1
|
Suster D, Chacko D, VanderLaan P, Mino-Kenudson M, Hung YP. Insulinoma-associated protein-1 (INSM-1) is a useful diagnostic marker for the evaluation of primary thymic neuroendocrine neoplasms: an immunohistochemical study of 27 cases. Virchows Arch 2025; 486:721-727. [PMID: 39223347 DOI: 10.1007/s00428-024-03904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Insulinoma-associated protein 1 (INSM1) immunohistochemistry has been established as a sensitive and reliable immunohistochemical marker for detecting neuroendocrine differentiation in tumors across various organ systems. However, this marker has not been adequately investigated in primary thymic neuroendocrine tumors. We have studied a series of 27 cases of primary neuroendocrine carcinomas of the thymus, including 3 typical carcinoids, 18 atypical carcinoids, 4 large cell neuroendocrine carcinomas, and 2 small cell carcinomas. Immunostaining on whole tissue sections for INSM-1 was evaluated. Results of immunostaining for chromogranin and synaptophysin were also evaluated. 26/27 tumors (96%) demonstrated nuclear positivity for INSM1. 18 tumors (67%) showed strong and diffuse nuclear staining (3 +), 3 tumors (11%) moderate (2 +) nuclear staining, and 5 tumors (19%) showed weak (1 +) nuclear staining. The average percentage of tumor cells positive for INSM1 was 76%. Only one tumor, a small cell carcinoma, was negative. All tumors were positive for synaptophysin, and 26/27 (96%) were positive for chromogranin A. This study confirms that INSM1 immunohistochemistry is a sensitive marker of neuroendocrine differentiation in primary thymic neuroendocrine neoplasms and demonstrates similar performance characteristics compared to other organ systems. The nuclear staining with this marker offers the advantage of eliminating some of the ambiguity in the interpretation sometimes encountered with other markers. An added advantage is the consistent staining across the entire spectrum of neuroendocrine tumors of this organ.
Collapse
Affiliation(s)
- David Suster
- Department of Pathology, Rutgers University Hospital, New Jersey Medical School, 150 Bergen Street, Newark, NJ, 07103, USA.
| | - Davis Chacko
- Department of Pathology, Rutgers University Hospital, New Jersey Medical School, 150 Bergen Street, Newark, NJ, 07103, USA
| | - Paul VanderLaan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Lv HY, Liu MX, Hong WT, Li XW. Primary hepatic neuroendocrine tumor with a suspicious pulmonary nodule: A case report and literature review. World J Clin Oncol 2025; 16:101236. [PMID: 40130063 PMCID: PMC11866086 DOI: 10.5306/wjco.v16.i3.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND Primary hepatic neuroendocrine tumors (PHNETs) are extremely rare tumors originating from neuroendocrine cells. Due to lack of neuroendocrine symptoms and specific radiographic characteristics, PHNETs are challenging to differentiate from other liver tumors. CASE SUMMARY This case involved a 67-year-old male who was admitted with a discovered hepatic mass and a suspicious lung lesion. Primary hepatic carcinoma was initially speculated based on the characteristic magnetic resonance imaging findings. The patient underwent a laparoscopic right partial hepatectomy, and subsequent immunohistochemical examination revealed a HNET. To exclude other potential origins, a positron emission tomography-computed tomography scan and gastrointestinal endoscopy were performed, leading to a final diagnosis of PHNETs. Then we conducted a literature review using the PubMed database, identifying 99 articles and 317 cases related to PHNETs. The characteristics, diagnostic methods, and treatment of PHNETs have been described. Finally, we elaborate on the presumed origins, pathological grades, clinical features, diagnosed methods, and treatments associated with PHNETs. CONCLUSION The diagnosis of PHNETs was primarily an exclusionary process. A definitive diagnosis of PHNETs relied mainly on immunohistochemical markers (chromogranin A, synaptophysin, and cluster of differentiation 56) and exclusion of primary foci in other organs. Radical surgery was the preferred treatment for early-stage tumors.
Collapse
Affiliation(s)
- Hai-Yan Lv
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mei-Xuan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Wen-Ting Hong
- Department of Nursing Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xia-Wei Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Department of Cancer Center, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
- Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
3
|
Cameselle-Teijeiro JM, Sobrinho-Simões M. Histopathology of C Cells and Medullary Thyroid Carcinoma. Recent Results Cancer Res 2025; 223:9-50. [PMID: 40102253 DOI: 10.1007/978-3-031-80396-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
C cells are the neuroendocrine cell component of the thyroid gland that embryologically arise from the pharyngeal endoderm. Normal C cells are concentrated in the upper two-thirds of both lateral lobes, appear singly or in small groups dispersed in, among or peripherally to the follicles, and are involved in the production of calcitonin. Reactive C-cell hyperplasia should be differentiated from proliferation of atypical C cells (neoplastic C-cell hyperplasia) which is considered an intraepithelial neoplasia of C cells/medullary carcinoma in situ, a precursor lesion associated to familial medullary thyroid carcinoma (MTC). MTC typically exhibits a lobular and/or trabecular growth pattern with amyloid deposits; however, due to its great histological variability, immunohistochemical positivity for calcitonin, carcinoembryonic antigen, calcitonin-gene-related peptide, insulinoma-associated protein 1, and/or other markers is necessary to confirm diagnosis. Investigation of germline RET proto-oncogene mutation is mandatory to identify familial MTC. Somatic RET mutations or fusions as well as RAS mutations in cytological and/or biopsy samples may represent therapeutic targets. Mixed medullary and follicular-derived cell carcinoma is a heterogeneous group of tumors which needs to be distinguished from collision tumors.
Collapse
Affiliation(s)
- José Manuel Cameselle-Teijeiro
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Galician Healthcare Service (SERGAS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Manuel Sobrinho-Simões
- Department of Pathology, Medical Faculty, Institute of Molecular Pathology and Immunology (IPATIMUP), i3S-Institute for Research & Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Vocino Trucco G, Righi L, Volante M, Papotti M. Updates on lung neuroendocrine neoplasm classification. Histopathology 2024; 84:67-85. [PMID: 37794655 DOI: 10.1111/his.15058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Lung neuroendocrine neoplasms (NENs) are a heterogeneous group of pulmonary neoplasms showing different morphological patterns and clinical and biological characteristics. The World Health Organisation (WHO) classification of lung NENs has been recently updated as part of the broader attempt to uniform the classification of NENs. This much-needed update has come at a time when insights from seminal molecular characterisation studies revolutionised our understanding of the biological and pathological architecture of lung NENs, paving the way for the development of novel diagnostic techniques, prognostic factors and therapeutic approaches. In this challenging and rapidly evolving landscape, the relevance of the 2021 WHO classification has been recently questioned, particularly in terms of its morphology-orientated approach and its prognostic implications. Here, we provide a state-of-the-art review on the contemporary understanding of pulmonary NEN morphology and the potential contribution of artificial intelligence, the advances in NEN molecular profiling with their impact on the classification system and, finally, the key current and upcoming prognostic factors.
Collapse
Affiliation(s)
| | - Luisella Righi
- Department of Oncology, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Martin-Vega A, Earnest S, Augustyn A, Wichaidit C, Gazdar A, Girard L, Peyton M, Kollipara RK, Minna JD, Johnson JE, Cobb MH. ASCL1-ERK1/2 Axis: ASCL1 restrains ERK1/2 via the dual specificity phosphatase DUSP6 to promote survival of a subset of neuroendocrine lung cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545148. [PMID: 37398419 PMCID: PMC10312738 DOI: 10.1101/2023.06.15.545148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The transcription factor achaete-scute complex homolog 1 (ASCL1) is a lineage oncogene that is central for the growth and survival of small cell lung cancers (SCLC) and neuroendocrine non-small cell lung cancers (NSCLC-NE) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. However, a potential clue to overcoming this challenage has been information that SCLC and NSCLC-NE that express ASCL1 exhibit extremely low ERK1/2 activity, and efforts to increase ERK1/2 activity lead to inhibition of SCLC growth and surival. Of course, this is in dramatic contrast to the majority of NSCLCs where high activity of the ERK pathway plays a major role in cancer pathogenesis. A major knowledge gap is defining the mechanism(s) underlying the low ERK1/2 activity in SCLC, determining if ERK1/2 activity and ASCL1 function are inter-related, and if manipulating ERK1/2 activity provides a new therapeutic strategy for SCLC. We first found that expression of ERK signaling and ASCL1 have an inverse relationship in NE lung cancers: knocking down ASCL1 in SCLCs and NE-NSCLCs increased active ERK1/2, while inhibition of residual SCLC/NSCLC-NE ERK1/2 activity with a MEK inhibitor increased ASCL1 expression. To determine the effects of ERK activity on expression of other genes, we obtained RNA-seq from ASCL1-expressing lung tumor cells treated with an ERK pathway MEK inhibitor and identified down-regulated genes (such as SPRY4, ETV5, DUSP6, SPRED1) that potentially could influence SCLC/NSCLC-NE tumor cell survival. This led us to discover that genes regulated by MEK inhibition suppress ERK activation and CHIP-seq demonstrated these are bound by ASCL1. In addition, SPRY4, DUSP6, SPRED1 are known suppressors of the ERK1/2 pathway, while ETV5 regulates DUSP6. Survival of NE lung tumors was inhibited by activation of ERK1/2 and a subset of ASCL1-high NE lung tumors expressed DUSP6. Because the dual specificity phosphatase 6 (DUSP6) is an ERK1/2-selective phosphatase that inactivates these kinases and has a pharmacologic inhibitor, we focused mechanistic studies on DUSP6. These studies showed: Inhibition of DUSP6 increased active ERK1/2, which accumulated in the nucleus; pharmacologic and genetic inhibition of DUSP6 affected proliferation and survival of ASCL1-high NE lung cancers; and that knockout of DUSP6 "cured" some SCLCs while in others resistance rapidly developed indicating a bypass mechanism was activated. Thus, our findings fill this knowledge gap and indicate that combined expression of ASCL1, DUSP6 and low phospho-ERK1/2 identify some neuroendocrine lung cancers for which DUSP6 may be a therapeutic target.
Collapse
|
6
|
Centonze G, Maisonneuve P, Simbolo M, Lagano V, Grillo F, Prinzi N, Pusceddu S, Missiato L, Colantuono M, Sabella G, Bercich L, Mangogna A, Rolli L, Grisanti S, Benvenuti MR, Pastorino U, Roz L, Scarpa A, Berruti A, Capella C, Milione M. Ascl1 and OTP tumour expressions are associated with disease-free survival in lung atypical carcinoids. Histopathology 2023; 82:870-884. [PMID: 36720841 DOI: 10.1111/his.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023]
Abstract
According to World Health Organization guidelines, atypical carcinoids (ACs) are well-differentiated lung neuroendocrine tumours with 2-10 mitoses/2 mm2 and/or foci of necrosis (usually punctate). Besides morphological criteria, no further tools in predicting AC clinical outcomes are proposed. The aim of this work was to identify novel factors able to predict AC disease aggressiveness and progression. METHODS AND RESULTS: Three hundred-seventy lung carcinoids were collected and centrally reviewed by two expert pathologists. Morphology and immunohistochemical markers (Ki-67, TTF-1, CD44, OTP, SSTR2A, Ascl1, p53, and Rb1) were studied and correlated with disease-free survival (DFS) and overall survival (OS). Fifty-eight of 370 tumours were defined as AC. Survival analysis showed that patients with Ascl1 + ACs and those with OTP-ACs had a significantly worse DFS than patients with Ascl1-ACs and OTP + ACs, respectively. Combining Ascl1 and OTP expressions, groups were formed reflecting the aggressiveness of disease (P = 0.0005). Ki-67 ≥10% patients had a significantly worse DFS than patients with Ki-67 <10%. At multivariable analysis, Ascl1 (present versus absent, hazard ratio [HR] = 3.42, 95% confidence interval [CI] 1.35-8.65, P = 0.009) and OTP (present versus absent, HR = 0.26, 95% CI 0.10-0.68, P = 0.006) were independently associated with DFS. The prognosis of patients with Ki-67 ≥10% tended to be worse compared to that with Ki-67 <10%. On the contrary, OTP (present versus absent, HR = 0.28, 95% CI 0.09-0.89, P = 0.03), tumour stage (III-IV versus I-II, HR = 4.25, 95% CI 1.42-12.73, P = 0.01) and increasing age (10-year increase, HR = 1.67, 95% CI 1.04-2.68, P = 0.03) were independently associated with OS. CONCLUSION: This retrospective analysis of lung ACs showed that Ascl1 and OTP could be the main prognostic drivers of postoperative recurrence.
Collapse
Affiliation(s)
- Giovanni Centonze
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Vincenzo Lagano
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Grillo
- Unit of Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Natalie Prinzi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loretta Missiato
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marilena Colantuono
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luisa Bercich
- Department of Pathology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Luigi Rolli
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Mauro Roberto Benvenuti
- Thoracic Surgery Unit, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Medical Oncology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy.,ARC-NET Research Center for Applied Research on Cancer, and Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Carlo Capella
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Massimo Milione
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
7
|
Weissferdt A, Sepesi B, Ning J, Hermsen M, Ferrarotto R, Glisson B, Hanna E, Bell D. Optimal Combination of Neuroendocrine Markers for the Detection of High-Grade Neuroendocrine Tumors of the Sinonasal Tract and Lung. Curr Oncol Rep 2023; 25:1-10. [PMID: 36422794 DOI: 10.1007/s11912-022-01346-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Identification of neuroendocrine (NE) differentiation is critical to the classification of head and neck (HN) and lung tumors. In combination with tumor morphology, immunohistochemical (IHC) documentation of NE differentiation is necessary for the diagnosis of NE tumors. The purpose of this study is to determine the sensitivity and concordance of two novel NE markers (mASH1, INSM1) across a group of high-grade NE tumors of the sinonasal tract and lung, and to compare their expression with the current widespread use of conventional NE markers, synaptophysin (SYN) and chromogranin A (CGA). In addition, expression of PARP1 is examined as a potential novel therapeutic target. RECENT FINDINGS Thirty-nine high-grade NE tumors, 23 of the HN and 16 of the lung, were reevaluated by two subspecialized HN and thoracic pathologists, and subsequently stained with mASH1, INSM1, and PARP1. Sensitivity and degree of concordance of all possible combinations of markers were assessed. Sensitivities (standard error) were as follows: mASH1 41% (0.08), INSM1 44% (0.08), SYN 56% (0.08), and CGA 42% (0.09); combination of all four NE markers: 73% (0.08). Sensitivity and standard error for PARP1 was 90% and 0.05, respectively. Highest sensitivity to detect NE differentiation in high-grade NE tumors of the HN and thoracic region was achieved with a combination of four NE markers. Moderate concordance was found with combinations of mASH1 and INSM1 and traditional NE markers, respectively. Consistent overexpression of PARP1 in high-grade tumors with NE differentiation in the HN and lung opens eligibility for PARP1 inhibitor trials.
Collapse
Affiliation(s)
- Annikka Weissferdt
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Ning
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX, USA
| | - Mario Hermsen
- Head and Neck Oncology, University Hospital of Oviedo, Oviedo, Spain
| | - Renata Ferrarotto
- Department of Head and Neck/Thoracic Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Bonnie Glisson
- Department of Head and Neck/Thoracic Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ehab Hanna
- Department of Head and Neck Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Diana Bell
- Department of Pathology and Head and Neck Disease Team Alignment, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| |
Collapse
|
8
|
Tanabe K, Nobuta H, Yang N, Ang CE, Huie P, Jordan S, Oldham MC, Rowitch DH, Wernig M. Generation of functional human oligodendrocytes from dermal fibroblasts by direct lineage conversion. Development 2022; 149:275808. [PMID: 35748297 PMCID: PMC9357374 DOI: 10.1242/dev.199723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2022] [Indexed: 01/08/2023]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, possess great potential for disease modeling and cell transplantation-based therapies for leukodystrophies. However, caveats to oligodendrocyte differentiation protocols ( Ehrlich et al., 2017; Wang et al., 2013; Douvaras and Fossati, 2015) from human embryonic stem and induced pluripotent stem cells (iPSCs), which include slow and inefficient differentiation, and tumorigenic potential of contaminating undifferentiated pluripotent cells, are major bottlenecks towards their translational utility. Here, we report the rapid generation of human oligodendrocytes by direct lineage conversion of human dermal fibroblasts (HDFs). We show that the combination of the four transcription factors OLIG2, SOX10, ASCL1 and NKX2.2 is sufficient to convert HDFs to induced oligodendrocyte precursor cells (iOPCs). iOPCs resemble human primary and iPSC-derived OPCs based on morphology and transcriptomic analysis. Importantly, iOPCs can differentiate into mature myelinating oligodendrocytes in vitro and in vivo. Finally, iOPCs derived from patients with Pelizaeus Merzbacher disease, a hypomyelinating leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1) gene, showed increased cell death compared with iOPCs from healthy donors. Thus, human iOPCs generated by direct lineage conversion represent an attractive new source for human cell-based disease models and potentially myelinating cell grafts.
Collapse
Affiliation(s)
- Koji Tanabe
- I Peace, Inc, Palo Alto, CA 94303, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiroko Nobuta
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheen Euong Ang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Huie
- Department of Surgical Pathology, Stanford Health Care, Palo Alto, CA 94305, USA
| | - Sacha Jordan
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael C Oldham
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.,Departments of Pediatrics and Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Paediatrics and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Rothrock AT, Stewart J, Li F, Racila E, Amin K. Exploration of INSM1 and hASH1 as additional markers in lung cytology samples of high-grade neuroendocrine carcinoma with indeterminate neuroendocrine differentiation. Diagn Cytopathol 2022; 50:230-234. [PMID: 35147301 DOI: 10.1002/dc.24938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/11/2021] [Accepted: 01/21/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Traditional neuroendocrine (NE) markers synaptophysin, chromogranin, and CD56 play an integral role in affirming the diagnosis of high-grade lung NE carcinoma, however promising markers, INSM1, and hASH1, have been identified. We investigated the utility of these markers in pulmonary cytology specimens, particularly in cases where results of traditional NE markers were equivocal. METHODS A retrospective search of cytology cases obtained via endobronchial ultrasound (EBUS)-guided FNA revealed 26 cases of high-grade lung carcinoma where an indeterminate diagnosis of small-cell lung carcinoma (SCLC) was based on equivocal IHC staining with traditional NE markers. A separate cohort of 23 cases positive for all traditional markers with a definitive diagnosis of SCLC was also selected. Cytology cellblock sections were immunostained with INSM1 and hASH1 and analyzed using H-score methodology (score range 0-300). A score of ≥95 was considered "positive." RESULTS INSM1 was positive in 19/24 (79.2%) of cases of high-grade lung carcinoma with indeterminate NE differentiation, while hASH1 was positive in 6/24 (25.0%). Chromogranin was seen only focally positive (<10% of cells) in 4/24 (16.7%), synaptophysin positive in 16/24 (66.7%), and CD56 positive in 14/21 (66.7%). Among unambiguous cases, INSM1 was positive in all cases with an average score of 233.9, while hASH1 was positive in 21/23 (91.3%) with an average score of 196.3. CONCLUSION Compared with traditional NE stains and to hASH1, INSM1 was expressed in a higher number of cases of high-grade lung NE carcinomas in cytology cellblock specimens, making it a superior, more sensitive NE marker.
Collapse
Affiliation(s)
- Aimi Toyama Rothrock
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jimmie Stewart
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emilian Racila
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Asrani K, Torres AFC, Woo J, Vidotto T, Tsai HK, Luo J, Corey E, Hanratty B, Coleman I, Yegnasubramanian S, De Marzo AM, Nelson PS, Haffner MC, Lotan TL. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer. J Pathol 2021; 255:425-437. [PMID: 34431104 PMCID: PMC8599638 DOI: 10.1002/path.5781] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Neuroendocrine prostate cancer (NEPC) is a rare but aggressive histologic variant of prostate cancer that responds poorly to androgen deprivation therapy. Hybrid NEPC-adenocarcinoma (AdCa) tumors are common, often eluding accurate pathologic diagnosis and requiring ancillary markers for classification. We recently performed an outlier-based meta-analysis across a number of independent gene expression microarray datasets to identify novel markers that differentiate NEPC from AdCa, including up-regulation of insulinoma-associated protein 1 (INSM1) and loss of Yes-associated protein 1 (YAP1). Here, using diverse cancer gene expression datasets, we show that Hippo pathway-related genes, including YAP1, are among the top down-regulated gene sets with expression of the neuroendocrine transcription factors, including INSM1. In prostate cancer cell lines, transgenic mouse models, and human prostate tumor cohorts, we confirm that YAP1 RNA and YAP1 protein expression are silenced in NEPC and demonstrate that the inverse correlation of INSM1 and YAP1 expression helps to distinguish AdCa from NEPC. Mechanistically, we find that YAP1 loss in NEPC may help to maintain INSM1 expression in prostate cancer cell lines and we further demonstrate that YAP1 silencing likely occurs epigenetically, via CpG hypermethylation near its transcriptional start site. Taken together, these data nominate two additional markers to distinguish NEPC from AdCa and add to data from other tumor types suggesting that Hippo signaling is tightly reciprocally regulated with neuroendocrine transcription factor expression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kaushal Asrani
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Alba F. C. Torres
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Juhyung Woo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Harrison K. Tsai
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Current address: Boston Children’s Hospital, Boston, MA
| | - Jun Luo
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA
| | - Brian Hanratty
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ilsa Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Michael C. Haffner
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Lee J, Garcia V, Nambiar SM, Jiang H, Dai G. Activation of Proneuronal Transcription Factor Ascl1 in Maternal Liver Ensures a Healthy Pregnancy. Cell Mol Gastroenterol Hepatol 2021; 13:35-55. [PMID: 34438112 PMCID: PMC8600092 DOI: 10.1016/j.jcmgh.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Maternal liver shows robust adaptations to pregnancy to accommodate the metabolic needs of the developing and growing placenta and fetus by largely unknown mechanisms. We found that Ascl1, a gene encoding a basic helix-loop-helix transcription factor essential for neuronal development, is highly activated in maternal hepatocytes during the second half of gestation in mice. METHODS To investigate whether and how Ascl1 plays a pregnancy-dependent role, we deleted the Ascl1 gene specifically in maternal hepatocytes from midgestation until term. RESULTS As a result, we identified multiple Ascl1-dependent phenotypes. Maternal livers lacking Ascl1 showed aberrant hepatocyte structure, increased hepatocyte proliferation, enlarged hepatocyte size, reduced albumin production, and increased release of liver enzymes, indicating maternal liver dysfunction. Simultaneously, maternal pancreas and spleen and the placenta showed marked overgrowth; and the maternal ceca microbiome showed alterations in relative abundance of several bacterial subpopulations. Moreover, litters born from maternal hepatic Ascl1-deficient dams experienced abnormal postnatal growth after weaning, implying an adverse pregnancy outcome. Mechanistically, we found that maternal hepatocytes deficient for Ascl1 showed robust activation of insulin-like growth factor 2 expression, which may contribute to the Ascl1-dependent phenotypes widespread in maternal and uteroplacental compartments. CONCLUSIONS In summary, we show that maternal liver, via activating Ascl1 expression, modulates the adaptations of maternal organs and the growth of the placenta to maintain a healthy pregnancy. Our studies show that Ascl1 is a novel and critical regulator of the physiology of pregnancy.
Collapse
Affiliation(s)
- Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Shashank M Nambiar
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
12
|
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive neuroendocrine carcinoma of unknown origin. We performed a retrospective histologic review of primary cutaneous MCCs diagnosed from 1997 to 2018 in several clinical institutions and literature review to determine the frequency of various unusual morphologic appearances of MCC. Of the 136 primary MCCs identified, intraepidermal carcinoma or epidermotropism was noted in 11/136 (8%) cases. An association with pilar cyst in 1/136 (0.7%) case, with actinic keratosis in 2/136 (1.5%) cases, with either invasive or in situ squamous cell carcinoma (SCC) in 14/136 (10%) cases, with poroma in 1/136 (0.7%), and with basal cell carcinoma in 1/136 (0.7%) case was noted. Trabecular pattern and rosettes were noted in 7/136 (5%) and 3/136 (2%) cases, respectively. There was one case of metastatic MCC in a lymph node with chronic lymphocytic leukemia and one rare case of metastatic MCC and SCC in a lymph node. Although uncommon, differentiation toward other cell lineage can be observed in both primary and metastatic MCCs. The tumor can assume a variety of histologic appearances including association with SCC, basal cell carcinoma, melanocytic neoplasm, and follicular cyst; as well as exhibit glandular, sarcomatous, and mesenchymal differentiation. This diversity of morphologic appearance of MCC reflects the complexity of its underlying pathogenesis.
Collapse
|
13
|
Zaleski M, Kalhor N, Moran CA. Typical and Atypical Carcinoid Tumors of the Mediastinum: A Biomarker Analysis of 27 Cases With Clinical Correlation. Int J Surg Pathol 2020; 29:358-367. [PMID: 33243039 DOI: 10.1177/1066896920976845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymic typical and atypical carcinoids are rare and appear to be more aggressive than similar tumors in other sites. We retrospectively analyzed a group of biomarkers that hold therapeutic and prognostic utility, in 27 of these tumors. All cases were immunohistochemically stained with PAX5, MET, CRMP5, paxillin, p21, p27, EZH2, PDL-1, and Ki-67, and then H-scored. Clinicopathologic and survival data were statistically analyzed against staining (χ2 test). Five- and 10-year-survival rates were 53% and 18%, respectively. Mitotic counts ≥4 per 2 mm2 and tumor size ≥5 cm, associated with death of disease (DoD; P = .010 and .016). Ki-67 expression ≥1% associated with DoD (P = .003) and death within 5 years (P = .031). Biomarkers stained tumor cases as follows: PDL-1 = 0%, PAX-5 = 0%, MET = 7.4%, paxillin = 41%, CRMP5 = 78%, p21 = 63%, p27 = 63%, EZH2 = 37%, and MASH1 = 59%. Overall ± staining did not associate with survival or grade. Cases with low CRMP5 H-scores (<80) associated with DoD (P = .002), while CRMP5 H-scores >80 associated with 10-year survival (P = .022). Cases with high MASH1 H-score (>100) associated with DoD (P = .021). Accurate grading and staging remain paramount in predicting clinical outcome. Biomarkers may have significance in subsets of patients and the use of these studies likely should be focused on a more personalize type of approach.
Collapse
Affiliation(s)
- Michael Zaleski
- 4002The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neda Kalhor
- 4002The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar A Moran
- 4002The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Bell D, Bell A, Ferrarotto R, Glisson B, Takahashi Y, Fuller G, Weber R, Hanna E. High-grade sinonasal carcinomas and surveillance of differential expression in immune related transcriptome. Ann Diagn Pathol 2020; 49:151622. [PMID: 32927372 DOI: 10.1016/j.anndiagpath.2020.151622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
The skull base is the location of a wide variety of malignant tumors. Among them is sinonasal undifferentiated carcinoma (SNUC), a highly aggressive sinonasal neoplasm that was recently reclassified into subgroups of high-grade carcinomas with unique genomic events (e.g., SMARC-deficient carcinoma, nuclear protein in testis NUT carcinoma). Other high-grade carcinomas in this location are neuroendocrine carcinomas, sinonasal adenocarcinomas, and teratocarcinosarcomas. Given the rarity of these tumors, little transcriptomic data is available. The aim of this study was to characterize the immune-oncology gene expression profile in SNUC and other high-grade sinonasal carcinomas. Next-generation sequencing was performed in 30 high-grade sinonasal carcinoma samples using the HTG EdgeSeq Precision Immuno-Oncology Panel. Ingenuity pathway analysis was performed to understand the immunobiology, signaling, and functional perturbations during tumor development. The samples were divided into 3 groups: 21 SNUCs and SMARC-deficient sinonasal carcinomas; 5 high-grade neuroendocrine carcinomas (HGNECs), with small cell and large cell variants; and 4 high-grade sinonasal carcinomas (HGSNCs) of mixed histology (1 NUT carcinoma, 1 teratocarcinosarcoma, and 2 sinonasal adenocarcinomas). PRAME and ASCL1 emerged as upregulated transcripts with strong protein validation for SNUC and HGNEC; other upregulated candidates EZH2 and BRCA1 offer consideration for alternative targeted therapy, and downregulation of major histocompatibility complex molecules and chemokines represent another hurdle in the development of effective immunotherapy. This immune-oncology gene expression analysis of 3 groups of high-grade sinonasal carcinoma with emphasis on SNUC identified a number of differentially expressed transcripts reflecting effects on tumorigenesis. Identification of immune pathways should be further investigated for possible integration of immunotherapy into a multidisciplinary approach to these cancers and personalized treatment.
Collapse
Affiliation(s)
- Diana Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America; Department Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America.
| | - Achim Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Renata Ferrarotto
- Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Bonnie Glisson
- Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Yoko Takahashi
- Department Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Gregory Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Randal Weber
- Department Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Ehab Hanna
- Department Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| |
Collapse
|
15
|
hASH1 nuclear localization persists in neuroendocrine transdifferentiated prostate cancer cells, even upon reintroduction of androgen. Sci Rep 2019; 9:19076. [PMID: 31836808 PMCID: PMC6911083 DOI: 10.1038/s41598-019-55665-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is thought to arise as prostate adenocarcinoma cells transdifferentiate into neuroendocrine (NE) cells to escape potent anti-androgen therapies however, the exact molecular events accompanying NE transdifferentiation and their plasticity remain poorly defined. Cell fate regulator ASCL1/hASH1's expression was markedly induced in androgen deprived (AD) LNCaP cells and prominent nuclear localisation accompanied acquisition of the NE-like morphology and expression of NE markers (NSE). By contrast, androgen-insensitive PC3 and DU145 cells displayed clear nuclear hASH1 localisation under control conditions that was unchanged by AD, suggesting AR signalling negatively regulated hASH1 expression and localisation. Synthetic androgen (R1881) prevented NE transdifferentiation of AD LNCaP cells and markedly suppressed expression of key regulators of lineage commitment and neurogenesis (REST and ASCL1/hASH1). Post-AD, NE LNCaP cells rapidly lost NE-like morphology following R1881 treatment, yet ASCL1/hASH1 expression was resistant to R1881 treatment and hASH1 nuclear localisation remained evident in apparently dedifferentiated LNCaP cells. Consequently, NE cells may not fully revert to an epithelial state and retain key NE-like features, suggesting a "hybrid" phenotype. This could fuel greater NE transdifferentiation, therapeutic resistance and NEPC evolution upon subsequent androgen deprivation. Such knowledge could facilitate CRPC tumour stratification and identify targets for more effective NEPC management.
Collapse
|
16
|
Yatabe Y, Dacic S, Borczuk AC, Warth A, Russell PA, Lantuejoul S, Beasley MB, Thunnissen E, Pelosi G, Rekhtman N, Bubendorf L, Mino-Kenudson M, Yoshida A, Geisinger KR, Noguchi M, Chirieac LR, Bolting J, Chung JH, Chou TY, Chen G, Poleri C, Lopez-Rios F, Papotti M, Sholl LM, Roden AC, Travis WD, Hirsch FR, Kerr KM, Tsao MS, Nicholson AG, Wistuba I, Moreira AL. Best Practices Recommendations for Diagnostic Immunohistochemistry in Lung Cancer. J Thorac Oncol 2019; 14:377-407. [PMID: 30572031 PMCID: PMC6422775 DOI: 10.1016/j.jtho.2018.12.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/04/2023]
Abstract
Since the 2015 WHO classification was introduced into clinical practice, immunohistochemistry (IHC) has figured prominently in lung cancer diagnosis. In addition to distinction of small cell versus non-small cell carcinoma, patients' treatment of choice is directly linked to histologic subtypes of non-small cell carcinoma, which pertains to IHC results, particularly for poorly differentiated tumors. The use of IHC has improved diagnostic accuracy in the classification of lung carcinoma, but the interpretation of IHC results remains challenging in some instances. Also, pathologists must be aware of many interpretation pitfalls, and the use of IHC should be efficient to spare the tissue for molecular testing. The International Association for the Study of Lung Cancer Pathology Committee received questions on practical application and interpretation of IHC in lung cancer diagnosis. After discussions in several International Association for the Study of Lung Cancer Pathology Committee meetings, the issues and caveats were summarized in terms of 11 key questions covering common and important diagnostic situations in a daily clinical practice with some relevant challenging queries. The questions cover topics such as the best IHC markers for distinguishing NSCLC subtypes, differences in thyroid transcription factor 1 clones, and the utility of IHC in diagnosing uncommon subtypes of lung cancer and distinguishing primary from metastatic tumors. This article provides answers and explanations for the key questions about the use of IHC in diagnosis of lung carcinoma, representing viewpoints of experts in thoracic pathology that should assist the community in the appropriate use of IHC in diagnostic pathology.
Collapse
Affiliation(s)
- Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.
| | - Sanja Dacic
- Department of Pathology University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alain C Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, New York
| | - Arne Warth
- Institute of Pathology, Cytopathology, and Molecular Pathology MVZ UEGP Giessen, Wetzlar, Limburg, Germany
| | - Prudence A Russell
- Anatomical Pathology Department, St. Vincent's Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| | - Sylvie Lantuejoul
- Department of Biopathology, Centre Léon Bérard, Grenoble Alpes University, Lyon, France
| | - Mary Beth Beasley
- Department of Pathology, Mount Sinai Medical Center, New York, New York
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan and IRCCS MultiMedica, Milan, Italy
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akihiko Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kim R Geisinger
- Department of Pathology, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Masayuki Noguchi
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Johan Bolting
- Department of Immunology Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jin-Haeng Chung
- Department of Pathology and Respiratory Center, Seoul National University Bundang Hospital, Seongnam city, Gyeonggi- do, Republic of Korea
| | - Teh-Ying Chou
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Republic of China
| | - Gang Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Claudia Poleri
- Office of Pathology Consultants, Buenos Aires, Argentina
| | - Fernando Lopez-Rios
- Laboratorio de Dianas Terapeuticas, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fred R Hirsch
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Keith M Kerr
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen University Medical School, Aberdeen, Scotland, United Kingdom
| | - Ming-Sound Tsao
- Department of Pathology, University Health Network/Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Harefield National Health Service Foundation Trust and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, M. D. Anderson Cancer Center, Houston, Texas
| | - Andre L Moreira
- Department of Pathology, New York University Langone Health, New York, New York
| |
Collapse
|
17
|
Neuroendocrine Key Regulator Gene Expression in Merkel Cell Carcinoma. Neoplasia 2018; 20:1227-1235. [PMID: 30414538 PMCID: PMC6226622 DOI: 10.1016/j.neo.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 01/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive non-melanoma skin cancer of the elderly which is associated with the Merkel cell polyomavirus (MCPyV). MCC reveals a trilinear differentiation characterized by neuroendocrine, epithelial and pre/pro B-cell lymphocytic gene expression disguising the cellular origin of MCC. Here we investigated the expression of the neuroendocrine key regulators RE1 silencing transcription factor (REST), neurogenic differentiation 1 (NeuroD1) and the Achaete-scute homolog 1 (ASCL1) in MCC. All MCCs were devoid of REST and were positive for NeuroD1 expression. Only one MCC tissue revealed focal ASCL1 expression. This was confirmed in MCPyV-positive MCC cell lines. Of interest, MCPyV-negative cell lines did express REST. The introduction of REST expression in REST-negative, MCPyV-positive MCC cells downregulated the neuroendocrine gene expression. The lack of the neuroendocrine master regulator ASCL1 in almost all tested MCCs points to an important role of the absence of the negative regulator REST towards the MCC neuroendocrine phenotype. This is underlined by the expression of the REST-regulated microRNAs miR-9/9* in REST-negative MCC cell lines. These data might provide the basis for the understanding of neuroendocrine gene expression profile which is expected to help to elucidate the cellular origin of MCC.
Collapse
|
18
|
Uccella S, La Rosa S, Volante M, Papotti M. Immunohistochemical Biomarkers of Gastrointestinal, Pancreatic, Pulmonary, and Thymic Neuroendocrine Neoplasms. Endocr Pathol 2018. [PMID: 29520563 DOI: 10.1007/s12022-018-9522-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of epithelial neoplastic proliferations that irrespective of their primary site share features of neural and endocrine differentiation including the presence of secretory granules, synaptic-like vesicles, and the ability to produce amine and/or peptide hormones. NENs encompass a wide spectrum of neoplasms ranging from well-differentiated indolent tumors to highly aggressive poorly differentiated neuroendocrine carcinomas. Most cases arise in the digestive system and in thoracic organs, i.e., the lung and thymus. A correct diagnostic approach is crucial for the management of patients with both digestive and thoracic NENs, because their high clinical and biological heterogeneity is related to their prognosis and response to therapy. In this context, immunohistochemistry represents an indispensable diagnostic tool that pathologists need to use for the correct diagnosis and classification of such neoplasms. In addition, immunohistochemistry is also useful in identifying prognostic and theranostic markers. In the present article, the authors will review the role of immunohistochemistry in the routine workup of digestive and thoracic NENs.
Collapse
Affiliation(s)
- Silvia Uccella
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Stefano La Rosa
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland.
- Institut Universitaire de Pathologie, CHUV, 25 rue du Bugnon, 1011, Lausanne, Switzerland.
| | - Marco Volante
- Department of Oncology, San Luigi Hospital, University of Turin, Orbassano, Italy
| | - Mauro Papotti
- Department of Oncology, City of Health and Science, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci U S A 2018; 115:E4473-E4482. [PMID: 29686080 PMCID: PMC5949005 DOI: 10.1073/pnas.1802354115] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Advanced prostate cancer is a deadly disease made up of multiple cancer subtypes that evolve during its natural history. Unfortunately, antibody- and cell-based therapies in development that target single tumor antigens found in conventional prostate cancer do not account for this heterogeneity. Here, we show that two major subtypes of advanced prostate cancer, prostate adenocarcinoma (PrAd) and neuroendocrine prostate cancer (NEPC), exhibit distinct cell-surface expression profiles. Integrated analysis of gene expression and cell-surface protein expression of prostate cancer nominated multiple subtype-specific cell-surface antigens. We specifically characterize FXYD3 and CEACAM5 as targets for immune-based therapies in PrAd and NEPC and provide preliminary evidence of the antigen-specific cytotoxic activity of CEACAM5-directed chimeric antigen receptor T cells in NEPC. Prostate cancer is a heterogeneous disease composed of divergent molecular and histologic subtypes, including prostate adenocarcinoma (PrAd) and neuroendocrine prostate cancer (NEPC). While PrAd is the major histology in prostate cancer, NEPC can evolve from PrAd as a mechanism of treatment resistance that involves a transition from an epithelial to a neurosecretory cancer phenotype. Cell surface markers are often associated with specific cell lineages and differentiation states in normal development and cancer. Here, we show that PrAd and NEPC can be broadly discriminated by cell-surface profiles based on the analysis of prostate cancer gene expression datasets. To overcome a dependence on predictions of human cell-surface genes and an assumed correlation between mRNA levels and protein expression, we integrated transcriptomic and cell-surface proteomic data generated from a panel of prostate cancer cell lines to nominate cell-surface markers associated with these cancer subtypes. FXYD3 and CEACAM5 were validated as cell-surface antigens enriched in PrAd and NEPC, respectively. Given the lack of effective treatments for NEPC, CEACAM5 appeared to be a promising target for cell-based immunotherapy. As a proof of concept, engineered chimeric antigen receptor T cells targeting CEACAM5 induced antigen-specific cytotoxicity in NEPC cell lines. Our findings demonstrate that the surfaceomes of PrAd and NEPC reflect unique cancer differentiation states and broadly represent vulnerabilities amenable to therapeutic targeting.
Collapse
|
20
|
Moris D, Ntanasis-Stathopoulos I, Tsilimigras DI, Adam MA, Yang CFJ, Harpole D, Theocharis S. Insights into Novel Prognostic and Possible Predictive Biomarkers of Lung Neuroendocrine Tumors. Cancer Genomics Proteomics 2018; 15:153-163. [PMID: 29496694 PMCID: PMC5892602 DOI: 10.21873/cgp.20073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023] Open
Abstract
Primary lung neuroendocrine tumors (NETs) consist of typical and atypical carcinoids, large-cell neuroendocrine carcinomas and small-cell lung carcinomas. NETs are highly heterogeneous in histological characteristics, clinical presentation and natural history. While there are morphological and immunohistochemical criteria to establish diagnosis, there is a lack of universal consensus for prognostic factors or therapeutic targets for personalized treatment of the disease. Thus, identifying potential markers of neuroendocrine differentiation and prognostic factors remains of high importance. This review provides an insight into promising molecules and genes that are implicated in NET carcinogenesis, cell-cycle regulation, chromatin remodeling, apoptosis, intracellular cascades and cell-cell interactions. Additionally it supports a basis for classifying these tumors into categories that distinct molecular characteristics and disease natural history, which may have a direct impact on treatment options. In light of the recent approval of everolimus, mammalian target of rapamycin pathway inhibition and related biomarkers may play a central role in the treatment of pulmonary NETs. Future clinical trials that integrate molecular profiling are deemed necessary in order to treat patients with NET on a personalized basis.
Collapse
Affiliation(s)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Diamantis I Tsilimigras
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Mohamad A Adam
- Department of Surgery, Duke University, Durham, NC, U.S.A
| | | | - David Harpole
- Department of Surgery, Duke University, Durham, NC, U.S.A
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
INSM1 Demonstrates Superior Performance to the Individual and Combined Use of Synaptophysin, Chromogranin and CD56 for Diagnosing Neuroendocrine Tumors of the Thoracic Cavity. Am J Surg Pathol 2017; 41:1561-1569. [PMID: 28719469 DOI: 10.1097/pas.0000000000000916] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite the importance of recognizing neuroendocrine differentiation when diagnosing tumors of the thoracic cavity, the sensitivity of traditional neuroendocrine markers is suboptimal, particularly for high-grade neuroendocrine carcinomas such as small cell lung carcinoma and large cell neuroendocrine carcinoma. To increase sensitivity, neuroendocrine markers are routinely ordered as panels of multiple immunostains where any single positive marker is regarded as sufficient evidence of neuroendocrine differentiation. Insulinoma-associated protein 1 (INSM1) is a well-validated transcription factor of neuroendocrine differentiation that has only recently been evaluated for diagnostic use. We performed INSM1 immunohistochemistry on a large series of thoracic neuroendocrine and non-neuroendocrine tumors and compared its performance to synaptophysin, chromogranin, and CD56. INSM1 was positive in 94.9% of small cell lung carcinomas and 91.3% of large cell neuroendocrine carcinomas, compared with 74.4% and 78.3% with the combined panel of traditional markers. INSM1 also stained all (100%) of the atypical carcinoids, typical carcinoids and mediastinal paragangliomas, but only 3.3% of adenocarcinomas and 4.2% of squamous cell carcinomas. Overall, INSM1 demonstrated a sensitivity of 96.4% across all grades of thoracic neuroendocrine tumors, significantly more than the 87.4% using the panel of traditional markers (P=0.02). INSM1 is sufficiently sensitive and specific to serve as a standalone first-line marker of neuroendocrine differentiation. A more restrained approach to immunohistochemical analysis of small thoracic biopsies is appropriate given the expanding demand on this limited material for therapeutic biomarker analysis.
Collapse
|