1
|
Farheen SA, S P, Selvam S, Puttaswamy D, Aravind JV, Kuriyan R. Do cardiometabolic risk factors mediate the relationship between body composition and bone mineral content in South Indian children aged 5 to 16 years? Eur J Clin Nutr 2024; 78:1014-1021. [PMID: 39191955 DOI: 10.1038/s41430-024-01494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND/OBJECTIVE The complex interplay between adiposity, bone health and cardiometabolic risk (CMR) factors is unclear in Indian children. We aimed to investigate the mediating role of number of CMR factors on the relationship between fat % and bone mineral content (BMC) % in South Indian children aged 5-16 years. SUBJECTS AND METHODS Healthy children (n = 317), from India, underwent anthropometric, blood biochemistry, blood pressure, along with body composition and BMC assessments using Dual-energy X-ray absorptiometry. Based on the number of CMR factors, children were categorised into three groups: 0, 1 and ≥ 2. Analysis of variance was used to compare the parameters between the CMR groups and mediation analysis was performed to examine if the number of CMR factors mediated the relationship between fat % and BMC %. RESULTS The prevalence of 0, 1 and ≥ 2 CMR factors was 42.3%, 33.9% and 23.9% respectively; mean BMC % was lowest in ≥ 2 CMR group. In the whole group, BMC % had significant negative correlation with fat % (r = -0.68, p < 0.0001) and positive correlation with lean % (r = 0.64, p < 0.0001). Adjusted for age and sex, results suggested significant mediating effect of number of CMR factors on the relationship between fat % and BMC % (Average Causal Mediation Effects =-0.002, bootstrapped 95% CI: -0.0039, -0.0001, p < 0.01), but losing significance when adjusted for co-variates. CONCLUSION Number of CMR factors mediates the relationship between fat % and BMC % in Indian children. Further studies are needed to confirm these findings, understand mechanisms and plan appropriate strategies.
Collapse
Affiliation(s)
- Sayeeda Arshiya Farheen
- Division of Nutrition, St John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka, India
| | - Poorvikha S
- St. John's Medical College, St. John's National Academy of Health Sciences, Bangalore, India
| | - Sumithra Selvam
- Division of Epidemiology and Biostatistics, St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka, India
| | - Deepa Puttaswamy
- Division of Nutrition, St John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka, India
| | - Jini V Aravind
- Division of Nutrition, St John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka, India
| | - Rebecca Kuriyan
- Division of Nutrition, St John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka, India.
| |
Collapse
|
2
|
Park HK, Shim YS, Lee HS, Hwang JS. Reference Ranges of Body Composition Using Dual-Energy X-Ray Absorptiometry and Its Relation to Tri-Ponderal Mass Index. J Clin Densitom 2022; 25:433-447. [PMID: 36114107 DOI: 10.1016/j.jocd.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022]
Abstract
Introduction/background Increased body fat is related to obesity and its comorbidities later in life. To determine the amount of body fat in children and adolescents, reference intervals should be applied. Dual-energy X-ray absorptiometry (DXA) is a good tool for accurately measuring body composition. Methodology The body composition reference ranges in Korean children and adolescents were determined using nationally representative cross-sectional data. The performances of the body mass index (BMI) and tri-ponderal mass index (TMI) in measuring body fat were compared using the reference percentiles derived from this analysis. Results A total of 1,661 subjects (891 boys and men and 770 girls and women) were included. Age- and sex-specific percentiles and the corresponding LMS variables for DXA-assessed parameters for the whole body and the trunk were determined. The coefficients of determination of the whole body FM SDS and FMI SDS for the BMI SDS were 0.783 and 0.784, respectively, and those for the TMI SDS were 0.685 and 0.769, respectively. Conclusion Based on the reference values for body composition, the correlation coefficients of TMI for adjusted FM measured by DXA were comparable to those of BMI. TMI estimated body fat levels more accurately than BMI in this study population.
Collapse
Affiliation(s)
- Hong Kyu Park
- Department of Pediatrics, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Young Suk Shim
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea.
| | - Hae Sang Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
3
|
Amino Acid-Related Metabolic Signature in Obese Children and Adolescents. Nutrients 2022; 14:nu14071454. [PMID: 35406066 PMCID: PMC9003189 DOI: 10.3390/nu14071454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The growing interest in metabolomics has spread to the search for suitable predictive biomarkers for complications related to the emerging issue of pediatric obesity and its related cardiovascular risk and metabolic alteration. Indeed, several studies have investigated the association between metabolic disorders and amino acids, in particular branched-chain amino acids (BCAAs). We have performed a revision of the literature to assess the role of BCAAs in children and adolescents' metabolism, focusing on the molecular pathways involved. We searched on Pubmed/Medline, including articles published until February 2022. The results have shown that plasmatic levels of BCAAs are impaired already in obese children and adolescents. The relationship between BCAAs, obesity and the related metabolic disorders is explained on one side by the activation of the mTORC1 complex-that may promote insulin resistance-and on the other, by the accumulation of toxic metabolites, which may lead to mitochondrial dysfunction, stress kinase activation and damage of pancreatic cells. These compounds may help in the precocious identification of many complications of pediatric obesity. However, further studies are still needed to better assess if BCAAs may be used to screen these conditions and if any other metabolomic compound may be useful to achieve this goal.
Collapse
|
4
|
Vescio A, Testa G, Sapienza M, Caldaci A, Montemagno M, Andreacchio A, Canavese F, Pavone V. Is Obesity a Risk Factor for Loss of Reduction in Children with Distal Radius Fractures Treated Conservatively? CHILDREN (BASEL, SWITZERLAND) 2022; 9:425. [PMID: 35327797 PMCID: PMC8947058 DOI: 10.3390/children9030425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Background: Obesity in children is a clinical and social burden. The distal radius (DR) is the most common site of fractures in childhood and conservative treatment is widely used. Loss of reduction (LOR) is the major casting complication. The aim of this study is to evaluate obesity as a risk factor for LOR in children with displaced DR fractures (DRF) treated conservatively. Methods: 189 children under 16 years of age were treated conservatively for DRF. Patients were divided into three groups: normal weight (NW), overweight (OW) and obese (OB). The following radiographic criteria were evaluated in all patients: amount of initial translation (IT); quality of initial reduction; Cast (CI), Padding (PI), Canterbury (CaI), Gap (GI) and Three-Points (3PI) indices and the presence of LOR. Results: Statistically significant differences were found between the NW and the OB group for number of LOR (p = 0.002), severity (grade) of initial translation (p = 0.008), quality of initial reduction (p = 0.01) as well as CsI and CaI (p < 0.001). Conclusions: Obese children have a significantly higher rate of LOR compared to NW and OW children. A close follow-up is necessary in this population of patients. Preventive percutaneous pinning could be considered in older obese patients in order to reduce the need for further treatment.
Collapse
Affiliation(s)
- Andrea Vescio
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, 95123 Catania, Italy; (A.V.); (G.T.); (M.S.); (A.C.); (M.M.)
| | - Gianluca Testa
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, 95123 Catania, Italy; (A.V.); (G.T.); (M.S.); (A.C.); (M.M.)
| | - Marco Sapienza
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, 95123 Catania, Italy; (A.V.); (G.T.); (M.S.); (A.C.); (M.M.)
| | - Alessia Caldaci
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, 95123 Catania, Italy; (A.V.); (G.T.); (M.S.); (A.C.); (M.M.)
| | - Marco Montemagno
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, 95123 Catania, Italy; (A.V.); (G.T.); (M.S.); (A.C.); (M.M.)
| | - Antonio Andreacchio
- Department of Pediatric Orthopedic Surgery, “V. Buzzi” Children Hospital, 20154 Milan, Italy;
| | - Federico Canavese
- Pediatric Orthopedic Surgery Service, Hôpital Jeanne de Flandre, University of Lille, 59037 Lille, France;
| | - Vito Pavone
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, 95123 Catania, Italy; (A.V.); (G.T.); (M.S.); (A.C.); (M.M.)
| |
Collapse
|
5
|
Tajaldeen A, Alghamdi SS, Aljondi R, Awan Z, Helmi N, Lingawi K, Mujalad A, Alzahrani W. Associations between body mass index, body composition and bone density in young adults: Findings from Saudi cohort. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Glycomacropeptide in PKU-Does It Live Up to Its Potential? Nutrients 2022; 14:nu14040807. [PMID: 35215457 PMCID: PMC8875363 DOI: 10.3390/nu14040807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The use of casein glycomacropeptide (CGMP) as a protein substitute in phenylketonuria (PKU) has grown in popularity. CGMP is derived from κ casein and is a sialic-rich glycophosphopeptide, formed by the action of chymosin during the production of cheese. It comprises 20–25% of total protein in whey products and has key biomodulatory properties. In PKU, the amino acid sequence of CGMP has been adapted by adding the amino acids histidine, leucine, methionine, tyrosine and tryptophan naturally low in CGMP. The use of CGMP compared to mono amino acids (L-AAs) as a protein substitute in the treatment of PKU promises several potential clinical benefits, although any advantage is supported only by evidence from non-PKU conditions or PKU animal models. This review examines if there is sufficient evidence to support the bioactive properties of CGMP leading to physiological benefits when compared to L-AAs in PKU, with a focus on blood phenylalanine control and stability, body composition, growth, bone density, breath odour and palatability.
Collapse
|
7
|
Constable AM, Vlachopoulos D, Barker AR, Moore SA, Soininen S, Haapala EA, Väistö J, Jääskeläinen J, Voutilainen R, Auriola S, Häkkinen MR, Laitinen T, Lakka TA. The Mediating Role of Endocrine Factors in the Positive Relationship Between Fat Mass and Bone Mineral Content in Children Aged 9-11 Years: The Physical Activity and Nutrition in Children Study. Front Endocrinol (Lausanne) 2022; 13:850448. [PMID: 35399927 PMCID: PMC8987010 DOI: 10.3389/fendo.2022.850448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION We aimed to investigate whether the relationship between fat mass and bone mineral content (BMC) is mediated by insulin, leptin, adiponectin, dehydroepiandrosterone sulphate, testosterone and estradiol in children aged 9-11 years. MATERIALS AND METHODS We utilised cross-sectional data from the Physical Activity and Nutrition in Children study (n = 230 to 396; 112 to 203 girls). Fat mass and BMC were assessed with dual-energy X-ray absorptiometry. Endocrine factors were assessed from fasted blood samples. We applied the novel 4-way decomposition method to analyse associations between fat mass, endocrine factors, and BMC. RESULTS Fat mass was positively associated with BMC in girls (ß = 0.007 to 0.015, 95% confidence interval (CI) 0.005 to 0.020) and boys (ß = 0.009 to 0.015, 95% CI 0.005 to 0.019). The relationship between fat mass and BMC was mediated by free leptin index in girls (ß = -0.025, 95% CI -0.039 to -0.010) and boys (ß = -0.014, 95% CI -0.027 to -0.001). The relationship between fat mass and BMC was partially explained by mediated interaction between fat mass and free leptin index in boys (ß = -0.009, 95% CI -0.013 to -0.004) and by interaction between fat mass and adiponectin in girls (ß = -0.003, 95% CI -0.006 to -0.000). CONCLUSION At greater levels of adiponectin and free leptin index, the fat mass and BMC relationship becomes less positive in girls and boys respectively. The positive association between fat mass with BMC was largely not explained by the endocrine factors we assessed. CLINICAL TRIAL REGISTRATION [https://clinicaltrials.gov/ct2/show/NCT01803776], identifier NCT01803776.
Collapse
Affiliation(s)
- Annie M. Constable
- Children’s Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Annie M. Constable,
| | - Dimitris Vlachopoulos
- Children’s Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
| | - Alan R. Barker
- Children’s Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
| | - Sarah A. Moore
- School of Health and Human Performance, Dalhousie University, Halifax, NS, Canada
| | - Sonja Soininen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Social and Health Center, City of Varkaus, Finland
| | - Eero A. Haapala
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Juuso Väistö
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jarmo Jääskeläinen
- Department of Paediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Raimo Voutilainen
- Department of Paediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Tomi Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Timo A. Lakka
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
8
|
Daly A, Högler W, Crabtree N, Shaw N, Evans S, Pinto A, Jackson R, Ashmore C, Rocha JC, Strauss BJ, Wilcox G, Fraser WD, Tang JCY, MacDonald A. A Three-Year Longitudinal Study Comparing Bone Mass, Density, and Geometry Measured by DXA, pQCT, and Bone Turnover Markers in Children with PKU Taking L-Amino Acid or Glycomacropeptide Protein Substitutes. Nutrients 2021; 13:nu13062075. [PMID: 34204378 PMCID: PMC8233747 DOI: 10.3390/nu13062075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
In patients with phenylketonuria (PKU), treated by diet therapy only, evidence suggests that areal bone mineral density (BMDa) is within the normal clinical reference range but is below the population norm. Aims: To study longitudinal bone density, mass, and geometry over 36 months in children with PKU taking either amino acid (L-AA) or casein glycomacropeptide substitutes (CGMP-AA) as their main protein source. Methodology: A total of 48 subjects completed the study, 19 subjects in the L-AA group (median age 11.1, range 5–16 years) and 29 subjects in the CGMP-AA group (median age 8.3, range 5–16 years). The CGMP-AA was further divided into two groups, CGMP100 (median age 9.2, range 5–16 years) (n = 13), children taking CGMP-AA only and CGMP50 (median age 7.3, range 5–15 years) (n = 16), children taking a combination of CGMP-AA and L-AA. Dual X-ray absorptiometry (DXA) was measured at enrolment and 36 months, peripheral quantitative computer tomography (pQCT) at 36 months only, and serum blood and urine bone turnover markers (BTM) and blood bone biochemistry at enrolment, 6, 12, and 36 months. Results: No statistically significant differences were found between the three groups for DXA outcome parameters, i.e., BMDa (L2–L4 BMDa g/cm2), bone mineral apparent density (L2–L4 BMAD g/cm3) and total body less head BMDa (TBLH g/cm2). All blood biochemistry markers were within the reference ranges, and BTM showed active bone turnover with a trend for BTM to decrease with increasing age. Conclusions: Bone density was clinically normal, although the median z scores were below the population mean. BTM showed active bone turnover and blood biochemistry was within the reference ranges. There appeared to be no advantage to bone density, mass, or geometry from taking a macropeptide-based protein substitute as compared with L-AAs.
Collapse
Affiliation(s)
- Anne Daly
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
- Correspondence:
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstraße 26-30, 4020 Linz, Austria;
| | - Nicola Crabtree
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| | - Nick Shaw
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| | - Sharon Evans
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| | - Alex Pinto
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| | - Richard Jackson
- Liverpool Clinical Trials Centre, University of Liverpool, Brownlow Hill, Liverpool L69 3GL, UK;
| | - Catherine Ashmore
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| | - Júlio C. Rocha
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Centre for Health and Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
| | - Boyd J. Strauss
- School of Medical Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester M13 9PL, UK; (B.J.S.); (G.W.)
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Gisela Wilcox
- School of Medical Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester M13 9PL, UK; (B.J.S.); (G.W.)
- The Mark Holland Metabolic Unit, Salford Royal Foundation NHS Trust, Ladywell NW2, Salford, Manchester M6 8HD, UK
| | - William D. Fraser
- BioAnalytical Facility, BCRE Builiding University or East Anglia, Norwich NR4 7TJ, UK; (W.D.F.); (J.C.Y.T.)
| | - Jonathan C. Y. Tang
- BioAnalytical Facility, BCRE Builiding University or East Anglia, Norwich NR4 7TJ, UK; (W.D.F.); (J.C.Y.T.)
- Departments of Clinical Biochemistry and Endocrinology, Norfolk and Norwich University Hospitals Trust, Norwich NR4 7UY, UK
| | - Anita MacDonald
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| |
Collapse
|
9
|
Sex differences in the relationship between body composition and biomarkers of bone and fat metabolism in obese boys and girls. Bone Rep 2021; 14:101087. [PMID: 34026951 DOI: 10.1016/j.bonr.2021.101087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Whether a body mass derived from extremes of body weight is beneficial to bone remains controversial. When fat accumulation reaches excessive levels and induces changes in hormonal factors and adipokines, it may affect bone accrual during growth. This study evaluated the relationships between body composition and key biomarkers in relation to bone and fat metabolism in obese Thai boys and girls. Subjects aged 12-14 years were grouped by body mass index (BMI) and percentage of body fat (%Fat). Body composition and heel bone Z-score and speed of sound (SOS) were assessed by bioelectrical impedance analysis and calcaneus bone densitometry, respectively. Serum osteocalcin (OC), adiponectin, leptin, insulin, and 25 hydroxyvitamin D (25(OH)D) were measured by ELISA. Their correlations were analyzed and compared between sexes. The results showed that the obese groups had no differences in mean BMIs and body composition, except that boys had more muscle mass than girls. Boys had lower serum OC and leptin levels than girls. Positive correlations of leptin with %Fat and FM were found in both sexes, while positive associations of %Fat with OC and insulin were found only in boys. Bone Z-score and SOS positively correlated with OC in boys but negatively correlated with 25(OH)D in girls. When classifying the obese group using %Fat ≥25, the positive correlations between %Fat and insulin and the negative associations between %Fat and adiponectin in girls were more pronounced. These results suggest that the associations of body fat and bone parameters with OC, adiponectin, 25(OH)D, and insulin were sex-specific, with greater clarity when %Fat was used instead of BMI to classify obesity.
Collapse
Key Words
- %Fat, percentage of body fat
- 25(OH)D
- 25(OH)D, 25-hydroxyvitamin D
- Adiponectin
- Adolescents
- BMC, bone mineral content
- BMD, bone mineral density
- BMI, body mass index
- BW, body weight
- Body fat percentage
- ELISA, enzyme-linked immunosorbent assay
- FFM, free fat mass
- FFMI, free fat mass index
- FM, fat mass
- FMI, fat mass index
- IR, insulin resistance
- Leptin
- MM, muscle mass
- OC, osteocalcin
- Osteocalcin
- SOS, speed of sound
- aBMD, areal bone mineral density
Collapse
|
10
|
Jeddi M, Ardalan A, Heydari ST, Dabbaghmanesh MH. Non-linear association of body composition and its components with bone density in Iranian children and adolescents. Arch Osteoporos 2021; 16:77. [PMID: 33948735 DOI: 10.1007/s11657-021-00920-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/25/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED Peak bone mass is established during childhood. This study aimed to evaluate the associations of the components of overall body mass with areal bone mineral density Z-score in children. The findings of this study showed that children with greater overall body mass had higher aBMD Z-score. PURPOSE Peak bone mass is established during childhood and adolescence. One of the important factors influencing predicted bone mass tracking in childhood and adolescence is alteration in the body composition during this growth period. This study aimed to evaluate the associations of the components of overall body mass with areal bone mineral density Z-score in children and adolescents. METHODS In this cross-sectional study, 478 healthy Iranian children and adolescents (237 girls and 241 boys) who had DXA measures participated. We evaluated the linearity of associations using generalized additive models. RESULTS Children's mean age was14 years with a range of 9-18 years, and 49.6% were girls. We found an increase in aBMD Z-score with increasing overall body mass (r = 0.25, p < 0.001). We observed this association with fat-free mass and total fat mass up to the 60th (~30 Kg) and 75th percentile (~12.5 Kg) [0.051 (95% CI, 0.027-0.075) increase in aBMD Z-score per 1 Kg increase in fat-free mass and 0.079 (95% CI, 0.044-0.114) increase in aBMD Z-score per 1 Kg increase in the total fat mass]. The correlation between Z-score of overall body mass and its components with aBMD Z-score was strongly positive. (P value < 0.001 for all) CONCLUSION: The findings of this study showed that children with greater overall body mass had higher aBMD Z-score. In addition, this study adds to a growing literature, suggesting that the relationship between body composition and BMD may be influenced by the pattern of fat and fat-free mass distribution in population.
Collapse
Affiliation(s)
- Marjan Jeddi
- Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Postal Box, Shiraz, 71345-1414, Iran
| | - Arash Ardalan
- Department of Mathematics, Yasouj University, Yasouj, Iran
| | - Seyed Taghi Heydari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Dabbaghmanesh
- Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Postal Box, Shiraz, 71345-1414, Iran.
| |
Collapse
|
11
|
VESCIO A, TESTA G, MONTEMAGNO M, SAPIENZA M, PAVONE V. Secondary displacement risk after reduction and cast immobilization of displaced distal radius fractures in overweight and obese children: a systematic review and meta-analysis. MINERVA ORTHOPEDICS 2021; 72. [DOI: 10.23736/s2784-8469.20.04052-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
|
12
|
Zhang W, Ghosh D. A general approach to sensitivity analysis for Mendelian randomization. STATISTICS IN BIOSCIENCES 2021; 13:34-55. [PMID: 33737984 DOI: 10.1007/s12561-020-09280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mendelian Randomization (MR) represents a class of instrumental variable methods using genetic variants. It has become popular in epidemiological studies to account for the unmeasured confounders when estimating the effect of exposure on outcome. The success of Mendelian Randomization depends on three critical assumptions, which are difficult to verify. Therefore, sensitivity analysis methods are needed for evaluating results and making plausible conclusions. We propose a general and easy to apply approach to conduct sensitivity analysis for Mendelian Randomization studies. Bound et al. (1995) derived a formula for the asymptotic bias of the instrumental variable estimator. Based on their work, we derive a new sensitivity analysis formula. The parameters in the formula include sensitivity parameters such as the correlation between instruments and unmeasured confounder, the direct effect of instruments on outcome and the strength of instruments. In our simulation studies, we examined our approach in various scenarios using either individual SNPs or unweighted allele score as instruments. By using a previously published dataset from researchers involving a bone mineral density study, we demonstrate that our proposed method is a useful tool for MR studies, and that investigators can combine their domain knowledge with our method to obtain bias-corrected results and make informed conclusions on the scientific plausibility of their findings.
Collapse
Affiliation(s)
- Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, U.S.A
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, U.S.A
| |
Collapse
|
13
|
Radzki RP, Bienko M, Wolski D, Ostapiuk M, Polak P, Manastyrska M, Kimicka A, Wolska J. Programming Effect of the Parental Obesity on the Skeletal System of Offspring at Weaning Day. Animals (Basel) 2021; 11:ani11020424. [PMID: 33562167 PMCID: PMC7914703 DOI: 10.3390/ani11020424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Overweight and obesity can cause many diseases, and several studies indicate a close relationship between the obesity of parents and the health of their offspring. Our aim was to investigate whether there is a programming influence of parental obesity on the skeletal system in weaned female and male offspring rats. In undertaking this, analysis of bone material was carried out using isolated tibia, and densitometry (DXA), peripheral (pQCT) and micro (µCT) computed tomography were performed. Mechanical tests and blood serum biochemistry were also carried out. Our work showed a significant programming influence of parental obesity on neonatal skeletal development. The tibiae isolated from offspring originating from obese parents were characterized by more intense mineralization and higher fracture resistance. However, numerous studies demonstrate the destructive effect of obesity on the skeletal system. Our research and the available literature suggest the existence of a “fat threshold”, the exceeding of which changes of the osteotropic effect of adipose tissue to become unfavorable. Therefore, there is a need for further research to determine the time-dependent metabolic relationship between adipose tissue and bone in both animals and humans. Abstract Our study aimed to verify the hypothesis of the existence of a programming effect of parental obesity on the growth, development and mineralization of the skeletal system in female and male rat offspring on the day of weaning. The study began with the induction of obesity in female and male rats of the parental generation, using a high-energy diet (group F). Females and males of the control group received the standard diet (group S). After 90 days of dietary-induced obesity, the diet in group F was changed into the standard. Rats from groups F and S were mated to obtain offspring which stayed with their mothers until 21 days of age. Tibia was tested using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), micro-computed tomography (µCT) and mechanical strength using the three-point bending test. Biochemical analysis of blood serum bone metabolism markers was performed. DXA analysis showed higher tibia bone mineral content (BMC) and area. pQCT measurements of cortical and trabecular tissue documented the increase of the volumetric bone mineral density and BMC of both bone compartments in offspring from the F group, while µCT of the trabecular tissue showed an increase in trabecular thickness and a decrease of its separation. Parental obesity, hence, exerts a programming influence on the development of the skeletal system of the offspring on the day of the weaning, which was reflected in the intensification of mineralization and increased bone strength.
Collapse
Affiliation(s)
- Radoslaw Piotr Radzki
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (D.W.); (M.M.); (A.K.)
- Correspondence: (R.P.R.); (M.B.); Tel.: +48-81-445-60-69 (R.P.R.); +48-81-445-69-30 (M.B.)
| | - Marek Bienko
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (D.W.); (M.M.); (A.K.)
- Correspondence: (R.P.R.); (M.B.); Tel.: +48-81-445-60-69 (R.P.R.); +48-81-445-69-30 (M.B.)
| | - Dariusz Wolski
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (D.W.); (M.M.); (A.K.)
| | - Monika Ostapiuk
- Department of Materials Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Pawel Polak
- St Johns’ Oncology Center in Lublin (COZL) Trauma, Orthopaedic Surgery Department, ul. Jaczewskiego 7, 20-090 Lublin, Poland;
| | - Malgorzata Manastyrska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (D.W.); (M.M.); (A.K.)
| | - Aleksandra Kimicka
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (D.W.); (M.M.); (A.K.)
| | - Joanna Wolska
- Department of Oncology, Chair of Oncology and Environmental Health, Faculty of Health Sciences, Medical University of Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
14
|
Bone Mineral Density of Femur and Lumbar and the Relation between Fat Mass and Lean Mass of Adolescents: Based on Korea National Health and Nutrition Examination Survey (KNHNES) from 2008 to 2011. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124471. [PMID: 32580309 PMCID: PMC7345079 DOI: 10.3390/ijerph17124471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
It is most important to reach the maximum bone density in the childhood period to prevent developing osteoporosis; it is widely known that increased body weight has a positive correlation with bone density and that even though both the fat mass and lean mass have a significant impact on bone density, the latter mass has more importance for adults. Therefore, the study analyzed to identify the relationship between bone density and both fat mass and lean mass of Korean adolescents. Subjects were chosen among 21,303 people from the Korea National Health and Nutrition Examination Survey (KNHNES) between 2008 and 2011 that took a bone density checkup; as a result, 1454 teenagers aged between 12 and 18 were selected. Data analysis was performed in SAS ver. 9.4 (SAS Institute Inc., Cary, NC, USA) following the KNHNES and the weighted complex sample analysis was conducted; body fat mass and lean mass were divided into quintile groups, and to figure out the differences in bone density that were analyzed in six models adjusted by body weight (kg) and walking (yes/no), muscle strengthening exercises (yes/no), nutrition (intake of ca (g), and serum vitamin D (ng/mL)). Then, the generalized linear model (GLM) and trend test were conducted for each gender with a significance level of 0.05. The bone density differences of fat mass and lean mass were analyzed. The result of Model 6 considering all correction variables is as follows; in the case of male adolescents, the total femur and lumbar spine showed a significant difference (F = 13.120, p < 0.001; F = 12.900, p < 0.001) for fat mass, and the trend test showed that the figures significantly decreased (β = −0.030, p < 0.001; −0.035, p < 0.001). Meanwhile, for lean mass, the total femur and lumbar spine had a significant difference (F = 16.740, p < 0.001; F = 20.590, p < 0.001) too, but the trend test showed a significant increase (β = 0.054, p < 0.001; 0.057, p < 0.001). In the case of female adolescents, the lumbar spine (F = 3.600, p < 0.05) for lean mass showed a significant difference, and it also significantly rose in the trend test too (β = 0.020, p < 0.01). To sum up the results, for male adolescents, the bone density differences for fat mass (FM) and lean mass (LM) all had significant differences, but for female adolescents, only the lumbar spine for LM showed such a result. Meanwhile, both genders showed that LM had a more positive impact on bone density than FM.
Collapse
|
15
|
Natelson DM, Lai A, Krishnamoorthy D, Hoy RC, Iatridis JC, Illien-Jünger S. Leptin signaling and the intervertebral disc: Sex dependent effects of leptin receptor deficiency and Western diet on the spine in a type 2 diabetes mouse model. PLoS One 2020; 15:e0227527. [PMID: 32374776 PMCID: PMC7202633 DOI: 10.1371/journal.pone.0227527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes and obesity are associated with back pain in juveniles and adults and are implicated in intervertebral disc (IVD) degeneration. Hypercaloric Western diets are associated with both obesity and type 2 diabetes. The objective of this study was to determine if obesity and type 2 diabetes result in spinal pathology in a sex-specific manner using in vivo diabetic and dietary mouse models. Leptin is an appetite-regulating hormone, and its deficiency leads to polyphagia, resulting in obesity and diabetes. Leptin is also associated with IVD degeneration, and increased expression of its receptor was identified in degenerated IVDs. We used young, leptin receptor deficient (Db/Db) mice to mimic the effect of diet and diabetes on adolescents. Db/Db and Control mice were fed either Western or Control diets, and were sacrificed at 3 months of age. Db/Db mice were obese, while only female mice developed diabetes. Female Db/Db mice displayed altered IVD morphology, with increased intradiscal notochordal band area, suggesting delayed IVD cell proliferation and differentiation, rather than IVD degeneration. Motion segments from Db/Db mice exhibited increased failure risk with decreased torsional failure strength. Db/Db mice also had inferior bone quality, which was most prominent in females. We conclude that obesity and diabetes due to impaired leptin signaling contribute to pathological changes in vertebrae, as well as an immature IVD phenotype, particularly of females, suggesting a sex-dependent role of leptin in the spine.
Collapse
Affiliation(s)
- Devorah M. Natelson
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Alon Lai
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Divya Krishnamoorthy
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Robert C. Hoy
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - James C. Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Svenja Illien-Jünger
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bilinski WJ, Paradowski PT, Sypniewska G. Bone health and hyperglycemia in pediatric populations. Crit Rev Clin Lab Sci 2020; 57:444-457. [PMID: 32216595 DOI: 10.1080/10408363.2020.1739619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The impact of prediabetes and diabetes on skeletal health in the context of increased risk of fragility fractures in adults has been studied recently. However, the prevalence of diabetes, overweight, and obesity have also increased in younger subjects. Current data concerning bone metabolism based on assessment of markers for bone turnover and of bone quality in diabetes patients in diverse age groups appears to be inconsistent. This review synthesizes the current data on the assessment of bone turnover based on the use of circulating bone markers recommended by international organizations; the effects of age, gender, and other factors on the interpretation of the data; and the effects of type 1 and type 2 diabetes as well as hyperglycemia on bone quality and turnover with particular emphasis on the pediatric population. Early intervention in the pediatric population is necessary to prevent the progression of metabolic disturbances that accompany prediabetes and diabetes in the context of common low vitamin D status that may interfere with bone growth.
Collapse
Affiliation(s)
| | - Przemyslaw T Paradowski
- Department of Orthopaedics and Traumatology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland.,Department of Surgical and Perioperative Sciences. Division of Orthopedics, Sunderby Research Unit, Umeå University, Umeå, Sweden
| | - Grazyna Sypniewska
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
17
|
A. El Wakeel M, A. Shehata M, M. El-Kassas G, H. Mostafa H, M. Galal E, Refat El-Zayat S, Abd EL Ghaffar Mohammed3 N. Bone Health in Relation to Vitamin-D Status and Serum Adipokines in Obese Egyptian Children. BIOMEDICAL & PHARMACOLOGY JOURNAL 2019; 12:1379-1388. [DOI: 10.13005/bpj/1766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Childhood obesity has been linked to an increase in fracture risk, so the impact of obesity on bone metabolism is becoming a focus of attention to identify factors that may affect bone health in obese children. Therefore, this study aimed to examine the association between serum 25-Hydroxy vitamin D [25(OH) D], adipokines and bone status in obese children. This case control study was executed in the Child Health Clinic in Medical and Scientific Centre of Excellence, National Research Centre (NRC), 100 obese and 80 non-obese age- and sex-matched children were enrolled in our study with mean age of (10.12±2.34 & 9.62±1.67 years) respectively. Anthropometric measurements, femoral neck bone mineral density (BMD) and its Z-score, bone mineral content (BMC) were measured using dual-energy X-ray absorptiometry (DXA) in relation to body weight (kg), we also determined serum 25(OH) D, adiponectin, leptin and lipid profile. HOMA-IR was calculated to assess insulin resistance. It was found that BMC and BMD Z-score adjusted for weight were significantly lower in obese children as compared to controls (all p<0.05). Obese children had lower levels of 25(OH) D and adiponectin (P<0.01), while higher levels of leptin, total cholesterol (TC) and triglycerides (TG) compared to controls (P<0.01). Both BMC and BMD Z-score showed positive association with 25(OH) D and adiponectin (P<0.01) and negative association with HOMA-IR, TG and TC (P<0.05). Linear regression analysis showed that 25(OH) D was the most effective factor predicting BMD Z-score and BMC in obese children. It is concluded that, obesity is negatively related to bone health in childhood. Those obese children are at increased risk for vitamin D insufficiency, which shows an obvious relationship to lower bone mass, raising the question of supplementation to prevent the deleterious effect of its deficiency on bones and reducing future risk of fracture and osteoporosis.
Collapse
Affiliation(s)
| | - Manal A. Shehata
- Department of Child Health, National Research Centre, Cairo, Egypt
| | | | - Hend H. Mostafa
- Department of Child Health, National Research Centre, Cairo, Egypt
| | - Essam M. Galal
- Department of Child Health, National Research Centre, Cairo, Egypt
| | | | | |
Collapse
|
18
|
Bierhals IO, Dos Santos Vaz J, Bielemann RM, de Mola CL, Barros FC, Gonçalves H, Wehrmeister FC, Assunção MCF. Associations between body mass index, body composition and bone density in young adults: findings from a southern Brazilian cohort. BMC Musculoskelet Disord 2019; 20:322. [PMID: 31288773 PMCID: PMC6617655 DOI: 10.1186/s12891-019-2656-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the association of body composition components and obesity with bone density. METHODS Prospective study with data on 2968 members of the 1993 Pelotas Birth Cohort from follow-ups at 18 and 22 years of age. Areal bone mineral density (aBMD, g/cm2) was evaluated for whole body, lumbar spine, and femoral neck at 22 years using dual-energy X-ray absorptiometry. Simple and multiple linear regression, stratified by sex, were used to assess the effect of BMI, fat mass (FMI) and lean mass index (LMI), evaluated at 18 and 22 years, and obesity trajectories classified by FMI and categorized as "never", "only at 18 years", "only at 22 years" or "always" on aBMD. RESULTS Among men, the largest coefficients were observed for BMI, followed by lean mass and fat mass. Compared to fat mass, lean mass presented the largest coefficients for all sites, with the strongest associations observed for the femoral neck (β: 0.035 g/cm2; 95% CI: 0.031; 0.039 for both follow-ups), while the largest effect for FMI was observed for whole-body aBMD at 18 years (β: 0.019 g/cm2; 95% CI: 0.014; 0.024). Among women, the strongest associations were observed for LMI. The largest coefficients for LMI and FMI were observed for femoral neck at age 18, presented β: 0.030 g/cm2, 95% CI: 0.026, 0.034 for LMI and β: 0.012 g/cm2; 95% CI: 0.009; 0.015) for FMI. Men who were "always obese" according to FMI had smallest aBMD for spine (β: -0.014; 95%CI: - 0.029; - 0.001). Women who were obese "only at 18 years" had smallest aBMD for the whole-body (β: -0.013; 95%CI: - 0.023; - 0.002), whereas those who were obese "only at 22 years" had larger whole-body and femoral neck aBMD (β: 0.013; 95%CI: 0.009; 0.017 and β: 0.027; 95%CI: 0.016; 0.038, respectively) and those "always obese" for whole-body aBMD (β: 0.005; 95%CI: 0.001; 0.011) compared to the reference category. CONCLUSIONS The indexes were positively associated with aBMD in this sample. Fat mass had smaller positive influence on these outcomes than lean mass, suggesting the most important body composition component for bone density is the lean mass.
Collapse
Affiliation(s)
- Isabel Oliveira Bierhals
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Rua Marechal Deodoro, 1160 - 3o andar, Pelotas/RS, 96020-220, Brazil.
| | - Juliana Dos Santos Vaz
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Rua Marechal Deodoro, 1160 - 3o andar, Pelotas/RS, 96020-220, Brazil
| | - Renata Moraes Bielemann
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Rua Marechal Deodoro, 1160 - 3o andar, Pelotas/RS, 96020-220, Brazil
| | - Christian Loret de Mola
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Rua Marechal Deodoro, 1160 - 3o andar, Pelotas/RS, 96020-220, Brazil
| | - Fernando Celso Barros
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Rua Marechal Deodoro, 1160 - 3o andar, Pelotas/RS, 96020-220, Brazil
| | - Helen Gonçalves
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Rua Marechal Deodoro, 1160 - 3o andar, Pelotas/RS, 96020-220, Brazil
| | - Fernando César Wehrmeister
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Rua Marechal Deodoro, 1160 - 3o andar, Pelotas/RS, 96020-220, Brazil
| | - Maria Cecília Formoso Assunção
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Rua Marechal Deodoro, 1160 - 3o andar, Pelotas/RS, 96020-220, Brazil
| |
Collapse
|
19
|
Corbo F, Brunetti G, Crupi P, Bortolotti S, Storlino G, Piacente L, Carocci A, Catalano A, Milani G, Colaianni G, Colucci S, Grano M, Franchini C, Clodoveo ML, D'Amato G, Faienza MF. Effects of Sweet Cherry Polyphenols on Enhanced Osteoclastogenesis Associated With Childhood Obesity. Front Immunol 2019; 10:1001. [PMID: 31130968 PMCID: PMC6509551 DOI: 10.3389/fimmu.2019.01001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Childhood obesity is associated with the development of severe comorbidities, such as diabetes, cardiovascular diseases, and increased risk of osteopenia/osteoporosis and fractures. The status of low-grade inflammation associated to obesity can be reversed through an enhanced physical activity and by consumption of food enrich of anti-inflammatory compounds, such as omega-3 fatty acids and polyphenols. The aim of this study was to deepen the mechanisms of bone impairment in obese children and adolescents through the evaluation of the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs), and the assessment of the serum levels of RANKL and osteoprotegerin (OPG). Furthermore, we aimed to evaluate the in vitro effects of polyphenol cherry extracts on osteoclastogenesis, as possible dietary treatment to improve bone health in obese subjects. High RANKL levels were measured in obese with respect to controls (115.48 ± 35.20 pg/ml vs. 87.18 ± 17.82 pg/ml; p < 0.01), while OPG levels were significantly reduced in obese than controls (378.02 ± 61.15 pg/ml vs. 436.75 ± 95.53 pg/ml, respectively, p < 0.01). Lower Ad-SoS- and BTT Z-scores were measured in obese compared to controls (p < 0.05). A significant elevated number of multinucleated TRAP+ osteoclasts (OCs) were observed in the un-stimulated cultures of obese subjects compared to the controls. Interestingly, obese subjects displayed a higher percentage of CD14+/CD16+ than controls. Furthermore, in the mRNA extracts of obese subjects we detected a 2.5- and 2-fold increase of TNFα and RANKL transcripts compared to controls, respectively. Each extract of sweet cherries determined a dose-dependent reduction in the formation of multinucleated TRAP+ OCs. Consistently, 24 h treatment of obese PBMCs with sweet cherry extracts from the three cultivars resulted in a significant reduction of the expression of TNFα. In conclusion, the bone impairment in obese children and adolescents is sustained by a spontaneous osteoclastogenesis that can be inhibited in vitro by the polyphenol content of sweet cherries. Thus, our study opens future perspectives for the use of sweet cherry extracts, appropriately formulated as nutraceutical food, as preventive in healthy children and therapeutic in obese ones.
Collapse
Affiliation(s)
- Filomena Corbo
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Crupi
- CREA-VE, Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology, Turi, Italy
| | - Sara Bortolotti
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Laura Piacente
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Gualtiero Milani
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Colaianni
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grano
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | | | - Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
20
|
Souza Gomes TP, Veloso FLDM, Antunes Filho J, Mourão FC, Nascif NHT, Loures EDA, Labronici PJ, Mendes Júnior AF. Obesidade, Diabetes Mellitus tipo 2 e fragilidade óssea: uma revisão narrativa. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2018.v44.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Durante anos a obesidade foi vista como um fator protetor para fraturas e osteoporose. Diversos estudos, no entanto, contestam esta tese, descrevendo que a obesidade na verdade afeta negativamente o sistema esquelético, em especial a homeostase óssea, diminuindo a rigidez do tecido ósseo e aumentando o risco de fraturas. A obesidade e o diabetes estão frequentemente associados no mesmo paciente, e a compreensão da alteração do tecido ósseo nestas duas condições clínicas é fundamental para o melhor cuidado destes pacientes, principalmente devido ao risco aumentado de fraturas, que estão associadas a maior número de complicações no seu tratamento. O presente estudo, em revisão narrativa, descreve a relação entre obesidade e homeostase óssea, a fragilidade óssea nos pacientes obesos, diabéticos ou não, e a relação entre obesidade e fraturas.
Collapse
|