantage over PND in enhancing MMP-1 levels. However, CTS exhibited little effect on CTGF activation and on COX-2 suppression. Finally, CTS treatment significantly mitigated the radiation-induced activation of CCL3 and its receptor CCR1. In summary, CTS treatment could attenuate RILI, especially pulmonary fibrosis, in rats. The regulation on production and release of inflammatory or fibrotic factors IL-6, IL-10, TGF-β1, NOX-4, and MMP-1, especially MMP-1 and inhibition on CCL3/CCR1 activation, may partly attribute to its attenuating RILI effect.
Collapse
|
26
|
Evolving Genomics of Pulmonary Fibrosis. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Zhang Y, Xin Q, Wu Z, Wang C, Wang Y, Wu Q, Niu R. Application of Isobaric Tags for Relative and Absolute Quantification (iTRAQ) Coupled with Two-Dimensional Liquid Chromatography/Tandem Mass Spectrometry in Quantitative Proteomic Analysis for Discovery of Serum Biomarkers for Idiopathic Pulmonary Fibrosis. Med Sci Monit 2018; 24:4146-4153. [PMID: 29909421 PMCID: PMC6036962 DOI: 10.12659/msm.908702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The present study was performed to explore the presence of informative protein biomarkers of human serum proteome in idiopathic pulmonary fibrosis (IPF). Material/Methods Serum samples were profiled using iTRAQ coupled with two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) technique, and ELISA was used to validate candidate biomarkers. Results A total of 394 proteins were identified and 97 proteins were associated with IPF. Four biomarker candidates generated from iTRAQ experiments – CRP, fibrinogen-α chain, haptoglobin, and kininogen-1 – were successfully verified using ELISA. Conclusions The present study demonstrates that levels of CRP and fibrinogen-α are higher and levels of haptoglobin and kininogen-1 are lower in patients with IPF compared to levels in healthy controls. We found they are useful candidate biomarkers for IPF.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Qian Xin
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zhen Wu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Chaochao Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Yongbin Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Qian Wu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Rui Niu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
28
|
Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018; 129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Progressive loss of organ function in most organs is associated with fibrosis, a tissue state associated with abnormal matrix buildup. If highly progressive, the fibrotic process eventually leads to organ failure and death. Fibrosis is a basic connective tissue lesion defined by the increase in the amount of fibrillar extracellular matrix (ECM) components in a tissue or organ. In addition, intrinsic changes in important structural cells can induce the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. ECM enzymes belonging to the family of matrix metalloproteinases (MMPs) and lysyl oxidases (LOXs) play a crucial role in ECM remodeling and regeneration. MMPs have a catalytic role in degradation of ECM, whereas LOX/LOXLs mediate ECM, especially collagen, cross-linking and stiffening. Importantly, enzymes from both families are elevated during the fibrotic response to tissue injury and its resolution. Yet, the apparent molecular competition or antagonistic activities of these enzyme families during the various stages of fibrosis is often overlooked. In this review, we discuss the diverse roles of MMPs and LOX/LOXL2 in chronic organ fibrosis. Finally, we review contemporary therapeutic strategies for fibrosis treatment, based on neutralization of MMP and LOX activity, as well as the development of novel drug delivery approaches.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
29
|
Liakouli V, Cipriani P, Di Benedetto P, Ruscitti P, Carubbi F, Berardicurti O, Panzera N, Giacomelli R. The role of extracellular matrix components in angiogenesis and fibrosis: Possible implication for Systemic Sclerosis. Mod Rheumatol 2018; 28:922-932. [DOI: 10.1080/14397595.2018.1431004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vasiliki Liakouli
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Paola Di Benedetto
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Francesco Carubbi
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Onorina Berardicurti
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Noemi Panzera
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Roberto Giacomelli
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
30
|
Hammond M, Clark AB, Cahn AP, Chilvers ER, Fraser WD, Livermore DM, Maher TM, Parfrey H, Swart AM, Stirling S, Thickett D, Whyte M, Wilson A. The Efficacy and Mechanism Evaluation of Treating Idiopathic Pulmonary fibrosis with the Addition of Co-trimoxazole (EME-TIPAC): study protocol for a randomised controlled trial. Trials 2018; 19:89. [PMID: 29402332 PMCID: PMC5800095 DOI: 10.1186/s13063-018-2453-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/28/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND We hypothesise, based upon the findings from our previous trial, that the addition of co-trimoxazole to standard therapy is beneficial to patients with moderate to severe idiopathic pulmonary fibrosis (IPF). We aim to investigate this by assessing unplanned hospitalisation-free survival (defined as time from randomisation to first non-elective hospitalisation, lung transplant or death) and to determine whether any effect relates to changes in infection and/or markers of disease control and neutrophil activity. METHODS/DESIGN The EME-TIPAC trial is a double-blind, placebo-controlled, randomised, multicentre clinical trial. A total of 330 symptomatic patients, aged 40 years old or older, with IPF diagnosed by a multidisciplinary team (MDT) according to international guidelines and a FVC ≤ 75% predicted will be enrolled. Patients are randomised equally to receive either two tablets of co-trimoxazole 480 mg or two placebo tablets twice daily over a median treatment period of 27 (range 12-42) months. All patients receive folic acid 5 mg daily whilst on the trial IMP to reduce the risk of bone marrow depression. The primary outcome for the trial is a composite endpoint consisting of the time to death, transplant or first non-elective hospital admission and will be determined from adverse event reporting, hospital databases and the Office of National Statistics with active tracing of patients missing appointments. Secondary outcomes include the individual components of the primary outcome, (1) King's Brief Interstitial Lung Disease Questionnaire, (2) MRC Dyspnoea Score, (3) EQ5D, (4) spirometry, (5) total lung-diffusing capacity and (6) routine sputum microbiology. Blood will be taken for cell count, biochemistry and analysis of biomarkers including C-reactive protein and markers of disease. The trial will last for 4 years. Recruitment will take place in a network of approximately 40 sites throughout the UK (see Table 1 for a full list of participating sites). We expect recruitment for 30 months, follow-up for 12 months and trial analysis and reporting to take 4 months. DISCUSSION The trial is designed to test the hypothesis that treating IPF patients with co-trimoxazole will increase the time to death (all causes), lung transplant or first non-elective hospital admission compared to standard care ( https://www.nice.org.uk/guidance/cg163 ), in patients with moderate to severe disease. The mechanistic aims are to investigate the effect on lung microbiota and other measures of infection, markers of epithelial injury and markers of neutrophil activity. TRIAL REGISTRATION International Standard Randomised Controlled Trials Number (ISRCTN) Registry, ID: 17464641 . Registered on 29 January 2015.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Toby M. Maher
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Helen Parfrey
- Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
31
|
Role of MMP-1 (-519A/G, -1607 1G/2G), MMP-3 (Lys45Glu), MMP-7 (-181A/G), and MMP-12 (-82A/G) Variants and Plasma MMP Levels on Obesity-Related Phenotypes and Microvascular Reactivity in a Tunisian Population. DISEASE MARKERS 2017; 2017:6198526. [PMID: 29317790 PMCID: PMC5727656 DOI: 10.1155/2017/6198526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/04/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022]
Abstract
Aims The impact of MMP-1 (-519A/G, -1607 1G/2G), MMP-3 Lys45Glu (A/G), MMP-7 -181A/G, and MMP-12 -82A/G variants and plasma MMP levels on obesity and microvascular reactivity in Tunisians. Methods Our population included 202 nonobese and 168 obese subjects. Anthropometric, biochemical, and microvascular parameters were determined according to standard protocols. PCR-RFLP and ELISA were used to determine the genetic variants and levels of MMPs, respectively. Results The MMP-3 45Glu (G) allele associates with higher anthropometric values and MMP-3 levels compared to AA genotype carriers (BMI (kg/m2): 30 ± 0.51 versus 27.33 ± 0.8, P = 0.004; MMP-3 levels: 7.45 (4.77–11.91) versus 5.21 (3.60–10.21) ng/ml, P = 0.006). The MMP-12 -82G allele was also associated with higher BMI values when compared to subjects carrying the AA genotype (31.41 ± 0.85 versus 28.76 ± 0.43, P < 0.001). Individuals carrying the MMP-3 45G or MMP-12 -82G variants were also associated with a higher risk for severe forms of obesity (MMP-3: OR = 1.9, P = 0.002; MMP-12: OR = 2.63, P = 0.003). Similarly, the MMP-7 -181G allele was associated with a higher MMP-7 level and an increased risk for morbid obesity when compared to AA genotype carriers (0.32 (0.31–0.60) versus 0.18 (0.17–0.24) ng/ml, P = 0.01; OR = 1.67, P = 0.02, resp.). Conclusion MMP-3, MMP-7, and MMP-12 polymorphisms associate with obesity risk and its severity.
Collapse
|
32
|
Evans CM, Fingerlin TE, Schwarz MI, Lynch D, Kurche J, Warg L, Yang IV, Schwartz DA. Idiopathic Pulmonary Fibrosis: A Genetic Disease That Involves Mucociliary Dysfunction of the Peripheral Airways. Physiol Rev 2017; 96:1567-91. [PMID: 27630174 PMCID: PMC5243224 DOI: 10.1152/physrev.00004.2016] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an incurable complex genetic disorder that is associated with sequence changes in 7 genes (MUC5B, TERT, TERC, RTEL1, PARN, SFTPC, and SFTPA2) and with variants in at least 11 novel loci. We have previously found that 1) a common gain-of-function promoter variant in MUC5B rs35705950 is the strongest risk factor (genetic and otherwise), accounting for 30-35% of the risk of developing IPF, a disease that was previously considered idiopathic; 2) the MUC5B promoter variant can potentially be used to identify individuals with preclinical pulmonary fibrosis and is predictive of radiologic progression of preclinical pulmonary fibrosis; and 3) MUC5B may be involved in the pathogenesis of pulmonary fibrosis with MUC5B message and protein expressed in bronchiolo-alveolar epithelia of IPF and the characteristic IPF honeycomb cysts. Based on these considerations, we hypothesize that excessive production of MUC5B either enhances injury due to reduced mucociliary clearance or impedes repair consequent to disruption of normal regenerative mechanisms in the distal lung. In aggregate, these novel considerations should have broad impact, resulting in specific etiologic targets, early detection of disease, and novel biologic pathways for use in the design of future intervention, prevention, and mechanistic studies of IPF.
Collapse
Affiliation(s)
- Christopher M Evans
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Tasha E Fingerlin
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Marvin I Schwarz
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - David Lynch
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Jonathan Kurche
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Laura Warg
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Ivana V Yang
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - David A Schwartz
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| |
Collapse
|
33
|
Guiot J, Moermans C, Henket M, Corhay JL, Louis R. Blood Biomarkers in Idiopathic Pulmonary Fibrosis. Lung 2017; 195:273-280. [PMID: 28353114 PMCID: PMC5437192 DOI: 10.1007/s00408-017-9993-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/09/2017] [Indexed: 12/01/2022]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease of unknown origin whose incidence has been increasing over the latest decade partly as a consequence of population ageing. New anti-fibrotic therapy including pirfenidone and nintedanib have now proven efficacy in slowing down the disease. Nevertheless, diagnosis and follow-up of IPF remain challenging. METHODS This review examines the recent literature on potentially useful blood molecular and cellular biomarkers in IPF. Most of the proposed biomarkers belong to chemokines (IL-8, CCL18), proteases (MMP-1 and MMP-7), and growth factors (IGBPs) families. Circulating T cells and fibrocytes have also gained recent interest in that respect. Up to now, though several interesting candidates are profiling there has not been a single biomarker, which proved to be specific of the disease and predictive of the evolution (decline of pulmonary function test values, risk of acute exacerbation or mortality). CONCLUSION Large scale multicentric studies are eagerly needed to confirm the utility of these biomarkers.
Collapse
Affiliation(s)
- Julien Guiot
- Pneumology Department, CHU Liège, Domaine universitaire du Sart-Tilman, B35, B4000, Liège, Belgium.
| | - Catherine Moermans
- Pneumology Department, CHU Liège, Domaine universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
| | - Monique Henket
- Pneumology Department, CHU Liège, Domaine universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
| | - Jean-Louis Corhay
- Pneumology Department, CHU Liège, Domaine universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
| | - Renaud Louis
- Pneumology Department, CHU Liège, Domaine universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
| |
Collapse
|
34
|
Tomos IP, Tzouvelekis A, Aidinis V, Manali ED, Bouros E, Bouros D, Papiris SA. Extracellular matrix remodeling in idiopathic pulmonary fibrosis. It is the 'bed' that counts and not 'the sleepers'. Expert Rev Respir Med 2017; 11:299-309. [PMID: 28274188 DOI: 10.1080/17476348.2017.1300533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by irreversible fibrosis. Current disease pathogenesis assumes an aberrant wound healing process in response to repetitive injurious stimuli leading to apoptosis of epithelial cells, activation of fibroblasts and accumulation of extracellular matrix (ECM). Particularly, lung ECM is a highly dynamic structure that lies at the core of several physiological and developmental pathways. The scope of this review article is to summarize current knowledge on the role of ECM in the pathogenesis of IPF, unravel novel mechanistic data and identify future more effective therapeutic targets. Areas covered: The exact mechanisms through which lung microenvironment activates fibroblasts and inflammatory cells, regulates profibrotic signaling cascades through growth factors, integrins and degradation enzymes ultimately leading to excessive matrix deposition are discussed. Furthermore, the potential therapeutic usefulness of specific inhibitors of matrix deposition or activators of matrix degradation pathways are also presented. Expert commentary: With a gradually increasing worldwide incidence IPF still present a major challenge in clinical research due to its unknown etiopathogenesis and current ineffective treatment approaches. Today, there is an amenable need for more effective therapeutic targets and ECM components may represent one.
Collapse
Affiliation(s)
- Ioannis P Tomos
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Argyrios Tzouvelekis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Vassilis Aidinis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Effrosyni D Manali
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Evangelos Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Demosthenes Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Spyros A Papiris
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
35
|
|
36
|
Tzouvelekis A, Herazo-Maya JD, Slade M, Chu JH, Deiuliis G, Ryu C, Li Q, Sakamoto K, Ibarra G, Pan H, Gulati M, Antin-Ozerkis D, Herzog EL, Kaminski N. Validation of the prognostic value of MMP-7 in idiopathic pulmonary fibrosis. Respirology 2016; 22:486-493. [PMID: 27761978 DOI: 10.1111/resp.12920] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/29/2016] [Accepted: 08/06/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis and variable clinical course. Although matrix metalloproteinase-7 (MMP-7) is emerging as an important IPF biomarker, reproducibility across studies is unclear. We aimed to determine whether a previously reported prognostic threshold for MMP-7 was predictive of mortality in an independent cohort of IPF patients. METHODS MMP-7 concentrations obtained from heparinized plasma samples were determined by ELISA in 97 patients with IPF and 41 healthy controls. The association of the previously published heparin plasma MMP-7 threshold of 12.1 ng/mL with all-cause mortality or transplant-free survival (TFS) was determined, either as an independent biomarker or as part of the modified personal clinical and molecular mortality index (m-PCMI). RESULTS MMP-7 plasma concentrations were significantly higher in IPF patients compared to healthy controls (14.40 ± 6.55 ng/mL vs 6.03 ± 2.51 ng/mL, P < 0.001). The plasma MMP-7 threshold of 12.1 ng/mL was significantly associated with both all-cause mortality and TFS (unadjusted Cox proportional hazard ratio (HR) = 25.85 and 15.49, 95% CI: 10.91-61.23 and 5.41-44.34, respectively, P < 0.001). MMP-7 concentrations, split by 12.1 ng/mL, were significantly (P < 0.05) predictive of mortality and TFS after adjusting for age, gender, smoking and baseline pulmonary function parameters, in a multivariate Cox proportional hazards model. MMP-7 concentrations were negatively correlated with diffusing lung capacity of carbon monoxide (DLCO ) (r = -0.21, P = 0.02), and positively with a mortality risk scoring system (GAP) that combines age, gender, forced vital capacity (FVC) and DLCO (r = 0.32, P = 0.001). CONCLUSION This study confirms that MMP-7 concentrations could be used to accurately predict outcomes across cohorts and centres, when similar collection protocols are applied.
Collapse
Affiliation(s)
- Argyris Tzouvelekis
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jose D Herazo-Maya
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Martin Slade
- Department of Occupational and Environmental Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jen-Hwa Chu
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Giuseppe Deiuliis
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Qin Li
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Koji Sakamoto
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gabriel Ibarra
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hongyi Pan
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mridu Gulati
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Danielle Antin-Ozerkis
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Erica L Herzog
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
37
|
Hansen NUB, Karsdal MA, Brockbank S, Cruwys S, Rønnow S, Leeming DJ. Tissue turnover of collagen type I, III and elastin is elevated in the PCLS model of IPF and can be restored back to vehicle levels using a phosphodiesterase inhibitor. Respir Res 2016; 17:76. [PMID: 27411390 PMCID: PMC4942917 DOI: 10.1186/s12931-016-0394-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/30/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The aim of this study was to develop and validate a model for pulmonary fibrosis, using ex vivo tissue cultures of lungs from bleomycin treated animals, enabling the investigation of fibrosis remodeling using novel biomarkers for the detection of ECM protein fragments. The combination of in vivo and ex vivo models together with ECM remodeling markers may provide a translational tool for screening of potential treatments for IPF. METHODS Twenty female Sprague-Dawley rats, twelve weeks of age, were administrated either two doses of bleomycin (BLM) (n = 14) or saline (n = 6) I.T., two days apart. Ten rats were euthanized at day seven and the remaining ten rats at day fourteen, after the last dose. Precision-cut lung slices (PCLS) were made and cultured for 48 h. Ten female Sprague-Dawley rats, twelve weeks of age, were administrated either two doses of BLM (n = 7) or saline (n = 3) I.T., two days apart. The rats were euthanized fourteen days after the last dose. PCLS were made and cultured for 48 h in: medium, medium + 100 μM IBMX (PDE inhibitor), or medium + 10 μM GM6001 (MMP inhibitor). Turnover of type I collagen (P1NP, C1M), type III collagen (iP3NP, C3M) and elastin degradation (ELM7) was measured in the supernatant of the cultured PCLS. RESULTS P1NP, C1M, iP3NP, C3M and ELM7 were significantly increased in supernatants from BLM animals (P ≤ 0.05 - P ≤ 0.0001) when compared to controls. P1NP, C1M, iP3NP, C3M and ELM7 were significantly increased in supernatants from day seven BLM animals compared to day fourteen BLM animals (P ≤ 0.05 - P ≤ 0.0001). P1NP, C1M, iP3NP, C3M and ELM7 were significantly decreased when adding IBMX to the culture medium of fibrotic lung tissue (P ≤ 0.05 - P ≤ 0.0001). C1M, C3M and ELM7 were significantly decreased when adding GM6001 to the culture medium (P ≤ 0.05 - P ≤ 0.0001). Sirius Red and Orcein staining confirmed the presence of collagen and elastin deposition in the lungs of the animals receiving BLM. CONCLUSIONS The protein fingerprint technology allows the assessment of ECM remodeling markers in the BLM PCLS model. By combining in vivo, ex vivo models and the protein fingerprint technology in the fibrotic phase of the model, we believe the chance of translation from animal model to human is markedly increased.
Collapse
Affiliation(s)
- Niels Ulrik Brandt Hansen
- />Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
- />University of Southern Denmark, SDU, Odense, Denmark
| | - Morten Asser Karsdal
- />Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
- />University of Southern Denmark, SDU, Odense, Denmark
| | | | | | - Sarah Rønnow
- />Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| | | |
Collapse
|
38
|
Comparative Study of Circulating MMP-7, CCL18, KL-6, SP-A, and SP-D as Disease Markers of Idiopathic Pulmonary Fibrosis. DISEASE MARKERS 2016; 2016:4759040. [PMID: 27293304 PMCID: PMC4886062 DOI: 10.1155/2016/4759040] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/20/2016] [Accepted: 04/28/2016] [Indexed: 11/21/2022]
Abstract
Background. Recent reports indicate that matrix metalloproteinase-7 (MMP-7) and CC-chemokine ligand 18 (CCL18) are potential disease markers of idiopathic pulmonary fibrosis (IPF). The objective of this study was to perform direct comparisons of these two biomarkers with three well-investigated serum markers of IPF, Krebs von den Lungen-6 (KL-6), surfactant protein-A (SP-A), and SP-D. Methods. The serum levels of MMP-7, CCL18, KL-6, SP-A, and SP-D were evaluated in 65 patients with IPF, 31 patients with bacterial pneumonia, and 101 healthy controls. The prognostic performance of these five biomarkers was evaluated in patients with IPF. Results. The serum levels of MMP-7, KL-6, and SP-D in patients with IPF were significantly elevated compared to those in patients with bacterial pneumonia and in the healthy controls. Multivariate survival analysis showed that serum MMP-7 and KL-6 levels were independent predictors in IPF patients. Moreover, elevated levels of both KL-6 and MMP-7 were associated with poorer survival rates in IPF patients, and the combination of both markers provided the best risk discrimination using the C statistic. Conclusions. The present results indicated that MMP-7 and KL-6 were promising prognostic markers of IPF, and the combination of the two markers might improve survival prediction in patients with IPF.
Collapse
|
39
|
Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 53:585-600. [PMID: 26121236 PMCID: PMC4742954 DOI: 10.1165/rcmb.2015-0020tr] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.
Collapse
Affiliation(s)
- Vanessa J. Craig
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California–San Diego, La Jolla, California
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | - James S. Hagood
- Division of Pediatric Respiratory Medicine, University of California–San Diego, La Jolla, California, and
- Rady Children’s Hospital of San Diego, San Diego, California; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
40
|
Yang J, Wang L, Wang T, Chen C, Han L, Ji X, Wu B, Han R, Ni C. Associations of MMP-7 and OPN gene polymorphisms with risk of coal workers’ pneumoconiosis in a Chinese population: a case-control study. Inhal Toxicol 2015; 27:641-8. [DOI: 10.3109/08958378.2015.1080774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Kristensen JH, Larsen L, Dasgupta B, Brodmerkel C, Curran M, Karsdal MA, Sand JMB, Willumsen N, Knox AJ, Bolton CE, Johnson SR, Hägglund P, Svensson B, Leeming DJ. Levels of circulating MMP-7 degraded elastin are elevated in pulmonary disorders. Clin Biochem 2015; 48:1083-8. [PMID: 26164539 DOI: 10.1016/j.clinbiochem.2015.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Elastin is a signature protein of the lungs. Matrix metalloproteinase-7 (MMP-7) is important in lung defence mechanisms and degrades elastin. However, MMP-7 activity in regard to elastin degradation has never been quantified serologically in patients with lung diseases. An assay for the quantification of MMP-7 generated elastin fragments (ELM7) was therefore developed to investigate MMP-7 derived elastin degradation in pulmonary disorders such as idiopathic pulmonary fibrosis (IPF) and lung cancer. DESIGN AND METHODS Monoclonal antibodies (mABs) were raised against eight carefully selected MMP-7 cleavage sites on elastin. After characterisation and validation of the mABs, one mAB targeting the ELM7 fragment was chosen. ELM7 fragment levels were assessed in serum samples from patients diagnosed with IPF (n=123, baseline samples, CTgov reg. NCT00786201), and lung cancer (n=40) and compared with age- and sex-matched controls. RESULTS The ELM7 assay was specific towards in vitro MMP-7 degraded elastin and the ELM7 neoepitope but not towards other MMP-7 derived elastin fragments. Serum ELM7 levels were significantly increased in IPF (113%, p<0.0001) and lung cancer (96%, p<0.0001) compared to matched controls. CONCLUSIONS MMP-7-generated elastin fragments can be quantified in serum and may reflect pathological lung tissue turnover in several important lung diseases.
Collapse
Affiliation(s)
- J H Kristensen
- Nordic Bioscience A/S, Herlev, Denmark; The Technical University of Denmark, Department of Systems Biology, Kgs. Lyngby, Denmark.
| | - L Larsen
- Nordic Bioscience A/S, Herlev, Denmark
| | - B Dasgupta
- Janssen Research and Development, LLC, Spring House, PA, USA
| | - C Brodmerkel
- Janssen Research and Development, LLC, Spring House, PA, USA
| | - M Curran
- Janssen Research and Development, LLC, Spring House, PA, USA
| | | | | | | | - A J Knox
- Division of Respiratory Medicine and Respiratory Research Unit, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - C E Bolton
- Division of Respiratory Medicine and Respiratory Research Unit, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - S R Johnson
- Division of Respiratory Medicine and Respiratory Research Unit, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - P Hägglund
- The Technical University of Denmark, Department of Systems Biology, Kgs. Lyngby, Denmark
| | - B Svensson
- The Technical University of Denmark, Department of Systems Biology, Kgs. Lyngby, Denmark
| | | |
Collapse
|
42
|
Campo I, Zorzetto M, Bonella F. Facts and promises on lung biomarkers in interstitial lung diseases. Expert Rev Respir Med 2015; 9:437-57. [DOI: 10.1586/17476348.2015.1062367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Morais A, Beltrão M, Sokhatska O, Costa D, Melo N, Mota P, Marques A, Delgado L. Serum metalloproteinases 1 and 7 in the diagnosis of idiopathic pulmonary fibrosis and other interstitial pneumonias. Respir Med 2015; 109:1063-8. [PMID: 26174192 DOI: 10.1016/j.rmed.2015.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Accurate diagnosis of idiopathic pulmonary fibrosis (IPF) has important therapeutic and prognostic implications and would be greatly aided by reliable diagnostic biomarkers as IPF has sometimes overlapping features with other interstitial lung diseases (ILD). OBJECTIVES To explore the value of serum metalloproteinases (MMP) 1 and 7 levels in the differential diagnosis of IPF with other ILD. METHODS MMP-1/7 serum levels were measured using Luminex xMAP technology in 139 patients- 47 IPF, 36 non-IPF Usual Interstitial Pneumonia (UIP), 14 idiopathic Nonspecific Interstitial Pneumonia (iNSIP), 29 secondary NSIP (secNSIP), 13 stage IV sarcoidosis- and 20 healthy controls, and compared using the Mann-Whitney U test. RESULTS MMP-1 was significantly higher in IPF than non-IPF UIP (P = .042) and sarcoidosis (P = .027). MMP-7 was significantly higher in IPF than controls (P < .001), non-IPF UIP (P = .003), secNSIP (P < .001), and sarcoidosis (P < .001). The Area Under the Curve for IPF versus other ILD was 0.63 (95%CI, 0.53-0.73) for MMP-1, 0.73 (95%CI, 0.65-0.81) for MMP-7, and 0.74 (95%CI, 0.66-0.82) for MMP-1/MMP-7 combined. Sensitivity and specificity for MMP-7 cutoff = 3.91 ng/mL was 72.3% and 66.3%, respectively, Positive Predictive Values = 52.3% and Negative Predictive Values = 82.4%. CONCLUSIONS MMP-1 and particularly MMP-7 serum levels were significantly higher in IPF than in non-IPF UIP, the main entity in differential diagnosis. The value of these biomarkers as additional tools in a multidisciplinary approach to IPF diagnosis needs to be considered and further explored.
Collapse
Affiliation(s)
- António Morais
- Pneumology Department, Centro Hospitalar São João, Faculdade de Medicina, Universidade do Porto, Portugal.
| | - Marília Beltrão
- Laboratory of Immunology, Basic and Clinical Immunology Unit, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Oksana Sokhatska
- Laboratory of Immunology, Basic and Clinical Immunology Unit, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Diogo Costa
- Department of Clinical Epidemiology, Predictive Medicine and Public Health, Faculdade de Medicina, Portugal; EPIUnit-Institute of Public Health, Universidade do Porto, Portugal
| | - Natalia Melo
- Pneumology Department, Centro Hospitalar São João, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Patricia Mota
- Pneumology Department, Centro Hospitalar São João, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Agostinho Marques
- Pneumology Department, Centro Hospitalar São João, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Luís Delgado
- Laboratory of Immunology, Basic and Clinical Immunology Unit, Faculdade de Medicina, Universidade do Porto, Portugal; Centre for Research in Health Technologies and Information Systems (CINTESIS), University of Porto, Portugal
| |
Collapse
|
44
|
Li P, Zeng H, Qin J, Zou Y, Peng D, Zuo H, Liu Z. Effects of tetraspanin CD151 inhibition on A549 human lung adenocarcinoma cells. Mol Med Rep 2014; 11:1258-65. [PMID: 25351816 DOI: 10.3892/mmr.2014.2774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/26/2014] [Indexed: 11/06/2022] Open
Abstract
Tetraspanin protein CD151 is overexpressed in a wide variety of cancer types, including lung cancer, and is closely associated with metastasis and poor prognosis of carcinoma. To investigate whether knockdown of CD151 expression can inhibit the malignant biological behavior of lung adenocarcinoma (LAC), RNA interference technology (RNAi) was used to silence CD151 expression in the A549 LAC cell line. Specific small interfering RNA (siRNA) for targeting human endogenous CD151 were delivered into A549 cells in order to examine the effects on cell proliferation, survival, migration, invasion and colony formation. The expression levels of CD151 were assayed by western blotting, proliferation was evaluated by MTT method and apoptosis was determined by flow cytometry. The invasive and metastatic ability of A549 cells was investigated by wound healing and Boyden chamber assays. Colony formation analysis was used to determine the A549 cell growth properties. Finally, the expression of phosphorylated FAK, PI3K‑AKT, MEK‑Erk1/2, MMPs, and VEGF was detected by western blotting. The results demonstrated that CD151‑siRNA significantly decreased the expression level of CD151 in A549 cells. Reduced CD151 expression in A549 cells lead to the inhibition of cellular proliferation, migration, invasion and colony formation and an enhancement of apoptosis. Furthermore, the expression of tumor development‑related proteins, including FAK, PI3K‑AKT, MEK‑ERK1/2MAPK as well as the expression of MMP9 and VEGF, were restrained. Taken together, the present study has shown that CD151 expression is essential for LAC progression. Thus, knockdown CD151 expression by targeted siRNA could inhibit the related downstream intercellular signaling pathways, and this may provide a novel gene therapy for patients with LAC.
Collapse
Affiliation(s)
- Pengcheng Li
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hesong Zeng
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jin Qin
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuanlin Zou
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dan Peng
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Houjuan Zuo
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengxiang Liu
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
45
|
Baroke E, Gauldie J, Kolb M. New treatment and markers of prognosis for idiopathic pulmonary fibrosis: lessons learned from translational research. Expert Rev Respir Med 2014; 7:465-78. [PMID: 24138691 DOI: 10.1586/17476348.2013.838015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease with increasing prevalence, high mortality rates and poor treatment options. The diagnostic process is complex and often requires an interdisciplinary approach between different specialists. Information gained over the past 10 years of intense research resulted in improved diagnostic algorithms, a better understanding of the underlying pathogenesis and the development of new therapeutic options. Specifically, the change from the traditional concept that viewed IPF as a chronic inflammatory disorder to the current belief that is primarily resulting from aberrant wound healing enabled the identification of novel treatment targets. This increased the clinical trial activity dramatically and resulted in the approval of the first IPF-specific therapy in many countries. Still, the natural history and intrinsic behavior of IPF are very difficult to predict. There is an urgent need for new therapies and also for development and validation of prognostic markers that predict disease progression, survival and also response to antifibrotic drugs. This review provides an up to date summary of the most relevant clinical trials, novel therapeutic drug targets and outlines a spectrum of potential prognostic biomarkers for IPF.
Collapse
Affiliation(s)
- Eva Baroke
- Department of Medicine, McMaster University, ON, Canada, L8S4L8 and Department of Pathology & Molecular Medicine, McMaster University, Ontario ON, Canada, L8S4L8
| | | | | |
Collapse
|
46
|
Boorsma CE, Dekkers BGJ, van Dijk EM, Kumawat K, Richardson J, Burgess JK, John AE. Beyond TGFβ--novel ways to target airway and parenchymal fibrosis. Pulm Pharmacol Ther 2014; 29:166-80. [PMID: 25197006 DOI: 10.1016/j.pupt.2014.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/18/2014] [Accepted: 08/26/2014] [Indexed: 01/18/2023]
Abstract
Within the lungs, fibrosis can affect both the parenchyma and the airways. Fibrosis is a hallmark pathological change in the parenchyma in patients with idiopathic pulmonary fibrosis (IPF), whilst in asthma or chronic obstructive pulmonary disease (COPD) fibrosis is a component of the remodelling of the airways. In the past decade, significant advances have been made in understanding the disease behaviour and pathogenesis of parenchymal and airway fibrosis and as a result a variety of novel therapeutic targets for slowing or preventing progression of these fibrotic changes have been identified. This review highlights a number of these targets and discusses the potential for treating parenchymal or airway fibrosis through these mediators/pathways in the future.
Collapse
Affiliation(s)
- C E Boorsma
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B G J Dekkers
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E M van Dijk
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - K Kumawat
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - J Richardson
- Division of Respiratory Medicine, Nottingham University Hospitals, QMC Campus, Nottingham NG7 2UH, United Kingdom
| | - J K Burgess
- Woolcock Institute of Medical Research, Glebe 2037, Australia; Discipline of Pharmacology, The University of Sydney, Sydney 2006, Australia
| | - A E John
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom.
| |
Collapse
|
47
|
Jarman ER, Khambata VS, Yun Ye L, Cheung K, Thomas M, Duggan N, Jarai G. A translational preclinical model of interstitial pulmonary fibrosis and pulmonary hypertension: mechanistic pathways driving disease pathophysiology. Physiol Rep 2014; 2:e12133. [PMID: 25214520 PMCID: PMC4270229 DOI: 10.14814/phy2.12133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease, in which a decline in patient prognosis is frequently associated with the onset of pulmonary hypertension (PH). Animal models exhibiting principle pathophysiological features of IPF and PH could provide greater insight into mechanistic pathways underlying disease progression and a means for evaluating novel therapeutic approaches for intervention. Here, we describe an in vivo disease model, in which animals develop progressive interstitial pulmonary fibrosis and associated PH, as defined by the presence of fibrotic foci adjacent to areas of alveolar injury and remodeling of the pulmonary vasculature. Associated changes in physiological parameters included a decline in lung function and increase in mean pulmonary arterial pressure (mPAP) >25 mmHg. The early fibrotic pathology is associated with a profibrogenic microenvironment, elevated levels of the matrix metalloproteases, MMP-2, MMP-7, and MMP-12, TIMP-1, the chemoattractant and mitogen, PDGF-β, and the chemokines CCL2 and CXCL12, that are associated with the recruitment of macrophages, mast cells, and fibrocytes. Principle mechanistic pathways associated with disease pathogenesis are upregulated in the lungs and pulmonary arteries, with sustained increases in gene transcripts for the profibrotic mediator TGF-β1 and components of the TGF-β signaling pathway; PAI-1, Nox-4, and HIF-1α. Therapeutic treatment with the ALK-5/TGF-β RI inhibitor SB-525334 reversed established pulmonary fibrosis and associated vascular remodeling, leading to normalization in clinically translatable physiological parameters including lung function and hemodynamic measurements of mPAP. These studies highlight the application of this model in validating potential approaches for targeting common mechanistic pathways driving disease pathogenesis.
Collapse
Affiliation(s)
- Elizabeth R. Jarman
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Valerie S. Khambata
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Li Yun Ye
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Kenneth Cheung
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Matthew Thomas
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Nicholas Duggan
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Gabor Jarai
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| |
Collapse
|
48
|
Spagnolo P, Rossi G, Cavazza A. Pathogenesis of idiopathic pulmonary fibrosis and its clinical implications. Expert Rev Clin Immunol 2014; 10:1005-17. [PMID: 24953006 DOI: 10.1586/1744666x.2014.917050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of idiopathic interstitial pneumonia. The disease is thought to arise following an aberrant reparative response to recurrent alveolar epithelial cell injury leading to progressive loss of function. The median survival time is 3-5 years from diagnosis. Cigarette smoking, exposure to organic and inorganic dust and genetic factors have been shown to increase the risk of disease, although the cause of IPF remains elusive and its pathogenesis incompletely understood. In the last decade, several clinical trials evaluating novel therapies for IPF have been conducted but the results have been mostly disappointing. Conversely, compounds that target anti-fibrotic and growth factor pathways have been proven effective in slowing functional decline and disease progression. These promising results notwithstanding, truly effective therapeutic strategies will likely require combinations of drugs in order to target the multitude of pathways involved in disease pathogenesis.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Center for Rare Lung Diseases, Respiratory Disease Unit, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy
| | | | | |
Collapse
|
49
|
Ulivi P, Casoni GL, Foschi G, Scarpi E, Tomassetti S, Romagnoli M, Ravaglia C, Mengozzi M, Zoli W, Poletti V. MMP-7 and fcDNA serum levels in early NSCLC and idiopathic interstitial pneumonia: preliminary study. Int J Mol Sci 2013; 14:24097-112. [PMID: 24336111 PMCID: PMC3876098 DOI: 10.3390/ijms141224097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 01/24/2023] Open
Abstract
A non-invasive test to facilitate the diagnosis of non-small cell lung cancer (NSCLC) and idiopathic pulmonary fibrosis (IPF) is still not available and represents an important goal. Forty-eight patients with stage I NSCLC, 45 with IPF, 30 with other idiopathic interstitial pneumonias (IIPs) including idiopathic non-specific interstitial pneumonia (NSIP) and chronic hypersensitivity pneumonitis (HP), 35 with diffuse non-malignant disease and 30 healthy donors were enrolled onto the study. Free circulating (fc)DNA and MMP-7 levels were evaluated by Real Time PCR and ELISA, respectively. Median fcDNA levels were similar in NSCLC (127 ng/mL, range 23.6–345 ng/mL) and IPF (106 ng/mL, range 22–224 ng/mL) patients, and significantly lower in IIPs patients, in individuals with other diseases and in healthy donors (p < 0.05). Conversely, median MMP-7 values were significantly higher in IPF patients (9.10 ng/mL, range 3.88–19.72 ng/mL) than in those with NSCLC (6.31 ng/mL, range 3.38–16.36 ng/mL; p < 0.0001), NSIP (6.50 ng/mL, range 1.50–22.47 ng/mL; p = 0.007), other diseases (5.41 ng/mL, range 1.78–15.91, p < 0.0001) or healthy donors (4.35 ng/mL, range 2.45–7.23; p < 0.0001). Serum MMP-7 levels seem to be capable of distinguishing IPF patients from those with any other lung disease. fcDNA levels were similar in NSCLC and IPF patients, confirming its potential role as a biomarker, albeit non-specific, for the differential diagnosis of NSCLC.
Collapse
Affiliation(s)
- Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy; E-Mails: (G.F.); (W.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0543-739-277; Fax: +39-0543-739-921
| | - Gian Luca Casoni
- Pulmonology, Department of Thoracic Diseases, Morgagni-Pierantoni Hospital, Forlì 47121, Italy; E-Mails: (G.L.C.); (S.T.); (M.R.); (C.R.); (V.P.)
| | - Giovanni Foschi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy; E-Mails: (G.F.); (W.Z.)
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRST IRCCS, Meldola 47014, Italy; E-Mail:
| | - Sara Tomassetti
- Pulmonology, Department of Thoracic Diseases, Morgagni-Pierantoni Hospital, Forlì 47121, Italy; E-Mails: (G.L.C.); (S.T.); (M.R.); (C.R.); (V.P.)
| | - Micaela Romagnoli
- Pulmonology, Department of Thoracic Diseases, Morgagni-Pierantoni Hospital, Forlì 47121, Italy; E-Mails: (G.L.C.); (S.T.); (M.R.); (C.R.); (V.P.)
| | - Claudia Ravaglia
- Pulmonology, Department of Thoracic Diseases, Morgagni-Pierantoni Hospital, Forlì 47121, Italy; E-Mails: (G.L.C.); (S.T.); (M.R.); (C.R.); (V.P.)
| | - Marta Mengozzi
- Thoracic Surgery, Department of Thoracic Diseases, Morgagni-Pierantoni Hospital, Forlì 47121, Italy; E-Mail:
| | - Wainer Zoli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy; E-Mails: (G.F.); (W.Z.)
| | - Venerino Poletti
- Pulmonology, Department of Thoracic Diseases, Morgagni-Pierantoni Hospital, Forlì 47121, Italy; E-Mails: (G.L.C.); (S.T.); (M.R.); (C.R.); (V.P.)
| |
Collapse
|
50
|
Clarke DL, Carruthers AM, Mustelin T, Murray LA. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. FIBROGENESIS & TISSUE REPAIR 2013; 6:20. [PMID: 24279676 PMCID: PMC4176485 DOI: 10.1186/1755-1536-6-20] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Repairing damaged tissues is an essential homeostatic mechanism that enables clearance of dead or damaged cells after injury, and the maintenance of tissue integrity. However, exaggeration of this process in the lung can lead to the development of fibrotic scar tissue. This is characterized by excessive accumulation of extracellular matrix (ECM) components such as fibronectin, proteoglycans, hyaluronic acid, and interstitial collagens. After tissue injury, or a breakdown of tissue integrity, a cascade of events unfolds to maintain normal tissue homeostasis. Inflammatory mediators are released from injured epithelium, leading to both platelet activation and inflammatory cell migration. Inflammatory cells are capable of releasing multiple pro-inflammatory and fibrogenic mediators such as transforming growth factor (TGF)β and interleukin (IL)-13, which can trigger myofibroblast proliferation and recruitment. The myofibroblast population is also expanded as a result of epithelial cells undergoing epithelial-to-mesenchymal transition and of the activation of resident fibroblasts, leading to ECM deposition and tissue remodeling. In the healthy lung, wound healing then proceeds to restore the normal architecture of the lung; however, fibrosis can develop when the wound is severe, the tissue injury persists, or the repair process becomes dysregulated. Understanding the processes regulating aberrant wound healing and the matrix in the chronic fibrotic lung disease idiopathic pulmonary fibrosis (IPF), is key to identifying new treatments for this chronic debilitating disease. This review focuses primarily on the emerging role of enzymes in the lungs of patients with IPF. Elevated expression of a number of enzymes that can directly modulate the ECM has been reported, and recent data indicates that modulating the activity of these enzymes can have a downstream effect on fibrotic tissue remodeling.
Collapse
|