1
|
Verma M, Garg M, Yadav P, Khan AS, Rahman SS, Ali A, Kamthan M. Modulation of intestinal signal transduction pathways: Implications on gut health and disease. Eur J Pharmacol 2025; 998:177531. [PMID: 40118324 DOI: 10.1016/j.ejphar.2025.177531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The gastrointestinal (GI) tract is essential for nutrient absorption and protection against pathogens and toxins. Its epithelial lining undergoes continuous renewal every 3-5 days, driven by intestinal stem cells (ISCs). ISCs are primarily of two types: actively proliferating crypt base columnar cells (CBCs), marked by Lgr5 expression, and quiescent label-retaining cells (+4 LRCs), which act as reserves during stress or injury. Key signaling pathways, such as Wnt/β-catenin, Notch, bone morphogenetic proteins (BMPs), and epidermal growth factor (EGF), are crucial in maintaining epithelial homeostasis. These pathways regulate ISCs proliferation and their differentiation into specialized epithelial cells, including goblet cells, paneth cells, enteroendocrine cells, and enterocytes. Disruptions in ISCs signaling can arise from extrinsic factors (e.g., dietary additives, heavy metals, pathogens) or intrinsic factors (e.g., genetic mutations, metabolic changes). Such disruptions impair tight junction integrity, induce inflammation, and promote gut dysbiosis, often perpetuating a cycle of intestinal dysfunction. Chronic ISCs dysregulation is linked to severe intestinal disorders, including colorectal cancer (CRC) and inflammatory bowel disease (IBD). This review emphasizes the critical role of ISCs in maintaining epithelial renewal and how various factors disrupt their signaling pathways, jeopardizing intestinal health and contributing to diseases. It also underscores the importance of protecting ISCs function to mitigate the risk of inflammation-related disorders. It highlights how understanding these regulatory mechanisms could guide therapeutic strategies for preserving GI tract integrity and treating related conditions.
Collapse
Affiliation(s)
- Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
2
|
Shi YB, Fu L, Tanizaki Y. Intestinal remodeling during Xenopus metamorphosis as a model for studying thyroid hormone signaling and adult organogenesis. Mol Cell Endocrinol 2024; 586:112193. [PMID: 38401883 PMCID: PMC10999354 DOI: 10.1016/j.mce.2024.112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis. This involved complete degeneration of larval epithelium via programmed cell death and de novo formation of adult epithelium, with concurrent maturation of the muscles and connective tissue. Here, we will summarize our current understanding of the underlying molecular mechanisms, with a focus on more recent genetic and genome-wide studies.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Tanizaki Y, Shibata Y, Na W, Shi YB. Cell cycle activation in thyroid hormone-induced apoptosis and stem cell development during Xenopus intestinal metamorphosis. Front Endocrinol (Lausanne) 2023; 14:1184013. [PMID: 37265708 PMCID: PMC10230048 DOI: 10.3389/fendo.2023.1184013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Amphibian metamorphosis resembles mammalian postembryonic development, a period around birth when many organs mature into their adult forms and when plasma thyroid hormone (T3) concentration peaks. T3 plays a causative role for amphibian metamorphosis. This and its independence from maternal influence make metamorphosis of amphibians, particularly anurans such as pseudo-tetraploid Xenopus laevis and its highly related diploid species Xenopus tropicalis, an excellent model to investigate how T3 regulates adult organ development. Studies on intestinal remodeling, a process that involves degeneration of larval epithelium via apoptosis and de novo formation of adult stem cells followed by their proliferation and differentiation to form the adult epithelium, have revealed important molecular insights on T3 regulation of cell fate during development. Here, we review some evidence suggesting that T3-induced activation of cell cycle program is important for T3-induced larval epithelial cell death and de novo formation of adult intestinal stem cells.
Collapse
|
4
|
Fenneman AC, Bruinstroop E, Nieuwdorp M, van der Spek AH, Boelen A. A Comprehensive Review of Thyroid Hormone Metabolism in the Gut and Its Clinical Implications. Thyroid 2023; 33:32-44. [PMID: 36322786 DOI: 10.1089/thy.2022.0491] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: The gut is a target organ of thyroid hormone (TH) that exerts its action via the nuclear thyroid hormone receptor α1 (TRα1) expressed in intestinal epithelial cells. THs are partially metabolized via hepatic sulfation and glucuronidation, resulting in the production of conjugated iodothyronines. Gut microbiota play an important role in peripheral TH metabolism as they produce and secrete enzymes with deconjugation activity (β-glucuronidase and sulfatase), via which TH can re-enter the enterohepatic circulation. Summary: Intestinal epithelium homeostasis (the finely tuned balance between cell proliferation and differentiation) is controlled by the crosstalk between triiodothyronine and TRα1 and the presence of specific TH transporters and TH-activating and -inactivating enzymes. Patients and experimental murine models with a dominant-negative mutation in the TRα exhibit gross abnormalities in the morphology of the intestinal epithelium and suffer from severe symptoms of a dysfunctional gastrointestinal tract. Over the past decade, gut microbiota has been identified as an essential factor in health and disease, depending on its compositional and functional profile. This has led to a renewed interest in the so-called gut-thyroid axis. Disruption of gut microbial homeostasis (dysbiosis) is associated with autoimmune thyroid disease (AITD), including Hashimoto's thyroiditis, Graves' disease, and Graves' orbitopathy. These studies reviewed here provide new insights into the gut microbiota roles in thyroid disease pathogenesis and may be an initial step toward microbiota-based therapies in AITD. However, it should be noted that cause-effect mechanisms remain to be proven, for which prospective cohort studies, randomized clinical trials, and experimental studies are needed. Conclusion: This review aims at providing a comprehensive insight into the interplay between TH metabolism and gut homeostasis.
Collapse
Affiliation(s)
- Aline C Fenneman
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne H van der Spek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Chen Y, Zhang W, Pan Y, Chen W, Wang C, Yang W. Thyroid Function Before and After Laparoscopic Sleeve Gastrectomy in Patients with Obesity. Obes Surg 2022; 32:1954-1961. [PMID: 35364797 DOI: 10.1007/s11695-022-06035-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Effect of laparoscopic sleeve gastrectomy (LSG) on thyroid function of patients with obesity remains unclear. The aim of this study was to evaluate the changes in thyroid function before and after LSG in patients with obesity. METHODS Data was retrieved from a retrospectively collected database of patients with morbid obesity and normal thyroid function who received LSG. At 12 months after surgery, changes of thyroid-stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), and intact parathyroid hormone (iPTH) were evaluated. In addition, the correlation between thyroid hormone levels and body mass index (BMI) and other metabolic indicators and anthropometric parameters were analyzed. RESULTS Eighty-five patients were included in the study. The concentrations of FT3 (5.7 ± 0.7 vs 5.1 ± 0.6, p < 0.001) and TSH (2.2 ± 1.0 vs 1.9 ± 0.9, p = 0.002) significantly decreased 12 months postsurgery, while mean FT4 levels increased from12.0 ± 1.9 vs 12.4 ± 2.0 pmol/L (p = 0.013). Furthermore, mean iPTH decreased from 53.3 ± 48.3 to 38.7 ± 13.2 pg/mL (p = 0.011). Multiple stepwise regression analysis showed that changes in LDL levels were an independent factor contributing to changes in TSH levels (β = 0.362, p = 0.001). Moreover, TSH did not correlate with BMI. CONCLUSIONS In this study, FT3, TSH, and iPTH were decreased in euthyroid patients with obesity after LSG, while FT4 was significantly increased. Changes in TSH were positively correlated with LDL, but no statistically significant correlation was found with BMI. Additionally, FT3, FT4, and iPTH were correlated with VB12, age, and BMI, respectively.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Jinan University Institute of Obesity and Metabolic Disorders, Guangzhou, China
- Joint Institute of Metabolic Medicine Between State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong and Jinan University, Guangzhou, China
| | - Wen Zhang
- School of Nursing, Jinan University, Guangzhou, Guangdong, China
| | - Yongqin Pan
- Department of Thyroid Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weiju Chen
- School of Nursing, Jinan University, Guangzhou, Guangdong, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
- Jinan University Institute of Obesity and Metabolic Disorders, Guangzhou, China.
- Joint Institute of Metabolic Medicine Between State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong and Jinan University, Guangzhou, China.
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
- Jinan University Institute of Obesity and Metabolic Disorders, Guangzhou, China.
- Joint Institute of Metabolic Medicine Between State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong and Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Xue L, Bao L, Roediger J, Su Y, Shi B, Shi YB. Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine. Cell Biosci 2021; 11:113. [PMID: 34158114 PMCID: PMC8220849 DOI: 10.1186/s13578-021-00627-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Background Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse. Methods We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium. Results We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged. Conclusions Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00627-z.
Collapse
Affiliation(s)
- Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 182 Minyuan Road, Hongshan District, Wuhan, 430074, China.,Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.,Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Julia Roediger
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging and Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Abstract
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Yun-Bo Shi, Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 6A82, MSC 4480, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Shi YB, Shibata Y, Tanizaki Y, Fu L. The development of adult intestinal stem cells: Insights from studies on thyroid hormone-dependent anuran metamorphosis. VITAMINS AND HORMONES 2021; 116:269-293. [PMID: 33752821 DOI: 10.1016/bs.vh.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vertebrates organ development often takes place in two phases: initial formation and subsequent maturation into the adult form. This is exemplified by the intestine. In mouse, the intestine at birth has villus, where most differentiated epithelial cells are located, but lacks any crypts, where adult intestinal stem cells reside. The crypt is formed during the first 3 weeks after birth when plasma thyroid hormone (T3) levels are high. Similarly, in anurans, the intestine undergoes drastic remodeling into the adult form during metamorphosis in a process completely dependent on T3. Studies on Xenopus metamorphosis have revealed important clues on the formation of the adult intestine during metamorphosis. Here we will review our current understanding on how T3 induces the degeneration of larval epithelium and de novo formation of adult intestinal stem cells. We will also discuss the mechanistic conservations in intestinal development between anurans and mammals.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
9
|
Shibata Y, Tanizaki Y, Zhang H, Lee H, Dasso M, Shi YB. Thyroid Hormone Receptor Is Essential for Larval Epithelial Apoptosis and Adult Epithelial Stem Cell Development but Not Adult Intestinal Morphogenesis during Xenopus tropicalis Metamorphosis. Cells 2021; 10:cells10030536. [PMID: 33802526 PMCID: PMC8000126 DOI: 10.3390/cells10030536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Vertebrate postembryonic development is regulated by thyroid hormone (T3). Of particular interest is anuran metamorphosis, which offers several unique advantages for studying the role of T3 and its two nuclear receptor genes, TRα and TRβ, during postembryonic development. We have recently generated TR double knockout (TRDKO) Xenopus tropicalis animals and reported that TR is essential for the completion of metamorphosis. Furthermore, TRDKO tadpoles are stalled at the climax of metamorphosis before eventual death. Here we show that TRDKO intestine lacked larval epithelial cell death and adult stem cell formation/proliferation during natural metamorphosis. Interestingly, TRDKO tadpole intestine had premature formation of adult-like epithelial folds and muscle development. In addition, T3 treatment of premetamorphic TRDKO tadpoles failed to induce any metamorphic changes in the intestine. Furthermore, RNA-seq analysis revealed that TRDKO altered the expression of many genes in biological pathways such as Wnt signaling and the cell cycle that likely underlay the inhibition of larval epithelial cell death and adult stem cell development caused by removing both TR genes. Our data suggest that liganded TR is required for larval epithelial cell degeneration and adult stem cell formation, whereas unliganded TR prevents precocious adult tissue morphogenesis such as smooth-muscle development and epithelial folding.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Hangnoh Lee
- Section on Cell Cycle Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (H.L.); (M.D.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary Dasso
- Section on Cell Cycle Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (H.L.); (M.D.)
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
- Correspondence: ; Tel.: +1-301-402-1004; Fax: +1-301-402-1323
| |
Collapse
|
10
|
Tanizaki Y, Shibata Y, Zhang H, Shi YB. Analysis of Thyroid Hormone Receptor α-Knockout Tadpoles Reveals That the Activation of Cell Cycle Program Is Involved in Thyroid Hormone-Induced Larval Epithelial Cell Death and Adult Intestinal Stem Cell Development During Xenopus tropicalis Metamorphosis. Thyroid 2021; 31:128-142. [PMID: 32515287 PMCID: PMC7840310 DOI: 10.1089/thy.2020.0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: There are two highly conserved thyroid hormone (triiodothyronine [T3]) receptor (TR) genes, TRα and TRβ, in all vertebrates, and the expression of TRα but not TRβ is activated earlier than T3 synthesis during development. In human, high levels of T3 are present during the several months around birth, and T3 deficiency during this period causes severe developmental abnormalities including skeletal and intestinal defects. It is, however, difficult to study this period in mammals as the embryos and neonates depend on maternal supply of nutrients for survival. However, Xenopus tropicalis undergoes a T3-dependent metamorphosis, which drastically changes essentially every organ in a tadpole. Of interest is intestinal remodeling, which involves near complete degeneration of the larval epithelium through apoptosis. Concurrently, adult intestinal stem cells are formed de novo and subsequently give rise to the self-renewing adult epithelial system, resembling intestinal maturation around birth in mammals. We have previously demonstrated that T3 signaling is essential for the formation of adult intestinal stem cells during metamorphosis. Methods: We studied the function of endogenous TRα in the tadpole intestine by using knockout animals and RNA-seq analysis. Results: We observed that removing endogenous TRα caused defects in intestinal remodeling, including drastically reduced larval epithelial cell death and adult intestinal stem cell proliferation. Using RNA-seq on intestinal RNA from premetamorphic wild-type and TRα-knockout tadpoles treated with or without T3 for one day, before any detectable T3-induced cell death and stem cell formation in the tadpole intestine, we identified more than 1500 genes, which were regulated by T3 treatment of the wild-type but not TRα-knockout tadpoles. Gene Ontology and biological pathway analyses revealed that surprisingly, these TRα-regulated genes were highly enriched with cell cycle-related genes, in addition to genes related to stem cells and apoptosis. Conclusions: Our findings suggest that TRα-mediated T3 activation of the cell cycle program is involved in larval epithelial cell death and adult epithelial stem cell development during intestinal remodeling.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 49 Room 6A82, Bethesda, MD 20814, USA
| |
Collapse
|
11
|
Na W, Fu L, Luu N, Shi YB. Thyroid hormone directly activates mitochondrial fission process 1 (Mtfp1) gene transcription during adult intestinal stem cell development and proliferation in Xenopus tropicalis. Gen Comp Endocrinol 2020; 299:113590. [PMID: 32827515 DOI: 10.1016/j.ygcen.2020.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (T3) regulates vertebrate development via T3 receptors (TRs). T3 level peaks during postembryonic development, a period around birth in mammals or metamorphosis in anurans. Anuran metamorphosis offers many advantages for studying T3 and TR function in vivo largely because of its total dependent on T3 and the dramatic changes affecting essentially all organs/tissues that can be easily manipulated. Earlier studies have shown that TRs are both necessary and sufficient for mediating the metamorphic effects of T3. Many candidate TR target genes have been identified during Xenopus tropicalis intestinal metamorphosis, a process that involves apoptotic degeneration of most of the larval epithelial cells and de novo development of adult epithelial stem cells. Among these putative TR target genes is mitochondrial fission process 1 (Mtfp1), a nuclear-encoded mitochondrial gene. Here, we report that Mtfp1gene expression peaks in the intestine during both natural and T3-induced metamorphosis when adult epithelial stem cell development and proliferation take place. Furthermore, we show that Mtfp1 contains a T3-response element within the first intron that is bound by TR to mediate T3-induced local histone H3K79 methylation and RNA polymerase recruitment in the intestine during metamorphosis. Additionally, we demonstrate that the Mtfp1 promoter can be activated by T3 in a reconstituted frog oocyte system in vivo and that this activation is dependent on the intronic TRE. These findings suggest that T3 activates Mtfp1 gene directly via the intronic TRE and that Mtfp1 in turn facilitate adult intestinal stem cell development/proliferation by affecting mitochondrial fission process.
Collapse
Affiliation(s)
- Wonho Na
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Direct activation of tRNA methyltransferase-like 1 (Mettl1) gene by thyroid hormone receptor implicates a role in adult intestinal stem cell development and proliferation during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:60. [PMID: 32391142 PMCID: PMC7197180 DOI: 10.1186/s13578-020-00423-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Thyroid hormone (T3) plays an important role in vertebrate development. Compared to the postembryonic development of uterus-enclosed mammalian embryos, T3-dependent amphibian metamorphosis is advantageous for studying the function of T3 and T3 receptors (TRs) during vertebrate development. The effects of T3 on the metamorphosis of anurans such as Xenopus tropicalis is known to be mediated by TRs. Many putative TR target genes have been identified previously. Among them is the tRNA methyltransferase Mettl1. Results We studied the regulation of Mettl1 gene by T3 during intestinal metamorphosis, a process involves near complete degeneration of the larval epithelial cells via apoptosis and de novo formation of adult epithelial stem cells and their subsequent proliferation and differentiation. We observed that Mettl1 was activated by T3 in the intestine during both natural and T3-induced metamorphosis and that its mRNA level peaks at the climax of intestinal remodeling. We further showed that Mettl1 promoter could be activated by liganded TR via a T3 response element upstream of the transcription start site in vivo. More importantly, we found that TR binding to the TRE region correlated with the increase in the level of H3K79 methylation, a transcription activation histone mark, and the recruitment of RNA polymerase II by T3 during metamorphosis. Conclusions Our findings suggest that Mettl1 is activated by liganded TR directly at the transcriptional level via the TRE in the promoter region in the intestine during metamorphosis. Mettl1 in turn regulate target tRNAs to affect translation, thus facilitating stem cell formation and/or proliferation during intestinal remodeling.
Collapse
|
13
|
Shibata Y, Tanizaki Y, Shi YB. Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:46. [PMID: 32231780 PMCID: PMC7099810 DOI: 10.1186/s13578-020-00411-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid hormone (T3) is critical for development in all vertebrates. The mechanism underlying T3 effect has been difficult to study due to the uterus-enclosed nature of mammalian embryos. Anuran metamorphosis, which is dependent on T3 but independent of maternal influence, is an excellent model to study the roles of T3 and its receptors (TRs) during vertebrate development. We and others have reported various effects of TR knockout (TRα and TRβ) during Xenopus tropicalis development. However, these studies were largely focused on external morphology. Results We have generated TRβ knockout animals containing an out-frame-mutation of 5 base deletion by using the CRISPR/Cas9 system and observed that TRβ knockout does not affect premetamorphic tadpole development. We have found that the basal expression of direct T3-inducible genes is increased but their upregulation by T3 is reduced in the intestine of premetamorphic homozygous TRβ knockout animals, accompanied by reduced target binding by TR. More importantly, we have observed reduced adult stem cell proliferation and larval epithelial apoptosis in the intestine during T3-induced metamorphosis. Conclusions Our data suggest that TRβ plays a critical role in intestinal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
14
|
Bao L, Roediger J, Park S, Fu L, Shi B, Cheng SY, Shi YB. Thyroid Hormone Receptor Alpha Mutations Lead to Epithelial Defects in the Adult Intestine in a Mouse Model of Resistance to Thyroid Hormone. Thyroid 2019; 29:439-448. [PMID: 30595106 PMCID: PMC6437623 DOI: 10.1089/thy.2018.0340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The thyroid hormone triiodothyronine (T3) is critical for vertebrate development and affects the function of many adult tissues and organs. Its genomic effects are mediated by thyroid hormone nuclear receptors (TRs) present in all vertebrates. The discovery of patients with resistance to thyroid hormone (RTHβ) >50 years ago and subsequent identification of genetic mutations in only the THRB gene in these patients suggest that mutations in the THRA gene may have different pathological manifestations in humans. Indeed, the recent discovery of a number of human patients carrying heterozygous mutations in the THRA gene (RTHα) revealed a distinct phenotype that was not observed in RTH patients with THRB gene mutations (RTHβ). That is, RTHα patients have constipation, implicating intestinal defects caused by THRA gene mutations. METHODS To determine how TRα1 mutations affect the intestine, this study analyzed a mutant mouse expressing a strong dominantly negative TRα1 mutant (denoted TRα1PV; Thra1PV mice). This mutant mouse faithfully reproduces RTHα phenotypes observed in patients. RESULTS In adult Thra1PV/+ mice, constipation was observed just like in patients with TRα mutations. Importantly, significant intestinal defects were discovered, including shorter villi and increased differentiated cells in the crypt, accompanied by reduced stem-cell proliferation in the intestine. CONCLUSIONS The findings suggest that further analysis of this mouse model should help to reveal the molecular and physiological defects in the intestine caused by TRα mutations and to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Julia Roediger
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Sunmi Park
- Gene Regulation Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Sheue-Yann Cheng
- Gene Regulation Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 49 Room 6A82, Bethesda, MD 20892
| |
Collapse
|
15
|
Fu L, Yin J, Shi YB. Involvement of epigenetic modifications in thyroid hormone-dependent formation of adult intestinal stem cells during amphibian metamorphosis. Gen Comp Endocrinol 2019; 271:91-96. [PMID: 30472386 PMCID: PMC6322911 DOI: 10.1016/j.ygcen.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022]
Abstract
Amphibian metamorphosis has long been used as model to study postembryonic development in vertebrates, a period around birth in mammals when many organs/tissues mature into their adult forms and is characterized by peak levels of plasma thyroid hormone (T3). Of particular interest is the remodeling of the intestine during metamorphosis. In the highly-related anurans Xenopus laevis and Xenopus tropicalis, this remodeling process involves larval epithelial cell death and de novo formation of adult stem cells via dedifferentiation of some larval cells under the induction of T3, making it a valuable system to investigate how adult organ-specific stem cells are formed during vertebrate development. Here, we will review some studies by us and others on how T3 regulates the formation of the intestinal stem cells during metamorphosis. We will highlight the involvement of nucleosome removal and a positive feedback mechanism involving the histone methyltransferases in gene regulation by T3 receptor (TR) during this process.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States
| | - Jessica Yin
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States.
| |
Collapse
|
16
|
Okada M, Shi YB. The balance of two opposing factors Mad and Myc regulates cell fate during tissue remodeling. Cell Biosci 2018; 8:51. [PMID: 30237868 PMCID: PMC6139171 DOI: 10.1186/s13578-018-0249-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/08/2018] [Indexed: 02/04/2023] Open
Abstract
Cell proliferation and differentiation are two distinct yet coupled processes in development in diverse organisms. Understanding the molecular mechanisms that regulate this process is a central theme in developmental biology. The intestinal epithelium is a highly complex tissue that relies on the coordination of cell proliferation within the crypts and apoptosis mainly at the tip of the villi, preservation of epithelial function through differentiation, and homeostatic cell migration along the crypt-villus axis. Small populations of adult stem cells are responsible for the self-renewal of the epithelium throughout life. Surprisingly, much less is known about the mechanisms governing the remodeling of the intestine from the embryonic to adult form. Furthermore, it remains unknown how thyroid hormone (T3) affects stem cell development during this postembryonic process, which is around birth in mammals when T3 level increase rapidly in the plasma. Tissue remodeling during amphibian metamorphosis is very similar to the maturation of the mammalian organs around birth in mammals and is regulated by T3. In particular, many unique features of Xenopus intestinal remodeling during metamorphosis has enabled us and others to elucidate how adult stem cells are formed during postembryonic development in vertebrates. In this review, we will focus on recent findings on the role of Mad1/c-Myc in cell death and proliferation during intestinal metamorphosis and discuss how a Mad1-c-Myc balance controls intestinal epithelial cell fate during this T3-dependent process.
Collapse
Affiliation(s)
- Morihiro Okada
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD 20892 USA
| |
Collapse
|
17
|
Okada M, Shi YB. EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development. FASEB J 2017; 32:431-439. [PMID: 28928245 DOI: 10.1096/fj.201700424r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/05/2017] [Indexed: 11/11/2022]
Abstract
The gene ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI encode zinc-finger proteins that have been recognized as important oncogenes in various types of cancer. In contrast to the established role of EVI and MDS/EVI in cancer development, their potential function during vertebrate postembryonic development, especially in organ-specific adult stem cells, is unclear. Amphibian metamorphosis is strikingly similar to postembryonic development around birth in mammals, with both processes taking place when plasma thyroid hormone (T3) levels are high. Using the T3-dependent metamorphosis in Xenopus tropicalis as a model, we show here that high levels of EVI and MDS/EVI are expressed in the intestine at the climax of metamorphosis and are induced by T3. By using the transcription activator-like effector nuclease gene editing technology, we have knocked out both EVI and MDS/EVI and have shown that EVI and MDS/EVI are not essential for embryogenesis and premetamorphosis in X. tropicalis On the other hand, knocking out EVI and MDS/EVI causes severe retardation in the growth and development of the tadpoles during metamorphosis and leads to tadpole lethality at the climax of metamorphosis. Furthermore, the homozygous-knockout animals have reduced adult intestinal epithelial stem cell proliferation at the end of metamorphosis (for the few that survive through metamorphosis) or during T3-induced metamorphosis. These findings reveal a novel role of EVI and/or MDS/EVI in regulating the formation and/or proliferation of adult intestinal adult stem cells during postembryonic development in vertebrates.-Okada, M., Shi, Y.-B. EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development.
Collapse
Affiliation(s)
- Morihiro Okada
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Genome-wide identification of thyroid hormone receptor targets in the remodeling intestine during Xenopus tropicalis metamorphosis. Sci Rep 2017; 7:6414. [PMID: 28743885 PMCID: PMC5527017 DOI: 10.1038/s41598-017-06679-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
Thyroid hormone (T3) affects development and metabolism in vertebrates. We have been studying intestinal remodeling during T3-dependent Xenopus metamorphosis as a model for organ maturation and formation of adult organ-specific stem cells during vertebrate postembryonic development, a period characterized by high levels of plasma T3. T3 is believed to affect development by regulating target gene transcription through T3 receptors (TRs). While many T3 response genes have been identified in different animal species, few have been shown to be direct target genes in vivo, especially during development. Here we generated a set of genomic microarray chips covering about 8000 bp flanking the predicted transcription start sites in Xenopus tropicalis for genome wide identification of TR binding sites. By using the intestine of premetamorphic tadpoles treated with or without T3 and for chromatin immunoprecipitation assays with these chips, we determined the genome-wide binding of TR in the control and T3-treated tadpole intestine. We further validated TR binding in vivo and analyzed the regulation of selected genes. We thus identified 278 candidate direct TR target genes. We further provided evidence that these genes are regulated by T3 and likely involved in the T3-induced formation of adult intestinal stem cells during metamorphosis.
Collapse
|
19
|
A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis. Cell Death Dis 2017; 8:e2787. [PMID: 28492553 PMCID: PMC5520718 DOI: 10.1038/cddis.2017.198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/24/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc–Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad–Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.
Collapse
|
20
|
Luu N, Fu L, Fujimoto K, Shi YB. Direct Regulation of Histidine Ammonia-Lyase 2 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cells. Endocrinology 2017; 158:1022-1033. [PMID: 28323994 PMCID: PMC5460799 DOI: 10.1210/en.2016-1558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023]
Abstract
Most vertebrate organs use adult stem cells to maintain homeostasis and ensure proper repair when damaged. How such organ-specific stem cells are formed during vertebrate development is largely unexplored. We have been using the thyroid hormone (T3)-dependent amphibian metamorphosis to address this issue. Early studies in Xenopus laevis have shown that intestinal remodeling involves complete degeneration of the larval epithelium and de novo formation of adult stem cells through dedifferentiation of some larval epithelial cells. We have further discovered that the histidine ammonia-lyase (HAL; also known as histidase or histidinase)-2 gene is strongly and specifically activated by T3 in the proliferating adult stem cells of the intestine during metamorphosis, implicating a role of histidine catabolism in the development of adult intestinal stem cells. To determine the mechanism by which T3 regulates the HAL2 gene, we have carried out bioinformatics analysis and discovered a putative T3 response element (TRE) in the HAL2 gene. Importantly, we show that this TRE is bound by T3 receptor (TR) in the intestine during metamorphosis. The TRE is capable of binding to the heterodimer of TR and 9-cis retinoic acid receptor (RXR) in vitro and mediate transcriptional activation by liganded TR/RXR in frog oocytes. More importantly, the HAL2 promoter containing the TRE can drive T3-dependent reporter gene expression to mimic endogenous HAL2 expression in transgenic animals. Our results suggest that the TRE mediates the induction of HAL2 gene by T3 in the developing adult intestinal stem cells during metamorphosis.
Collapse
Affiliation(s)
- Nga Luu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Kenta Fujimoto
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
Sun G, Roediger J, Shi YB. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis. Rev Endocr Metab Disord 2016; 17:559-569. [PMID: 27554108 DOI: 10.1007/s11154-016-9380-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Julia Roediger
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Demircan T, İlhan AE, Aytürk N, Yıldırım B, Öztürk G, Keskin İ. A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl. Acta Histochem 2016; 118:746-759. [PMID: 27436816 DOI: 10.1016/j.acthis.2016.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Axolotl (Ambystoma Mexicanum) has been emerging as a promising model in stem cell and regeneration researches due to its exceptional regenerative capacity. Although it represents lifelong lasting neoteny, induction to metamorphosis with thyroid hormones (THs) treatment advances the utilization of Axolotl in various studies. It has been reported that amphibians undergo anatomical and histological remodeling during metamorphosis and this transformation is crucial for adaptation to terrestrial conditions. However, there is no comprehensive histological investigation regarding the morphological alterations of Axolotl organs and tissues throughout the metamorphosis. Here, we reveal the histological differences or resemblances between the neotenic and metamorphic axolotl tissues. In order to examine structural features and cellular organization of Axolotl organs, we performed Hematoxylin & Eosin, Luxol-Fast blue, Masson's trichrome, Alcian blue, Orcein and Weigart's staining. Stained samples from brain, gallbladder, heart, intestine, liver, lung, muscle, skin, spleen, stomach, tail, tongue and vessel were analyzed under the light microscope. Our findings contribute to the validation of the link between newly acquired functions and structural changes of tissues and organs as observed in tail, skin, gallbladder and spleen. We believe that this descriptive work provides new insights for a better histological understanding of both neotenic and metamorphic Axolotl tissues.
Collapse
|
23
|
Fu L, Shi YB. The Sox transcriptional factors: Functions during intestinal development in vertebrates. Semin Cell Dev Biol 2016; 63:58-67. [PMID: 27567710 DOI: 10.1016/j.semcdb.2016.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Abstract
The intestine has long been studied as a model for adult stem cells due to the life-long self-renewal of the intestinal epithelium through the proliferation of the adult intestinal stem cells. Recent evidence suggests that the formation of adult intestinal stem cells in mammals takes place during the thyroid hormone-dependent neonatal period, also known as postembryonic development, which resembles intestinal remodeling during frog metamorphosis. Studies on the metamorphosis in Xenopus laevis have revealed that many members of the Sox family, a large family of DNA binding transcription factors, are upregulated in the intestinal epithelium during the formation and/or proliferation of the intestinal stem cells. Similarly, a number of Sox genes have been implicated in intestinal development and pathogenesis in mammals. Futures studies are needed to determine the expression and potential involvement of this important gene family in the development of the adult intestinal stem cells. These include the analyses of the expression and regulation of these and other Sox genes during postembryonic development in mammals as well as functional investigations in both mammals and amphibians by using the recently developed gene knockout technologies.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States.
| |
Collapse
|
24
|
Okada M, Miller TC, Fu L, Shi YB. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis. Endocrinology 2015; 156:3381-93. [PMID: 26086244 PMCID: PMC4541628 DOI: 10.1210/en.2015-1190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.
Collapse
Affiliation(s)
- Morihiro Okada
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas C Miller
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
25
|
Wen L, Hasebe T, Miller TC, Ishizuya-Oka A, Shi YB. A requirement for hedgehog signaling in thyroid hormone-induced postembryonic intestinal remodeling. Cell Biosci 2015; 5:13. [PMID: 25859319 PMCID: PMC4391142 DOI: 10.1186/s13578-015-0004-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/13/2015] [Indexed: 12/25/2022] Open
Abstract
Background Intestinal remodeling during amphibian metamorphosis has long been studied as a model for the formation of the adult organs in vertebrates, especially the formation of adult organ-specific stem cells. Like all other processes during metamorphosis, this process is controlled by thyroid hormone (T3), which affects cell fate and behavior through transcriptional regulation of target genes by binding to T3 receptors (TRs). Earlier studies have shown that Sonic hedgehog (Shh) is induced by T3 in the developing adult stem cells and that the Shh receptor and other downstream components are present in the connective tissue and at lower levels in the muscles at the climax of intestinal remodeling. However, no in vivo studies have carried out to investigate whether Shh produced in the adult cells can regulate the connective tissue to promote intestinal maturation. Results We have addressed this issue by treating tadpoles with Shh inhibitor cyclopamine. We showed that cyclopamine but not the structurally related chemical tomatidine inhibited the expression of Shh response genes BMP4, Snai2, and Twist1. More importantly, we showed that cyclopamine reduced the cell proliferation of both the developing adult stem cells as well as cells in the other intestinal tissues at the climax of metamorphosis, leading to delayed/incomplete remodeling of the intestine at the end of metamorphosis. We further revealed that both Snai2 and Twist1 were strongly upregulated during metamorphosis in the intestine and their expression was restricted to the connective tissue. Conclusions Our results suggest that Shh indeed signals the connective tissue whereby it can increase adult stem cell proliferation and promote formation of the adult intestine.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18 T, Rm. 106, Bethesda, MD 20892 USA
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023 Japan
| | - Thomas C Miller
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18 T, Rm. 106, Bethesda, MD 20892 USA
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023 Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18 T, Rm. 106, Bethesda, MD 20892 USA
| |
Collapse
|
26
|
Contreras-Jurado C, Lorz C, García-Serrano L, Paramio JM, Aranda A. Thyroid hormone signaling controls hair follicle stem cell function. Mol Biol Cell 2015; 26:1263-72. [PMID: 25657324 PMCID: PMC4454174 DOI: 10.1091/mbc.e14-07-1251] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mice lacking thyroid hormone receptors, bulge stem cells of the hair follicles present epigenetic alterations and a functional defect in their mobilization out of the niche. This is related to aberrant activation of Smad signaling and reduced nuclear β-catenin accumulation, an important component of stem cell mobilization. Observations in thyroid patients and experimental animals show that the skin is an important target for the thyroid hormones. We previously showed that deletion in mice of the thyroid hormone nuclear receptors TRα1 and TRβ (the main thyroid hormone–binding isoforms) results in impaired epidermal proliferation, hair growth, and wound healing. Stem cells located at the bulges of the hair follicles are responsible for hair cycling and contribute to the regeneration of the new epidermis after wounding. Therefore a reduction in the number or function of the bulge stem cells could be responsible for this phenotype. Bulge cells show increased levels of epigenetic repressive marks, can retain bromodeoxyuridine labeling for a long time, and have colony-forming efficiency (CFE) in vitro. Here we demonstrate that mice lacking TRs do not have a decrease of the bulge stem cell population. Instead, they show an increase of label-retaining cells (LRCs) in the bulges and enhanced CFE in vitro. Reduced activation of stem cells leading to their accumulation in the bulges is indicated by a strongly reduced response to mobilization by 12-O-tetradecanolyphorbol-13-acetate. Altered function of the bulge stem cells is associated with aberrant activation of Smad signaling, leading to reduced nuclear accumulation of β-catenin, which is crucial for stem cell proliferation and mobilization. LRCs of TR-deficient mice also show increased levels of epigenetic repressive marks. We conclude that thyroid hormone signaling is an important determinant of the mobilization of stem cells out of their niche in the hair bulge. These findings correlate with skin defects observed in mice and alterations found in human thyroid disorders.
Collapse
Affiliation(s)
- Constanza Contreras-Jurado
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit, Division of Biomedicine, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain
| | - Laura García-Serrano
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jesus M Paramio
- Molecular Oncology Unit, Division of Biomedicine, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
27
|
Francipane MG, Lagasse E. Maturation of embryonic tissues in a lymph node: a new approach for bioengineering complex organs. Organogenesis 2015; 10:323-31. [PMID: 25531035 PMCID: PMC4750546 DOI: 10.1080/15476278.2014.995509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Given our recent finding that the lymph node (LN) can serve as an in vivo factory to generate complex structures like liver, pancreas, and thymus, we investigated whether LN could also support early development and maturation from several mid-embryonic (E14.5/15.5) mouse tissues including brain, thymus, lung, stomach, and intestine. Here we observed brain maturation in LN by showing the emergence of astrocytes with well-developed branching processes. Thymus maturation in LN was monitored by changes in host immune cells. Finally, newly terminally differentiated mucus-producing cells were identified in ectopic tissues generated by transplantation of lung, stomach and intestine in LN. Thus, we speculate the LN offers a unique approach to study the intrinsic and extrinsic differentiation potential of cells and tissues during early development, and provides a new site for bioengineering complex body parts.
Collapse
Key Words
- 21wEcT, 21-week ectopic thymus
- 2D, 2-dimensional
- 3D, 3-dimensional
- 3wEcI, 3-week ectopic intestine
- 3wEcL, 3-week ectopic lung
- 3wEcS, 3-week ectopic stomach
- 6wEcT, 6-week ectopic thymus
- AdT, adult thymus
- Aire, autoimmune regulator
- CgA, chromogranin A
- E14.5/15.5, embryonic day 14.5 to 15.5
- ECM, extracellular matrix
- ER-TR7, reticular fibroblasts and reticular fibers
- EmI, embryonic intestine
- EmL, embryonic lung
- EmS, embryonic stomach
- EmT, embryonic thymus
- EpCAM1, epithelial cell adhesion molecule 1
- FACS, fluorescence-activated cell sorting
- FAH, fumarylacetoacetate hydrolase
- GFAPδ, glial fibrillary acid protein delta
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- K5, keratin 5
- K8, keratin 8
- LN, lymph node
- MAP-2, Microtubule-associated protein 2
- bioreactor
- cTEC, cortical thymic epithelial cell
- chimerism
- development
- lymph node
- mTEC, medullary thymic epithelial cell
- mTOR, mammalian target of rapamycin
- terminal differentiation
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- a McGowan Institute for Regenerative Medicine; Department of Pathology ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA
| | | |
Collapse
|
28
|
Sun G, Fu L, Wen L, Shi YB. Activation of Sox3 gene by thyroid hormone in the developing adult intestinal stem cell during Xenopus metamorphosis. Endocrinology 2014; 155:5024-32. [PMID: 25211587 PMCID: PMC4239430 DOI: 10.1210/en.2014-1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences (G.S.), Wuhan University, Wuhan 430072, People's Republic of China; and Section on Molecular Morphogenesis (L.F., L.W., Y.-B.S.), Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
29
|
Sun G, Fu L, Shi YB. Epigenetic regulation of thyroid hormone-induced adult intestinal stem cell development during anuran metamorphosis. Cell Biosci 2014; 4:73. [PMID: 25937894 PMCID: PMC4417507 DOI: 10.1186/2045-3701-4-73] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022] Open
Abstract
Epigenetic modifications of histones are emerging as key factors in gene regulation by diverse transcription factors. Their roles during vertebrate development and pathogenesis are less clear. The causative effect of thyroid hormone (T3) on amphibian metamorphosis and the ability to manipulate this process for molecular and genetic studies have led to the demonstration that T3 receptor (TR) is necessary and sufficient for Xenopus metamorphosis, a process that resembles the postembryonic development (around birth) in mammals. Importantly, analyses during metamorphosis have provided some of the first in vivo evidence for the involvement of histone modifications in gene regulation by TR during vertebrate development. Furthermore, expression and functional studies suggest that various histone modifying epigenetic enzymes likely participate in multiple steps during the formation of adult intestinal stem cells during metamorphosis. The similarity between intestinal remodeling and the maturation of the mammalian intestine around birth when T3 levels are high suggests conserved roles for the epigenetic enzymes in mammalian adult intestinal stem cell development and/or proliferation.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 P.R. China
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, Maryland 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, Maryland 20892 USA
| |
Collapse
|
30
|
Luongo C, Ambrosio R, Salzano S, Dlugosz AA, Missero C, Dentice M. The sonic hedgehog-induced type 3 deiodinase facilitates tumorigenesis of basal cell carcinoma by reducing Gli2 inactivation. Endocrinology 2014; 155:2077-88. [PMID: 24693967 PMCID: PMC5393316 DOI: 10.1210/en.2013-2108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thyroid hormone (TH) is an important regulator of growth, development, and metabolism. Most of the active TH T3 is generated by peripheral TH metabolism mediated by the iodothyronine deiodinases. Type 3 deiodinase (D3) inactivates T3 via specific deiodination reactions. It is an oncofetal protein frequently expressed in neoplastic tissues and is a direct target of the sonic hedgehog (Shh) pathway in basal cell carcinomas (BCCs). However, the molecular mechanisms triggered by T3 in BCC are still mostly unrevealed. Here, we demonstrate that D3 action is critical in the proliferation and survival of BCC cells. D3 depletion or T3 treatment induce apoptosis of BCC cells and attenuate Shh signaling. This is achieved through a direct impairment of Gli2 protein stability by T3. T3 induces protein kinase A, which in turn destabilizes Gli2 protein via its C-terminal degron. Finally, in a mouse model of BCC, T3-topical treatment significantly reduces tumor growth. These results demonstrate the existence of a previously unrecognized cross talk between TH and Gli2 oncogene, providing functional and mechanistic evidence of the involvement of TH metabolism in Shh-induced cancer. TH-mediated Gli2 inactivation would be beneficial for therapeutically purposes, because the inhibition of Shh-Gli2 signaling is an attractive target for several anticancer drugs, currently in clinical trials.
Collapse
Affiliation(s)
- Cristina Luongo
- Department of Clinical Medicine Surgery (C.L., M.D.), University of Naples Federico II, 80131 Naples, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Studio di Diagnostica Nucleare (R.A.), 80142 Naples, Italy; Institute of Experimental Endocrinology and Oncology G. Salvatore-Consiglio Nazionale delle Ricerche (S.S.), 80131 Naples, Italy; Department of Dermatology and Comprehensive Cancer Center (A.A.D.), University of Michigan, Ann Arbor, Michigan 48109; and Centro di Ingegneria Genetica Biotecnologie Avanzate Scarl (C.M.), 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Thyroid hormone (TH) has long been recognized as a major modulator of metabolic efficiency, energy expenditure, and thermogenesis. TH effects in regulating metabolic efficiency are transduced by controlling the coupling of mitochondrial oxidative phosphorylation and the cycling of extramitochondrial substrate/futile cycles. However, despite our present understanding of the genomic and nongenomic modes of action of TH, its control of mitochondrial coupling still remains elusive. This review summarizes historical and up-to-date findings concerned with TH regulation of metabolic energetics, while integrating its genomic and mitochondrial activities. It underscores the role played by TH-induced gating of the mitochondrial permeability transition pore (PTP) in controlling metabolic efficiency. PTP gating may offer a unified target for some TH pleiotropic activities and may serve as a novel target for synthetic functional thyromimetics designed to modulate metabolic efficiency. PTP gating by long-chain fatty acid analogs may serve as a model for such strategy.
Collapse
Affiliation(s)
- Einav Yehuda-Shnaidman
- Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel 91120
| | | | | |
Collapse
|
32
|
Luu N, Wen L, Fu L, Fujimoto K, Shi YB, Sun G. Differential regulation of two histidine ammonia-lyase genes during Xenopus development implicates distinct functions during thyroid hormone-induced formation of adult stem cells. Cell Biosci 2013; 3:43. [PMID: 24499573 PMCID: PMC3874607 DOI: 10.1186/2045-3701-3-43] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/30/2013] [Indexed: 11/16/2022] Open
Abstract
Background Organ-specific, adult stem cells are essential for organ-homeostasis and tissue repair and regeneration. The formation of such stem cells during vertebrate development remains to be investigated. Frog metamorphosis offers an excellent opportunity to study the formation of adult stem cells as this process involves essentially the transformations of all larval tissues/organs into the adult form. Of particular interest is the remodeling of the intestine. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells through dedifferentiation of some larval epithelial cells. A major advantage of this metamorphosis model is its total dependence on thyroid hormone (T3). In an effort to identify genes that are important for stem cell development, we have previously carried out tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis. Results We report the detailed characterization of one of the genes thus identified, the histidine ammonia-lyase (HAL) gene, which encodes an enzyme known as histidase or histidinase. We show that there are two duplicated HAL genes, HAL1 and HAL2, in both Xenopus laevis and Xenopus tropicalis, a highly related but diploid species. Interestingly, only HAL2 is highly upregulated by T3 and appears to be specifically expressed in the adult intestinal progenitor/stem cells while HAL1 is not expressed in the intestine during metamorphosis. Furthermore, when analyzed in whole animals, HAL1 appears to be expressed only during embryogenesis but not metamorphosis while the opposite appears to be true for HAL2. Conclusions Our results suggest that the duplicated HAL genes have distinct functions with HAL2 likely involved in the formation and/or proliferation of the adult stem cells during metamorphosis.
Collapse
Affiliation(s)
- Nga Luu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., 20892 Bethesda, Maryland, USA
| | - Luan Wen
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., 20892 Bethesda, Maryland, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., 20892 Bethesda, Maryland, USA
| | - Kenta Fujimoto
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., 20892 Bethesda, Maryland, USA.,Present address: Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, 350-1241 Hidaka-shi, Saitama, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., 20892 Bethesda, Maryland, USA
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, 430072 Wuhan, P.R. China
| |
Collapse
|
33
|
Sun G, Heimeier RA, Fu L, Hasebe T, Das B, Ishizuya-Oka A, Shi YB. Expression profiling of intestinal tissues implicates tissue-specific genes and pathways essential for thyroid hormone-induced adult stem cell development. Endocrinology 2013; 154:4396-407. [PMID: 23970787 PMCID: PMC3800751 DOI: 10.1210/en.2013-1432] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The study of the epithelium during development in the vertebrate intestine touches upon many contemporary aspects of biology: to name a few, the formation of the adult stem cells (ASCs) essential for the life-long self-renewal and the balance of stem cell activity for renewal vs cancer development. Although extensive analyses have been carried out on the property and functions of the adult intestinal stem cells in mammals, little is known about their formation during development due to the difficulty of manipulating late-stage, uterus-enclosed embryos. The gastrointestinal tract of the amphibian Xenopus laevis is an excellent model system for the study of mammalian ASC formation, cell proliferation, and differentiation. During T3-dependent amphibian metamorphosis, the digestive tract is extensively remodeled from the larval to the adult form for the adaptation of the amphibian from its aquatic herbivorous lifestyle to that of a terrestrial carnivorous frog. This involves de novo formation of ASCs that requires T3 signaling in both the larval epithelium and nonepithelial tissues. To understand the underlying molecular mechanisms, we have characterized the gene expression profiles in the epithelium and nonepithelial tissues by using cDNA microarrays. Our results revealed that T3 induces distinct tissue-specific gene regulation programs associated with the remodeling of the intestine, particularly the formation of the ASCs, and further suggested the existence of potentially many novel stem cell-associated genes, at least in the intestine during development.
Collapse
Affiliation(s)
- Guihong Sun
- National Institutes of Health, National Institute of Child Health and Human Development, Laboratory of Gene Regulation and Development, Building 18T, Room 106, 18 Library Drive, MSC 5431, Bethesda, Maryland 20892; Rachel A. Heimeier, Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; or Atsuko Ishizuya-Oka, Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan. , , or
| | | | | | | | | | | | | |
Collapse
|
34
|
Hasebe T, Fu L, Miller TC, Zhang Y, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells. Cell Biosci 2013; 3:18. [PMID: 23547658 PMCID: PMC3621685 DOI: 10.1186/2045-3701-3-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
The mammalian intestine has long been used as a model to study organ-specific adult stem cells, which are essential for organ repair and tissue regeneration throughout adult life. The establishment of the intestinal epithelial cell self-renewing system takes place during perinatal development when the villus-crypt axis is established with the adult stem cells localized in the crypt. This developmental period is characterized by high levels of plasma thyroid hormone (T3) and T3 deficiency is known to impair intestinal development. Determining how T3 regulates adult stem cell development in the mammalian intestine can be difficult due to maternal influences. Intestinal remodeling during amphibian metamorphosis resembles perinatal intestinal maturation in mammals and its dependence on T3 is well established. A major advantage of the amphibian model is that it can easily be controlled by altering the availability of T3. The ability to manipulate and examine this relatively rapid and localized formation of adult stem cells has greatly assisted in the elucidation of molecular mechanisms regulating their formation and further revealed evidence that supports conservation in the underlying mechanisms of adult stem cell development in vertebrates. Furthermore, genetic studies in Xenopus laevis indicate that T3 actions in both the epithelium and the rest of the intestine, most likely the underlying connective tissue, are required for the formation of adult stem cells. Molecular analyses suggest that cell-cell interactions involving hedgehog and BMP pathways are critical for the establishment of the stem cell niche that is essential for the formation of the adult intestinal stem cells.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Nakahara-ku, Kosugi-cho, Kawasaki, Kanagawa, 211-0063, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Miller TC, Sun G, Hasebe T, Fu L, Heimeier RA, Das B, Ishizuya-Oka A, Shi YB. Tissue-specific upregulation of MDS/EVI gene transcripts in the intestine by thyroid hormone during Xenopus metamorphosis. PLoS One 2013; 8:e55585. [PMID: 23383234 PMCID: PMC3561350 DOI: 10.1371/journal.pone.0055585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/27/2012] [Indexed: 12/19/2022] Open
Abstract
Background Intestinal remodeling during amphibian metamorphosis resembles the maturation of the adult intestine during mammalian postembryonic development when the adult epithelial self-renewing system is established under the influence of high concentrations of plasma thyroid hormone (T3). This process involves de novo formation and subsequent proliferation and differentiation of the adult stem cells. Methodology/Principal Findings The T3-dependence of the formation of adult intestinal stem cell during Xenopus laevis metamorphosis offers a unique opportunity to identify genes likely important for adult organ-specific stem cell development. We have cloned and characterized the ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI generated via transcription from the upstream MDS promoter and alternative splicing. EVI and MDS/EVI have been implicated in a number of cancers including breast, leukemia, ovarian, and intestinal cancers. We show that EVI and MDS/EVI transcripts are upregulated by T3 in the epithelium but not the rest of the intestine in Xenopus laevis when adult stem cells are forming in the epithelium. Conclusions/Significance Our results suggest that EVI and MDS/EVI are likely involved in the development and/or proliferation of newly forming adult intestinal epithelial cells.
Collapse
Affiliation(s)
- Thomas C. Miller
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Guihong Sun
- Key Laboratory of Allergy and Immune-related Diseases and Centre for Medical Research, School of Medicine, Wuhan University, Wuhan, People's Republic of China
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Kosugi-cho, Kawasaki, Kanagawa, Japan
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Rachel A. Heimeier
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Biswajit Das
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kosugi-cho, Kawasaki, Kanagawa, Japan
- * E-mail: (AI-O); (Y-BS)
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail: (AI-O); (Y-BS)
| |
Collapse
|
36
|
Shi YB. Unliganded thyroid hormone receptor regulates metamorphic timing via the recruitment of histone deacetylase complexes. Curr Top Dev Biol 2013; 105:275-97. [PMID: 23962846 DOI: 10.1016/b978-0-12-396968-2.00010-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anuran metamorphosis involves a complex series of tissue transformations that change an aquatic tadpole to a terrestrial frog and resembles the postembryonic perinatal period in mammals. Thyroid hormone (TH) plays a causative role in amphibian metamorphosis and its effect is mediated by TH receptors (TRs). Molecular analyses during Xenopus development have shown that unliganded TR recruits histone deacetylase (HDAC)-containing N-CoR/SMRT complexes and causes histone deacetylation at target genes while liganded TR leads to increased histone acetylations and altered histone methylations at target genes. Transgenic studies involving mutant TR-cofactors have shown that corepressor recruitment by unliganded TR is required to ensure proper timing of the onset of metamorphosis while coactivator levels influence the rate of metamorphic progression. In addition, a number of factors that can influence cellular free TH levels appear to contribute the timing of metamorphic transformations of different organs by regulating the levels of unliganded vs. liganded TR in an organ-specific manner. Thus, the recruitment of HDAC-containing corepressor complexes by unliganded TR likely controls both the timing of the initiation of metamorphosis and the temporal regulation of organ-specific transformations. Similar mechanisms likely mediate TR function in mammals as the maturation of many organs during postembryonic development is dependent upon TH and resembles organ metamorphosis in amphibians.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
37
|
Shi YB, Matsuura K, Fujimoto K, Wen L, Fu L. Thyroid hormone receptor actions on transcription in amphibia: The roles of histone modification and chromatin disruption. Cell Biosci 2012; 2:42. [PMID: 23256597 PMCID: PMC3562205 DOI: 10.1186/2045-3701-2-42] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/21/2012] [Indexed: 01/14/2023] Open
Abstract
Thyroid hormone (T3) plays diverse roles in adult organ function and during vertebrate development. The most important stage of mammalian development affected by T3 is the perinatal period when plasma T3 level peaks. Amphibian metamorphosis resembles this mammalian postembryonic period and is absolutely dependent on T3. The ability to easily manipulate this process makes it an ideal model to study the molecular mechanisms governing T3 action during vertebrate development. T3 functions mostly by regulating gene expression through T3 receptors (TRs). Studies in vitro, in cell cultures and reconstituted frog oocyte transcription system have revealed that TRs can both activate and repress gene transcription in a T3-dependent manner and involve chromatin disruption and histone modifications. These changes are accompanied by the recruitment of diverse cofactor complexes. More recently, genetic studies in mouse and frog have provided strong evidence for a role of cofactor complexes in T3 signaling in vivo. Molecular studies on amphibian metamorphosis have also revealed that developmental gene regulation by T3 involves histone modifications and the disruption of chromatin structure at the target genes as evidenced by the loss of core histones, arguing that chromatin remodeling is an important mechanism for gene activation by liganded TR during vertebrate development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA.
| | | | | | | | | |
Collapse
|