1
|
Liu M. Effector and regulatory B-cell imbalance in systemic sclerosis: cooperation or competition? Clin Rheumatol 2024; 43:2783-2789. [PMID: 39080112 PMCID: PMC11330388 DOI: 10.1007/s10067-024-07086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/18/2024]
Abstract
B cells play a central role in the pathogenesis of systemic sclerosis (SSc). Most B-cell studies have focused on their pathological role as antibody producers. However, in addition to immunoglobulin secretion, these cells have a wide range of functions in the immune response, including antigen presentation to T cells and cytokine production. Importantly, not all B-cell subsets promote the immune response. Regulatory B cells (Bregs) attenuate inflammation and contribute to the maintenance of immune tolerance. However, effector B cells (Beffs) positively modulate the immune response through the production of various cytokines. In SSc, Bregs are insufficient and/or dysfunctional. B-cell-targeting biologics have been trialled with promising results in the treatment of SSc. These therapies can affect Bregs or Beffs, which can potentially limit their long-term efficacy. Future strategies might involve the modulation of effector B cells in combination with the stimulation of regulatory subsets. Additionally, the monitoring of individual B-cell subsets in patients may lead to the discovery of novel biomarkers that could help predict disease relapse or progression. The purpose of this review is to summarize the relevant literatures and explain how Bregs and Beffs jointly participate in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, the 12Th Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
2
|
Jiang Y, Hu F, Li M, Li Q. Tanshinone IIA ameliorates the development of dermal fibrosis in systemic sclerosis. Clin Exp Pharmacol Physiol 2024; 51:e13834. [PMID: 38037494 DOI: 10.1111/1440-1681.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/02/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVES We previously revealed the role of tanshinone IIA (TAN IIA) on endothelial cells and the impact of TAN IIA on the endothelial-to-mesenchymal transition in systemic sclerosis (SSc). In this study, we sought to further determine whether TAN IIA can directly act on the skin fibroblasts of scleroderma and look into its underlying anti-fibrotic mechanisms. METHODS Bleomycin was used to establish the SSc mouse model. After TAN IIA treatment, dermal thickness, type I collagen and hydroxyproline content were measured. Primary fibroblasts were acquired from SSc patients and cultured in vitro, and the effects of TAN IIA on proliferation, apoptosis and the cell cycle of fibroblasts were detected. RESULTS In a bleomycin-induced SSc model, we discovered that TAN IIA significantly improved skin thickness and collagen deposition, demonstrating a potent anti-fibrotic action. TAN IIA inhibits the proliferation of skin fibroblasts derived from SSc patients by causing G2/M cell cycle arrest and promoting apoptosis. Additionally, TAN IIA downregulated extracellular matrix gene transcription and collagen protein expression in skin fibroblasts in a dose-gradient-dependent manner. Furthermore, we showed how TAN IIA can reduce the activation of the transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways, which are important factors in SSc. CONCLUSIONS In summary, these data suggest that TAN IIA can reduce SSc-related skin fibrosis by modulating the TGF-β/Smad and MAPK/ERK signalling pathways. More importantly, our results imply that TAN IIA can directly act on the skin fibroblasts of SSc, therefore, inhibiting fibrosis.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feifei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiao Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| |
Collapse
|
3
|
Yan Y, Cao D, Liang J, Yang Q, Gao D, Shen C, Hu F, Li Z, Han Y, Cao X, Wang Q. Dangui Huoxue Preparation (DHP) Ameliorates Skin Fibrosis, Inflammation, and Vasculopathy in the Bleomycin-Induced Murine Model of Systemic Sclerosis. Adv Biol (Weinh) 2024; 8:e2300315. [PMID: 37759403 DOI: 10.1002/adbi.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Systemic sclerosis (SSc) is an immune-mediated rheumatic disease that is characterized by fibrosis of the skin and internal organs and vasculopathy with poor prognosis. Dangui Huoxue Preparation (DHP) is a clinically effective traditional Chinese herbal formula for the treatment of SSc in the hospital. This study aims to investigate the therapeutic effects and underlying molecular mechanisms of DHP in the treatment of SSc. SSc mice models are induced by bleomycin (BLM). Tissues of DHP group, normal control group, and positive control drug Sanqi Tongshu Capsule (STC) group are collected for inflammation, fibrosis, and vasculopathy. Also, the human dermal fibroblasts (HDF) stimulated with TGF-β1 are analyzed for in vitro study. The expression levels of MCP-1, IFN-γ, IL-1β, IL-10, Fizz1, iNOS, and IL12p40, and the mRNA levels of Col1a1, Col1a2, Col3a1, and Col5a1 are significantly decreased in all DHP groups and STC group compare with those in the BLM group. The main drug of DHP inhibits the proliferation and migration of HDF, reduces Ctgf, Itgb3, Itgb5 expression, and also inhibits the Smad3 pathway. In conclusion, DHP can ameliorate SSc skin inflammation, fibrosis, and vasculopathy, possibly suppressing the TGF-β1/Smad3 signaling pathway through extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
- Yuemei Yan
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
- Department of Dermatology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, No. 1882 South Zhonghuan Road, Jiaxing, Zhejiang, 314000, P. R. China
| | - Dianyu Cao
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jian Liang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Qiaorong Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Di Gao
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Chen Shen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, No. 1278 Baode Road, Shanghai, 200443, P. R. China
| | - Feifei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Zheng Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P.R. China
| | - Yumei Han
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P.R. China
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| |
Collapse
|
4
|
Bratoiu I, Burlui AM, Cardoneanu A, Macovei LA, Richter P, Rusu-Zota G, Rezus C, Badescu MC, Szalontay A, Rezus E. The Involvement of Smooth Muscle, Striated Muscle, and the Myocardium in Scleroderma: A Review. Int J Mol Sci 2022; 23:ijms231912011. [PMID: 36233313 PMCID: PMC9569846 DOI: 10.3390/ijms231912011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by heterogeneous changes involving numerous organs and systems. The currently available data indicate that muscle injury (both smooth and striated muscles) is widespread and leads to significant morbidity, either directly or indirectly. From the consequences of smooth muscle involvement in the tunica media of blood vessels or at the level of the digestive tract, to skeletal myopathy (which may be interpreted strictly in the context of SSc, or as an overlap with idiopathic inflammatory myopathies), muscular injury in scleroderma translates to a number of notable clinical manifestations. Heart involvement in SSc is heterogenous depending on the definition used in the various studies. The majority of SSc patients experience a silent form of cardiac disease. The present review summarizes certain important features of myocardial, as well as smooth and skeletal muscle involvement in SSc. Further research is needed to fully describe and understand the pathogenic pathways and the implications of muscle involvement in scleroderma.
Collapse
Affiliation(s)
- Ioana Bratoiu
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Alexandra Maria Burlui
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Correspondence: (A.M.B.); (C.R.)
| | - Anca Cardoneanu
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Luana Andreea Macovei
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Patricia Richter
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Gabriela Rusu-Zota
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (A.M.B.); (C.R.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andreea Szalontay
- Department of Psychiatry, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
5
|
Liu M. Effect of crosstalk between Th17 and Th9 cells on the activation of dermal vascular smooth muscle cells in systemic scleroderma and regulation of tanshinone IIA. An Bras Dermatol 2022; 97:716-728. [PMID: 36117047 PMCID: PMC9582889 DOI: 10.1016/j.abd.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To evaluate the effect of T-helper 17 (Th17) cells and Th9 cells on the activation of dermal vascular smooth muscle cells (DVSMCs) in systemic scleroderma (SSc) and regulation of tanshinone IIA. METHODS The expression of interleukin 17 receptor (IL-17R) and interleukin 9 receptor (IL-9R) in the skin of SSc patients was assessed by immunofluorescence. The expression of IL-9 and IL-9R mRNA in peripheral blood mononuclear cells (PBMCs) of SSc patients were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The proportion of Th9 cells in PBMCs of SSc patients was sorted by flow cytometry. The effect of IL-9 on the differentiation of Th17 and IL-17 on that of Th9 was detected by flow cytometry. The proportion of Th9 and Th17 cells in SSc patients was detected by flow cytometry. The level of collagen I, III, α-SMA, IL-9R, IL-17R, JNK, P38, and ERK were analyzed using western blot (WB). RESULTS Th9 cells were highly expressed in SSc. IL-9 stimulated the differentiation of immature T cells into Th17 cells. IL-17 induced the differentiation of immature T cells into Th9 cells. Tanshinone IIA inhibited the differentiation of immature T lymphocytes into Th17 and Th9. WB showed that the combined action of IL-17 and IL-9 upregulated the inflammation and proliferation of DVSMCs. Anti-IL17, anti-IL9, and tanshinone IIA inhibited the functional activation of DVSMCs. STUDY LIMITATIONS For Th17, Th9 and vascular smooth muscle cells, the study on the signal pathway of their interaction is not thorough enough. More detailed studies are needed to explore the mechanism of cell-cell interaction. CONCLUSIONS The current results suggested that Th17 and Th9 cells induced the activation of DVSMCs in SSc through crosstalk in vitro, and tanshinone IIA inhibited the process.
Collapse
Affiliation(s)
- Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, the 12th Urumqi Road, Shanghai, China.
| |
Collapse
|
6
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
7
|
Zhang D, Wang Y, Li G, Zhang B. Tanshinone IIA alleviates vitiligo by suppressing AKT mediated CD8 + T cells activation in a mouse model. Dermatol Ther 2021; 34:e15086. [PMID: 34350676 DOI: 10.1111/dth.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Tanshinone IIA has been reported to exhibit anti-inflammatory effects, while it is not clear whether Tanshinone IIA has protective role in vitiligo. Premelanosome (PMEL) CD8+ T cells were adoptive transferred into Krt14- Kitl* mice with Kit ligand (KITL) over-expressed, to construct the vitiligo model. Pdk1fl/fl and Stat3fl/fl mice were crossed with Cd8cre mice to establish Pdk1TKO and Stat3TKO mice. Tanshinone IIA (200 μg) was intravenous injected to treat vitiligo in mice every 3 days. The accumulation of macrophages and CD8+ T cells in the ear skin was assayed by flow cytometry. Bone marrow-derived macrophages (BMDMs) were induced and stimulated with lipopolysaccharides (LPS) and IL-4. It was found that Tanshinone IIA alleviated the development of vitiligo, impaired PMEL CD8+ T cells accumulation in the ear skin, and inhibited LPS-induced TNF-α, IL-6, and IL-1β expression and secretion in BMDMs, which could also inhibit IL-4-induced Arg-1 and Mrc-1 expression in BMDMs. In addition, Tanshinone IIA could inhibit the proliferation and cytotoxic function of CD8+ T cells indicated by the expression of Perforin, Granzymeb, and IFN-γ. Furthermore, Tanshinone IIA treated Pdk1TKO mice, not Stat3TKO mice, showed impaired PMEL CD8+ T cells accumulation in the ear skin. In summary, Tanshinone IIA alleviates vitiligo development with impaired CD8+ T cells accumulation and activation of Pdk1-Akt pathway.
Collapse
Affiliation(s)
| | - Yujie Wang
- Yidu Central Hospital of Weifang, Qingzhou, China
| | - Guangzhi Li
- Yidu Central Hospital of Weifang, Qingzhou, China
| | | |
Collapse
|
8
|
Assar S, Khazaei H, Naseri M, El-Senduny F, Momtaz S, Farzaei MH, Echeverría J. Natural Formulations: Novel Viewpoint for Scleroderma Adjunct Treatment. J Immunol Res 2021; 2021:9920416. [PMID: 34258301 PMCID: PMC8253639 DOI: 10.1155/2021/9920416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Scleroderma is a complex disease involving autoimmune, vascular, and connective tissues, with unknown etiology that can progress through any organ systems. OBJECTIVE Yet, no cure is available; the thorough treatment of scleroderma and current treatments are based on controlling inflammation. Nowadays, medicinal plants/natural-based formulations are emerging as important regulators of many diseases, including autoimmune diseases. Here, we provided an overview of scleroderma, also focused on recent studies on medicinal plants/natural-based formulations that are beneficial in scleroderma treatment/prevention. METHODS This study is the result of a search in PubMed, Scopus, and Cochrane Library with "scleroderma", "systemic sclerosis", "plant", "herb", and "phytochemical" keywords. Finally, 22 articles were selected from a total of 1513 results entered in this study. RESULTS Natural products can modulate the inflammatory and/or oxidative mediators, regulate the production or function of the immune cells, and control the collagen synthesis, thereby attenuating the experimental and clinical manifestation of the disease. CONCLUSION Natural compounds can be considered an adjunct treatment for scleroderma to improve the quality of life of patients suffering from this disease.
Collapse
Affiliation(s)
- Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Maryam Naseri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fardous El-Senduny
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
9
|
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life (Basel) 2021; 11:610. [PMID: 34202703 PMCID: PMC8307837 DOI: 10.3390/life11070610] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
In systemic sclerosis (SSc), abnormalities in microvessel morphology occur early and evolve into a distinctive vasculopathy that relentlessly advances in parallel with the development of tissue fibrosis orchestrated by myofibroblasts in nearly all affected organs. Our knowledge of the cellular and molecular mechanisms underlying such a unique relationship between SSc-related vasculopathy and fibrosis has profoundly changed over the last few years. Indeed, increasing evidence has suggested that endothelial-to-mesenchymal transition (EndoMT), a process in which profibrotic myofibroblasts originate from endothelial cells, may take center stage in SSc pathogenesis. While in arterioles and small arteries EndoMT may lead to the accumulation of myofibroblasts within the vessel wall and development of fibroproliferative vascular lesions, in capillary vessels it may instead result in vascular destruction and formation of myofibroblasts that migrate into the perivascular space with consequent tissue fibrosis and microvessel rarefaction, which are hallmarks of SSc. Besides endothelial cells, other vascular wall-resident cells, such as pericytes and vascular smooth muscle cells, may acquire a myofibroblast-like synthetic phenotype contributing to both SSc-related vascular dysfunction and fibrosis. A deeper understanding of the mechanisms underlying the differentiation of myofibroblasts inside the vessel wall provides the rationale for novel targeted therapeutic strategies for the treatment of SSc.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
10
|
Subedi L, Gaire BP. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol Res 2021; 169:105661. [PMID: 33971269 DOI: 10.1016/j.phrs.2021.105661] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Bi Z, Wang Y, Zhang W. A comprehensive review of tanshinone IIA and its derivatives in fibrosis treatment. Biomed Pharmacother 2021; 137:111404. [PMID: 33761617 DOI: 10.1016/j.biopha.2021.111404] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is the most abundant lipid-soluble component in Salvia miltiorrhiza. Both Tan IIA and its derivatives including Sodium tanshinone IIA sulfonate (STS) have been widely used in clinic due to their proved anti-inflammation, anti-oxidation, and anti-fibrosis functions. Recently, combinations containing Tan IIA and active components have attracted intensive interest in fibrosis. Multiple studies have been conducted to attempt to decipher the mechanisms of this traditional Chinese medicine and found that Tan IIA can attenuate fibrosis through different pathways such as Smad2/3, NF-κB, Nrf2, E2F and snail/twist axis. However, some of the studies were contradictory and confusing. Therefore, it was important to develop an easy-to-access reference for clinic use. In this study, we reviewed the pharmacological mechanisms, pharmacokinetics, and toxicology of Tan IIA and its derivatives in the treatment of fibrosis and introduced the cutting-edge new formulation of Tan IIA compound.
Collapse
Affiliation(s)
- Zhangyang Bi
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yayun Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
12
|
Yu J, Wu N, Zheng X, Zheng M. Improvement of Bioavailability and Dissolution of Tanshinone IIA by Encapsulating it with Hydroxypropyl-β-Cyclodextrin. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jie Yu
- School of Life Sciences, Northwest University, Xi’an, 710069, China
| | - Ni Wu
- School of Life Sciences, Northwest University, Xi’an, 710069, China
| | - Xiaohui Zheng
- School of Life Sciences, Northwest University, Xi’an, 710069, China
| | - Maosheng Zheng
- School of Chem. Eng., Northwest University, Xi’an, 710069, China
| |
Collapse
|
13
|
Jiang Y, Hu F, Li Q, Shen C, Yang J, Li M. Tanshinone IIA ameliorates the bleomycin-induced endothelial-to-mesenchymal transition via the Akt/mTOR/p70S6K pathway in a murine model of systemic sclerosis. Int Immunopharmacol 2019; 77:105968. [PMID: 31704290 DOI: 10.1016/j.intimp.2019.105968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/07/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune inflammatory and vascular disorder leading to progressive tissue fibrosis. Tanshinone IIA (Tan IIA) is a phytochemical extracted from the Chinese herb Salvia miltiorrhiza that exhibits diverse activities. In this study, we attempted to evaluate the potential impact of Tan IIA on the skin fibrosis-related endothelial-to-mesenchymal transition (EndoMT) and investigate the underlying molecular mechanisms. EndoMT-related indexes including morphological characteristics, functional changes, histological parameters, expression levels of extracellular matrix associated genes, and changes in the expression of related biomarkers in dermal fibrosis were assessed. Tan IIA had a strong anti-fibrotic effect through amelioration of skin thickness and collagen deposition. Moreover, Tan IIA partially reversed bleomycin-induced EndoMT both in vivo and in vitro. Additionally, Tan IIA mitigated the diminution of tube formation in endothelial cells induced by bleomycin. Furthermore, mechanistically, the activation of the Akt/mTOR/p70S6K pathway was found to be involved in bleomycin-treated SSc mouse model, which was alleviated by Tan IIA. In summary, these data suggest that Tan IIA alleviates SSc-related dermal fibrosis and EndoMT and that the Akt/mTOR/p70S6K signaling pathway is involved in this regulation, thus supporting the potential of Tan IIA as a disease-modifying candidate agent for treating the vascular damage of SSc.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Feifei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Qiao Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Shen
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ming Li
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
14
|
Salvia mellifera-How Does It Alleviate Chronic Pain? MEDICINES (BASEL, SWITZERLAND) 2019; 6:medicines6010018. [PMID: 30678334 PMCID: PMC6473501 DOI: 10.3390/medicines6010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023]
Abstract
Black sage, Salvia mellifera, can be made into a sun tea that is used as a foot soak to treat pain patients. The monoterpenoids and diterpenoids in the preparation penetrate the skin of the feet and stop the pain chemokine cycle, which may be the basis of chronic pain. Several chronic pain patients have reported long-term improvements in their pain after treatment with the preparation.
Collapse
|
15
|
Ames PRJ, Bucci T, Merashli M, Amaral M, Arcaro A, Gentile F, Nourooz-Zadeh J, DelgadoAlves J. Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial? Free Radic Res 2018; 52:1063-1082. [PMID: 30226391 DOI: 10.1080/10715762.2018.1525712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future.
Collapse
Affiliation(s)
- Paul R J Ames
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,b Department of Haematology , Dumfries Royal Infirmary , Dumfries , UK
| | - Tommaso Bucci
- c Division of Allergy and Clinical Immunology, Department of Internal Medicine , University of Salerno , Baronissi , Italy
| | - Mira Merashli
- d Department of Rheumatology , American University of Beirut , Beirut , Lebanon
| | - Marta Amaral
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal
| | - Alessia Arcaro
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Fabrizio Gentile
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Jaffar Nourooz-Zadeh
- f Nephrology & Kidney Transplantation Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Jose DelgadoAlves
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,g Immunomediated Systemic Diseases Unit, Medicine 4 , Hospital Fernando Fonseca , Amadora , Portugal
| |
Collapse
|
16
|
Gonçalves RSG, Pereira MC, Dantas AT, Almeida ARD, Marques CDL, Rego MJBM, Pitta IR, Duarte ALBP, Pitta MGR. IL-17 and related cytokines involved in systemic sclerosis: Perspectives. Autoimmunity 2017; 51:1-9. [PMID: 29256263 DOI: 10.1080/08916934.2017.1416467] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Systemic sclerosis (SSc) is a multisystemic, complex, and rare disease of connective tissue, with high morbidity and mortality, and without specific treatment. The disease is characterized by three main principles: vascular disease, autoantibody production and inflammation, and fibrosis. Since it is well defined that SSc is characterized by elevated production of TGF-β, IL-6, and IL-1, all of them cytokines related to Th17 differentiation, the hypothesis is that this disease may be strongly related to a polarization of the immune response towards the Th17 pathway. Considering the importance of a better understanding of the pathophysiology of Th17 pathway in SSc, this article aims to propose an update for a better understanding of current knowledge on main cytokines secreted by the Th17 cells (IL-17 A, IL-21, and IL-22) and the future prospects in the current disease.
Collapse
Affiliation(s)
- Rafaela Silva Guimarães Gonçalves
- a Hospital das Clínicas de Pernambuco , Universidade Federal de Pernambuco , Recife , Brazil.,b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas Suely Galdino , Universidade Federal de Pernambuco , Recife , Brazil
| | - Michelly C Pereira
- b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas Suely Galdino , Universidade Federal de Pernambuco , Recife , Brazil
| | - Andréa Tavares Dantas
- a Hospital das Clínicas de Pernambuco , Universidade Federal de Pernambuco , Recife , Brazil.,b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas Suely Galdino , Universidade Federal de Pernambuco , Recife , Brazil
| | - Anderson Rodrigues de Almeida
- b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas Suely Galdino , Universidade Federal de Pernambuco , Recife , Brazil
| | | | - Moacyr J B M Rego
- b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas Suely Galdino , Universidade Federal de Pernambuco , Recife , Brazil
| | - Ivan R Pitta
- b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas Suely Galdino , Universidade Federal de Pernambuco , Recife , Brazil
| | - Angela Luzia Branco Pinto Duarte
- a Hospital das Clínicas de Pernambuco , Universidade Federal de Pernambuco , Recife , Brazil.,b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas Suely Galdino , Universidade Federal de Pernambuco , Recife , Brazil
| | - Maira Galdino R Pitta
- b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas Suely Galdino , Universidade Federal de Pernambuco , Recife , Brazil
| |
Collapse
|
17
|
Cao L, Huang B, Fu X, Yang J, Lin Y, Lin F. Effects of tanshinone IIA on the regulation of renal proximal tubular fibrosis. Mol Med Rep 2017; 15:4247-4252. [DOI: 10.3892/mmr.2017.6498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 02/21/2017] [Indexed: 11/06/2022] Open
|
18
|
Yan J, Yang X, Han D, Feng J. Tanshinone IIA attenuates experimental autoimmune encephalomyelitis in rats. Mol Med Rep 2016; 14:1601-9. [PMID: 27357729 PMCID: PMC4940100 DOI: 10.3892/mmr.2016.5431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune neurodegenerative disease, which features focal demyelination and inflammatory cell infiltration of the brain and the spinal cord. Tanshinone IIA (TSIIA), one of the major fat‑soluble components of Salvia miltiorrhiza (Danshen), has anti‑inflammatory, immunoregulatory and neuroprotective activity; however, its efficacy in MS remains unknown. The current study was designed to investigate the potential therapeutic function of TSIIA on MS in the experimental autoimmune encephalomyelitis (EAE) rat model. In comparison to the vehicle control group, the TSIIA‑treated groups showed notably improved clinical symptoms and pathological changes, including central nervous system inflammatory cell infiltration and demyelination. Following administration of TSIIA, the quantity of CD4+ T cells, CD8+ T cells and macrophages/microglia in the spinal cord were reduced to different extents. Furthermore, TSIIA was also shown to downregulate interleukin (IL)‑17 and IL‑23 levels in the brain and serum of EAE rats. The results collectively provide evidence that TSIIA alleviates EAE and support its utility as a novel therapy for MS.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xue Yang
- Department of Neurology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dong Han
- Department of Neurology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Juan Feng
- Department of Neurology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
19
|
New insights into CD4(+) T cell abnormalities in systemic sclerosis. Cytokine Growth Factor Rev 2015; 28:31-6. [PMID: 26724976 DOI: 10.1016/j.cytogfr.2015.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/31/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease that is characterized by vasculopathy and excessive deposition of extracellular matrix, which causes fibrosis of the skin and internal organs and eventually leads to multiorgan dysfunction. Studies have shown that CD4(+) T cell activation is a key factor in the pathogenesis of scleroderma because activated T cells can release various cytokines, resulting in inflammation, microvascular damage and fibrosis. T helper cell 17 (Th17) and regulatory T (Treg) cell activities are a hallmark SSc, as Th17-type cytokines can induce both inflammation and fibrosis. More recently, several studies have reported new T cell subsets, including Th9 and Th22 cells, along with their respective cytokines in the peripheral blood, serum and skin lesions of individuals with SSc. Herein, we review recent data on various CD4(+) T helper cell subsets in SSc, and discuss potential roles of these cells in promoting inflammation and fibrosis.
Collapse
|