1
|
Tey SR, Anderson RS, Yu CH, Robertson S, Kletzien H, Connor NP, Tanaka K, Ohkawa Y, Suzuki M. Cellular and transcriptomic changes by the supplementation of aged rat serum in human pluripotent stem cell-derived myogenic progenitors. Front Cell Dev Biol 2024; 12:1481491. [PMID: 39474351 PMCID: PMC11518775 DOI: 10.3389/fcell.2024.1481491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024] Open
Abstract
Introduction The changing composition of non-cell autonomous circulating factors in blood as humans age is believed to play a role in muscle mass and strength loss. The mechanisms through which these circulating factors act in age-related skeletal muscle changes is not fully understood. In this study, we used human myogenic progenitors derived from human pluripotent stem cells to study non-cell autonomous roles of circulating factors during the process of myogenic differentiation. Methods Myogenic progenitors from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) were supplemented with serum samples from aged or young Fischer 344 × Brown Norway F1-hybrid rats. The effect of aged or young serum supplementation on myogenic progenitor proliferation, myotube formation capacity, differentiation, and early transcriptomic profiles were analyzed. Results We found that aged rat serum supplementation significantly reduced cell proliferation and increased cell death in both ESC- and iPSC-derived myogenic progenitors. Next, we found that the supplementation of aged rat serum inhibited myotube formation and maturation during terminal differentiation from progenitors to skeletal myocytes when compared to the cells treated with young adult rat serum. Lastly, we identified that gene expression profiles were affected following serum supplementation in culture. Discussion Together, aged serum supplementation caused cellular and transcriptomic changes in human myogenic progenitors. The current data from our in vitro model possibly simulate non-cell autonomous contributions of blood composition to age-related processes in human skeletal muscle.
Collapse
Affiliation(s)
- Sin-Ruow Tey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Ryan S. Anderson
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Clara H. Yu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Heidi Kletzien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nadine P. Connor
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Shih HM, Chen YC, Yeh YT, Peng FS, Wu SC. Assessment of the feasibility of human amniotic membrane stem cell-derived cardiomyocytes in vitro. Heliyon 2024; 10:e28398. [PMID: 38560255 PMCID: PMC10979088 DOI: 10.1016/j.heliyon.2024.e28398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide, resulting in extensive loss of cardiomyocytes and subsequent heart failure. Inducing cardiac differentiation of stem cells is a potential approach for myocardial regeneration therapy to improve post-MI prognosis. Mesenchymal stem cells (MSCs) have several advantages, including immune privilege and multipotent differentiation potential. This study aimed to explore the feasibility of chemically inducing human amniotic membrane MSCs (hAMSCs) to differentiate into cardiomyocytes in vitro. Human amniotic membrane (AM) samples were obtained from routine cesarean sections at Far Eastern Memorial Hospital. The isolated cells exhibited spindle-shaped morphology and expressed surface antigens CD73, CD90, CD105, and CD44, while lacking expression of CD19, CD11b, CD19, CD45, and HLA-DR. The SSEA-1, SSEA-3, and SSEA-4 markers were also positive, and the cells displayed the ability for tri-lineage differentiation into adipocytes, chondrocytes, and osteoblasts. The expression levels of MLC2v, Nkx2.5, and MyoD were analyzed using qPCR after applying various protocols for chemical induction, including BMP4, ActivinA, 5-azacytidine, CHIR99021, and IWP2 on hAMSCs. The group treated with 5 ng/ml BMP4, 10 ng/ml Activin A, 10 μM 5-azacytidine, 7.5 μM CHIR99021, and 5 μM IWP 2 expressed the highest levels of these genes. Furthermore, immunofluorescence staining demonstrated the expression of α-actinin and Troponin T in this group. In conclusion, this study demonstrated that hAMSCs can be chemically induced to differentiate into cardiomyocyte-like cells in vitro. However, to improve the functionality of the differentiated cells, further investigation of inductive protocols and regimens is needed.
Collapse
Affiliation(s)
- Hsiu-Man Shih
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yen-Ting Yeh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | | | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
4
|
Grobbelaar S, Mercier AE, van den Bout I, Durandt C, Pepper MS. Considerations for enhanced mesenchymal stromal/stem cell myogenic commitment in vitro. Clin Transl Sci 2024; 17:e13703. [PMID: 38098144 PMCID: PMC10787211 DOI: 10.1111/cts.13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 01/15/2024] Open
Abstract
The generation of tissue from stem cells is an alluring concept as it holds a number of potential applications in clinical therapeutics and regenerative medicine. Mesenchymal stromal/stem cells (MSCs) can be isolated from a number of different somatic sources, and have the capacity to differentiate into adipogenic, osteogenic, chondrogenic, and myogenic lineages. Although the first three have been extensively investigated, there remains a paucity of literature on the latter. This review looks at the various strategies available in vitro to enhance harvested MSC commitment and differentiation into the myogenic pathway. These include chemical inducers, myogenic-enhancing cell culture substrates, and mechanical and dynamic culturing conditions. Drawing on information from embryonic and postnatal myogenesis from somites, satellite, and myogenic progenitor cells, the mechanisms behind the chemical and mechanical induction strategies can be studied, and the sequential gene and signaling cascades can be used to monitor the progression of myogenic differentiation in the laboratory. Increased understanding of the stimuli and signaling mechanisms in the initial stages of MSC myogenic commitment will provide tools with which we can enhance their differentiation efficacy and advance the process to clinical translation.
Collapse
Affiliation(s)
- Simone Grobbelaar
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Anne E. Mercier
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Iman van den Bout
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Neuroendocrinology, Department of Immunology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
5
|
Rivera CN, Kamer MM, Cook NE, McGovern MR, Watne RM, Wommack AJ, Vaughan RA. 5-Aza-2'-deoxycytidine-mediated DNA hypomethylation with and without concurrent insulin resistance suppresses myotube mitochondrial capacity. Cell Biochem Funct 2023; 41:1422-1429. [PMID: 37916846 DOI: 10.1002/cbf.3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Type 2 diabetes is characterized by elevated blood glucose and reduced insulin sensitivity in target tissues. Moreover, reduced mitochondrial metabolism and expressional profile of genes governing mitochondrial metabolism (such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha [PGC-1α]) are also reduced during insulin resistance. Epigenetic regulation via DNA methylation of genes including PGC-1α may contribute to diminished mitochondrial capacity, while hypomethylation of PGC-1α (such as that invoked by exercise) has been associated with increased PGC-1α expression and favorable metabolic outcomes. The purpose of the present report is to characterize the effects of DNA hypomethylation on myotube metabolism and expression of several related metabolic targets. C2C12 myotubes were treated with 5-Aza-2'-deoxycytidine (5-Aza) for either 24 or 72 h both with and without hyperinsulinemic-induced insulin resistance. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via quantitative real time polymerase chain reaction and western blot analysis, respectively. Though expression of PGC-1α and other related targets remained unaltered, insulin resistance and 5-Aza treatment significantly reduced mitochondrial metabolism. Similarly, peak glycolytic metabolism was diminished by 5-Aza-treated cells, while basal glycolytic metabolism was unaltered. 5-Aza also reduced the expression of branched-chain amino acid (BCAA) catabolic components, however BCAA utilization was enhanced during insulin resistance with 5-Aza treatment. Together the present work provides proof-of-concept evidence of the potential role of DNA methylation in the regulation of mitochondrial metabolism and the potential interactions with insulin resistance in a model of skeletal muscle.
Collapse
Affiliation(s)
- Caroline N Rivera
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Madison M Kamer
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Norah E Cook
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Macey R McGovern
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Rachel M Watne
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| |
Collapse
|
6
|
Ahmadi BM, Noori A, Ashtiani MK, Rajabi S, Talkhabi M. 5-Azacytidine incorporated skeletal muscle-derived hydrogel promotes rat skeletal muscle regeneration. Cells Dev 2023; 173:203826. [PMID: 36739913 DOI: 10.1016/j.cdev.2023.203826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Decellularized skeletal muscle is a promising biomaterial for muscle regeneration due to the mimicking of the natural microenvironment. Previously, it has been reported that 5-Azacytidine (5-Aza), a DNA methyltransferase inhibitor, induces myogenesis in different types of stem cells. In the current study, we investigated the effect of 5-Aza incorporated muscle-derived hydrogel on the viability and proliferation of muscle-derived stem cells (MDSCs) in vitro and muscle regeneration in vivo. Wistar rat skeletal muscles were decellularized using a physico-chemical protocol. The decellularized tissue was analyzed using SEM, histological staining and evaluation of DNA content. Then, muscle-derived hydrogel was made from Pepsin-digested decellularized muscle tissues. 5-Aza was physically adsorbed in prepared hydrogels. Then, MDSCs were cultured on hydrogels with/without 5-Aza, and their proliferation and cell viability were determined using LIVE/DEAD and DAPI staining. Moreover, myectomy lesions were done in rat femoris muscles, muscle-derived hydroges with/without 5-Aza were injected to the myectomy sites, and histological evaluation was performed after three weeks. The analysis of decellularized muscle tissues showed that they maintained extracellular matrix components of native muscles, while they lacked DNA. LIVE/DEAD and DAPI staining showed that the hydrogel containing 5-Aza supported MDSCs viability. Histological analysis of myectomy sites showed an improvement in muscle regeneration after administration of 5-Aza incorporated hydrogel. These findings suggest that the combination of 5-Aza with skeletal muscle hydrogel may serve as an alternative treatment option to improve the regeneration of injured muscle tissue.
Collapse
Affiliation(s)
- Behnaz Mirza Ahmadi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Afshin Noori
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
7
|
Knockdown of Tet2 Inhibits the Myogenic Differentiation of Chicken Myoblasts Induced by Ascorbic Acid. Int J Mol Sci 2022; 23:ijms232213758. [PMID: 36430235 PMCID: PMC9697173 DOI: 10.3390/ijms232213758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Ascorbic acid (also called Vitamin C, VC) strengthens the function of Tets families and directly increases DNA demethylation level to affect myogenic differentiation. However, the precise regulatory mechanism of DNA methylation in chicken myogenesis remains unclear. Results of present study showed that the mRNA expression of MyoD significantly decreased and MyoG and MyHC increased in myoblasts treated with 5 μM 5-azacytidine (5-AZA) and 5 μM VC (p < 0.05). Results also indicated the formation of myotubes was induced by 5-AZA or VC, but this effect was attenuated after knockdown of Tet2. In addition, the protein expression of TET2, DESMIN and MyHC was remarkable increased by the addition of 5-AZA or VC, and the upregulation was inhibited after knockdown of Tet2 (p < 0.05). DNA dot blot and immunofluorescence staining results suggested that the level of 5hmC was significantly increased when treated with 5-AZA or VC, even by Tet2 knockdown (p < 0.05). Moreover, 5-AZA and VC reduced the level of dimethylation of lysine 9 (H3K9me2) and trimethylation of lysine 27 of histone 3 (H3K27me3), and this inhibitory effect was eliminated after Tet2 knockdown (p < 0.05). These data indicated that Tet2 knockdown antagonized the increased levels of 5hmC and H3K27me3 induced by 5-AZA and VC, and eventually reduced myotube formation by modulating the expression of genes involved in myogenic differentiation. This study provides insights that epigenetic regulators play essential roles in mediating the myogenic program of chicken myoblasts.
Collapse
|
8
|
VanGenderen CA, Granet JA, Filippelli RL, Liu Y, Chang NC. Modulating Myogenesis: An Optimized In Vitro Assay to Pharmacologically Influence Primary Myoblast Differentiation. Curr Protoc 2022; 2:e565. [PMID: 36165685 DOI: 10.1002/cpz1.565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The intentional pharmacological manipulation of myogenesis is an important technique for understanding the underlying mechanisms of muscle differentiation and disease etiology. Using the pharmacological agent metformin as an example molecule, we present a systematic approach to examine the impact of pharmacological agents on the myogenic program. This consists of optimizing the in vitro differentiation of primary myoblast cells followed by the generation of a dose-response curve for a respective pharmaceutical. To assess myogenic differentiation, we utilized three approaches (incorporating both transcriptional and protein techniques) to assess the effects of biologically active agents on the in vitro differentiation of primary myogenic progenitors. First, the immunofluorescent visualization of myosin heavy chain (MYHC), which is expressed in differentiated myofibers, is used to obtain the fusion index, a quantitative read-out of differentiation efficiency. Second, quantitative reverse transcription PCR (RT-qPCR) reveals the expression of myogenic factors (Pax7, Myf5, Myod, Myog, Myh2) at the transcript level. Third, western blotting is used to assess the protein expression levels of the myogenic markers (PAX7, MYF5, MYOD, MYOG, and MYHC). By monitoring the expression of these various myogenic factors during the differentiation process, the relative cellular state and differentiation status between samples can be determined. Combined, these approaches enable the successful assessment of the impact of pharmacological agents on myogenic differentiation. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Immunofluorescence assay for qualitative and quantitative assessment of pharmacological agents on in vitro myogenic differentiation Support Protocol 1: Evaluating myogenic gene expression by RT-qPCR Support Protocol 2: Evaluating myogenic protein expression by western blot.
Collapse
Affiliation(s)
| | | | | | - Yiyang Liu
- McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
9
|
Disturbance of calcium homeostasis and myogenesis caused by TET2 deletion in muscle stem cells. Cell Death Dis 2022; 8:236. [PMID: 35490157 PMCID: PMC9056526 DOI: 10.1038/s41420-022-01041-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 01/22/2023]
Abstract
Skeletal muscle myogenesis is a sophisticated process controlled by genetic and epigenetic regulators. In animals, one of the key enzymes for the DNA demethylation of 5-methylcytosine is TET2. Although TET2 is essential for muscle development, the mechanisms by which TET2 regulates myogenesis, particularly the implication for muscle stem cells, remains unclear. In the present study, we employed the TET2 knockout mouse model to investigate the function of TET2 in muscle development and regeneration. We observed that TET2 deficiency caused impaired muscle stem cell proliferation and differentiation, resulting in the reduction in both myofiber number and muscle tissue size. Specifically, TET2 maintains calcium homeostasis in muscle stem cells by controlling the DNA methylation levels of the calcium pathway genes. Forced expression of the sodium/calcium exchanger protein SLC8A3 could rescue the myogenic defects in TET2 knockout cells. Our data not only illustrated the vital function of TET2 during myogenesis but also identified novel targets that contribute to calcium homeostasis for enhancing muscle function.
Collapse
|
10
|
Zhao G, Wang Q, Li S, Wang X. Resistance to Hypomethylating Agents in Myelodysplastic Syndrome and Acute Myeloid Leukemia From Clinical Data and Molecular Mechanism. Front Oncol 2021; 11:706030. [PMID: 34650913 PMCID: PMC8505973 DOI: 10.3389/fonc.2021.706030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleoside analogs decitabine (5-AZA-dC) and azacitidine (5-AZA) have been developed as targeted therapies to reverse DNA methylation in different cancer types, and they significantly improve the survival of patients who are not suitable for traditional intensive chemotherapies or other treatment regimens. However, approximately 50% of patients have a response to hypomethylating agents (HMAs), and many patients have no response originally or in the process of treatment. Even though new combination regimens have been tested to overcome the resistance to 5-AZA-dC or 5-AZA, only a small proportion of patients benefited from these strategies, and the outcome was very poor. However, the mechanisms of the resistance remain unknown. Some studies only partially described management after failure and the mechanisms of resistance. Herein, we will review the clinical and molecular signatures of the HMA response, alternative treatment after failure, and the causes of resistance in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Xiaoqin Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Sibley LA, Broda N, Gross WR, Menezes AF, Embry RB, Swaroop VT, Chambers HG, Schipma MJ, Lieber RL, Domenighetti AA. Differential DNA methylation and transcriptional signatures characterize impairment of muscle stem cells in pediatric human muscle contractures after brain injury. FASEB J 2021; 35:e21928. [PMID: 34559924 DOI: 10.1096/fj.202100649r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
Limb contractures are a debilitating and progressive consequence of a wide range of upper motor neuron injuries that affect skeletal muscle function. One type of perinatal brain injury causes cerebral palsy (CP), which affects a child's ability to move and is often painful. While several rehabilitation therapies are used to treat contractures, their long-term effectiveness is marginal since such therapies do not change muscle biological properties. Therefore, new therapies based on a biological understanding of contracture development are needed. Here, we show that myoblast progenitors from contractured muscle in children with CP are hyperproliferative. This phenotype is associated with DNA hypermethylation and specific gene expression patterns that favor cell proliferation over quiescence. Treatment of CP myoblasts with 5-azacytidine, a DNA hypomethylating agent, reduced this epigenetic imprint to TD levels, promoting exit from mitosis and molecular mechanisms of cellular quiescence. Together with previous studies demonstrating reduction in myoblast differentiation, this suggests a mechanism of contracture formation that is due to epigenetic modifications that alter the myogenic program of muscle-generating stem cells. We suggest that normalization of DNA methylation levels could rescue myogenesis and promote regulated muscle growth in muscle contracture and thus may represent a new nonsurgical approach to treating this devastating neuromuscular condition.
Collapse
Affiliation(s)
| | | | | | | | - Ryan B Embry
- NUseq Core, Northwestern University, Chicago, Illinois, USA
| | - Vineeta T Swaroop
- Shirley Ryan AbilityLab, Chicago, Illinois, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Henry G Chambers
- Rady Children's Hospital and Health Center, San Diego, California, USA
| | - Matthew J Schipma
- Rady Children's Hospital and Health Center, San Diego, California, USA
| | - Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, Illinois, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA.,Hines VA Medical Center, Maywood, Illinois, USA
| | - Andrea A Domenighetti
- Shirley Ryan AbilityLab, Chicago, Illinois, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy. Int J Mol Sci 2021; 22:ijms22158310. [PMID: 34361076 PMCID: PMC8348757 DOI: 10.3390/ijms22158310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
The weight of skeletal muscle accounts for approximately 40% of the whole weight in a healthy individual, and the normal metabolism and motor function of the muscle are indispensable for healthy life. In addition, the skeletal muscle of the maxillofacial region plays an important role not only in eating and swallowing, but also in communication, such as facial expressions and conversations. In recent years, skeletal muscle atrophy has received worldwide attention as a serious health problem. However, the mechanism of skeletal muscle atrophy that has been clarified at present is insufficient, and a therapeutic method against skeletal muscle atrophy has not been established. This review provides views on the importance of skeletal muscle in the maxillofacial region and explains the differences between skeletal muscles in the maxillofacial region and other regions. We summarize the findings to change in gene expression in muscle remodeling and emphasize the advantages and disadvantages of denervation-induced skeletal muscle atrophy model. Finally, we discuss the newly discovered beneficial effects of natural compounds on skeletal muscle atrophy.
Collapse
|
13
|
5-Azacytidine pretreatment confers transient upregulation of proliferation and stemness in human mesenchymal stem cells. Cells Dev 2021; 165:203659. [PMID: 34024336 DOI: 10.1016/j.cdev.2021.203659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
Successful outcomes of cell-based therapeutic is highly-dependent on quality and quantity of the cells. Epigenetic modifiers are known to modulate cell fates via reprogramming, hence it is plausible to use them in enhancing the plasticity of mesenchymal stem cells. In this study, we aimed to study the effects of 5-Azacytidine (5-AzaCR), an epigenetic modifier, pretreatment on mesenchymal stem cells-derived from Wharton's Jelly (WJMSCs) fates. WJMSCs were pretreated with 5-AzaCR for 24 h and subsequently cultured in culture media mixtures. The proliferative and stemness characteristics of the pretreated WJMSCs were assessed through morphological and gene expression analyses. Results showed that cells pretreated with 5 μM to 20 μM of 5-AzaCR showed to acquire higher proliferative state transiently when cultured in embryonic-mesenchymal stem cell (ESC-MSC) media, but not in MSC medium alone, and this coincides with significant transitional upregulation of stemness transcription factors. 5-AzaCR pretreatment has potential to confer initial induction of higher state of stemness and proliferation in WJMSCs, influenced by the culture media.
Collapse
|
14
|
Shi K, Lu Y, Chen X, Li D, Du W, Yu M. Effects of Ten-Eleven Translocation-2 (Tet2) on myogenic differentiation of chicken myoblasts. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110540. [PMID: 33242661 DOI: 10.1016/j.cbpb.2020.110540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Skeletal muscle development is an orchestrated progress that is primarily regulated by temporospatial expression of myogenic regulatory factors (MRFs). Recent studies demonstrated that DNA demethylation also exerted a critical role in myogenesis. However, the function of Tet2 in the regulation of chicken myogenesis still remains unknown. In the present study, the role of Tet2 in regulating myogenic differentiation was determined by using a model of primary myoblasts from chickens. The expression of Tet2 was significantly elevated during myoblast differentiation. Meanwhile, the level of 5hmC in genomic DNA was increased, but H3K9me2 and H3K27me3 were markedly reduced following differentiation. Knockdown of Tet2 significantly inhibited the formation of multinucleated myotubes, which was accompanied by a reduction of relevant pivotal MRFs. Moreover, the level of 5hmC decreased sharply in Tet2 knockdown myoblasts. Attenuated differentiated myoblasts that resulted from reduced Tet2 also demonstrated an increased level of H3K9me2 and H3K27me3. Collectively, these results indicated that Tet2 played an essential role during myogenesis, which affected demethylation of genomic DNA and histone to regulate expression of MRFs and therefore, contributed to myoblast differentiation.
Collapse
Affiliation(s)
- Kai Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Yingling Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Xiaolu Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Dongfeng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Wenxing Du
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| |
Collapse
|
15
|
Shirakawa T, Miyawaki A, Matsubara T, Okumura N, Okamoto H, Nakai N, Rojasawasthien T, Morikawa K, Inoue A, Goto A, Washio A, Tsujisawa T, Kawamoto T, Kokabu S. Daily Oral Administration of Protease-Treated Royal Jelly Protects Against Denervation-Induced Skeletal Muscle Atrophy. Nutrients 2020; 12:E3089. [PMID: 33050588 PMCID: PMC7600733 DOI: 10.3390/nu12103089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Honeybees produce royal jelly (RJ) from their cephalic glands. Royal jelly is a source of nutrition for the queen honey bee throughout its lifespan and is also involved in fertility and longevity. Royal jelly has long been considered beneficial to human health. We recently observed that RJ delayed impairment of motor function during aging, affecting muscle fiber size. However, how RJ affects skeletal muscle metabolism and the functional component of RJ is as of yet unidentified. We demonstrate that feeding mice with RJ daily prevents a decrease in myofiber size following denervation without affecting total muscle weight. RJ did not affect atrophy-related genes but stimulated the expression of myogenesis-related genes, including IGF-1 and IGF receptor. Trans-10-hydroxy-2-decenoic acid (10H2DA) and 10-hydroxydecanoic acid (10HDAA), two major fatty acids contained in RJ. After ingestion, 10H2DA and 10HDAA are metabolized into 2-decenedioic acid (2DA) and sebacic acid (SA) respectively. We found that 10H2DA, 10HDAA, 2DA, and SA all regulated myogenesis of C2C12 cells, murine myoblast cells. These novel findings may be useful for potential preventative and therapeutic applications for muscle atrophy disease included in Sarcopenia, an age-related decline in skeletal muscle mass and strength.
Collapse
Affiliation(s)
- Tomohiko Shirakawa
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Aki Miyawaki
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Nobuaki Okumura
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Tomata, Okayama 708-0393, Japan; (N.O.); (H.O.)
| | - Hideto Okamoto
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Tomata, Okayama 708-0393, Japan; (N.O.); (H.O.)
| | - Naoya Nakai
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Thira Rojasawasthien
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Kazumasa Morikawa
- Division of Pediatric and Special Care Dentistry, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, Shiwa, Iwate 028-3694, Japan;
| | - Asako Inoue
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Akino Goto
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Toshiyuki Tsujisawa
- School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| |
Collapse
|
16
|
Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020; 8:480. [PMID: 32612995 PMCID: PMC7308489 DOI: 10.3389/fcell.2020.00480] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are crucial organelles that control cellular metabolism through an integrated mechanism of energy generation via oxidative phosphorylation. Apart from this canonical role, it is also integral for ROS production, fatty acid metabolism and epigenetic remodeling. Recently, a role for the mitochondria in effecting stem cell fate decisions has gained considerable interest. This is important for skeletal muscle, which exhibits a remarkable property for regeneration following injury, owing to satellite cells (SCs), the adult myogenic stem cells. Mitochondrial function is associated with maintaining and dictating SC fates, linked to metabolic programming during quiescence, activation, self-renewal, proliferation and differentiation. Notably, mitochondrial adaptation might take place to alter SC fates and function in the presence of different environmental cues. This review dissects the contribution of mitochondria to SC operational outcomes, focusing on how their content, function, dynamics and adaptability work to influence SC fate decisions.
Collapse
Affiliation(s)
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
17
|
5-Azacytidine upregulates melatonin MT1 receptor expression in rat C6 glioma cells: oncostatic implications. Mol Biol Rep 2020; 47:4867-4873. [DOI: 10.1007/s11033-020-05482-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
|
18
|
Okino R, Usui A, Yoneyama Y, Takahashi SI, Hakuno F. Myoblasts With Higher IRS-1 Levels Are Eliminated From the Normal Cell Layer During Differentiation. Front Endocrinol (Lausanne) 2020; 11:96. [PMID: 32180762 PMCID: PMC7059307 DOI: 10.3389/fendo.2020.00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin receptor substrate (IRS)-1 is a major substrate of insulin-like growth factor (IGF)-I receptors. It is well-known that IGF-I and II play essential roles in myogenesis progression. Herein, we report an unexpected phenomenon that IRS-1-overexpressing L6 myoblasts are eliminated from normal cell layers at the beginning of differentiation. Initially, the IRS protein level and apoptosis were examined during myogenic differentiation in L6 myoblasts. We found that the IRS-1 protein level decreased, whereas active caspase 3 increased around 1 day after induction of differentiation. The addition of a pan-caspase inhibitor, Z-VAD-FMK, inhibited differentiation-induced suppression of the IRS-1 protein level. Apoptosis was not enhanced in L6 myoblasts stably expressing high levels of IRS-1 (L6-IRS-1). However, when L6-IRS-1 was cultured with control cells (L6-mock), we observed that L6-IRS-1 was eliminated from the cell layer. We have recently reported that, in L6-IRS-1, internalization of the IGF-I receptor was delayed and IGF signal activation was sustained for a longer period than in L6-mock. When cells stably expressing IRS-1 3YA mutant, which could not maintain the IGF signals, were cultured with normal cells, elimination from the cell layer was not detected. These data suggested that the high level of IRS-1 in myoblasts induces elimination from the cell layer due to abnormal sustainment of IGF-I receptor activation.
Collapse
Affiliation(s)
- Ryosuke Okino
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ami Usui
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yosuke Yoneyama
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Fumihiko Hakuno
| |
Collapse
|
19
|
Min B, Jeon K, Park JS, Kang Y. Demethylation and derepression of genomic retroelements in the skeletal muscles of aged mice. Aging Cell 2019; 18:e13042. [PMID: 31560164 PMCID: PMC6826136 DOI: 10.1111/acel.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/07/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Changes in DNA methylation influence the aging process and contribute to aging phenotypes, but few studies have been conducted on DNA methylation changes in conjunction with skeletal muscle aging. We explored the DNA methylation changes in a variety of retroelement families throughout aging (at 2, 20, and 28 months of age) in murine skeletal muscles by methyl‐binding domain sequencing (MBD‐seq). The two following contrasting patterns were observed among the members of each repeat family in superaged mice: (a) hypermethylation in weakly methylated retroelement copies and (b) hypomethylation in copies with relatively stronger methylation levels, representing a pattern of “regression toward the mean” within a single retroelement family. Interestingly, these patterns depended on the sizes of the copies. While the majority of the elements showed a slight increase in methylation, the larger copies (>5 kb) displayed evident demethylation. All these changes were not observed in T cells. RNA sequencing revealed a global derepression of retroelements during the late phase of aging (between 20 and 28 months of age), which temporally coincided with retroelement demethylation. Following this methylation drift trend of “regression toward the mean,” aging tended to progressively lose the preexisting methylation differences and local patterns in the genomic regions that had been elaborately established during the early period of development.
Collapse
Affiliation(s)
- Byungkuk Min
- Development and Differentiation Research Center Korea Research Institute of Bioscience Biotechnology (KRIBB) Daejeon Korea
| | - Kyuheum Jeon
- Development and Differentiation Research Center Korea Research Institute of Bioscience Biotechnology (KRIBB) Daejeon Korea
- Department of Functional Genomics University of Science and Technology (UST) Daejeon Korea
| | - Jung Sun Park
- Development and Differentiation Research Center Korea Research Institute of Bioscience Biotechnology (KRIBB) Daejeon Korea
| | - Yong‐Kook Kang
- Development and Differentiation Research Center Korea Research Institute of Bioscience Biotechnology (KRIBB) Daejeon Korea
- Department of Functional Genomics University of Science and Technology (UST) Daejeon Korea
| |
Collapse
|
20
|
Zhang D, Yan K, Zhou J, Xu T, Xu M, Lin J, Bai J, Ge G, Hu D, Si W, Hao Y, Geng D. Myogenic differentiation of human amniotic mesenchymal cells and its tissue repair capacity on volumetric muscle loss. J Tissue Eng 2019; 10:2041731419887100. [PMID: 31762985 PMCID: PMC6851610 DOI: 10.1177/2041731419887100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell-based tissue engineering therapy is the most promising method for treating volumetric muscle loss. Human amniotic mesenchymal cells possess characteristics similar to those of embryonic stem cells. In this study, we verified the stem cell characteristics of human amniotic mesenchymal cells by the flow cytometry analysis, and osteogenic and adipogenic differentiation. Through induction with the DNA demethylating agent 5-azacytidine, human amniotic mesenchymal cells can undergo myogenic differentiation and express skeletal muscle cell-specific markers such as desmin and MyoD. The Wnt/β-catenin signaling pathway also plays an important role. After 5-azacytidine-induced human amniotic mesenchymal cells were implanted into rat tibialis anterior muscle with volumetric muscle loss, we observed increased angiogenesis and improved local tissue repair. We believe that human amniotic mesenchymal cells can serve as a potential source of cells for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Di Zhang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Kai Yan
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Tianpeng Xu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Menglei Xu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Jiayi Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Dan Hu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Weibing Si
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
21
|
Jia Y, Chang Y, Guo Z, Li H. Transcription factor Tbx5 promotes cardiomyogenic differentiation of cardiac fibroblasts treated with 5‐azacytidine. J Cell Biochem 2019; 120:16503-16515. [DOI: 10.1002/jcb.28885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Yangyang Jia
- Department of Histology and Embryology, Tongji Medical College Huazhong University of Science and Technology Wuhan People's Republic of China
- Henan Key Laboratory of Medical Tissue Regeneration Xinxiang Medical University Xinxiang People's Republic of China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration Xinxiang Medical University Xinxiang People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration Xinxiang Medical University Xinxiang People's Republic of China
| | - He Li
- Department of Histology and Embryology, Tongji Medical College Huazhong University of Science and Technology Wuhan People's Republic of China
| |
Collapse
|
22
|
Grigoryan EN, Radugina EA. Behavior of Stem-Like Cells, Precursors for Tissue Regeneration in Urodela, Under Conditions of Microgravity. Stem Cells Dev 2019; 28:423-437. [PMID: 30696352 DOI: 10.1089/scd.2018.0220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We summarize data from our experiments on stem-like cell-dependent regeneration in amphibians in microgravity. Considering its deleterious effect on many tissues, we asked whether microgravity is compatible with reparative processes, specifically activation and proliferation of source cells. Experiments were conducted using tailed amphibians, which combine profound regenerative capabilities with high robustness, allowing an in vivo study of lens, retina, limb, and tail regeneration in challenging settings of spaceflight. Microgravity promoted stem-like cell proliferation to a varying extent (up to 2-fold), and it seemed to speed up source cell dedifferentiation, as well as sequential differentiation in retina, lens, and limb, leading to formation of bigger and more developed regenerates than in 1g controls. It also promoted proliferation and hypertrophy of Müller glial cells, eliciting a response similar to reactive gliosis. A significant increase in stem-like cell proliferation was mostly beneficial for regeneration and only in rare cases caused moderate tissue growth abnormalities. It is important that microgravity yielded a lasting effect even if applied before operations. We hypothesize on the potential mechanisms of gravity-dependent changes in stem-like cell behavior, including fibroblast growth factor 2 signaling pathway and heat shock proteins, which were affected in our experimental settings. Taken together, our data indicate that microgravity does not disturb the natural regenerative potential of newt stem-like cells, and, depending on the system, even stimulates their dedifferentiation, proliferation, and differentiation. We discuss these data along with publications on mammalian stem cell behavior in vitro and invertebrate regeneration in vivo in microgravity. In vivo data are very scarce and require further research using contemporary methods of cell behavior analysis to elucidate mechanisms of stem cell response to altered gravity. They are relevant for both practical applications, such as managing human reparative responses in spaceflight, and fundamental understanding of stem cell biology.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena A Radugina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Kawao N, Morita H, Nishida K, Obata K, Tatsumi K, Kaji H. Effects of hypergravity on gene levels in anti-gravity muscle and bone through the vestibular system in mice. J Physiol Sci 2018; 68:609-616. [PMID: 28884429 PMCID: PMC10717783 DOI: 10.1007/s12576-017-0566-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
Abstract
We recently reported that hypergravity with 3 g for 4 weeks affects muscle and bone through the vestibular system in mice. The purpose of this study was to investigate the effects of hypergravity with 2 g, which had no influence on circulating glucocorticoid level, on the gene levels in muscle and bone, as well as the roles of the vestibular system in those changes using vestibular lesioned (VL) mice. Hypergravity for 2 and 8 weeks or VL exerted little effects on the mRNA levels of muscle differentiation factors and myokines in the soleus muscle. Although hypergravity for 2 weeks significantly elevated alkaline phosphatase (ALP) and type I collagen mRNA levels in the tibia, VL significantly attenuated the levels of ALP mRNA enhanced by hypergravity. In conclusion, the present study suggests that a 2-g load for 2 weeks enhances osteoblast differentiation partly through the vestibular system in mice.
Collapse
Grants
- 15K08220 Ministry of Education, Culture, Sports, Science and Technology
- 16K08534 Ministry of Education, Culture, Sports, Science and Technology
- 15K11916 Ministry of Education, Culture, Sports, Science and Technology
- 15YPTK-002009 Ministry of Education, Culture, Sports, Science and Technology
- 15H05935 Ministry of Education, Culture, Sports, Science and Technology
- 15H05935 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Kazuaki Nishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Koji Obata
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
24
|
Simulated microgravity attenuates myogenic differentiation via epigenetic regulations. NPJ Microgravity 2018; 4:11. [PMID: 29845109 PMCID: PMC5966377 DOI: 10.1038/s41526-018-0045-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanisms involved in myogenic differentiation are relatively well-known. Myogenic differentiation is regulated by the sequential activation of the basic helix-loop-helix myogenic regulatory transcription factors (MRFs), and biomechanical signals play an important role in the regulation of myogenesis. In this study, we sought to determine whether simulated microgravity culture using Gravite® may affect myoblast differentiation and expression of MRF genes. Although rat myoblasts, L6 cells were differentiated to myotubes in an incubation period-dependent manner, myogenesis of L6 cells was significantly attenuated under simulated microgravity (10-3G) conditions. Real-time Reverse transcription polymerase chain reaction (RT-PCR) showed that expressions of Myog, Myf6, Mef2c, Des, and Ckm under 1 G conditions increase in an incubation period-dependent manner, and that Myod1 expression was specifically observed to increase transiently in the early phase. However, expressions of Myod1 and Myog were significantly inhibited under simulated microgravity conditions. To clarify the molecular mechanisms, L6 cells were treated with 5-AzaC, and further incubated with differentiation medium under 1 G or 10-3 G conditions. The results showed differences in expression levels of Myod1, Myog, and, as well as those of myotube thickness between 1 G and 10-3 G conditions, completely disappeared in this experimental condition. Modified HpaII tiny fragment enrichment by ligation-mediated PCR (HELP)-assay showed that kinetic changes of DNA methylation status were attenuated in simulated microgravity conditions. These results indicate that microgravity regulates myogenesis and Myod1 expression by controlling DNA methylation.
Collapse
|
25
|
Domenighetti AA, Mathewson MA, Pichika R, Sibley LA, Zhao L, Chambers HG, Lieber RL. Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy. Am J Physiol Cell Physiol 2018; 315:C247-C257. [PMID: 29694232 DOI: 10.1152/ajpcell.00351.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cerebral palsy (CP) is the most common cause of pediatric neurodevelopmental and physical disability in the United States. It is defined as a group of motor disorders caused by a nonprogressive perinatal insult to the brain. Although the brain lesion is nonprogressive, there is a progressive, lifelong impact on skeletal muscles, which are shorter, spastic, and may develop debilitating contractures. Satellite cells are resident muscle stem cells that are indispensable for postnatal growth and regeneration of skeletal muscles. Here we measured the myogenic potential of satellite cells isolated from contractured muscles in children with CP. When compared with typically developing (TD) children, satellite cell-derived myoblasts from CP differentiated more slowly (slope: 0.013 (SD 0.013) CP vs. 0.091 (SD 0.024) TD over 24 h, P < 0.001) and fused less (fusion index: 21.3 (SD 8.6) CP vs. 81.3 (SD 7.7) TD after 48 h, P < 0.001) after exposure to low-serum conditions that stimulated myotube formation. This impairment was associated with downregulation of several markers important for myoblast fusion and myotube formation, including DNA methylation-dependent inhibition of promyogenic integrin-β 1D (ITGB1D) protein expression levels (-50% at 42 h), and ~25% loss of integrin-mediated focal adhesion kinase phosphorylation. The cytidine analog 5-Azacytidine (5-AZA), a demethylating agent, restored ITGB1D levels and promoted myogenesis in CP cultures. Our data demonstrate that muscle contractures in CP are associated with loss of satellite cell myogenic potential that is dependent on DNA methylation patterns affecting expression of genetic programs associated with muscle stem cell differentiation and muscle fiber formation.
Collapse
Affiliation(s)
- Andrea A Domenighetti
- The Shirley Ryan AbilityLab, Chicago, Illinois.,Department of Physical Medicine & Rehabilitation, Northwestern University , Chicago, Illinois.,Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Margie A Mathewson
- Bioengineering Department, University of California, San Diego, La Jolla, California
| | | | | | - Leyna Zhao
- ACEA Biosciences Incorporated, San Diego, California
| | | | - Richard L Lieber
- The Shirley Ryan AbilityLab, Chicago, Illinois.,Department of Physical Medicine & Rehabilitation, Northwestern University , Chicago, Illinois.,Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| |
Collapse
|
26
|
Jung JE, Song MJ, Shin S, Choi YJ, Kim KH, Chung CJ. Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo. Orthod Craniofac Res 2018; 20:35-43. [PMID: 28102011 DOI: 10.1111/ocr.12138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To enhance myogenic differentiation in pulp cells isolated from extracted premolars by epigenetic modification using a DNA demethylation agent, 5-aza-2'-deoxycytidine (5-Aza), and to evaluate the potent stimulatory effect of 5-Aza-treated pulp cell injection for craniofacial muscle regeneration in vivo. SETTING AND SAMPLE POPULATION Pulp cells were isolated from premolars extracted for orthodontic purposes from four adults (age range, 18-22.1 years). MATERIAL AND METHODS Levels of myogenic differentiation and functional contraction response in vitro were compared between pulp cells with or without pre-treatment of 5-Aza. Changes in muscle regeneration in response to green fluorescent protein (GFP)-labelled myogenic pulp cell injection in vivo were evaluated using a cardiotoxin (CTX)-induced muscle injury model of the gastrocnemius as well as the masseter muscle in mice. RESULTS Pre-treatment of 5-Aza in pulp cells stimulated myotube formation, myogenic differentiation in terms of desmin and myogenin expression, and the level of collagen gel contraction. The local injection of 5-Aza pre-treated myogenic pulp cells was engrafted into the host tissue and indicated signs of enhanced muscle regeneration in both the gastrocnemius and the masseter muscles. CONCLUSION The epigenetic modification of pulp cells from extracted premolars and the local injection of myogenic pulp cells may stimulate craniofacial muscles regeneration in vivo.
Collapse
Affiliation(s)
- J E Jung
- Department of Orthodontics, Gangnam Severance Hospital, The Craniofacial Deformity Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - M J Song
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan, Korea
| | - S Shin
- Department of Conservative Dentistry, Gangnam Severance Hospital, College of Dentistry, Yonsei University, Seoul, Korea
| | - Y J Choi
- Department of Orthodontics, Gangnam Severance Hospital, The Craniofacial Deformity Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - K H Kim
- Department of Orthodontics, Gangnam Severance Hospital, The Craniofacial Deformity Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - C J Chung
- Department of Orthodontics, Gangnam Severance Hospital, The Craniofacial Deformity Institute, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
27
|
Abstract
Skeletal muscle regeneration is an efficient stem cell-based repair system that ensures healthy musculature. For this repair system to function continuously throughout life, muscle stem cells must contribute to the process of myofiber repair as well as repopulation of the stem cell niche. The decision made by the muscle stem cells to commit to the muscle repair or to remain a stem cell depends upon patterns of gene expression, a process regulated at the epigenetic level. Indeed, it is well accepted that dynamic changes in epigenetic landscapes to control DNA accessibility and expression is a critical component during myogenesis for the effective repair of damaged muscle. Changes in the epigenetic landscape are governed by various posttranslational histone tail modifications, nucleosome repositioning, and DNA methylation events which collectively allow the control of changes in transcription networks during transitions of satellite cells from a dormant quiescent state toward terminal differentiation. This chapter focuses upon the specific epigenetic changes that occur during muscle stem cell-mediated regeneration to ensure myofiber repair and continuity of the stem cell compartment. Furthermore, we explore open questions in the field that are expected to be important areas of exploration as we move toward a more thorough understanding of the epigenetic mechanism regulating muscle regeneration.
Collapse
Affiliation(s)
- Daniel C L Robinson
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa, Ottawa, ON, Canada
| | - Francis J Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
28
|
Fasolino I, Guarino V, Cirillo V, Ambrosio L. 5-Azacytidine-mediated hMSC behavior on electrospun scaffolds for skeletal muscle regeneration. J Biomed Mater Res A 2017; 105:2551-2561. [DOI: 10.1002/jbm.a.36111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/09/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Ines Fasolino
- Institute of Polymers, Composites and Biomaterials; National Research Council of Italy; Mostra D'Oltremare, Pad.20, V.le J.F. Keneedy 54 80125 Naples Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials; National Research Council of Italy; Mostra D'Oltremare, Pad.20, V.le J.F. Keneedy 54 80125 Naples Italy
| | - Valentina Cirillo
- Institute of Polymers, Composites and Biomaterials; National Research Council of Italy; Mostra D'Oltremare, Pad.20, V.le J.F. Keneedy 54 80125 Naples Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials; National Research Council of Italy; Mostra D'Oltremare, Pad.20, V.le J.F. Keneedy 54 80125 Naples Italy
| |
Collapse
|
29
|
Hwang SY, Kang YJ, Sung B, Jang JY, Hwang NL, Oh HJ, Ahn YR, Kim HJ, Shin JH, Yoo MA, Kim CM, Chung HY, Kim ND. Folic acid is necessary for proliferation and differentiation of C2C12 myoblasts. J Cell Physiol 2017; 233:736-747. [PMID: 28471487 DOI: 10.1002/jcp.25989] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/03/2017] [Indexed: 02/04/2023]
Abstract
Folic acid, a water soluble B vitamin, plays an important role in cellular metabolic activities, such as functioning as a cofactor in one-carbon metabolism for DNA and RNA synthesis as well as nucleotide and amino acid biosynthesis in the body. A lack of dietary folic acid can lead to folic acid deficiency and result in several health problems, including macrocytic anemia, elevated plasma homocysteine, cardiovascular disease, birth defects, carcinogenesis, muscle weakness, and walking difficulty. However, the effect of folic acid deficiency on skeletal muscle development and its molecular mechanisms are unknown. We, therefore, investigated the effect of folic acid deficiency on myogenesis in skeletal muscle cells and found that folic acid deficiency induced proliferation inhibition and cell cycle breaking as well as cellular senescence in C2C12 myoblasts, implying that folic acid deficiency influences skeletal muscle development. Folic acid deficiency also inhibited differentiation of C2C12 myoblasts and induced deregulation of the cell cycle exit and many cell cycle regulatory genes. It inhibited expression of muscle-specific marker MyHC as well as myogenic regulatory factor (myogenin). Moreover, immunocytochemistry and Western blot analyses revealed that DNA damage was more increased in folic acid-deficient medium-treated differentiating C2C12 cells. Furthermore, we found that folic acid resupplementation reverses the effect on the cell cycle and senescence in folic acid-deficient C2C12 myoblasts but does not reverse the differentiation of C2C12 cells. Altogether, the study results suggest that folic acid is necessary for normal development of skeletal muscle cells.
Collapse
Affiliation(s)
- Seong Y Hwang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yong J Kang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Bokyung Sung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jung Y Jang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Na L Hwang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hye J Oh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yu R Ahn
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hong J Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin H Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Mi-Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Cheol M Kim
- Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Republic of Korea.,Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hae Y Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| | - Nam D Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea.,Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
30
|
Oodi A, Norouzi H, Amirizadeh N, Nikougoftar M, Vafaie Z. Harmine, a Novel DNA Methyltransferase 1 Inhibitor in the Leukemia Cell Line. Indian J Hematol Blood Transfus 2017; 33:509-515. [PMID: 29075061 DOI: 10.1007/s12288-016-0770-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
DNA methylation followed by tumor suppressor gene repression plays a critical role in the leukemia development. So, DNA methyl transferase inhibitors have great importance in treatment of theses malignancies. Harmine, A beta carboline alkaloid derivative of Peganum harmala, had shown anti- proliferative effects on leukemic cell line. This study aimed to evaluate the effect of Harmine on DNMT1 (DNA methyl transferase 1) expression in a leukemic cell line. Cell proliferation and cell cycle analysis were studied in NB4 cell line after treatment with Harmine for 72 h. DNMT1 expression in treated cells was analyzed by real time PCR. Tumor suppressor gene hypometylation and reactivation was evaluated via MSP analysis and also real time PCR. Harmine reduced cell proliferation in NB4 cell line in a time and dose-dependent manner. 102 µg/ml of Harmine was increased amount of cells in G1 Phase of cell cycle (p < 0.05). Anti proliferative doses of Harmine, has suppressed DNMT1 gene in NB4 cell line. Down-regulated DNMT1 induced p15 tumor suppressor promoter hypomethylation and reactivation. Our data indicate that Harmine can be considered as a potential treatment for AML (Acute Myeloid Leukemia), and future studies are required to test the clinical efficacy of Harmine-whether used as a single agent or as an adjuvant-for AML treatment.
Collapse
Affiliation(s)
- Arezoo Oodi
- High Institute for Education and Research in Transfusion Medicine, Blood Transfusion Research Center, IBTO bldg, Hemmat Exp Way, Next to the Milad Tower, P.O. BOX: 14665-1157, Tehran, Iran
| | - Hamed Norouzi
- High Institute for Education and Research in Transfusion Medicine, Blood Transfusion Research Center, IBTO bldg, Hemmat Exp Way, Next to the Milad Tower, P.O. BOX: 14665-1157, Tehran, Iran
| | - Naser Amirizadeh
- High Institute for Education and Research in Transfusion Medicine, Blood Transfusion Research Center, IBTO bldg, Hemmat Exp Way, Next to the Milad Tower, P.O. BOX: 14665-1157, Tehran, Iran
| | - Mahin Nikougoftar
- High Institute for Education and Research in Transfusion Medicine, Blood Transfusion Research Center, IBTO bldg, Hemmat Exp Way, Next to the Milad Tower, P.O. BOX: 14665-1157, Tehran, Iran
| | - Zahra Vafaie
- High Institute for Education and Research in Transfusion Medicine, Blood Transfusion Research Center, IBTO bldg, Hemmat Exp Way, Next to the Milad Tower, P.O. BOX: 14665-1157, Tehran, Iran
| |
Collapse
|
31
|
Helinska A, Krupa M, Archacka K, Czerwinska AM, Streminska W, Janczyk-Ilach K, Ciemerych MA, Grabowska I. Myogenic potential of mouse embryonic stem cells lacking functional Pax7 tested in vitro by 5-azacitidine treatment and in vivo in regenerating skeletal muscle. Eur J Cell Biol 2016; 96:47-60. [PMID: 28017376 DOI: 10.1016/j.ejcb.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
Regeneration of skeletal muscle relies on the presence of satellite cells. Satellite cells deficiency accompanying some degenerative diseases is the reason for the search for the "replacement cells" that can be used in the muscle therapies. Due to their unique properties embryonic stem cells (ESCs), as well as myogenic cells derived from them, are considered as a promising source of therapeutic cells. Among the factors crucial for the specification of myogenic precursor cells is Pax7 that sustains proper function of satellite cells. In our previous studies we showed that ESCs lacking functional Pax7 are able to form myoblasts in vitro when differentiated within embryoid bodies and their outgrowths. In the current study we showed that ESCs lacking functional Pax7, cultured in vitro in monolayer in the medium supplemented with horse serum and 5azaC, expressed higher levels of factors associated with myogenesis, such as Pdgfra, Pax3, Myf5, and MyoD. Importantly, skeletal myosin immunolocalization confirmed that myogenic differentiation of ESCs was more effective in case of cells lacking Pax7. Our in vivo studies showed that ESCs transplanted into regenerating skeletal muscles were detectable at day 7 of regeneration and the number of Pax7-/- ESCs detected was significantly higher than of control cells. Our results support the concept that lack of functional Pax7 promotes proliferation of differentiating ESCs and for this reason more of them can turn into myogenic lineage.
Collapse
Affiliation(s)
- Anita Helinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Maciej Krupa
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Areta M Czerwinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|
32
|
Controlled Heat Stress Promotes Myofibrillogenesis during Myogenesis. PLoS One 2016; 11:e0166294. [PMID: 27824934 PMCID: PMC5100975 DOI: 10.1371/journal.pone.0166294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/26/2016] [Indexed: 11/24/2022] Open
Abstract
Hyperthermia therapy has recently emerged as a clinical modality used to finely tune heat stress inside the human body for various biomedical applications. Nevertheless, little is known regarding the optimal timing or temperature of heat stress that is needed to achieve favorable results following hyperthermia therapy for muscle regeneration purposes. The regeneration of skeletal muscle after injury is a highly complex and coordinated process that involves a multitude of cellular mechanisms. The main objective of this study was to characterize the effects of hyperthermal therapy on the overall behavior of myoblasts during myogenic differentiation. Various cellular processes, including myogenesis, myofibrillogenesis, hypertrophy/atrophy, and mitochondrial biogenesis, were studied using systematic cellular, morphological, and pathway-focused high-throughput gene expression profiling analyses. We found that C2C12 myoblasts exhibited distinctive time and temperature-dependence in biosynthesis and regulatory events during myogenic differentiation. Specifically, we for the first time observed that moderate hyperthermia at 39°C favored the growth of sarcomere in myofibrils at the late stage of myogenesis, showing universal up-regulation of characteristic myofibril proteins. Characteristic myofibrillogenesis genes, including heavy polypeptide 1 myosin, heavy polypeptide 2 myosin, alpha 1 actin, nebulin and titin, were all significantly upregulated (p<0.01) after C2C12 cells differentiated at 39°C over 5 days compared with the control cells cultured at 37°C. Furthermore, moderate hyperthermia enhanced myogenic differentiation, with nucleus densities per myotube showing 2.2-fold, 1.9-fold and 1.6-fold increases when C2C12 cells underwent myogenic differentiation at 39°C over 24 hours, 48 hours and 72 hours, respectively, as compared to the myotubes that were not exposed to heat stress. Yet, atrophy genes were sensitive even to moderate hyperthermia, indicating that strictly controlled heat stress is required to minimize the development of atrophy in myotubes. In addition, mitochondrial biogenesis was enhanced following thermal induction of myoblasts, suggesting a subsequent shift toward anabolic demand requirements for energy production. This study offers a new perspective to understand and utilize the time and temperature-sensitive effects of hyperthermal therapy on muscle regeneration.
Collapse
|
33
|
DNA Methylation in Skeletal Muscle Stem Cell Specification, Proliferation, and Differentiation. Stem Cells Int 2016; 2016:5725927. [PMID: 26880971 PMCID: PMC4736426 DOI: 10.1155/2016/5725927] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022] Open
Abstract
An unresolved and critically important question in skeletal muscle biology is how muscle stem cells initiate and regulate the genetic program during muscle development. Epigenetic dynamics are essential for cellular development and organogenesis in early life and it is becoming increasingly clear that epigenetic remodeling may also be responsible for the cellular adaptations that occur in later life. DNA methylation of cytosine bases within CpG dinucleotide pairs is an important epigenetic modification that reduces gene expression when located within a promoter or enhancer region. Recent advances in the field suggest that epigenetic regulation is essential for skeletal muscle stem cell identity and subsequent cell development. This review summarizes what is currently known about how skeletal muscle stem cells regulate the myogenic program through DNA methylation, discusses a novel role for metabolism in this process, and addresses DNA methylation dynamics in adult skeletal muscle in response to physical activity.
Collapse
|
34
|
Senesi P, Montesano A, Luzi L, Codella R, Benedini S, Terruzzi I. Metformin Treatment Prevents Sedentariness Related Damages in Mice. J Diabetes Res 2016; 2016:8274689. [PMID: 26697506 PMCID: PMC4677204 DOI: 10.1155/2016/8274689] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022] Open
Abstract
Metformin (METF), historical antihyperglycemic drug, is a likely candidate for lifespan extension, treatment and prevention of sedentariness damages, insulin resistance, and obesity. Skeletal muscle is a highly adaptable tissue, capable of hypertrophy response to resistance training and of regeneration after damage. Aims of this work were to investigate METF ability to prevent sedentariness damage and to enhance skeletal muscle function. Sedentary 12-week-old C57BL/6 mice were treated with METF (250 mg/kg per day, in drinking water) for 60 days. METF role on skeletal muscle differentiation was studied in vitro using murine C2C12 myoblasts. Muscular performance evaluation revealed that METF enhanced mice physical performance (Estimated VO2max). Biochemical analyses of hepatic and muscular tissues indicated that in liver METF increased AMPK and CAMKII signaling. In contrast, METF inactivated ERKs, the principal kinases involved in hepatic stress. In skeletal muscle, METF activated AKT, key kinase in skeletal muscle mass maintenance. In in vitro studies, METF did not modify the C2C12 proliferation capacity, while it positively influenced the differentiation process and myotube maturation. In conclusion, our novel results suggest that METF has a positive action not only on the promotion of healthy aging but also on the prevention of sedentariness damages.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Center, San Donato Hospital and Scientific Institute, Milan, Italy
| | - Anna Montesano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Center, San Donato Hospital and Scientific Institute, Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Center, San Donato Hospital and Scientific Institute, Milan, Italy
| | - Stefano Benedini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Center, San Donato Hospital and Scientific Institute, Milan, Italy
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
- *Ileana Terruzzi:
| |
Collapse
|
35
|
Domi T, Porrello E, Velardo D, Capotondo A, Biffi A, Tonlorenzi R, Amadio S, Ambrosi A, Miyagoe-Suzuki Y, Takeda S, Ruegg MA, Previtali SC. Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A. Skelet Muscle 2015; 5:30. [PMID: 26347253 PMCID: PMC4560053 DOI: 10.1186/s13395-015-0055-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/06/2015] [Indexed: 12/17/2022] Open
Abstract
Background Merosin-deficient congenital muscular dystrophy type-1A (MDC1A) is characterized by progressive muscular dystrophy and dysmyelinating neuropathy caused by mutations of the α2 chain of laminin-211, the predominant laminin isoform of muscles and nerves. MDC1A has no available treatment so far, although preclinical studies showed amelioration of the disease by the overexpression of miniagrin (MAG). MAG reconnects orphan laminin-211 receptors to other laminin isoforms available in the extracellular matrix of MDC1A mice. Methods Mesoangioblasts (MABs) are vessel-associated progenitors that can form the skeletal muscle and have been shown to restore defective protein levels and motor skills in animal models of muscular dystrophies. As gene therapy in humans still presents challenging technical issues and limitations, we engineered MABs to overexpress MAG to treat MDC1A mouse models, thus combining cell to gene therapy. Results MABs synthesize and secrete only negligible amount of laminin-211 either in vitro or in vivo. MABs engineered to deliver MAG and injected in muscles of MDC1A mice showed amelioration of muscle histology, increased expression of laminin receptors in muscle, and attenuated deterioration of motor performances. MABs did not enter the peripheral nerves, thus did not affect the associated peripheral neuropathy. Conclusions Our study demonstrates the potential efficacy of combining cell with gene therapy to treat MDC1A. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0055-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teuta Domi
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Emanuela Porrello
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Daniele Velardo
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Alessia Capotondo
- Tiget and Division of Regenerative Medicine, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Alessandra Biffi
- Tiget and Division of Regenerative Medicine, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Rossana Tonlorenzi
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Stefano Amadio
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | | | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawa-higashi, Kodaira, Tokyo Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawa-higashi, Kodaira, Tokyo Japan
| | | | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
36
|
Pisciotta A, Riccio M, Carnevale G, Lu A, De Biasi S, Gibellini L, La Sala GB, Bruzzesi G, Ferrari A, Huard J, De Pol A. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 2015; 6:156. [PMID: 26316011 PMCID: PMC4552417 DOI: 10.1186/s13287-015-0141-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/07/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD), caused by a lack of the functional structural protein dystrophin, leads to severe muscle degeneration where the patients are typically wheelchair-bound and die in their mid-twenties from cardiac or respiratory failure or both. The aim of this study was to investigate the potential of human dental pulp stem cells (hDPSCs) and human amniotic fluid stem cells (hAFSCs) to differentiate toward a skeletal myogenic lineage using several different protocols in order to determine the optimal conditions for achieving myogenic commitment and to subsequently evaluate their contribution in the improvement of the pathological features associated with dystrophic skeletal muscle when intramuscularly injected into mdx/SCID mice, an immune-compromised animal model of DMD. METHODS Human DPSCs and AFSCs were differentiated toward myogenic lineage in vitro through the direct co-culture with a myogenic cell line (C2C12 cells) and through a preliminary demethylation treatment with 5-Aza-2'-deoxycytidine (5-Aza), respectively. The commitment and differentiation of both hDPSCs and hAFSCs were evaluated by immunofluorescence and Western blot analysis. Subsequently, hDPSCs and hAFSCs, preliminarily demethylated and pre-differentiated toward a myogenic lineage for 2 weeks, were injected into the dystrophic gastrocnemius muscles of mdx/SCID mice. After 1, 2, and 4 weeks, the gastrocnemius muscles were taken for immunofluorescence and histological analyses. RESULTS Both populations of cells engrafted within the host muscle of mdx/SCID mice and through a paracrine effect promoted angiogenesis and reduced fibrosis, which eventually led to an improvement of the histopathology of the dystrophic muscle. CONCLUSION This study shows that hAFSCs and hDPSCs represent potential sources of stem cells for translational strategies to improve the histopathology and potentially alleviate the muscle weakness in patients with DMD.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Massimo Riccio
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Gianluca Carnevale
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Bridgeside Point II, Suite 206, 15219, Pittsburgh, PA, USA.
| | - Sara De Biasi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Lara Gibellini
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Giovanni B La Sala
- Department of Obstetrics and Gynecology, Arcispedale Santa Maria Nuova, viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| | - Giacomo Bruzzesi
- Oro-Maxillo-Facial Department, AUSL Baggiovara, via Giardini 1355, 41126, Modena, Baggiovara, Italy.
| | - Adriano Ferrari
- Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, Children Rehabilitation Special Unit, IRCCS Arcispedale Santa Maria Nuova, viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Bridgeside Point II, Suite 206, 15219, Pittsburgh, PA, USA.
| | - Anto De Pol
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
37
|
Alvarado S, Mak T, Liu S, Storey KB, Szyf M. Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus. ACTA ACUST UNITED AC 2015; 218:1787-95. [PMID: 25908059 DOI: 10.1242/jeb.116046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Hibernating mammals conserve energy in the winter by undergoing prolonged bouts of torpor, interspersed with brief arousals back to euthermia. These bouts are accompanied by a suite of reversible physiological and biochemical changes; however, much remains to be discovered about the molecular mechanisms involved. Given the seasonal nature of hibernation, it stands to reason that underlying plastic epigenetic mechanisms should exist. One such form of epigenomic regulation involves the reversible modification of cytosine bases in DNA by methylation. DNA methylation is well known to be a mechanism that confers upon DNA its cellular identity during differentiation in response to innate developmental cues. However, it has recently been hypothesized that DNA methylation also acts as a mechanism for adapting genome function to changing external environmental and experiential signals over different time scales, including during adulthood. Here, we tested the hypothesis that DNA methylation is altered during hibernation in adult wild animals. This study evaluated global changes in DNA methylation in response to hibernation in the liver and skeletal muscle of thirteen-lined ground squirrels along with changes in expression of DNA methyltransferases (DNMT1/3B) and methyl binding domain proteins (MBDs). A reduction in global DNA methylation occurred in muscle during torpor phases whereas significant changes in DNMTs and MBDs were seen in both tissues. We also report dynamic changes in DNA methylation in the promoter of the myocyte enhancer factor 2C (mef2c) gene, a candidate regulator of metabolism in skeletal muscle. Taken together, these data show that genomic DNA methylation is dynamic across torpor-arousal bouts during winter hibernation, consistent with a role for this regulatory mechanism in contributing to the hibernation phenotype.
Collapse
Affiliation(s)
- Sebastian Alvarado
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| | - Timothy Mak
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| | - Sara Liu
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Moshe Szyf
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| |
Collapse
|
38
|
Potential therapeutic role of L-carnitine in skeletal muscle oxidative stress and atrophy conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:646171. [PMID: 25838869 PMCID: PMC4369953 DOI: 10.1155/2015/646171] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/23/2015] [Indexed: 12/03/2022]
Abstract
The targeting of nutraceutical treatment to skeletal muscle damage is an emerging area of research, driven by the need for new therapies for a range of muscle-associated diseases. L-Carnitine (CARN) is an essential nutrient and plays a key role in mitochondrial β-oxidation and in the ubiquitin-proteasome system regulation. As a dietary supplement to improve athletic performance, CARN has been studied for its potential to enhance β-oxidation. However, CARN effects on myogenesis, mitochondrial activity, and hypertrophy process are not completely elucidated. This in vitro study aims to investigate CARN role on skeletal muscle remodeling, differentiation process, and myotubes formation. We analyzed muscle differentiation and morphological features in C2C12 myoblasts exposed to 5 mM CARN. Our results showed that CARN was able to accelerate C2C12 myotubes formation and induce morphological changes, characterizing the start of hypertrophy process. In addition, CARN improved AKT activation and downstream cellular signaling pathways involved in skeletal muscle atrophy process prevention. Also, CARN positively regulated the pathways involved in oxidative stress defense. In this work, we provide an interesting novel mechanism of the potential therapeutic use of CARN to treat pathological conditions characterized by skeletal muscle morphological and functional impairment, oxidative stress production, and atrophy process in aging.
Collapse
|
39
|
Carrió E, Suelves M. DNA methylation dynamics in muscle development and disease. Front Aging Neurosci 2015; 7:19. [PMID: 25798107 PMCID: PMC4350440 DOI: 10.3389/fnagi.2015.00019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/15/2015] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis.
Collapse
Affiliation(s)
- Elvira Carrió
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) and Health Sciences Research Institute Germans Trias I Pujol (IGTP) Badalona, Spain
| | - Mònica Suelves
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) and Health Sciences Research Institute Germans Trias I Pujol (IGTP) Badalona, Spain
| |
Collapse
|
40
|
Cattenoz PB, Giangrande A. New insights in the clockwork mechanism regulating lineage specification: Lessons from the Drosophila nervous system. Dev Dyn 2014; 244:332-41. [PMID: 25399853 DOI: 10.1002/dvdy.24228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Powerful transcription factors called fate determinants induce robust differentiation programs in multipotent cells and trigger lineage specification. These factors guarantee the differentiation of specific tissues/organs/cells at the right place and the right moment to form a fully functional organism. Fate determinants are activated by temporal, positional, epigenetic, and post-transcriptional cues, hence integrating complex and dynamic developmental networks. In turn, they activate specific transcriptional/epigenetic programs that secure novel molecular landscapes. RESULTS In this review, we use the Drosophila Gcm glial determinant as a model to discuss the mechanisms that allow lineage specification in the nervous system. The dynamic regulation of Gcm via interlocked loops has recently emerged as a key event in the establishment of stable identity. Gcm induces gliogenesis while triggering its own extinction, thus preventing the appearance of metastable states and neoplastic processes. CONCLUSIONS Using simple animal models that allow in vivo manipulations provides a key tool to disentangle the complex regulation of cell fate determinants.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
41
|
Segalés J, Perdiguero E, Muñoz-Cánoves P. Epigenetic control of adult skeletal muscle stem cell functions. FEBS J 2014; 282:1571-88. [PMID: 25251895 DOI: 10.1111/febs.13065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
Skeletal muscle regeneration in the adult (de novo myogenesis) depends on a resident population of muscle stem cells (satellite cells) that are normally quiescent. In response to injury or stress, satellite cells are activated and expand as myoblast cells that differentiate and fuse to form new muscle fibers or return to quiescence to maintain the stem cell pool (self-renewal). Satellite cell-dependent myogenesis is a well-characterized multi-step process orchestrated by muscle-specific transcription factors, such as Pax3/Pax7 and members of the MyoD family of muscle regulatory factors, and epigenetically controlled by mechanisms such as DNA methylation, covalent modification of histones and non-coding RNAs. Recent results from next-generation genome-wide sequencing have increased our understanding about the highly intricate layers of epigenetic regulation involved in satellite cell maintenance, activation, differentiation and self-renewal, and their cross-talk with the muscle-specific transcriptional machinery.
Collapse
Affiliation(s)
- Jessica Segalés
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, Center for Networked Biomedical Research on Neurodegenerative Diseases, Barcelona, Spain
| | | | | |
Collapse
|
42
|
Senesi P, Luzi L, Montesano A, Terruzzi I. DNA demethylation enhances myoblasts hypertrophy during the late phase of myogenesis activating the IGF-I pathway. Endocrine 2014; 47:244-54. [PMID: 24366646 PMCID: PMC4145190 DOI: 10.1007/s12020-013-0142-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 11/27/2013] [Indexed: 11/24/2022]
Abstract
Skeletal muscle regeneration and hypertrophy are important adaptive responses to both physical activity and pathological stimuli. This research was performed to investigate DNA demethylation action on the late phase of muscle differentiation and early stage of hypertrophy. The epigenetic process involved in myogenesis was studied with the DNA-demethylating agent 5-azacytidine (AZA). We induced muscle differentiation in C2C12 mouse myoblasts in the presence of 5 μM AZA and growth or differentiation medium for 48, 72, and 96 h. To study a potential AZA hypertrophic effect, we stimulated 72 h differentiated myotubes with AZA for 24 h. Unstimulated cells were used as control. By western blot and immunofluorescence analysis, we examined AZA action on myogenic regulatory factors expression, hypertrophic signaling pathway and myotube morphology. During differentiation, protein levels of myogenic markers, Myf6 and Myosin Heavy Chain (MyHC), were higher in AZA stimulated cells compared to control. Myostatin and p21 analysis revealed morphological changes which reflect a tendency to hypertrophy in myotubes. In AZA stimulated neo formed myotubes, we observed that IGF-I pathway, kinases p70 S6, 4E-BP1, and ERK1/2 were activated. Furthermore, AZA treatment increased MyHC protein content in stimulated neo myotubes. Our work demonstrates that DNA demethylation could plays an important role in promoting the late phase of myogenesis, activating endocellular pathways involved in protein increment and stimulating the hypertrophic process.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Centre and Department of Endocrinology and Metabolic Diseases, San Donato Hospital and Scientific Institute, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Centre and Department of Endocrinology and Metabolic Diseases, San Donato Hospital and Scientific Institute, Milan, Italy
| | - Anna Montesano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana Terruzzi
- Division of Metabolic and Cardiovascular Science, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
43
|
Montesano A, Luzi L, Senesi P, Mazzocchi N, Terruzzi I. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. J Transl Med 2013; 11:310. [PMID: 24330398 PMCID: PMC3867424 DOI: 10.1186/1479-5876-11-310] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/05/2013] [Indexed: 12/30/2022] Open
Abstract
Background Nutrigenomics elucidate the ability of bioactive food components to influence gene expression, protein synthesis, degradation and post-translational modifications. Resveratrol (RSV), natural polyphenol found in grapes and in other fruits, has a plethora of health benefits in a variety of human diseases: cardio- and neuroprotection, immune regulation, cancer chemoprevention, DNA repair, prevention of mitochondrial disorder, avoidance of obesity-related diseases. In skeletal muscle, RSV acts on protein catabolism and muscle function, conferring resistance against oxidative stress, injury and cell death, but its action mechanisms and protein targets in myogenesis process are not completely known. Myogenesis is a dynamic multistep process regulated by Myogenic Regulator Factors (MRFs), responsible of the commitment of myogenic cell into skeletal muscle: mononucleated undifferentiated myoblasts break free from cell cycle, elongate and fuse to form multinucleated myotubes. Skeletal muscle hypertrophy can be defined as a result of an increase in the size of pre-existing skeletal muscle fibers accompanied by increased protein synthesis, mainly regulated by Insulin Like Growth Factor 1 (IGF-1), PI3-K/AKT signaling pathways. Aim of this work was the study of RSV effects on proliferation, differentiation process and hypertrophy in C2C12 murine cells. Methods To study proliferative phase, cells were incubated in growth medium with/without RSV (0.1 or 25 μM) until reaching sub confluence condition (24, 48, 72 h). To examine differentiation, at 70% confluence, cells were transferred in differentiation medium both with/without RSV (0.1 or 25 μM) for 24, 48, 72, 96 hours. After 72 hours of differentiation, the genesis of hypertrophy in neo-formed myotubes was analyzed. Results Data showed that RSV regulates cell cycle exit and induces C2C12 muscle differentiation. Furthermore, RSV might control MRFs and muscle-specific proteins synthesis. In late differentiation, RSV has positive effects on hypertrophy: RSV stimulates IGF-1 signaling pathway, in particular AKT and ERK 1/2 protein activation, AMPK protein level and induces hypertrophic morphological changes in neo-formed myotubes modulating cytoskeletal proteins expression. Conclusions RSV might control cell cycle promoting myogenesis and hypertrophy in vitro, opening a novel field of application of RSV in clinical conditions characterized by chronic functional and morphological muscle impairment.
Collapse
Affiliation(s)
| | | | | | | | - Ileana Terruzzi
- Division of Metabolic and Cardiovascular Sciences, Metabolism, Nutrigenomics and Cellular Differentiation Unit, DIBIT-San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
44
|
Muzic V, Katusic Bojanac A, Juric-Lekic G, Himelreich M, Tupek K, Serman L, Marn N, Sincic N, Vlahovic M, Bulic-Jakus F. Epigenetic drug 5-azacytidine impairs proliferation of rat limb buds in an organotypic model-system in vitro. Croat Med J 2013; 54:489-95. [PMID: 24170728 PMCID: PMC3816559 DOI: 10.3325/cmj.2013.54.489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/09/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To establish an organotypic in vitro model of limb bud development to verify whether epigenetic drug and teratogen 5-azacytidine (5azaC) has an effect on limb buds independent of its effects on the placenta. METHODS Fischer strain rat fore- and hindlimb buds were microsurgically isolated from 13 days old embryos and cultivated in vitro for two weeks at the air-liquid interface in Eagle's minimum essential medium (MEM) with 50% rat serum. 30 μmol of 5azaC was added to the fresh medium. Overall growth was measured by an ocular micrometer. Routine histology, immunohistochemical detection of the proliferating cell nuclear antigen (PCNA), and stereological quantification of PCNA expression were performed. RESULTS At four time points, significantly lower overall growth was detected for fore- and hindlimb bud explants cultivated with 5azaC in comparison to controls. After the culture period, numerical density of the PCNA signal for both types of limb buds was lower than for controls (P<0.001). Limb buds were initially covered by immature epithelium and contained mesenchyme, myotubes, single hemangioblasts, hemangioblast aggregates, blood islands, and capillaries. Regardless of the treatment, cartilage and epidermis differentiated, but cells and structures typical for vasculogenesis disappeared. CONCLUSION Our findings, obtained outside of the maternal organism, stress the importance of compromised cell proliferation for 5azaC impact on limb buds. This investigation points to the necessity to establish alternatives to in vivo research on animals using teratogenic agents.
Collapse
Affiliation(s)
- Vedrana Muzic
- Ana Katusic Bojanac, Department of Medical Biology, School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|