1
|
Panthong W, Pientong C, Nukpook T, Heawchaiyaphum C, Aromseree S, Ekalaksananan T. OSI-027 as a Potential Drug Candidate Targeting Upregulated Hub Protein TAF1 in Potential Mechanism of Sinonasal Squamous Cell Carcinoma: Insights from Proteomics and Molecular Docking. BIOLOGY 2024; 13:1089. [PMID: 39765756 PMCID: PMC11673211 DOI: 10.3390/biology13121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Sinonasal squamous cell carcinoma (SNSCC) is a rare tumor with high mortality and recurrence rates. However, SNSCC carcinogenesis mechanisms and potential therapeutic drugs have not been fully elucidated. This study investigated the key molecular mechanisms and hub proteins involved in SNSCC carcinogenesis using proteomics and bioinformatic analysis. Dysregulated proteins were validated by RT-qPCR in SNSCC and nasal polyp (NP) tissues. Proteomic analysis revealed that differentially expressed proteins were clustered using MCODE scores ≥ 4 into three modules. The specific hub proteins in each module were analyzed in carcinogenesis pathways using STRING, highlighting potential mechanisms of histone modification and spliceosome dysregulation. Spliceosome components SNRNP200 and SF3A3 were significantly downregulated in SNSCC by RT-qPCR. Web-based applications L1000CDS2 and iLINCS were applied to identify 10 potential repurposable drugs that could reverse the gene expression pattern associated with SNSCC. Docking studies of TAF1, a protein in histone modification, with these 10 small molecule inhibitors indicated OSI-027 to be the most promising due to its strong binding interactions with key residues. These findings suggest that hub proteins involved in the underlying mechanism of SNSCC carcinogenesis may serve as valuable targets for drug development, with OSI-027 emerging as a novel candidate against TAF1 in SNSCC.
Collapse
Affiliation(s)
- Watcharapong Panthong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thawaree Nukpook
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Xu L, Mi Y, Meng Q, Liu Y, Wang Y, Zhang Y, Yang Y, Chen G, Liu Y, Hou Y. A quinolinyl resveratrol derivative alleviates acute ischemic stroke injury by promoting mitophagy for neuroprotection via targeting CK2α'. Int Immunopharmacol 2024; 137:112524. [PMID: 38909494 DOI: 10.1016/j.intimp.2024.112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Ischemic stroke (IS) is a serious threat to human health. The naturally derived small molecule (E)-5-(2-(quinolin-4-yl) ethenyl) benzene-1,3-diol (RV01) is a quinolinyl analog of resveratrol with great potential in the treatment of IS. The aim of this study was to investigate the potential mechanisms and targets for the protective effect of the RV01 on IS. The mouse middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation and reperfusion (OGD/R) models were employed to evaluate the effects of RV01 on ischemic injury and neuroprotection. RV01 was found to significantly increase the survival of SH-SY5Y cells and prevent OGD/R-induced apoptosis in SH-SY5Y cells. Furthermore, RV01 reduced oxidative stress and mitochondrial damage by promoting mitophagy in OGD/R-exposed SH-SY5Y cells. Knockdown of CK2α' abolished the RV01-mediated promotion on mitophagy and alleviation on mitochondrial damage as well as neuronal injury after OGD/R. These results were further confirmed by molecular docking, drug affinity responsive target stability and cellular thermal shift assay analysis. Importantly, in vivo study showed that treatment with the CK2α' inhibitor CX-4945 abolished the RV01-mediated alleviation of cerebral infarct volume, brain edema, cerebral blood flow and neurological deficit in MCAO/R mice. These data suggest that RV01 effectively reduces damage caused by acute ischemic stroke by promoting mitophagy through its interaction with CK2α'. These findings offer valuable insights into the underlying mechanisms through which RV01 exerts its therapeutic effects on IS.
Collapse
Affiliation(s)
- Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Qingqi Meng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yongping Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Ying Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yuxin Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yueyang Liu
- Shenyang Key Laboratory of Vascular Biology, Science and Research Center, Department of Pharmacology, Shenyang Medical College, Shenyang, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
3
|
Khedri A, Guo S, Ramar V, Hudson B, Liu M. FOSL1's Oncogene Roles in Glioma/Glioma Stem Cells and Tumorigenesis: A Comprehensive Review. Int J Mol Sci 2024; 25:5362. [PMID: 38791400 PMCID: PMC11121637 DOI: 10.3390/ijms25105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1. These include a range of changes that occur throughout the process of transcription and after the translation of proteins. We have discovered that several non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a significant role in regulating FOSL1 expression by directly interacting with its mRNA transcripts. Moreover, an investigation into the functional aspects of FOSL1 reveals its involvement in apoptosis, proliferation, and migration. This work involves a comprehensive analysis of the complex signaling pathways that support these diverse activities. Furthermore, particular importance is given to the function of FOSL1 in coordinating the activation of several cytokines, such as TGF-beta, and the commencement of IL-6 and VEGF production in tumor-associated macrophages (TAMs) that migrate into the tumor microenvironment. There is a specific emphasis on evaluating the predictive consequences linked to FOSL1. Insights are now emerging on the developing roles of FOSL1 in relation to the processes that drive resistance and reliance on specific treatment methods. Targeting FOSL1 has a strong inhibitory effect on the formation and spread of specific types of cancers. Despite extensive endeavors, no drugs targeting AP-1 or FOSL1 for cancer treatment have been approved for clinical use. Hence, it is imperative to implement innovative approaches and conduct additional verifications.
Collapse
Affiliation(s)
- Azam Khedri
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- RCMI Cancer Research Center, Department of Chemistry, New Orleans, LA 70125, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
4
|
Su YW, Huang WY, Lin HC, Liao PN, Lin CY, Lin XY, Huang SH, Chen YT, Wu PS. Silmitasertib, a casein kinase 2 inhibitor, induces massive lipid droplet accumulation and nonapoptotic cell death in head and neck cancer cells. J Oral Pathol Med 2023; 52:245-254. [PMID: 36273268 DOI: 10.1111/jop.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Accumulating evidence shows that high expression of casein kinase 2 (CK2) and phosphorylated acetyl CoA carboxylase (pACC) in patients with squamous cell carcinoma of the head and neck (SCCHN) correlates with decreased survival rates. Computational analysis has shown that ACC is a potential substrate for CK2, and its inhibition can suppress ACC phosphorylation in vitro. CX-4945, also known as silmitasertib, is an orally administered, highly specific, ATP-competitive inhibitor of CK2 and is under clinical investigation as a treatment for malignancies. We hypothesize that inhibition of CK2 by CX-4945 can reduce CK2-downstream phosphorylation of ACC as a therapeutic strategy against SCCHN. METHODS Three aggressive SCCHN cell lines (OSC-19, FaDu and HN31) were cultured to investigate the anticancer mechanism of the CK2 inhibitor, CX-4945. Cell cycle analysis, Annexin V/PI staining, and cleavage of PARP were performed to detect apoptosis. Western blot, electron microscopy and analysis of acidic vesicular organelle development were used to detect autophagy. Interference with cellular metabolism by CX-4945 treatment was determined by Seahorse XF24 Extracellular Flux Analyzer and mass spectrometry. RESULTS Cellular metabolism was impeded by CX-4945 in aggressive SCCHN cells by Seahorse XF24 Extracellular Flux Analyzer and mass spectrometry, and consequently time- and dose-dependent lipid droplet accumulation and non-apoptotic cell death were observed. The lipogenic enzyme ACC was demonstrated to be associated with CK2, and its repressive phosphorylation could be removed by the CK2 inhibitor CX-4945. Overexpression of ACC resulted in impaired cell survival following transient transfection. CONCLUSION The findings demonstrate that CK2 inhibition impairs normal cellular energy metabolism and may be an attractive therapy for treating aggressive SCCHN.
Collapse
Affiliation(s)
- Ying-Wen Su
- Division of Hematology and Medical Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Yu Huang
- Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui Branch, New Taipei City, Taiwan
| | - Huan-Chau Lin
- Division of Hematology and Medical Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Po-Nien Liao
- Division of Hematology and Medical Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | - Pao-Shu Wu
- Department of Pathology, MacKay Memorial Hospital, Tamsui Branch, New Taipei City, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| |
Collapse
|
5
|
Li H, He J, Li M, Li K, Pu X, Guo Y. Immune landscape-based machine-learning-assisted subclassification, prognosis, and immunotherapy prediction for glioblastoma. Front Immunol 2022; 13:1027631. [PMID: 36532035 PMCID: PMC9751405 DOI: 10.3389/fimmu.2022.1027631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction As a malignant brain tumor, glioblastoma (GBM) is characterized by intratumor heterogeneity, a worse prognosis, and highly invasive, lethal, and refractory natures. Immunotherapy has been becoming a promising strategy to treat diverse cancers. It has been known that there are highly heterogeneous immunosuppressive microenvironments among different GBM molecular subtypes that mainly include classical (CL), mesenchymal (MES), and proneural (PN), respectively. Therefore, an in-depth understanding of immune landscapes among them is essential for identifying novel immune markers of GBM. Methods and results In the present study, based on collecting the largest number of 109 immune signatures, we aim to achieve a precise diagnosis, prognosis, and immunotherapy prediction for GBM by performing a comprehensive immunogenomic analysis. Firstly, machine-learning (ML) methods were proposed to evaluate the diagnostic values of these immune signatures, and the optimal classifier was constructed for accurate recognition of three GBM subtypes with robust and promising performance. The prognostic values of these signatures were then confirmed, and a risk score was established to divide all GBM patients into high-, medium-, and low-risk groups with a high predictive accuracy for overall survival (OS). Therefore, complete differential analysis across GBM subtypes was performed in terms of the immune characteristics along with clinicopathological and molecular features, which indicates that MES shows much higher immune heterogeneity compared to CL and PN but has significantly better immunotherapy responses, although MES patients may have an immunosuppressive microenvironment and be more proinflammatory and invasive. Finally, the MES subtype is proved to be more sensitive to 17-AAG, docetaxel, and erlotinib using drug sensitivity analysis and three compounds of AS-703026, PD-0325901, and MEK1-2-inhibitor might be potential therapeutic agents. Conclusion Overall, the findings of this research could help enhance our understanding of the tumor immune microenvironment and provide new insights for improving the prognosis and immunotherapy of GBM patients.
Collapse
|
6
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Pabon CM, Abbas HA, Konopleva M. Acute myeloid leukemia: therapeutic targeting of stem cells. Expert Opin Ther Targets 2022; 26:547-556. [DOI: 10.1080/14728222.2022.2083957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Cindy M. Pabon
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hussein A. Abbas
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Ngan HL, Law CH, Choi YCY, Chan JYS, Lui VWY. Precision drugging of the MAPK pathway in head and neck cancer. NPJ Genom Med 2022; 7:20. [PMID: 35296678 PMCID: PMC8927572 DOI: 10.1038/s41525-022-00293-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/15/2022] [Indexed: 01/12/2023] Open
Abstract
The mitogen-activating protein kinase (MAPK) pathway is central for cell proliferation, differentiation, and senescence. In human, germline defects of the pathway contribute to developmental and congenital head and neck disorders. Nearly 1/5 of head and neck squamous cell carcinoma (HNSCC) harbors MAPK pathway mutations, which are largely activating mutations. Yet, previous approaches targeting the MAPK pathway in HNSCC were futile. Most recent clinical evidences reveal remarkable, or even exceptional pharmacologic vulnerabilities of MAPK1-mutated, HRAS-mutated, KRAS-germline altered, as well as BRAF-mutated HNSCC patients with various targeted therapies, uncovering diverse opportunities for precision drugging this pathway at multiple “genetically condemned” nodes. Further, recent patient tumor omics unveil novel effects of MAPK aberrations on direct induction of CD8+ T cell recruitment into the HNSCC microenvironment, providing evidences for future investigation of precision immunotherapy for this large subset of patients. MAPK pathway-mutated HNSCC should warrant precision therapy assessments in vigorous manners.
Collapse
Affiliation(s)
- Hoi-Lam Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Chun-Ho Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | | | - Jenny Yu-Sum Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong. .,Georgia Cancer Center, and Department of Medicine, Medical College of Georgia, Augusta University, Georgia, GA, 30912, USA.
| |
Collapse
|
9
|
Gene Expression as a Guide to the Development of Novel Therapies in Primary Glomerular Diseases. J Clin Med 2021; 10:jcm10112262. [PMID: 34073694 PMCID: PMC8197155 DOI: 10.3390/jcm10112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Despite improvements in understanding the pathogenic mechanisms of primary glomerular diseases, therapy still remains nonspecific. We sought to identify novel therapies targeting kidney-intrinsic injury of distinct primary glomerulonephritides through computational systems biology approaches. We defined the unique transcriptional landscape within kidneys from patients with focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), immunoglobulin A nephropathy (IgAN), membranous nephropathy (MN) and thin basement membrane nephropathy (TBMN). Differentially expressed genes were functionally annotated with enrichment analysis, and distinct biological processes and pathways implicated in each primary glomerular disease were uncovered. Finally, we identified novel drugs and small-molecule compounds that may reverse each glomerulonephritis phenotype, suggesting they should be further tested as precise therapy in primary glomerular diseases.
Collapse
|
10
|
TMEM2 binds to CSNK2A3 to inhibit HBV infection via activation of the JAK/STAT pathway. Exp Cell Res 2021; 400:112517. [PMID: 33582094 DOI: 10.1016/j.yexcr.2021.112517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 01/10/2023]
Abstract
To investigate mechanisms that TMEM2 activation inhibits hepatitis B virus (HBV) infection in hepatocarcinoma (HCC) cells, co-immunoprecipitation (Co-IP) and mass spectrometry were used in screening interacting proteins for TMEM2. Levels of casein kinase 2 subunit α3 (CSNK2A3) in HCC cells were found to be inhibited or overexpressed using siRNAs and pcDNA3.1-CSNK2A3, respectively. Effect of CSNK2A3 expression on cell proliferation was analyzed using MTS, while its effect on HBV infection was measured using ddPCR and IHC. Western blotting and JAK inhibitor ruxolitinib were also used to determine whether TMEM2-regulated CSNK2A3 expression and HBV infection were affected by JAK-STAT signaling. Co-IP and mass spectrometry results showed that CSNK2A3 interacts with TMEM2. Moreover, overexpression of CSNK2A3 significantly inhibited cell proliferation, while inhibition of CSNK2A3 promoted proliferation of HCC cells. In addition, overexpression of CSNK2A3 was observed to significantly enhance HBV infection, while siRNA knockdown of CSNK2A3 inhibited HBV infection. Notably, effect of CSNK2A3 overexpression on HBV infection was suppressed by TMEM2 overexpression. Further mechanistic analyses have revealed that TMEM2 could antagonize the effects of CSNK2A3 on cell proliferation and HBV infection via JAK-STAT pathway activation. In conclusion, TMEM2 has been determined to bind to CSNK2A3 to inhibit HBV infection via activation of the JAK-STAT pathway.
Collapse
|
11
|
Cooperative Blockade of CK2 and ATM Kinases Drives Apoptosis in VHL-Deficient Renal Carcinoma Cells through ROS Overproduction. Cancers (Basel) 2021; 13:cancers13030576. [PMID: 33540838 PMCID: PMC7867364 DOI: 10.3390/cancers13030576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) is the eighth leading malignancy in the world, accounting for 4% of all cancers with poor outcome when metastatic. Protein kinases are highly druggable proteins, which are often aberrantly activated in cancers. The aim of our study was to identify candidate targets for metastatic clear cell renal cell carcinoma therapy, using chemo-genomic-based high-throughput screening. We found that the combined inhibition of the CK2 and ATM kinases in renal tumor cells and patient-derived tumor samples induces synthetic lethality. Mechanistic investigations unveil that this drug combination triggers apoptosis through HIF-2α-(Hypoxic inducible factor HIF-2α) dependent reactive oxygen species (ROS) overproduction, giving a new option for patient care in metastatic RCC. Abstract Kinase-targeted agents demonstrate antitumor activity in advanced metastatic clear cell renal cell carcinoma (ccRCC), which remains largely incurable. Integration of genomic approaches through small-molecules and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. The 786-O cell line represents a model for most ccRCC that have a loss of functional pVHL (von Hippel-Lindau). A multiplexed assay was used to study the cellular fitness of a panel of engineered ccRCC isogenic 786-O VHL− cell lines in response to a collection of targeted cancer therapeutics including kinase inhibitors, allowing the interrogation of over 2880 drug–gene pairs. Among diverse patterns of drug sensitivities, investigation of the mechanistic effect of one selected drug combination on tumor spheroids and ex vivo renal tumor slice cultures showed that VHL-defective ccRCC cells were more vulnerable to the combined inhibition of the CK2 and ATM kinases than wild-type VHL cells. Importantly, we found that HIF-2α acts as a key mediator that potentiates the response to combined CK2/ATM inhibition by triggering ROS-dependent apoptosis. Importantly, our findings reveal a selective killing of VHL-deficient renal carcinoma cells and provide a rationale for a mechanism-based use of combined CK2/ATM inhibitors for improved patient care in metastatic VHL-ccRCC.
Collapse
|
12
|
D'Amore C, Borgo C, Sarno S, Salvi M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy - potential clinical relevance. Cell Oncol (Dordr) 2020; 43:1003-1016. [PMID: 33052585 PMCID: PMC7717057 DOI: 10.1007/s13402-020-00566-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Protein kinase CK2 inhibition has long been considered as an attractive anti-cancer strategy based on the following considerations: CK2 is a pro-survival kinase, it is frequently over-expressed in human tumours and its over-expression correlates with a worse prognosis. Preclinical evidence strongly supports the feasibility of this target and, although dozens of CK2 inhibitors have been described in the literature so far, CX-4945 (silmitasertib) was the first that entered into clinical trials for the treatment of both human haematological and solid tumours. However, kinase inhibitor monotherapies turned out to be effective only in a limited number of malignancies, probably due to the multifaceted causes that underlie them, supporting the emerging view that multi-targeted approaches to treat human tumours could be more effective. CONCLUSIONS In this review, we will address combined anti-cancer therapeutic strategies described so far which involve the use of CX-4945. Data from preclinical studies clearly show the ability of CX-4945 to synergistically cooperate with different classes of anti-neoplastic agents, thereby contributing to an orchestrated anti-tumour action against multiple targets. Overall, these promising outcomes support the translation of CX-4945 combined therapies into clinical anti-cancer applications.
Collapse
Affiliation(s)
- Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
13
|
Wu X, Ouyang Y, Wang B, Lin J, Bai Y. Hypermethylation of the IRAK3-Activated MAPK Signaling Pathway to Promote the Development of Glioma. Cancer Manag Res 2020; 12:7043-7059. [PMID: 32848462 PMCID: PMC7425661 DOI: 10.2147/cmar.s252772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Objective This study aimed to elucidate the molecular mechanism underlying the involvement of abnormal DNA methylation in the development of glioma and identify potential new targets for glioma therapy. Methods The GSE79122 chip achieved from the Gene Expression Omnibus (GEO) database containing 69 glioma samples and 9 normal samples was analyzed. Methylation-specific polymerase chain reaction (MS-PCR or MSP), reverse transcription-PCR, and Western blot analysis were used to confirm the methylation level and expression level of the interleukin receptor-associated kinase (IRAK3) gene in glioma cells, 36 glioma samples, and the corresponding normal samples. In vitro, the proliferation, apoptosis rate, migration, and invasion abilities of glioma cells were detected by Cell Counting Kit-8 assay, Transwell assay, enzyme-linked immunosorbent assay, and flow cytometry, respectively. Besides, the xenograft assay of nude mice was used to confirm the effect of the IRAK3 on glioma in vivo. Results Microarray analysis showed that the IRAK3 was one of the most hypermethylated genes in glioma, and the related mitogen-activated protein kinase (MAPK) signaling pathway was activated. More experiments supported the higher methylation level and lower expression level of the IRAK3 in glioma tissues and cell lines. The viability, migration, and invasion ability of glioma cells significantly reduced and the apoptosis rate increased with the overexpression and demethylation of the IRAK3 in vitro. Besides, treatment with the MAPK signaling pathway inhibitor PD325901 alone or the overexpression or demethylation of the IRAK3 had a similar effect as the overexpression or demethylation of the IRAK3 alone in glioma cells. In vivo, xenotransplantation experiments in nude mice confirmed that the overexpression and demethylation of the IRAK3 and suppression of the MAPK signaling pathway inhibited the development of glioma. Conclusion IRAK3 inhibited the development of glioma progression through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Xinghai Wu
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, Gansu, People's Republic of China
| | - Yian Ouyang
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical College, Jiangxi, People's Republic of China
| | - Bin Wang
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, Gansu, People's Republic of China
| | - Jian Lin
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, Gansu, People's Republic of China
| | - Yun Bai
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, Gansu, People's Republic of China
| |
Collapse
|
14
|
Borgo C, Ruzzene M. Role of protein kinase CK2 in antitumor drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:287. [PMID: 31277672 PMCID: PMC6612148 DOI: 10.1186/s13046-019-1292-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 01/21/2023]
Abstract
Drug resistance represents the major reason of pharmacological treatment failure. It is supported by a broad spectrum of mechanisms, whose molecular bases have been frequently correlated to aberrant protein phosphorylation. CK2 is a constitutively active protein kinase which phosphorylates hundreds of substrates; it is expressed in all cells, but its level is commonly found higher in cancer cells, where it plays anti-apoptotic, pro-migration and pro-proliferation functions. Several evidences support a role for CK2 in processes directly responsible of drug resistance, such as drug efflux and DNA repair; moreover, CK2 intervenes in signaling pathways which are crucial to evade drug response (as PI3K/AKT/PTEN, NF-κB, β-catenin, hedgehog signaling, p53), and controls the activity of chaperone machineries fundamental in resistant cells. Interestingly, a panel of specific and effective inhibitors of CK2 is available, and several examples are known of their efficacy in resistant cells, with synergistic effect when used in combination with conventional drugs, also in vivo. Here we analyze and discuss evidences supporting the hypothesis that CK2 targeting represents a valuable strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy.
| |
Collapse
|
15
|
Gober MK, Flight RM, Lambert J, Moseley H, Stromberg A, Black EP. Deregulation of a Network of mRNA and miRNA Genes Reveals That CK2 and MEK Inhibitors May Synergize to Induce Apoptosis KRAS-Active NSCLC. Cancer Inform 2019; 18:1176935119843507. [PMID: 31105425 PMCID: PMC6509975 DOI: 10.1177/1176935119843507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 12/30/2022] Open
Abstract
KRAS-activation mutations occur in 25% to 40% of lung adenocarcinomas and are a known mechanism of epidermal growth factor receptor inhibitor (EGFRI) resistance. There are currently no targeted therapies approved specifically for the treatment of KRAS-active non–small cell lung cancers (NSCLC). Attempts to target mutant KRAS have failed in clinical studies leaving no targeted therapy option for these patients. To circumvent targeting KRAS directly, we hypothesized that targeting proteins connected to KRAS function rather than targeting KRAS directly could induce cell death in KRAS-active NSCLC cells. To identify potential targets, we leveraged 2 gene expression data sets derived from NSCLC cell lines either resistant and sensitive to EGFRI treatment. Using a Feasible Solutions Algorithm, we identified genes with deregulated expression in KRAS-active cell lines and used STRING as a source for known protein-protein interactions. This process generated a network of 385 deregulated proteins including KRAS and other known mechanisms of EGFRI resistance. To identify candidate drug targets from the network for further study, we selected proteins with the greatest number of connections within the network and possessed an enzymatic activity that could be inhibited with an existing pharmacological agent. Of the potential candidates, the pharmacological impact of targeting casein kinase 2 (CK2) as a single target was tested, and we found a modest reduction in viability in KRAS-active NSCLC cells. MEK was chosen as a second target from outside the network because it lies downstream of KRAS and MEK inhibition can overcome resistance to CK2 inhibitors. We found that CK2 and MEK inhibition demonstrates moderate synergy in inducing apoptosis in KRAS-active NSCLC cells. These results suggest promise for a combination inhibitor strategy for treating KRAS-active NSCLC.
Collapse
Affiliation(s)
- Madeline Krentz Gober
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Robert M Flight
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Joshua Lambert
- Department of Statistics, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Hunter Moseley
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Arnold Stromberg
- Department of Statistics, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Esther P Black
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
16
|
Lian H, Su M, Zhu Y, Zhou Y, Soomro SH, Fu H. Protein Kinase CK2, a Potential Therapeutic Target in Carcinoma Management. Asian Pac J Cancer Prev 2019; 20:23-32. [PMID: 30677865 PMCID: PMC6485562 DOI: 10.31557/apjcp.2019.20.1.23] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Protein kinase CK2 (formerly known as casein kinase 2) is a highly conserved serine/ threonine kinase
overexpressed in various human carcinomas and its high expression often correlates with poor prognosis. CK2 protein
is localized in the nucleus of many tumor cells and correlates with clinical features in many cases. Increased expression
of CK2 in mice results in the development of various types of carcinomas (both solids and blood related tumors, such
as (breast carcinoma, lymphoma, etc), which reveals its carcinogenic properties. CK2 plays essential roles in many key
biological processes related to carcinoma, including cell apoptosis, DNA damage responses and cell cycle regulation.
CK2 has become a potential anti-carcinoma target. Various CK2 inhibitors have been developed with anti-neoplastic
properties against a variety of carcinomas. Some CK2 inhibitors have showed good results in in vitro and pre-clinical
models, and have even entered in clinical trials. This article will review effects of CK2 and its inhibitors on common
carcinomas in in vitro and pre-clinical studies.
Collapse
Affiliation(s)
- Haiwei Lian
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, P.R, China.
| | | | | | | | | | | |
Collapse
|
17
|
Zakharia K, Miyabe K, Wang Y, Wu D, Moser CD, Borad MJ, Roberts LR. Preclinical In Vitro and In Vivo Evidence of an Antitumor Effect of CX-4945, a Casein Kinase II Inhibitor, in Cholangiocarcinoma. Transl Oncol 2018; 12:143-153. [PMID: 30316146 PMCID: PMC6187100 DOI: 10.1016/j.tranon.2018.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 01/22/2023] Open
Abstract
PURPOSE: We investigated the antitumor effect of the casein kinase II (CK2) inhibitor CX-4945 on cholangiocarcinoma (CCA). METHODS: We assessed the effect of CX-4945 alone and/or in combination with gemcitabine and cisplatin on cell viability, colony formation, and apoptosis of CCA cell lines and on in vivo growth of HuCCT1 xenografts. RESULTS: CX-4945 dose-dependently decreased viability of HuCCT1, EGI-1, and Liv27 and decreased phospho-AKT/total AKT and phospho-PTEN/total PTEN ratios. CX-4945 significantly increased caspase 3/7 activity in a dose- and time-dependent manner. CX-4945 significantly enhanced the effect of gemcitabine or cisplatin on HuCCT1, EGI-1, and Liv27 cells and inhibited the phosphorylation of DNA repairing enzymes XRCC1 and MDC1. Further, CX-4945 alone significantly inhibited growth of HuCCT1 mouse xenograft tumors. Combining CX-4945 with gemcitabine and cisplatin was more potent than CX-4945 alone or gemcitabine/cisplatin. The effect of CX-4945 on cell proliferation, apoptosis, the PI3K/AKT pathway, and DNA repair was confirmed in the mouse xenografts. CONCLUSION: CX-4945 has an antiproliferative effect on CCA and enhances the effect of gemcitabine and cisplatin through its inhibitory effect on the PI3K/AKT pathway and DNA repair.
Collapse
Affiliation(s)
- Kais Zakharia
- Internal Medicine Residency Program, Department of Medical Education, Beaumont Health - Dearborn, Oakwood Campus, Dearborn, MI, USA; Division of Gastroenterology and Hepatology, University of Iowa, Iowa City, IA, USA; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Katsuyuki Miyabe
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dehai Wu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology, Division of Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Pan M, Schinke H, Luxenburger E, Kranz G, Shakhtour J, Libl D, Huang Y, Gaber A, Pavšič M, Lenarčič B, Kitz J, Jakob M, Schwenk-Zieger S, Canis M, Hess J, Unger K, Baumeister P, Gires O. EpCAM ectodomain EpEX is a ligand of EGFR that counteracts EGF-mediated epithelial-mesenchymal transition through modulation of phospho-ERK1/2 in head and neck cancers. PLoS Biol 2018; 16:e2006624. [PMID: 30261040 PMCID: PMC6177200 DOI: 10.1371/journal.pbio.2006624] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/09/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are characterized by outstanding molecular heterogeneity that results in severe therapy resistance and poor clinical outcome. Inter- and intratumoral heterogeneity in epithelial-mesenchymal transition (EMT) was recently revealed as a major parameter of poor clinical outcome. Here, we addressed the expression and function of the therapeutic target epidermal growth factor receptor (EGFR) and of the major determinant of epithelial differentiation epithelial cell adhesion molecule (EpCAM) in clinical samples and in vitro models of HNSCCs. We describe improved survival of EGFRlow/EpCAMhigh HNSCC patients (n = 180) and provide a molecular basis for the observed disparities in clinical outcome. EGF/EGFR have concentration-dependent dual capacities as inducers of proliferation and EMT through differential activation of the central molecular switch phosphorylated extracellular signal–regulated kinase 1/2 (pERK1/2) and EMT transcription factors (EMT-TFs) Snail, zinc finger E-box-binding homeobox 1 (Zeb1), and Slug. Furthermore, soluble ectodomain of EpCAM (EpEX) was identified as a ligand of EGFR that activates pERK1/2 and phosphorylated AKT (pAKT) and induces EGFR-dependent proliferation but represses EGF-mediated EMT, Snail, Zeb1, and Slug activation and cell migration. EMT repression by EpEX is realized through competitive modulation of pERK1/2 activation strength and inhibition of EMT-TFs, which is reflected in levels of pERK1/2 and its target Slug in clinical samples. Accordingly, high expression of pERK1/2 and/or Slug predicted poor outcome of HNSCCs. Hence, EpEX is a ligand of EGFR that induces proliferation but counteracts EMT mediated by the EGF/EGFR/pERK1/2 axis. Therefore, the emerging EGFR/EpCAM molecular cross talk represents a promising target to improve patient-tailored adjuvant treatment of HNSCCs. Head and neck squamous cell carcinomas (HNSCCs) display poor survival, with death rates above 55%. Major factors affecting survival are metastases’ formation and therapy resistance. Phenotypic changes during partial epithelial-mesenchymal transition (EMT) provide tumor cells with increased migration, invasion, and therapy resistance. Understanding molecular mechanisms of EMT, as a central process of the metastatic cascade and the development of therapy resistance, is therefore important. In the present work, we identified molecular cross talk between epidermal growth factor receptor (EGFR) and epithelial cell adhesion molecule (EpCAM) as a novel determinant of clinical outcome in HNSCCs. Low levels of EGFR but high levels of EpCAM (EGFRlow/EpCAMhigh) were associated with favorable prognosis, with survival rates above 90%, whereas EGFRhigh/EpCAMlow correlated with poor survival, below 10%. EGFR was shown to have a concentration-dependent capacity to induce proliferation and EMT. Proteolytic cleavage of the extracellular domain of EpCAM (EpEX) produces a ligand of EGFR that induces EGFR-dependent proliferation but counteracts EGF-induced EMT. We delineate an EGFR/extracellular signal–regulated kinase 1/2 (ERK1/2)/EpCAM signaling axis that may be a promising therapeutic target for HNSCCs.
Collapse
Affiliation(s)
- Min Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Henrik Schinke
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Elke Luxenburger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Julius Shakhtour
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Darko Libl
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Yuanchi Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Ljubljana, Slovenia
| | - Julia Kitz
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Julia Hess
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Kristian Unger
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
19
|
Purzner T, Purzner J, Buckstaff T, Cozza G, Gholamin S, Rusert JM, Hartl TA, Sanders J, Conley N, Ge X, Langan M, Ramaswamy V, Ellis L, Litzenburger U, Bolin S, Theruvath J, Nitta R, Qi L, Li XN, Li G, Taylor MD, Wechsler-Reya RJ, Pinna LA, Cho YJ, Fuller MT, Elias JE, Scott MP. Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Sci Signal 2018; 11:11/547/eaau5147. [PMID: 30206138 DOI: 10.1126/scisignal.aau5147] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A major limitation of targeted cancer therapy is the rapid emergence of drug resistance, which often arises through mutations at or downstream of the drug target or through intrinsic resistance of subpopulations of tumor cells. Medulloblastoma (MB), the most common pediatric brain tumor, is no exception, and MBs that are driven by sonic hedgehog (SHH) signaling are particularly aggressive and drug-resistant. To find new drug targets and therapeutics for MB that may be less susceptible to common resistance mechanisms, we used a developmental phosphoproteomics approach in murine granule neuron precursors (GNPs), the developmental cell of origin of MB. The protein kinase CK2 emerged as a driver of hundreds of phosphorylation events during the proliferative, MB-like stage of GNP growth, including the phosphorylation of three of the eight proteins commonly amplified in MB. CK2 was critical to the stabilization and activity of the transcription factor GLI2, a late downstream effector in SHH signaling. CK2 inhibitors decreased the viability of primary SHH-type MB patient cells in culture and blocked the growth of murine MB tumors that were resistant to currently available Hh inhibitors, thereby extending the survival of tumor-bearing mice. Because of structural interactions, one CK2 inhibitor (CX-4945) inhibited both wild-type and mutant CK2, indicating that this drug may avoid at least one common mode of acquired resistance. These findings suggest that CK2 inhibitors may be effective for treating patients with MB and show how phosphoproteomics may be used to gain insight into developmental biology and pathology.
Collapse
Affiliation(s)
- Teresa Purzner
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S1A1, Canada
| | - James Purzner
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S1A1, Canada
| | - Taylor Buckstaff
- Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padua, Padova, PD 35122, Italy
| | - Sharareh Gholamin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessica M Rusert
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tom A Hartl
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John Sanders
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Conley
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuecai Ge
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95340, USA
| | | | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Lauren Ellis
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ulrike Litzenburger
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Sara Bolin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johanna Theruvath
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ryan Nitta
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lin Qi
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padua, Padova, PD 35122, Italy.,National Research Council Neuroscience Institute, Padova, PD 35122, Italy
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Lertsuwan J, Lertsuwan K, Sawasdichai A, Tasnawijitwong N, Lee KY, Kitchen P, Afford S, Gaston K, Jayaraman PS, Satayavivad J. CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism. Cancers (Basel) 2018; 10:E283. [PMID: 30142881 PMCID: PMC6162756 DOI: 10.3390/cancers10090283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma is a disease with a poor prognosis and increasing incidence and hence there is a pressing unmet clinical need for new adjuvant treatments. Protein kinase CK2 (previously casein kinase II) is a ubiquitously expressed protein kinase that is up-regulated in multiple cancer cell types. The inhibition of CK2 activity using CX-4945 (Silmitasertib) has been proposed as a novel treatment in multiple disease settings including cholangiocarcinoma. Here, we show that CX-4945 inhibited the proliferation of cholangiocarcinoma cell lines in vitro. Moreover, CX-4945 treatment induced the formation of cytosolic vacuoles in cholangiocarcinoma cell lines and other cancer cell lines. The vacuoles contained extracellular fluid and had neutral pH, features characteristic of methuosis. In contrast, simultaneous knockdown of both the α and α' catalytic subunits of protein kinase CK2 using small interfering RNA (siRNA) had little or no effect on the proliferation of cholangiocarcinoma cell lines and failed to induce the vacuole formation. Surprisingly, low doses of CX-4945 increased the invasive properties of cholangiocarcinoma cells due to an upregulation of matrix metallopeptidase 7 (MMP-7), while the knockdown of CK2 inhibited cell invasion. Our data suggest that CX-4945 inhibits cell proliferation and induces cell death via CK2-independent pathways. Moreover, the increase in cell invasion brought about by CX-4945 treatment suggests that this drug might increase tumor invasion in clinical settings.
Collapse
Affiliation(s)
- Jomnarong Lertsuwan
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Anyaporn Sawasdichai
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | | | - Ka Ying Lee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Philip Kitchen
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Simon Afford
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Padma-Sheela Jayaraman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| |
Collapse
|
21
|
CK2 blockade causes MPNST cell apoptosis and promotes degradation of β-catenin. Oncotarget 2018; 7:53191-53203. [PMID: 27448963 PMCID: PMC5288178 DOI: 10.18632/oncotarget.10668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that are a major cause of mortality of Neurofibromatosis type 1 (NF1) patients. MPNST patients have few therapeutic options available and only complete surgical resection can be curative. MPNST formation and survival are dependent on activated β-catenin signaling. The goal of this study was to determine if inhibition of the CK2 enzyme can be therapeutically exploited in MPNSTs, given CK2's role in mainta ining oncogenic phenotypes including stabilization of β-catenin. We found that CK2α is over-expressed in MPNSTs and is critical for maintaining cell survival, as the CK2 inhibitor, CX-4945 (Silmitasertib), and shRNA targeting CK2α each significantly reduce MPNST cell viability. These effects were preceded by loss of critical signaling pathways in MPNSTs, including destabilization of β-catenin and TCF8. CX-4945 administration in vivo slowed tumor growth and extends survival time. We conclude that CK2 inhibition is a promising approach to blocking β-catenin in MPNST cells, although combinatorial therapies may be required for maximal efficacy.
Collapse
|
22
|
Chua MMJ, Lee M, Dominguez I. Cancer-type dependent expression of CK2 transcripts. PLoS One 2017; 12:e0188854. [PMID: 29206231 PMCID: PMC5714396 DOI: 10.1371/journal.pone.0188854] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/14/2017] [Indexed: 01/31/2023] Open
Abstract
A multitude of proteins are aberrantly expressed in cancer cells, including the oncogenic serine-threonine kinase CK2. In a previous report, we found increases in CK2 transcript expression that could explain the increased CK2 protein levels found in tumors from lung and bronchus, prostate, breast, colon and rectum, ovarian and pancreatic cancers. We also found that, contrary to the current notions about CK2, some CK2 transcripts were downregulated in several cancers. Here, we investigate all other cancers using Oncomine to determine whether they also display significant CK2 transcript dysregulation. As anticipated from our previous analysis, we found cancers with all CK2 transcripts upregulated (e.g. cervical), and cancers where there was a combination of upregulation and/or downregulation of the CK2 transcripts (e.g. sarcoma). Unexpectedly, we found some cancers with significant downregulation of all CK2 transcripts (e.g. testicular cancer). We also found that, in some cases, CK2 transcript levels were already dysregulated in benign lesions (e.g. Barrett’s esophagus). We also found that CK2 transcript upregulation correlated with lower patient survival in most cases where data was significant. However, there were two cancer types, glioblastoma and renal cell carcinoma, where CK2 transcript upregulation correlated with higher survival. Overall, these data show that the expression levels of CK2 genes is highly variable in cancers and can lead to different patient outcomes.
Collapse
Affiliation(s)
- Melissa M. J. Chua
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
| | - Migi Lee
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Glorieux M, Dok R, Nuyts S. Novel DNA targeted therapies for head and neck cancers: clinical potential and biomarkers. Oncotarget 2017; 8:81662-81678. [PMID: 29113422 PMCID: PMC5655317 DOI: 10.18632/oncotarget.20953] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/27/2017] [Indexed: 01/24/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide and despite advances in treatment over the last years, there is still a relapse rate of 50%. New therapeutic agents are awaited to increase the survival of patients. DNA repair targeted agents in combination with standard DNA damaging therapies are a recent evolution in cancer treatment. These agents focus on the DNA damage repair pathways in cancer cells, which are often involved in therapeutic resistance. Interesting targets to overcome these cancer defense mechanisms are: PARP, DNA-PK, PI3K, ATM, ATR, CHK1/2, and WEE1 inhibitors. The application of DNA targeted agents in head and neck squamous cell cancer showed promising preclinical results which are translated to multiple ongoing clinical trials, although no FDA approval has emerged yet. Biomarkers are necessary to select the patients that can benefit the most from this treatment, although adequate biomarkers are limited and validation is needed to predict therapeutic response.
Collapse
Affiliation(s)
- Mary Glorieux
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Rüveyda Dok
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Sandra Nuyts
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Lustri AM, Di Matteo S, Fraveto A, Costantini D, Cantafora A, Napoletano C, Bragazzi MC, Giuliante F, De Rose AM, Berloco PB, Grazi GL, Carpino G, Alvaro D. TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures. PLoS One 2017; 12:e0183932. [PMID: 28873435 PMCID: PMC5584931 DOI: 10.1371/journal.pone.0183932] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) and its subtypes (mucin- and mixed-CCA) arise from the neoplastic transformation of cholangiocytes, the epithelial cells lining the biliary tree. CCA has a high mortality rate owing to its aggressiveness, late diagnosis and high resistance to radiotherapy and chemotherapeutics. We have demonstrated that CCA is enriched for cancer stem cells which express epithelial to mesenchymal transition (EMT) traits, with these features being associated with aggressiveness and drug resistance. TGF-β signaling is upregulated in CCA and involved in EMT. We have recently established primary cell cultures from human mucin- and mixed-intrahepatic CCA. In human CCA primary cultures with different levels of EMT trait expression, we evaluated the anticancer effects of: (i) CX-4945, a casein kinase-2 (CK2) inhibitor that blocks TGF-β1-induced EMT; and (ii) LY2157299, a TGF-β receptor I kinase inhibitor. We tested primary cell lines expressing EMT trait markers (vimentin, N-cadherin and nuclear catenin) but negative for epithelial markers, and cell lines expressing epithelial markers (CK19-positive) in association with EMT traits. Cell viability was evaluated by MTS assays, apoptosis by Annexin V FITC and cell migration by wound-healing assay. Results: at a dose of 10 μM, CX4945 significantly decreased cell viability of primary human cell cultures from both mucin and mixed CCA, whereas in CK19-positive cell cultures, the effect of CX4945 on cell viability required higher concentrations (>30μM). At the same concentrations, CX4945 also induced apoptosis (3- fold increase vs controls) which correlated with the expression level of CK2 in the different CCA cell lines (mucin- and mixed-CCA). Indeed, no apoptotic effects were observed in CK19-positive cells expressing lower CK2 levels. The effects of CX4945 on viability and apoptosis were associated with an increased number of γ-H2ax (biomarker for DNA double-strand breaks) foci, suggesting the active role of CK2 as a repair mechanism in CCAs. LY2157299 failed to influence cell proliferation or apoptosis but significantly inhibited cell migration. At a 50 μM concentration, in fact, LY2157299 significantly impaired (at 24, 48 and 120 hrs) the wound-healing of primary cell cultures from both mucin-and mixed-CCA. In conclusion, we demonstrated that CX4945 and LY2157299 exert relevant but distinct anticancer effects against human CCA cells, with CX4945 acting on cell viability and apoptosis, and LY2157299 impairing cell migration. These results suggest that targeting the TGF-β signaling with a combination of CX-4945 and LY2157299 could have potential benefits in the treatment of human CCA.
Collapse
Affiliation(s)
- Anna Maria Lustri
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Sabina Di Matteo
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Alice Fraveto
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Daniele Costantini
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Alfredo Cantafora
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, University of Rome Sapienza, Roma, Italy
| | | | - Felice Giuliante
- Catholic University of the Sacred Heart School of Medicine, Roma, Italy
| | | | - Pasquale B. Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Roma, Italy
| | - Gian Luca Grazi
- Regina Elena National Cancer Institute, the Gastroenterology Unit, Roma, Italy
| | - Guido Carpino
- Department of Health Science, University of Rome Foro Italico, Roma, Italy
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, RM, ROMA, Italy
- * E-mail:
| |
Collapse
|
25
|
Xu H, Jin X, Yuan Y, Deng P, Jiang L, Zeng X, Li XS, Wang ZY, Chen QM. Prognostic value from integrative analysis of transcription factors c-Jun and Fra-1 in oral squamous cell carcinoma: a multicenter cohort study. Sci Rep 2017; 7:7522. [PMID: 28790303 PMCID: PMC5548725 DOI: 10.1038/s41598-017-05106-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
Transcription factors c-Jun and Fra-1 have been reported to play a role during the initiation and progression in oral squamous cell carcinoma (OSCC). However, cohort studies are rarely reported. Here is an integrative analysis of their prognostic value in OSCC through a multicenter cohort study.313 OSCC patients were included in this study and received regular follow-up. The survival rate and hazard ratios(HR) were generated by survival analysis. The concordance probability and receiver operating characteristic curve area were chosen to measure the model discrimination. High expressions of c-Jun or Fra-1 were associated with poor prognosis, meanwhile the high expression of Fra-1 meant worse prognosis of patients than the high expression of c-Jun. Besides, the interaction effect of c-Jun and Fra-1 was antagonism, when the expression of c-Jun and Fra-1 was both high, the HR was lower than the hazard ratio when only the Fra-1 was at high expression. c-Jun and Fra-1 were both proved to be high risky predictors of death in OSCC, the antagonistic effect suggested that these biomarkers’ activities could be influenced by each other. It may provide a new sight for the studies of OSCC prognosis and treatment.
Collapse
Affiliation(s)
- Hao Xu
- Department of epidemiology and health statistics, West China School of Public Health, Sichuan University, Chengdu, 610041, China.,Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.,School of Mathematics, Sichuan University, Chengdu, 610041, China
| | - Xin Jin
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, 400016, China
| | - Yao Yuan
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Peng Deng
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lu Jiang
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin Zeng
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiao-Song Li
- Department of epidemiology and health statistics, West China School of Public Health, Sichuan University, Chengdu, 610041, China
| | - Zhi-Yong Wang
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qian-Ming Chen
- Department of epidemiology and health statistics, West China School of Public Health, Sichuan University, Chengdu, 610041, China. .,Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Autophagy Induced by CX-4945, a Casein Kinase 2 Inhibitor, Enhances Apoptosis in Pancreatic Cancer Cell Lines. Pancreas 2017; 46:575-581. [PMID: 28196025 DOI: 10.1097/mpa.0000000000000780] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Pancreatic cancer is the most lethal malignancy with only a few effective chemotherapeutic drugs. Because the inhibition of casein kinase 2 (CK2) has been reported as a novel therapeutic strategy for many cancers, we investigated the effects of CK2 inhibitors in pancreatic cancer cell lines. METHODS The BxPC3, 8902, MIA PaCa-2 human pancreatic cancer cell lines, and CX-4945, a novel CK2 inhibitor, were used. Autophagy was analyzed by acridine orange staining, fluorescence microscope detection of punctuate patterns of GFP-tagged LC3 and immunoblotting for LC3. Cell survival, cell cycle, and apoptosis analysis was performed. RESULTS CX-4945 induced significant inhibition of proliferation and triggered autophagy in pancreatic cancer cells. This suppression of proliferation was caused by the direct inhibition of CK2α, which was required for autophagy and apoptosis in pancreatic cancer cells. CX-4945 suppressed cell cycle progression in G2/M and induced apoptosis. The inhibition of CX-4945-induced autophagy was rescued by 3-methyladenine or small interfering RNA against Atg7, which attenuated apoptosis in pancreatic cancer cells. CONCLUSIONS CX-4945, a potent and selective inhibitor of CK2, effectively induces autophagy and apoptosis in pancreatic cancer cells, indicating that the induction of autophagy by CX-4945 may have an important role in the treatment of pancreatic cancer.
Collapse
|
27
|
Ruzzene M, Bertacchini J, Toker A, Marmiroli S. Cross-talk between the CK2 and AKT signaling pathways in cancer. Adv Biol Regul 2017; 64:1-8. [PMID: 28373060 DOI: 10.1016/j.jbior.2017.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Indexed: 01/13/2023]
Abstract
CK2 and AKT display a high degree of cross-regulation of their respective functions, both directly, through physical interaction and phosphorylation, and indirectly, through an intense cross-talk of key downstream effectors, ultimately leading to sustained AKT activation. Being CK2 and AKT attractive targets for therapeutic intervention, here we would like to emphasize how AKT and CK2 might influence cell fate through their complex isoform-specific and contextual-dependent cross-talk, to the extent that such functional interplay should be considered when devising therapies that target one or both these key signaling kinases.
Collapse
Affiliation(s)
- Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Jessika Bertacchini
- Cell Signaling Unit, Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sandra Marmiroli
- Cell Signaling Unit, Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
28
|
Targeting Protein Kinase CK2: Evaluating CX-4945 Potential for GL261 Glioblastoma Therapy in Immunocompetent Mice. Pharmaceuticals (Basel) 2017; 10:ph10010024. [PMID: 28208677 PMCID: PMC5374428 DOI: 10.3390/ph10010024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) causes poor survival in patients even with aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment but resistance always ensues. Protein kinase CK2 (CK2) contributes to tumour development and proliferation in cancer, and it is overexpressed in human GBM. Accordingly, targeting CK2 in GBM may benefit patients. Our goal has been to evaluate whether CK2 inhibitors (iCK2s) could increase survival in an immunocompetent preclinical GBM model. Cultured GL261 cells were treated with different iCK2s including CX-4945, and target effects evaluated in vitro. CX-4945 was found to decrease CK2 activity and Akt(S129) phosphorylation in GL261 cells. Longitudinal in vivo studies with CX-4945 alone or in combination with TMZ were performed in tumour-bearing mice. Increase in survival (p < 0.05) was found with combined CX-4945 and TMZ metronomic treatment (54.7 ± 11.9 days, n = 6) when compared to individual metronomic treatments (CX-4945: 24.5 ± 2.0 and TMZ: 38.7 ± 2.7, n = 6) and controls (22.5 ± 1.2, n = 6). Despite this, CX-4945 did not improve mice outcome when administered on every/alternate days, either alone or in combination with 3-cycle TMZ. The highest survival rate was obtained with the metronomic combined TMZ+CX-4945 every 6 days, pointing to the participation of the immune system or other ancillary mechanism in therapy response.
Collapse
|
29
|
Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel) 2017; 10:E18. [PMID: 28134850 PMCID: PMC5374422 DOI: 10.3390/ph10010018] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
CK2 genes are overexpressed in many human cancers, and most often overexpression is associated with worse prognosis. Site-specific expression in mice leads to cancer development (e.g., breast, lymphoma) indicating the oncogenic nature of CK2. CK2 is involved in many key aspects of cancer including inhibition of apoptosis, modulation of signaling pathways, DNA damage response, and cell cycle regulation. A number of CK2 inhibitors are now available and have been shown to have activity against various cancers in vitro and in pre-clinical models. Some of these inhibitors are now undergoing exploration in clinical trials as well. In this review, we will examine some of the major cancers in which CK2 inhibition has promise based on in vitro and pre-clinical studies, the proposed cellular and signaling mechanisms of anti-cancer activity by CK2 inhibitors, and the current or recent clinical trials using CK2 inhibitors.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Charina E Ortega
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Ayesha Sheikh
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Migi Lee
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Hussein Abdul-Rassoul
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Kevan L Hartshorn
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Isabel Dominguez
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
30
|
Chou ST, Patil R, Galstyan A, Gangalum PR, Cavenee WK, Furnari FB, Ljubimov VA, Chesnokova A, Kramerov AA, Ding H, Falahatian V, Mashouf L, Fox I, Black KL, Holler E, Ljubimov AV, Ljubimova JY. Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. J Control Release 2016; 244:14-23. [PMID: 27825958 PMCID: PMC5308909 DOI: 10.1016/j.jconrel.2016.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 01/27/2023]
Abstract
Glioblastoma multiforme (GBM) remains the deadliest brain tumor in adults. GBM tumors are also notorious for drug and radiation resistance. To inhibit GBMs more effectively, polymalic acid-based blood-brain barrier crossing nanobioconjugates were synthesized that are delivered to the cytoplasm of cancer cells and specifically inhibit the master regulator serine/threonine protein kinase CK2 and the wild-type/mutated epidermal growth factor receptor (EGFR/EGFRvIII), which are overexpressed in gliomas according to The Cancer Genome Atlas (TCGA) GBM database. Two xenogeneic mouse models bearing intracranial human GBMs from cell lines LN229 and U87MG that expressed both CK2 and EGFR at different levels were used. Simultaneous knockdown of CK2α and EGFR/EGFRvIII suppressed their downstream prosurvival signaling. Treatment also markedly reduced the expression of programmed death-ligand 1 (PD-L1), a negative regulator of cytotoxic lymphocytes. Downregulation of CK2 and EGFR also caused deactivation of heat shock protein 90 (Hsp90) co-chaperone Cdc37, which may suppress the activity of key cellular kinases. Inhibition of either target was associated with downregulation of the other target as well, which may underlie the increased efficacy of the dual nanobioconjugate that is directed against both CK2 and EGFR. Importantly, the single nanodrugs, and especially the dual nanodrug, markedly suppressed the expression of the cancer stem cell markers c-Myc, CD133, and nestin, which could contribute to the efficacy of the treatments. In both tumor models, the nanobioconjugates significantly increased (up to 2-fold) animal survival compared with the PBS-treated control group. The versatile nanobioconjugates developed in this study, with the abilities of anti-cancer drug delivery across biobarriers and the inhibition of key tumor regulators, offer a promising nanotherapeutic approach to treat GBMs, and to potentially prevent drug resistance and retard the recurrence of brain tumors.
Collapse
Affiliation(s)
- Szu-Ting Chou
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rameshwar Patil
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anna Galstyan
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pallavi R. Gangalum
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA
| | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA
| | - Vladimir A. Ljubimov
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexandra Chesnokova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Andrei A. Kramerov
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hui Ding
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistic and Bioinformatics Clinical Research Training Program ( CRTP )
| | | | - Irving Fox
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Keith L. Black
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexander V. Ljubimov
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Julia Y. Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
31
|
Takahashi K, Setoguchi T, Tsuru A, Saitoh Y, Nagano S, Ishidou Y, Maeda S, Furukawa T, Komiya S. Inhibition of casein kinase 2 prevents growth of human osteosarcoma. Oncol Rep 2016; 37:1141-1147. [PMID: 27959425 DOI: 10.3892/or.2016.5310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/28/2016] [Indexed: 11/06/2022] Open
Abstract
High-dose chemotherapy and surgical treatment have improved the prognosis of osteosarcoma. However, more than 20% of patients with osteosarcoma still have a poor prognosis. We investigated the expression and function of casein kinase 2 (CK2) in osteosarcoma growth. We then examined the effects of CX-4945, a CK2 inhibitor, on osteosarcoma growth in vitro and in vivo to apply our findings to the clinical setting. We examined the expression of CK2α and CK2β by western blot analysis, and performed WST-1 assays using CK2α and CK2β siRNA or CX-4945. Flow cytometry and western blot analyses were performed to evaluate apoptotic cell death. Xenograft models were used to examine the effect of CX-4945 in vivo. Western blot analysis revealed upregulation of CK2α and CK2β in human osteosarcoma cell lines compared with human osteoblast cells or mesenchymal stem cells. WST assay showed that knockdown of CK2α or CK2β by siRNA inhibited the proliferation of human osteosarcoma cells. Treatment with 3 µM of CX-4945 inhibited osteosarcoma cell proliferation; however, the same concentration of CX-4945 did not affect the proliferation of human mesenchymal stem cells. Additionally, treatment with CX-4945 inhibited the proliferation of human osteosarcoma cells in a dose-dependent manner. Western blot and flow cytometry analyses showed that treatment with CX-4945 promoted apoptotic death of osteosarcoma cells. The xenograft model showed that treatment with CX-4945 significantly prevented osteosarcoma growth in vivo compared with control vehicle treatment. Our findings indicate that CK2 may be an attractive therapeutic target for treating osteosarcoma.
Collapse
Affiliation(s)
- Kengo Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Takao Setoguchi
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Arisa Tsuru
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yoshinobu Saitoh
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yasuhiro Ishidou
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Shingo Maeda
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Tatsuhiko Furukawa
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
32
|
|
33
|
Kemp JA, Shim MS, Heo CY, Kwon YJ. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 2016; 98:3-18. [PMID: 26546465 DOI: 10.1016/j.addr.2015.10.019] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/23/2022]
Abstract
The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Chan Yeong Heo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Plastic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Plastic Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Chemical Engineering and Materials Science,University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering,University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
34
|
Abstract
INTRODUCTION The conventional term 'casein kinase' (CK) denotes three classes of kinases - CK1, CK2 and Golgi-CK (G-CK)/Fam20C (family with sequence similarity 20, member C) - sharing the ability to phoshorylate casein in vitro, but otherwise unrelated to each other. All CKs have been reported to be implicated in human diseases, and reviews individually dealing with the druggability of CK1 and CK2 are available. Our aim is to provide a comparative analysis of the three classes of CKs as therapeutic targets. AREAS COVERED CK2 is the CK for which implication in neoplasia is best documented, with the survival of cancer cells often relying on its overexpression. An ample variety of cell-permeable CK2 inhibitors have been developed, with a couple of these now in clinical trials. Isoform-specific CK1 inhibitors that are expected to play a beneficial role in oncology and neurodegeneration have been also developed. In contrast, the pathogenic potential of G-CK/Fam20C is caused by its loss of function. Activators of Fam20C, notably sphingolipids and their analogs, may prove beneficial in this respect. EXPERT OPINION Optimization of CK2 and CK1 inhibitors will prove useful to develop new therapeutic strategies for treating cancer and neurodegenerative disorders, while the design of potent activators of G-CK/Fam20C will provide a new tool in the fields of bio-mineralization and hypophosphatemic diseases.
Collapse
Affiliation(s)
- Giorgio Cozza
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Lorenzo A Pinna
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy .,b 2 University of Padova, Department of Biomedical Sciences and CNR Institute of Neurosciences , Padova, Italy ;
| |
Collapse
|