1
|
Vanderven HA, Wentworth DN, Han WM, Peck H, Barr IG, Davey RT, Beigel JH, Dwyer DE, Jain MK, Angus B, Brandt CT, Mykietiuk A, Law MG, Neaton JD, Kent SJ, for the INSIGHT FLU-IVIG Study Group. Understanding the treatment benefit of hyperimmune anti-influenza intravenous immunoglobulin (Flu-IVIG) for severe human influenza. JCI Insight 2023; 8:e167464. [PMID: 37289541 PMCID: PMC10443807 DOI: 10.1172/jci.insight.167464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUNDAntibody-based therapies for respiratory viruses are of increasing importance. The INSIGHT 006 trial administered anti-influenza hyperimmune intravenous immunoglobulin (Flu-IVIG) to patients hospitalized with influenza. Flu-IVIG treatment improved outcomes in patients with influenza B but showed no benefit for influenza A.METHODSTo probe potential mechanisms of Flu-IVIG utility, sera collected from patients hospitalized with influenza A or B viruses (IAV or IBV) were analyzed for antibody isotype/subclass and Fcγ receptor (FcγR) binding by ELISA, bead-based multiplex, and NK cell activation assays.RESULTSInfluenza-specific FcγR-binding antibodies were elevated in Flu-IVIG-infused IBV- and IAV-infected patients. In IBV-infected participants (n = 62), increased IgG3 and FcγR binding were associated with more favorable outcomes. Flu-IVIG therapy also improved the odds of a more favorable outcome in patients with low levels of anti-IBV Fc-functional antibody. Higher FcγR-binding antibody was associated with less favorable outcomes in IAV-infected patients (n = 50), and Flu-IVIG worsened the odds of a favorable outcome in participants with low levels of anti-IAV Fc-functional antibody.CONCLUSIONThese detailed serological analyses provide insights into antibody features and mechanisms required for a successful humoral response against influenza, suggesting that IBV-specific, but not IAV-specific, antibodies with Fc-mediated functions may assist in improving influenza outcome. This work will inform development of improved influenza immunotherapies.TRIAL REGISTRATIONClinicalTrials.gov NCT02287467.FUNDINGFunding for this research was provided by subcontract 13XS134 under Leidos Biomedical Research Prime Contract HHSN261200800001E and HHSN261201500003I, NCI/NIAID.
Collapse
Affiliation(s)
- Hillary A. Vanderven
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, and
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Deborah N. Wentworth
- Divison of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Win Min Han
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Heidi Peck
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Richard T. Davey
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, Maryland, USA
| | - John H. Beigel
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, Maryland, USA
| | - Dominic E. Dwyer
- New South Wales Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia
| | | | - Brian Angus
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Christian T. Brandt
- Department of Infectious Diseases, Zealand University Hospital Roskilde, Denmark
| | | | - Matthew G. Law
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - James D. Neaton
- Divison of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, Victoria, Australia
| | | |
Collapse
|
2
|
Atre NM, Alagarasu K, Shil P. ArVirInd-a database of arboviral antigenic proteins from the Indian subcontinent. PeerJ 2022; 10:e13851. [PMID: 36299508 PMCID: PMC9590419 DOI: 10.7717/peerj.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/16/2022] [Indexed: 01/24/2023] Open
Abstract
Background Studies on antigenic proteins for arboviruses are important for providing diagnostics and vaccine development. India and its neighboring countries have a huge burden of arboviral diseases. Data mining for country-specific sequences from existing bioinformatics databases is cumbersome and time-consuming. This necessitated the development of a database of antigenic proteins from arboviruses isolated from the countries of the Indian subcontinent. Methods Arboviral antigenic protein sequences were obtained from the NCBI and other databases. In silico antigenic characterization was performed (Epitope predictions) and data was incorporated into the database. The front end was designed and developed using HTML, CSS, and PHP. For the backend of the database, we have used MySQL. Results A database, named ArVirInd, is created as a repository of information on curated antigenic proteins. This enlists sequences by country and year of outbreak or origin of the viral strain. For each entry, antigenic information is provided along with functional sites, etc. Researchers can search this database by virus/protein name, country, and year of collection (or in combination) as well as peptide search for epitopes. It is available publicly via the Internet at http://www.arvirind.co.in. ArVirInd will be useful in the study of immune informatics, diagnostics, and vaccinology for arboviruses.
Collapse
Affiliation(s)
- Nitin Motilal Atre
- Bioinformatics, ICMR National Institute of Virology Pune, Pune, Maharashtra, India
| | - Kalichamy Alagarasu
- Bioinformatics, ICMR National Institute of Virology Pune, Pune, Maharashtra, India
| | - Pratip Shil
- Bioinformatics, ICMR National Institute of Virology Pune, Pune, Maharashtra, India
| |
Collapse
|
3
|
Cagliani R, Mozzi A, Pontremoli C, Sironi M. Evolution and Origin of Human Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Vanderven HA, Wragg K, Ana-Sosa-Batiz F, Kristensen AB, Jegaskanda S, Wheatley AK, Wentworth D, Wines BD, Hogarth PM, Rockman S, Kent SJ. Anti-Influenza Hyperimmune Immunoglobulin Enhances Fc-Functional Antibody Immunity During Human Influenza Infection. J Infect Dis 2019; 218:1383-1393. [PMID: 29860297 DOI: 10.1093/infdis/jiy328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Background New treatments for severe influenza are needed. Passive transfer of influenza-specific hyperimmune pooled immunoglobulin (Flu-IVIG) boosts neutralizing antibody responses to past strains in influenza-infected subjects. The effect of Flu-IVIG on antibodies with Fc-mediated functions, which may target diverse influenza strains, is unclear. Methods We studied the capacity of Flu-IVIG, relative to standard IVIG, to bind to Fcγ receptors and mediate antibody-dependent cellular cytotoxicity in vitro. The effect of Flu-IVIG infusion, compared to placebo infusion, was examined in serial plasma samples from 24 subjects with confirmed influenza infection in the INSIGHT FLU005 pilot study. Results Flu-IVIG contains higher concentrations of Fc-functional antibodies than IVIG against a diverse range of influenza hemagglutinins. Following infusion of Flu-IVIG into influenza-infected subjects, a transient increase in Fc-functional antibodies was present for 1-3 days against infecting and noninfecting strains of influenza. Conclusions Flu-IVIG contains antibodies with Fc-mediated functions against influenza virus, and passive transfer of Flu-IVIG increases anti-influenza Fc-functional antibodies in the plasma of influenza-infected subjects. Enhancement of Fc-functional antibodies to a diverse range of influenza strains suggests that Flu-IVIG infusion could prove useful in the context of novel influenza virus infections, when there may be minimal or no neutralizing antibodies in the Flu-IVIG preparation.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.,Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia
| | - Kathleen Wragg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Fernanda Ana-Sosa-Batiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | | | | | | | - Steve Rockman
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.,Seqirus Ltd, Parkville
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
5
|
Yadav PD, Nyayanit DA, Shete AM, Jain S, Majumdar TP, Chaubal GY, Shil P, Kore PM, Mourya DT. Complete genome sequencing of Kaisodi virus isolated from ticks in India belonging to Phlebovirus genus, family Phenuiviridae. Ticks Tick Borne Dis 2018; 10:23-33. [PMID: 30181094 DOI: 10.1016/j.ttbdis.2018.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022]
Abstract
An unknown virus was repeatedly isolated from hard tick (Haemaphysalis spinigera) during a proactive arbovirus survey in ticks conducted in 1957, in India. The virus remained uncharacterized for a long time. The passages of this virus in different vertebrate and invertebrate cells along with human and monkey-derived cell culture showed no cytopathic effect. It was identified later to be a member of Kaisodi group among Phlebovirus genus in the family Phenuiviridae (Order: Bunyavirales) by serological methods. Due to its genomic diversity, sequencing of this virus was a challenge for a while. In this study, we were able to sequence the complete genome of this virus isolate using next-generation sequencing (NGS) platform. The unknown virus was identified to be Kaisodi virus (KASDV) using NGS analysis. De novo genome assembly derived three genomic segments for the KASDV which encode for RNA-dependent RNA polymerase, glycoprotein precursor, and nucleoprotein. Functional as well as conserved domains for Kaisodi serogroup viruses were predicted and compared to a known representative of the genus Phlebovirus. The phylogenetic tree revealed its closeness to Silverwater virus, of Kaisodi serogroup with nucleotide (69%, 62%, and 61%) and amino acid (52%, 51%, and 62%) identity for L, M, and S segment, respectively. The study demonstrates the presence of a conserved motif (72TRGNK76) around the RNA binding motif region in tick-borne phleboviruses. The intergenic region encompassing the S segment of Kaisodi serogroup was GC-rich whereas the other Phlebovirus had AT-rich genome. KASDV has the largest intergenic region and larger loops, suggesting stem-loops formed due to larger loops as a possible factor for instability and cause of transcription termination. This paper also describes the real-time RT-PCR and RT-PCR assays developed and used for the detection of KASDV RNA in ticks from Karnataka, Kerala and Maharashtra State, India. The KASDV positivity observed in the recently collected tick pools indicates that the KASDV, isolated from Karnataka state in 1957, is also circulating in the adjoining Kerala state. On the basis of the current study, it should be possible to develop diagnostic assays which would facilitate an in-depth field survey exploring the veterinary and medical significance of KASDV.
Collapse
Affiliation(s)
- P D Yadav
- Maximum Containment Facility, Microbial Containment Complex, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India
| | - D A Nyayanit
- Maximum Containment Facility, Microbial Containment Complex, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India
| | - A M Shete
- Maximum Containment Facility, Microbial Containment Complex, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India
| | - S Jain
- Maximum Containment Facility, Microbial Containment Complex, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India
| | - T P Majumdar
- Maximum Containment Facility, Microbial Containment Complex, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India
| | - G Y Chaubal
- Maximum Containment Facility, Microbial Containment Complex, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India
| | - P Shil
- Maximum Containment Facility, Microbial Containment Complex, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India
| | - P M Kore
- Maximum Containment Facility, Microbial Containment Complex, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India
| | - D T Mourya
- Maximum Containment Facility, Microbial Containment Complex, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India.
| |
Collapse
|
6
|
Identification of a conserved neutralizing epitope in the G-protein of Chandipura virus. Arch Virol 2018; 163:3215-3223. [PMID: 30116984 DOI: 10.1007/s00705-018-3987-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022]
Abstract
Chandipura virus (CHPV), associated with an encephalitic illness in humans, has caused multiple outbreaks with high mortality in central and western India in recent years. The present study compares surface glycoprotein (G-protein) from prototype and recent outbreak strains using in silico tools and in vitro experiments. In silico epitope predictions (B-cell and T-helper cell) for the sequences, 3D structure prediction and comparison of the G-proteins of the strains: I653514 (Year 1965), CIN0327 (Year 2003) and 148974 (Year 2014) revealed that the CHPV G-protein is stable and antigenic determinants are conserved. A monoclonal antibody developed against strain CIN0327 (named NAbC) was found to neutralize prototype I653514 as well as the currently circulating strain 148974. In silico antigen-antibody interaction studies using molecular docking of predicted structures of NAbC and G-proteins of various CHPV strains led to the identification of a conserved neutralizing epitope in the fusion domain of G-protein, which also contained a putative T-helper peptide. The identification of a conserved neutralizing epitope in domain IV (fusion domain amino acids 53 to 172) of CHPV G-protein is an important finding that may have the scope towards the development of protective targets against CHPV infection.
Collapse
|
7
|
Shil P, Yadav PD, Patil AA, Balasubramanian R, Mourya DT. Bioinformatics characterization of envelope glycoprotein from Kyasanur Forest disease virus. Indian J Med Res 2018; 147:195-201. [PMID: 29806609 PMCID: PMC5991130 DOI: 10.4103/ijmr.ijmr_1445_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background & objectives Kyasanur Forest disease (KFD) is a febrile illness characterized by haemorrhages and caused by KFD virus (KFDV), which belongs to the Flaviviridae family. It is reported to be an endemic disease in Shimoga district of Karnataka State, India, especially in forested and adjoining areas. Several outbreaks have been reported in newer areas, which raised queries regarding the changing nature of structural proteins if any. The objective of the study was to investigate amino acid composition and antigenic variability if any, among the envelope glycoprotein (E-proteins) from old and new strains of KFDV. Methods Bioinformatic tools and techniques were used to predict B-cell epitopes and three-dimensional structures and to compare envelope glycoprotein (E-proteins) between the old strains of KFDV and those from emerging outbreaks till 2015. Results The strain from recent outbreak in Thirthahalli, Karnataka State (2014), was similar to the older strain of KFDV (99.2%). Although mutations existed in strains from 2015 in Kerala KFD sequences, these did not alter the epitopes. Interpretation & conclusions The study revealed that though mutations existed, there were no drastic changes in the structure or antigenicity of the E-proteins from recent outbreaks. Hence, no correlation could be established between the mutations and detection in new geographical areas. It seems that KFDV must be present earlier also in many States and due to availability of testing system and alertness coming into notice now.
Collapse
Affiliation(s)
- Pratip Shil
- Bioinformatics Group, ICMR-National Institute of Virology, Pune, India
| | | | - Avinash A Patil
- Bioinformatics Group, ICMR-National Institute of Virology, Pune, India
| | | | | |
Collapse
|
8
|
Thube MM, Shil P, Kasbe R, Patil AA, Pawar SD, Mullick J. Differences in Type I interferon response in human lung epithelial cells infected by highly pathogenic H5N1 and low pathogenic H11N1 avian influenza viruses. Virus Genes 2018; 54:414-423. [PMID: 29574656 DOI: 10.1007/s11262-018-1556-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/16/2018] [Indexed: 12/30/2022]
Abstract
Influenza A virus infection induces type I interferons (IFNs α/β) which activate host antiviral responses through a cascade of IFN signaling events. Herein, we compared highly pathogenic H5N1 and low pathogenic H11N1 avian influenza viruses isolated from India, for their replication kinetics and ability to induce IFN-β and interferon-stimulating genes (ISGs). The H5N1 virus showed a higher replication rate and induced less IFN-β and ISGs compared to the H11N1 virus when grown in the human lung epithelial A549 cells, reflecting the generation of differential innate immune responses during infection by these viruses. The non-structural 1 (NS1) protein, a major IFN-antagonist, known to help the virus in evading host innate immune response was compared from both the strains using bioinformatics tools. Analyses revealed differences in the composition of the NS1 proteins from the two strains that may have an impact on the modulation of the innate immune response. Intriguingly, H5N1 virus attenuated IFN-β response in a non-NS1 manner, suggesting the possible involvement of other viral proteins (PB2, PA, PB1/PB1-F2) of H5N1 in synergy with NS1. Preliminary analyses of the above proteins of the two strains by sequence comparison show differences in charged residues. The insight gained will be useful in designing experimental studies to elucidate a probable role of the polymerase protein(s) in association with NS1 in inhibiting the IFN signaling and understanding the molecular mechanism governing the difference.
Collapse
Affiliation(s)
- Milind M Thube
- Avian Influenza Group, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1 Sus Road, Pashan, Pune, 411021, India
| | - Pratip Shil
- Bioinformatics Laboratory, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1 Sus Road, Pashan, Pune, 411021, India
| | - Rewati Kasbe
- Avian Influenza Group, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1 Sus Road, Pashan, Pune, 411021, India
| | - Avinash A Patil
- Bioinformatics Laboratory, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1 Sus Road, Pashan, Pune, 411021, India
| | - Shailesh D Pawar
- Avian Influenza Group, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1 Sus Road, Pashan, Pune, 411021, India
| | - Jayati Mullick
- Avian Influenza Group, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1 Sus Road, Pashan, Pune, 411021, India.
| |
Collapse
|
9
|
Nehul S, Kulkarni A, Pawar S, Godbole S, Ghate M, Thakar M. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity-mediating antibodies in HIV-infected Indian individuals. Infect Dis (Lond) 2017; 50:35-43. [PMID: 28776433 DOI: 10.1080/23744235.2017.1361547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The influenza-specific antibodies mediating antibody-dependent cellular cytotoxicity (ADCC) may be important in protection against influenza. However, it is not known whether immunocompromised individuals such as HIV-infected persons who have never been vaccinated with influenza vaccine have such a response. METHODS The anti-influenza ADCC responses were investigated in plasma samples from 50 HIV positive persons [25 long-term nonprogressors (LTNPs) and 25 progressors] and from 20 HIV-uninfected healthy individuals. None of the participants had received influenza vaccine. RESULTS The frequencies and the magnitude of ADCC responses against two influenza A virus strains (pH1N1-A/California/7/2009 and H3N2-A/Brisbane/10/2007) were comparable in HIV-infected individuals and in healthy controls (p > .05). However, the magnitude of the ADCC response was slightly higher in LTNPs than in progressors (p = .025). The level of ADCC antibodies against pH1N1 and H3N2 correlated significantly indicating the cross-reactive nature of these antibodies (p < .0001). Additionally, the level of these ADCC antibodies was significantly associated with antibodies against the highly pathogenic avian influenza H5N1 virus (H5N1-A/Chicken/India/NIV/33487/2007). CONCLUSION This is the first report of anti-influenza ADCC antibodies in HIV-infected Indian individuals. Identification of cross-reactive ADCC epitopes in HIV-infected individuals could improve the design of influenza vaccine for immunocompromised individuals.
Collapse
Affiliation(s)
- Sanketkumar Nehul
- a National AIDS Research Institute , Pune , India.,b National Institute of Virology , Pune , India
| | | | | | | | | | | |
Collapse
|
10
|
Vanderven HA, Liu L, Ana-Sosa-Batiz F, Nguyen TH, Wan Y, Wines B, Hogarth PM, Tilmanis D, Reynaldi A, Parsons MS, Hurt AC, Davenport MP, Kotsimbos T, Cheng AC, Kedzierska K, Zhang X, Xu J, Kent SJ. Fc functional antibodies in humans with severe H7N9 and seasonal influenza. JCI Insight 2017; 2:92750. [PMID: 28679958 DOI: 10.1172/jci.insight.92750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/19/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Both seasonal and novel avian influenza viruses can result in severe infections requiring hospitalization. Anti-influenza antibodies (Abs) with Fc-mediated effector functions, such as Ab-dependent cellular cytotoxicity (ADCC), are of growing interest in control of influenza but have not previously been studied during severe human infections. As such, the objective of this study was to examine Fc-mediated Ab functions in humans hospitalized with influenza infection. METHODS Serum Ab response was studied in subjects hospitalized with either pandemic H7N9 avian influenza virus in China (n = 18) or circulating seasonal influenza viruses in Melbourne, Australia (n = 16). Recombinant soluble Fc receptor dimer ELISAs, natural killer (NK) cell activation assays, and Ab-dependent killing assays with influenza-infected target cells were used to assess the Fc functionality of anti-influenza hemagglutinin (HA) Abs during severe human influenza infection. RESULTS We found that the peak generation of Fc functional HA Abs preceded that of neutralizing Abs for both severe H7N9 and seasonal influenza infections. Subjects who succumbed to complications of H7N9 infection demonstrated reduced HA-specific Fc receptor-binding Abs (in magnitude and breadth) immediately prior to death compared with those who survived. Subjects who recovered from H7N9 and severe seasonal influenza infections demonstrated increased Fc receptor-binding Abs not only against the homologous infecting strain but against HAs from different influenza A subtypes. CONCLUSION Collectively, survivors of severe influenza infection rapidly generate a functional Ab response capable of mediating ADCC against divergent influenza viruses. Broadly binding HA Abs with Fc-mediated functions may be a useful component of protective immunity to severe influenza infection. FUNDING The National Health and Medical Research Council ([NHMRC] grants 1023294, 1041832, and 1071916), the Australian Department of Health, and the joint University of Melbourne/Fudan University International Research and Research Training Fund provided funding for this study.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Lu Liu
- Shanghai Public Health Clinical Centre (SPHCC) and Institute of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of the Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fernanda Ana-Sosa-Batiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Yanmin Wan
- Shanghai Public Health Clinical Centre (SPHCC) and Institute of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of the Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bruce Wines
- Burnet Institute, Melbourne, Victoria, Australia
| | | | - Danielle Tilmanis
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Arnold Reynaldi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Tom Kotsimbos
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Allen C Cheng
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health and School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Centre (SPHCC) and Institute of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of the Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Centre (SPHCC) and Institute of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of the Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Vanderven HA, Ana-Sosa-Batiz F, Jegaskanda S, Rockman S, Laurie K, Barr I, Chen W, Wines B, Hogarth PM, Lambe T, Gilbert SC, Parsons MS, Kent SJ. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins. EBioMedicine 2016; 8:277-290. [PMID: 27428437 PMCID: PMC4919476 DOI: 10.1016/j.ebiom.2016.04.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 02/01/2023] Open
Abstract
The conserved internal influenza proteins nucleoprotein (NP) and matrix 1 (M1) are well characterised for T cell immunity, but whether they also elicit functional antibodies capable of activating natural killer (NK) cells has not been explored. We studied NP and M1-specific ADCC activity using biochemical, NK cell activation and killing assays with plasma from healthy and influenza-infected subjects. Healthy adults had antibodies to M1 and NP capable of binding dimeric FcγRIIIa and activating NK cells. Natural symptomatic and experimental influenza infections resulted in a rise in antibody dependent NK cell activation post-infection to the hemagglutinin of the infecting strain, but changes in NK cell activation to M1 and NP were variable. Although antibody dependent killing of target cells infected with vaccinia viruses expressing internal influenza proteins was not detected, opsonising antibodies to NP and M1 likely contribute to an antiviral microenvironment by stimulating innate immune cells to secrete cytokines early in infection. We conclude that effector cell activating antibodies to conserved internal influenza proteins are common in healthy and influenza-infected adults. Given the significance of such antibodies in animal models of heterologous influenza infection, the definition of their importance and mechanism of action in human immunity to influenza is essential. Functional antibodies to influenza matrix 1 and nucleoprotein are common in healthy and influenza-infected humans. Opsonising antibodies to matrix 1 and nucleoprotein can bind FcγRIIIa dimers and activate natural killer cells. Influenza infection increased natural killer cell activation to hemagglutinin but changes to the internal proteins varied
Influenza virus causes both seasonal outbreaks and global pandemics. The current influenza vaccine provides minimal protection against divergent strains of the virus not found in the vaccine. While neutralising antibodies induced by vaccination are able to confer strain-specific protection, antibodies directed against conserved influenza proteins may be able to provide some cross-protection. Animal models suggest a protective role for anti-nucleoprotein antibodies. Exploring the functional capacity of human antibodies against internal influenza proteins to engage Fc receptors and activate innate immune cells may present a unique approach in the development of a more universal influenza vaccine.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Fernanda Ana-Sosa-Batiz
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Rockman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Seqirus Ltd, Parkville, Australia
| | - Karen Laurie
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Weisan Chen
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Bundoora, Australia
| | | | | | | | | | - Matthew S Parsons
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
12
|
Durviaux S, Treanor J, Beran J, Duval X, Esen M, Feldman G, Frey SE, Launay O, Leroux-Roels G, McElhaney JE, Nowakowski A, Ruiz-Palacios GM, van Essen GA, Oostvogels L, Devaster JM, Walravens K. Genetic and antigenic typing of seasonal influenza virus breakthrough cases from a 2008-2009 vaccine efficacy trial. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:271-9. [PMID: 24371255 PMCID: PMC3957665 DOI: 10.1128/cvi.00544-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023]
Abstract
Estimations of the effectiveness of vaccines against seasonal influenza virus are guided by comparisons of the antigenicities between influenza virus isolates from clinical breakthrough cases with strains included in a vaccine. This study examined whether the prediction of antigenicity using a sequence analysis of the hemagglutinin (HA) gene-encoded HA1 domain is a simpler alternative to using the conventional hemagglutination inhibition (HI) assay, which requires influenza virus culturing. Specimens were taken from breakthrough cases that occurred in a trivalent influenza virus vaccine efficacy trial involving >43,000 participants during the 2008-2009 season. A total of 498 influenza viruses were successfully subtyped as A(H3N2) (380 viruses), A(H1N1) (29 viruses), B(Yamagata) (23 viruses), and B(Victoria) (66 viruses) from 603 PCR- or culture-confirmed specimens. Unlike the B strains, most A(H3N2) (377 viruses) and all A(H1N1) viruses were classified as homologous to the respective vaccine strains based on their HA1 domain nucleic acid sequence. HI titers relative to the respective vaccine strains and PCR subtyping were determined for 48% (182/380) of A(H3N2) and 86% (25/29) of A(H1N1) viruses. Eighty-four percent of the A(H3N2) and A(H1N1) viruses classified as homologous by sequence were matched to the respective vaccine strains by HI testing. However, these homologous A(H3N2) and A(H1N1) viruses displayed a wide range of relative HI titers. Therefore, although PCR is a sensitive diagnostic method for confirming influenza virus cases, HA1 sequence analysis appeared to be of limited value in accurately predicting antigenicity; hence, it may be inappropriate to classify clinical specimens as homologous or heterologous to the vaccine strain for estimating vaccine efficacy in a prospective clinical trial.
Collapse
Affiliation(s)
| | - John Treanor
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Jiri Beran
- Vaccination and Travel Medicine Centre, Poliklinika 2, Hradec Kralove, Czech Republic
| | - Xavier Duval
- Hôpital Bichat Claude Bernard, C.I.C. Bichat GH BICHAT, Paris, France
| | - Meral Esen
- Institut für Tropenmedizin, Tübingen, Germany
| | - Gregory Feldman
- S. Carolina Pharmaceutical Research, Spartanburg, South Carolina, USA
| | - Sharon E. Frey
- Saint Louis University Medical Center, St. Louis, Missouri, USA
| | - Odile Launay
- Université Paris-Descartes, Assistance-Publique Hôpitaux de Paris, Hôpital Cochin, CIC de Vaccinologie Cochin-Pasteur, Paris, France
| | - Geert Leroux-Roels
- Centre for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Janet E. McElhaney
- Health Sciences North and Advanced Medical Research Institute of Canada, Sudbury, Ontario, Canada
| | - Andrzej Nowakowski
- Family Medicine Centre, Lubartów, Poland
- Department of Gynaecology and Oncologic Gynaecology, Military Institute of Medicine, Warsaw, Poland
| | - Guillermo M. Ruiz-Palacios
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Gerrit A. van Essen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lidia Oostvogels
- GlaxoSmithKline Vaccines, Parc de la Noire Epine, Wavre, Belgium
| | | | | |
Collapse
|
13
|
Lee S, Kim JI, Heo J, Lee I, Park S, Hwang MW, Bae JY, Park MS, Park HJ, Park MS. The anti-influenza virus effect of Phellinus igniarius extract. J Microbiol 2013; 51:676-81. [PMID: 24173646 DOI: 10.1007/s12275-013-3384-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/22/2013] [Indexed: 11/28/2022]
Abstract
Herbal medicine has been used in the orient for thousands of years to treat large and small ailments, including microbial infections. Although there are treatments for influenza virus infection, there is no treatment for drug-resistant viruses. It is time that we explored and exploited the multi-component nature of herbal extracts as multi-drug combination therapies. Here, we present data on the anti-influenza virus effect of a medicinal mushroom, Phellinus igniarius. The P. igniarius water extract was effective against influenza A and B viruses, including 2009 pandemic H1N1, human H3N2, avian H9N2, and oseltamivir-resistant H1N1 viruses. Virological assays revealed that the extract may interfere with one or more early events in the influenza virus replication cycle, including viral attachment to the target cell. Therefore, our results provide new insights into the use of P. igniarius as an anti-influenza medicine.
Collapse
Affiliation(s)
- Sangmoo Lee
- Department of Microbiology, Hallym University, Chuncheon, 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Understanding the molecular determinants driving the immunological specificity of the protective pilus 2a backbone protein of group B streptococcus. PLoS Comput Biol 2013; 9:e1003115. [PMID: 23825940 PMCID: PMC3694817 DOI: 10.1371/journal.pcbi.1003115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/10/2013] [Indexed: 11/19/2022] Open
Abstract
The pilus 2a backbone protein (BP-2a) is one of the most structurally and functionally characterized components of a potential vaccine formulation against Group B Streptococcus. It is characterized by six main immunologically distinct allelic variants, each inducing variant-specific protection. To investigate the molecular determinants driving the variant immunogenic specificity of BP-2a, in terms of single residue contributions, we generated six monoclonal antibodies against a specific protein variant based on their capability to recognize the polymerized pili structure on the bacterial surface. Three mAbs were also able to induce complement-dependent opsonophagocytosis killing of live GBS and target the same linear epitope present in the structurally defined and immunodominant domain D3 of the protein. Molecular docking between the modelled scFv antibody sequences and the BP-2a crystal structure revealed the potential role at the binding interface of some non-conserved antigen residues. Mutagenesis analysis confirmed the necessity of a perfect balance between charges, size and polarity at the binding interface to obtain specific binding of mAbs to the protein antigen for a neutralizing response. Group B Streptococcus (GBS) is the leading cause of neonatal invasive diseases and pili, as long filamentous fibers protruding from the bacterial surface, have been discovered as important virulence factors and potential vaccine candidates. The bacterial surface is the main interface between host and pathogen, and the ability of the host to identify molecular determinants that are unique to pathogens has a crucial role for microbial clearance. Here, we describe a strategy to investigate the immunological and structural proprieties of a protective pilus protein, by elucidating the molecular mechanisms, in terms of single residue contributions, by which functional epitopes guide bacterial clearance. We generated neutralizing monoclonal antibodies raised against the protein and identified the epitope region in the antigen. Then, we performed computational docking analysis of the antibodies in complex with the target antigen and identified specific residues on the target protein that mediate hydrophobic interactions at the binding interface. Our results suggest that a perfect balance of shape and charges at the binding interface in antibody/antigen interactions is crucial for the antibody/antigen complex in driving a successful neutralizing response. Knowing the native molecular architecture of protective determinants might be useful to selectively engineer the antigens for effective vaccine formulations.
Collapse
|
15
|
Jegaskanda S, Job ER, Kramski M, Laurie K, Isitman G, de Rose R, Winnall WR, Stratov I, Brooks AG, Reading PC, Kent SJ. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. THE JOURNAL OF IMMUNOLOGY 2013; 190:1837-48. [PMID: 23319732 DOI: 10.4049/jimmunol.1201574] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A better understanding of immunity to influenza virus is needed to generate cross-protective vaccines. Engagement of Ab-dependent cellular cytotoxicity (ADCC) Abs by NK cells leads to killing of virus-infected cells and secretion of antiviral cytokines and chemokines. ADCC Abs may target more conserved influenza virus Ags compared with neutralizing Abs. There has been minimal interest in influenza-specific ADCC in recent decades. In this study, we developed novel assays to assess the specificity and function of influenza-specific ADCC Abs. We found that healthy influenza-seropositive young adults without detectable neutralizing Abs to the hemagglutinin of the 1968 H3N2 influenza strain (A/Aichi/2/1968) almost always had ADCC Abs that triggered NK cell activation and in vitro elimination of influenza-infected human blood and respiratory epithelial cells. Furthermore, we detected ADCC in the absence of neutralization to both the recent H1N1 pandemic strain (A/California/04/2009) as well as the avian H5N1 influenza hemagglutinin (A/Anhui/01/2005). We conclude that there is a remarkable degree of cross-reactivity of influenza-specific ADCC Abs in seropositive humans. Targeting cross-reactive influenza-specific ADCC epitopes by vaccination could lead to improved influenza vaccines.
Collapse
Affiliation(s)
- Sinthujan Jegaskanda
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Berhane Y, Kehler H, Handel K, Hisanaga T, Xu W, Ojkic D, Pasick J. Molecular and antigenic characterization of reassortant H3N2 viruses from turkeys with a unique constellation of pandemic H1N1 internal genes. PLoS One 2012; 7:e32858. [PMID: 22470427 PMCID: PMC3310002 DOI: 10.1371/journal.pone.0032858] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/31/2012] [Indexed: 01/21/2023] Open
Abstract
Triple reassortant (TR) H3N2 influenza viruses cause varying degrees of loss in egg production in breeder turkeys. In this study we characterized TR H3N2 viruses isolated from three breeder turkey farms diagnosed with a drop in egg production. The eight gene segments of the virus isolated from the first case submission (FAV-003) were all of TR H3N2 lineage. However, viruses from the two subsequent case submissions (FAV-009 and FAV-010) were unique reassortants with PB2, PA, nucleoprotein (NP) and matrix (M) gene segments from 2009 pandemic H1N1 and the remaining gene segments from TR H3N2. Phylogenetic analysis of the HA and NA genes placed the 3 virus isolates in 2 separate clades within cluster IV of TR H3N2 viruses. Birds from the latter two affected farms had been vaccinated with a H3N4 oil emulsion vaccine prior to the outbreak. The HAl subunit of the H3N4 vaccine strain had only a predicted amino acid identity of 79% with the isolate from FAV-003 and 80% for the isolates from FAV-009 and FAV-0010. By comparison, the predicted amino acid sequence identity between a prototype TR H3N2 cluster IV virus A/Sw/ON/33853/2005 and the three turkey isolates from this study was 95% while the identity between FAV-003 and FAV-009/10 isolates was 91%. When the previously identified antigenic sites A, B, C, D and E of HA1 were examined, isolates from FAV-003 and FAV-009/10 had a total of 19 and 16 amino acid substitutions respectively when compared with the H3N4 vaccine strain. These changes corresponded with the failure of the sera collected from turkeys that received this vaccine to neutralize any of the above three isolates in vitro.
Collapse
Affiliation(s)
- Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Helen Kehler
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Katherine Handel
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - John Pasick
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|