1
|
Herdiana Y. Nanoparticles of natural product-derived medicines: Beyond the pandemic. Heliyon 2025; 11:e42739. [PMID: 40083991 PMCID: PMC11904502 DOI: 10.1016/j.heliyon.2025.e42739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
This review explores the synergistic potential of natural products and nanotechnology for viral infections, highlighting key antiviral, immunomodulatory, and antioxidant properties to combat pandemics caused by highly infectious viruses. These pandemics often result in severe public health crises, particularly affecting vulnerable populations due to respiratory complications and increased mortality rates. A cytokine storm is initiated when an overload of pro-inflammatory cytokines and chemokines is released, leading to a systemic inflammatory response. Viral mutations and the limited availability of effective drugs, vaccines, and therapies contribute to the continuous transmission of the virus. The coronavirus disease-19 (COVID-19) pandemic has sparked renewed interest in natural product-derived antivirals. The efficacy of traditional medicines against pandemic viral infections is examined. Their antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties are highlighted. This review discusses how nanotechnology enhances the efficacy of herbal medicines in combating viral infections.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
Lisewski AM. Pre-pandemic artificial MERS analog of polyfunctional SARS-CoV-2 S1/S2 furin cleavage site domain is unique among spike proteins of genus Betacoronavirus. BMC Genom Data 2024; 25:104. [PMID: 39690420 DOI: 10.1186/s12863-024-01290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVES SARS-CoV-2 spike (S) glycoprotein furin cleavage site is a key determinant of SARS-CoV-2 virulence and COVID-19 pathogencity. Located at the S1/S2 junction, it is unique among sarbecoviruses but frequently found among betacoronaviruses. Recent evidence suggests that this site includes two additional functional motifs: a pat7 nuclear localization signal and two flanking O-glycosites. However, a systematic genus and subgenus analysis of spike protein sequences bearing this polyfunctional sequence domain has been missing. DATA DESCRIPTION Here we report comprehensive sequence data to demonstrate that among spike proteins of genus Betacoronavirus and outside of the SARS-CoV-2 clade a fully analogous S1/S2 domain was found in only one other virus: the artificial MERS infectious clone MERS-MA30, described already in 2017, which was rationally selected from serial passage in genetically humanized mice. As the evolutionarily closest betacoronaviruses outside of the SARS-CoV-2 clade lack all its three functional motifs, these data extend-beyond natural evolution and zoonosis-the current view on SARS-CoV-2 pre-pandemic origins by presenting the analogous S1/S2 MERS-MA30 sequence domain as a precise molecular blueprint for SARS-CoV-2.
Collapse
|
3
|
Liu L, Chen H, Liu P, Ke X, Song J, Fang Y, Kong L, Xin X. Expression, purification and immunogenicity analyses of receptor binding domain protein of severe acute respiratory syndrome coronavirus 2 from delta variant. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:657-663. [PMID: 39816631 PMCID: PMC11729102 DOI: 10.30466/vrf.2024.2013858.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 01/18/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. The receptor binding domain (RBD), located at the spike protein of SARS-CoV-2, contains most of the neutralizing epitopes during viral infection and is an ideal antigen for vaccine development. In this study, bioinformatic analysis of the amino acid sequence data of SARS-CoV-2 RBD protein for the better understanding of molecular characteristics was performed. The SARS-CoV-2 RBD gene was inserted into pET-28a vector, and efficiently expressed in E. coli system. Then, the recombinant proteins (RBD monomer and RBD dimer protein) were purified as antigen for animal immunization. Furthermore, the results showed that the recombinant proteins (RBD monomer and RBD dimer protein) had adequate immunogenicity to stimulate specific antibodies against the corresponding protein in immunized mice. Taken together, the results of this study revealed that RBD protein had a high immuno-genicity. This study might have implications for future development of SARS-CoV-2 detection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiu Xin
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, and Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
4
|
Rahman MM, Estifanos B, Glenn HL, Gutierrez-Jensen AD, Kibler K, Li Y, Jacobs B, McFadden G, Hogue BG. Effect of exportin 1/XPO1 nuclear export pathway inhibition on coronavirus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.09.527884. [PMID: 36824761 PMCID: PMC9948980 DOI: 10.1101/2023.02.09.527884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nucleocytoplasmic transport of proteins using XPO1 (exportin 1) plays a vital role in cell proliferation and survival. Many viruses also exploit this pathway to promote infection and replication. Thus, inhibiting the XPO1-mediated nuclear export pathway with selective inhibitors has a diverse effect on virus replication by regulating antiviral, proviral, and anti-inflammatory pathways. The XPO1 inhibitor, Selinexor, is an FDA-approved anticancer drug predicted to have antiviral or proviral functions against viruses. Here, we observed that pretreatment of cultured cell lines from human or mouse origin with nuclear export inhibitor Selinexor significantly enhanced protein expression and replication of Mouse Hepatitis Virus (MHV), a mouse coronavirus. Knockdown of cellular XPO1 protein expression also significantly enhanced the replication of MHV in human cells. However, for SARS-CoV-2, selinexor treatment had diverse effects on virus replication in different cell lines. These results indicate that XPO1-mediated nuclear export pathway inhibition might affect coronavirus replication depending on cell types and virus origin.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Bereket Estifanos
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
| | - Honor L. Glenn
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Ami D. Gutierrez-Jensen
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Karen Kibler
- Center for ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Yize Li
- Center for ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Bertram Jacobs
- Center for ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Grant McFadden
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Brenda G. Hogue
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Khan S, Yahiro T, Kimitsuki K, Hashimoto T, Matsuura K, Yano S, Noguchi K, Sonezaki A, Yoshizawa K, Kumasako Y, Akbar SMF, Nishizono A. Exploring the Replication and Pathogenic Characteristics of Alpha, Delta, and Omicron Variants of SARS-CoV-2. Int J Mol Sci 2024; 25:12641. [PMID: 39684353 DOI: 10.3390/ijms252312641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The variants of concern (VOCs) of SARS-CoV-2 have exhibited different phenotypic characteristics in clinical settings which are yet to be fully explored. This study aimed to characterize the viral replication features of major VOCs of SARS-CoV-2 and their association with pathogenicity. The Alpha, Delta, and Omicron variants of SARS-CoV-2 isolated from the COVID-19 patients in Japan were propagated in VeroE6/TMPRSS2 cells. The viral replication and pathological features were evaluated by laser and electron microscopy at different time points. The results revealed that the Delta variant dominantly infected the VeroE6/TMPRSS2 cells and formed increased syncytia compared to the Alpha and Omicron variants. Relatively large numbers of virions and increased immunoreactivities of the SARS-CoV-2 N-protein were detected in the endoplasmic reticulum and intracellular vesicles of Delta-infected cells. Interestingly, the N-protein and virions were detected in the nucleus of Delta-infected cells, while such properties were not observed in the case of Alpha and Omicron variants. In addition, early nuclear membrane damage followed by severe cellular damage was prominent in Delta-infected cells. A unique mutation (G215C) in the N-protein of the Delta variant is thought to be associated with severe cell damage. In conclusion, this study highlights the distinct replicative and pathogenic characteristics of the Delta variant of SARS-CoV-2 compared to the Alpha and Omicron variants, shedding light on the potential mechanisms underlying its increased pathogenicity.
Collapse
Affiliation(s)
- Sakirul Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Takaaki Yahiro
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
- Department of Advanced Medical Sciences, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Kazunori Kimitsuki
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Takehiro Hashimoto
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
- Hospital Infection Control Center, Oita University Hospital, Yufu, Oita 879-5593, Japan
| | - Keiko Matsuura
- Department of Biomedicine, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Shinji Yano
- Institute for Research Management, Oita University, Yufu, Oita 879-5593, Japan
| | - Kazuko Noguchi
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Akane Sonezaki
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Kaori Yoshizawa
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Yoko Kumasako
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
| | - Sheikh Mohammad Fazle Akbar
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Clinical Research Organization, Dhaka 1213, Bangladesh
- Miyakawa Memorial Research Foundation, Tokyo 107-0062, Japan
| | - Akira Nishizono
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| |
Collapse
|
6
|
Bezerra PR, Almeida FCL. Structural basis for the participation of the SARS-CoV-2 nucleocapsid protein in the template switch mechanism and genomic RNA reorganization. J Biol Chem 2024; 300:107834. [PMID: 39343000 PMCID: PMC11541846 DOI: 10.1016/j.jbc.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The COVID-19 pandemic has resulted in a significant toll of deaths worldwide, exceeding seven million individuals, prompting intensive research efforts aimed at elucidating the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 infection. Despite the rapid development of effective vaccines and therapeutic interventions, COVID-19 remains a threat to humans due to the emergence of novel variants and largely unknown long-term consequences. Among the viral proteins, the nucleocapsid protein (N) stands out as the most conserved and abundant, playing the primary role in nucleocapsid assembly and genome packaging. The N protein is promiscuous for the recognition of RNA, yet it can perform specific functions. Here, we discuss the structural basis of specificity, which is directly linked to its regulatory role. Notably, the RNA chaperone activity of N is central to its multiple roles throughout the viral life cycle. This activity encompasses double-stranded RNA (dsRNA) annealing and melting and facilitates template switching, enabling discontinuous transcription. N also promotes the formation of membrane-less compartments through liquid-liquid phase separation, thereby facilitating the congregation of the replication and transcription complex. Considering the information available regarding the catalytic activities and binding signatures of the N protein-RNA interaction, this review focuses on the regulatory role of the SARS-CoV-2 N protein. We emphasize the participation of the N protein in discontinuous transcription, template switching, and RNA chaperone activity, including double-stranded RNA melting and annealing activities.
Collapse
Affiliation(s)
- Peter R Bezerra
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Harutyunyan T, Sargsyan A, Kalashyan L, Stepanyan N, Aroutiounian R, Liehr T, Hovhannisyan G. DNA Damage in Moderate and Severe COVID-19 Cases: Relation to Demographic, Clinical, and Laboratory Parameters. Int J Mol Sci 2024; 25:10293. [PMID: 39408623 PMCID: PMC11476890 DOI: 10.3390/ijms251910293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The ability of the SARS-CoV-2 virus to cause DNA damage in infected humans requires its study as a potential indicator of COVID-19 progression. DNA damage was studied in leukocytes of 65 COVID-19 patients stratified by sex, age, and disease severity in relation to demographic, clinical, and laboratory parameters. In a combined group of COVID-19 patients, DNA damage was shown to be elevated compared to controls (12.44% vs. 5.09%, p < 0.05). Severe cases showed higher DNA damage than moderate cases (14.66% vs. 10.65%, p < 0.05), and males displayed more damage than females (13.45% vs. 8.15%, p < 0.05). DNA damage is also correlated with international normalized ratio (INR) (r = 0.471, p < 0.001) and creatinine (r = 0.326, p < 0.05). In addition to DNA damage, severe COVID-19 is associated with age, C-reactive protein (CRP), and creatinine. Receiver operating characteristic analysis identified age, INR, creatinine, DNA damage, and CRP as significant predictors of disease severity, with cut-off values of 72.50 years, 1.46 s, 78.0 µmol/L, 9.72%, and 50.0 mg/L, respectively. The results show that DNA damage correlates with commonly accepted COVID-19 risk factors. These findings underscore the potential of DNA damage as a biomarker for COVID-19 severity, suggesting its inclusion in prognostic assessments to facilitate early intervention and improve patient outcomes.
Collapse
Affiliation(s)
- Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Anzhela Sargsyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Lily Kalashyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (R.A.); (G.H.)
| | - Naira Stepanyan
- National Center for Infectious Diseases, Arno Babajanyan 21, Yerevan 0064, Armenia;
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany
| | - Galina Hovhannisyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| |
Collapse
|
8
|
Han L, Wang B, Sun K, Sitara M, Li M, Wang P, Chen N, Yu XA, Tian J. A SARS-CoV-2 M pro fluorescent sensor for exploring pharmacodynamic substances from traditional Chinese medicine. Analyst 2024; 149:3585-3595. [PMID: 38767148 DOI: 10.1039/d4an00372a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The main protease of SARS-CoV-2 (SARS-CoV-2 Mpro) plays a critical role in the replication and life cycle of the virus. Currently, how to screen SARS-CoV-2 Mpro inhibitors from complex traditional Chinese medicine (TCM) is the bottleneck for exploring the pharmacodynamic substances of TCM against SARS-CoV-2. In this study, a simple, cost-effective, rapid, and selective fluorescent sensor (TPE-S-TLG sensor) was designed with an AIE (aggregation-induced emission) probe (TPE-Ph-In) and the SARS-CoV-2 Mpro substrate (S-TLG). The TPE-S-TLG sensor was characterized using UV-Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential, and Fourier transform infrared (FTIR) spectroscopy techniques. The limit of detection of this method to detect SARS-CoV-2 Mpro was measured to be 5 ng mL-1. Furthermore, the TPE-S-TLG sensor was also successfully applied to screen Mpro inhibitors from Xuebijing injection using the separation and collection of the HPLC-fully automatic partial fraction collector (HPLC-FC). Six active compounds, including protocatechualdehyde, chlorogenic acid, hydroxysafflower yellow A, caffeic acid, isoquercetin, and pentagalloylglucose, were identified using UHPLC-Q-TOF/MS that could achieve 90% of the Mpro inhibition rate for the Xuebijing injection. Accordingly, the strategy can be broadly applied in the detection of disease-related proteases as well as screening active substances from TCM.
Collapse
Affiliation(s)
- Lei Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Kunhui Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Muqadas Sitara
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Ping Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Ning Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Xie-An Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
9
|
Sasso-Cerri E, Martinelli VD, de Oliveira SA, da Silva AAS, de Moraes JCG, Cerri PS. Submandibular Gland Pathogenesis Following SARS-CoV-2 Infection and Implications for Xerostomia. Int J Mol Sci 2024; 25:6820. [PMID: 38999930 PMCID: PMC11241347 DOI: 10.3390/ijms25136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
Although SARS-CoV-2 induces mucin hypersecretion in the respiratory tract, hyposalivation/xerostomia has been reported by COVID-19 patients. We evaluate the submandibular gland (SMGs) pathogenesis in SARS-CoV-2-infected K18-hACE2 mice, focusing on the impact of infection on the mucin production and structural integrity of acini, ductal system, myoepithelial cells (MECs) and telocytes. The spike protein, the nucleocapsid protein, hACE2, actin, EGF, TNF-α and IL-1β were detected by immunofluorescence, and the Egfr and Muc5b expression was evaluated. In the infected animals, significant acinar hypertrophy was observed in contrast to ductal atrophy. Nucleocapsid proteins and/or viral particles were detected in the SMG cells, mainly in the nuclear membrane-derived vesicles, confirming the nuclear role in the viral formation. The acinar cells showed intense TNF-α and IL-1β immunoexpression, and the EGF-EGFR signaling increased, together with Muc5b upregulation. This finding explains mucin hypersecretion and acinar hypertrophy, which compress the ducts. Dying MECs and actin reduction were also observed, indicating failure of contraction and acinar support, favoring acinar hypertrophy. Viral assembly was found in the dying telocytes, pointing to these intercommunicating cells as viral transmitters in SMGs. Therefore, EGF-EGFR-induced mucin hypersecretion was triggered by SARS-CoV-2 in acinar cells, likely mediated by cytokines. The damage to telocytes and MECs may have favored the acinar hypertrophy, leading to ductal obstruction, explaining xerostomia in COVID-19 patients. Thus, acinar cells, telocytes and MECs may be viral targets, which favor replication and cell-to-cell viral transmission in the SMG, corroborating the high viral load in saliva of infected individuals.
Collapse
Affiliation(s)
- Estela Sasso-Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| | - Vitor Dallacqua Martinelli
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| | - Salmo Azambuja de Oliveira
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo 04023-900, Brazil; (S.A.d.O.); (A.A.S.d.S.)
| | - André Acácio Souza da Silva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo 04023-900, Brazil; (S.A.d.O.); (A.A.S.d.S.)
| | - Juliana Cerini Grassi de Moraes
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| |
Collapse
|
10
|
Aljabali AAA, El-Tanani M, Barh D, Tambuwala MM. COVID-19: Perspectives on innate immune evasion. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 213:171-214. [PMID: 40246344 DOI: 10.1016/bs.pmbts.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The ongoing global health challenges posed by the SARS-CoV-2, the virus responsible for the COVID-19 pandemic, necessitate a deep understanding of its intricate strategies to evade the innate immune system. This chapter aims to provide insights into the sophisticated mechanisms employed by SARS-CoV-2 in its interaction with pattern recognition receptors (PRRs), with particular emphasis on Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs). By skillfully circumventing these pivotal components, the virus manages to elude detection and impairs the initiation of crucial antiviral immune responses. A notable aspect of SARS-CoV-2's immune evasion tactics lies in its strategic manipulation of cytokine production. This orchestrated modulation disrupts the delicate balance of inflammation, potentially leading to severe complications, including the notorious cytokine storm. In this regard, key viral proteins, such as the spike protein and nucleocapsid protein, emerge as pivotal players in the immune evasion process, further highlighting their significance in the context of COVID-19 pathogenesis. Acquiring a comprehensive understanding of these intricate immune evasion mechanisms holds immense promise for the development of effective treatments against COVID-19. Moreover, it is imperative for vaccine development to consider these evasion strategies to maximize vaccine efficacy. Future therapeutic interventions may involve targeting alternative pathways or augmenting the antiviral immune responses, thereby mitigating the impact of immune evasion, and fostering successful outcomes. By unraveling the underlying mechanisms of innate immune evasion, we advance our comprehension of COVID-19 pathogenesis and pave the way for the development of innovative therapeutic strategies. This comprehensive understanding catalyzes progress, enabling researchers and clinicians to devise novel approaches that combat the challenges posed by SARS-CoV-2 and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics & Applied Biotechnology, Purba Medinipur, West Bengal, India; Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, United Kingdom.
| |
Collapse
|
11
|
Wan L, Li Y, Liao W, Lei L, Zhao M, Zeng J, Zhao Z, Tang J. Synergistic inhibition effects of andrographolide and baicalin on coronavirus mechanisms by downregulation of ACE2 protein level. Sci Rep 2024; 14:4287. [PMID: 38383655 PMCID: PMC10882053 DOI: 10.1038/s41598-024-54722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The SARS-CoV-2 virus, belonging to the Coronavirus genus, which poses a threat to human health worldwide. Current therapies focus on inhibiting viral replication or using anti-inflammatory/immunomodulatory compounds to enhance host immunity. This makes the active ingredients of traditional Chinese medicine compounds ideal therapies due to their proven safety and minimal toxicity. Previous research suggests that andrographolide and baicalin inhibit coronaviruses; however, their synergistic effects remain unclear. Here, we studied the antiviral mechanisms of their synergistic use in vitro and in vivo. We selected the SARS-CoV-2 pseudovirus for viral studies and found that synergistic andrographolide and baicalein significantly reduced angiotensin-converting enzyme 2 protein level and viral entry of SARS-CoV-2 into cells compared to singal compound individually and inhibited the major protease activity of SARS-CoV-2. This mechanism is essential to reduce the pathogenesis of SARS-CoV-2. In addition, their synergistic use in vivo also inhibited the elevation of pro-inflammatory cytokines, including IL-6 and TNF-α-the primary cytokines in the development of acute respiratory distress syndrome (the main cause of COVID-19 deaths). In conclusion, this study shows that synergistic andrographolide and baicalein treatment acts as potent inhibitors of coronavirus mechanisms in vitro and in vivo-and is more effective together than in isolation.
Collapse
Affiliation(s)
- Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yuchen Li
- Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lizhen Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Si Chuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Department of Digestive, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Si Chuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Si Chuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
12
|
Khalil AM, Nogales A, Martínez-Sobrido L, Mostafa A. Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1. Front Cell Infect Microbiol 2024; 14:1357866. [PMID: 38375361 PMCID: PMC10875036 DOI: 10.3389/fcimb.2024.1357866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid, Spain
| | - Luis Martínez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
13
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
14
|
Kankaya S, Yavuz F, Tari A, Aygun AB, Gunes EG, Bektan Kanat B, Ulugerger Avci G, Yavuzer H, Dincer Y. Glutathione-related antioxidant defence, DNA damage, and DNA repair in patients suffering from post-COVID conditions. Mutagenesis 2023; 38:216-226. [PMID: 37422797 DOI: 10.1093/mutage/gead021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023] Open
Abstract
Post-COVID conditions are defined as the continuation of the symptoms of Coronavirus Disease 2019 (COVID-19) 3 months after the initial Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, with no other explanation. Post-COVID conditions are seen among 30%-60% of patients with asymptomatic or mild forms of COVID-19. The underlying pathophysiological mechanisms of post-COVID conditions are not known. In SARS-CoV-2 infection, activation of the immune system leads to increased production of reactive oxygen molecules, depleted antioxidant reserve, and finally occurrence of oxidative stress. In oxidative stress conditions, DNA damage increases and DNA repair systems impair. In this study, glutathione (GSH) level, glutathione peroxidase (GPx) activity, 8-hydroxydeoxyguanosine (8-OHdG) level, basal, induced, and post-repair DNA damage were investigated in individuals suffering from post-COVID conditions. In the red blood cells, GSH levels and GPx activities were measured with a spectrophotometric assay and a commercial kit. Basal, in vitro H2O2 (hydrogen peroxide)-induced, and post-repair DNA damage (DNA damage after a repair incubation following H2O2-treatment, in vitro) were determined in lymphocytes by the comet assay. The urinary 8-OHdG levels were measured by using a commercial ELISA kit. No significant difference was found between the patient and control groups for GSH level, GPx activity, and basal and H2O2-induced DNA damage. Post-repair DNA damage was found to be higher in the patient group than those in the control group. Urinary 8-OHdG level was lower in the patient group compared to the control group. In the control group, GSH level and post-repair DNA damage were higher in the vaccinated individuals. In conclusion, oxidative stress formed due to the immune response against SARS-COV-2 may impair DNA repair mechanisms. Defective DNA repair may be an underlying pathological mechanism of post-COVID conditions.
Collapse
Affiliation(s)
- Selin Kankaya
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Fatih Yavuz
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Alper Tari
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Bera Aygun
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esra Gizem Gunes
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahar Bektan Kanat
- Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gulru Ulugerger Avci
- Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hakan Yavuzer
- Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Yildiz Dincer
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
15
|
Lafon-Hughes L. Towards Understanding Long COVID: SARS-CoV-2 Strikes the Host Cell Nucleus. Pathogens 2023; 12:806. [PMID: 37375496 PMCID: PMC10301789 DOI: 10.3390/pathogens12060806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite what its name suggests, the effects of the COVID-19 pandemic causative agent "Severe Acute Respiratory Syndrome Coronavirus-2" (SARS-CoV-2) were not always confined, neither temporarily (being long-term rather than acute, referred to as Long COVID) nor spatially (affecting several body systems). Moreover, the in-depth study of this ss(+) RNA virus is defying the established scheme according to which it just had a lytic cycle taking place confined to cell membranes and the cytoplasm, leaving the nucleus basically "untouched". Cumulative evidence shows that SARS-CoV-2 components disturb the transport of certain proteins through the nuclear pores. Some SARS-CoV-2 structural proteins such as Spike (S) and Nucleocapsid (N), most non-structural proteins (remarkably, Nsp1 and Nsp3), as well as some accessory proteins (ORF3d, ORF6, ORF9a) can reach the nucleoplasm either due to their nuclear localization signals (NLS) or taking a shuttle with other proteins. A percentage of SARS-CoV-2 RNA can also reach the nucleoplasm. Remarkably, controversy has recently been raised by proving that-at least under certain conditions-, SARS-CoV-2 sequences can be retrotranscribed and inserted as DNA in the host genome, giving rise to chimeric genes. In turn, the expression of viral-host chimeric proteins could potentially create neo-antigens, activate autoimmunity and promote a chronic pro-inflammatory state.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay; ; Tel.: +598-2-93779096
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República (CENUR-UdelaR), Salto 50000, Uruguay
| |
Collapse
|
16
|
Matsuzaka Y, Yashiro R. Extracellular Vesicle-Based SARS-CoV-2 Vaccine. Vaccines (Basel) 2023; 11:vaccines11030539. [PMID: 36992123 DOI: 10.3390/vaccines11030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Messenger ribonucleic acid (RNA) vaccines are mainly used as SARS-CoV-2 vaccines. Despite several issues concerning storage, stability, effective period, and side effects, viral vector vaccines are widely used for the prevention and treatment of various diseases. Recently, viral vector-encapsulated extracellular vesicles (EVs) have been suggested as useful tools, owing to their safety and ability to escape from neutral antibodies. Herein, we summarize the possible cellular mechanisms underlying EV-based SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, The Institute of Medical Science, Center for Gene and Cell Therapy, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| |
Collapse
|
17
|
Baltoumas FA, Sofras D, Apostolakou AE, Litou ZI, Iconomidou VA. NucEnvDB: A Database of Nuclear Envelope Proteins and Their Interactions. MEMBRANES 2023; 13:62. [PMID: 36676869 PMCID: PMC9861991 DOI: 10.3390/membranes13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The nuclear envelope (NE) is a double-membrane system surrounding the nucleus of eukaryotic cells. A large number of proteins are localized in the NE, performing a wide variety of functions, from the bidirectional exchange of molecules between the cytoplasm and the nucleus to chromatin tethering, genome organization, regulation of signaling cascades, and many others. Despite its importance, several aspects of the NE, including its protein-protein interactions, remain understudied. In this work, we present NucEnvDB, a publicly available database of NE proteins and their interactions. Each database entry contains useful annotation including a description of its position in the NE, its interactions with other proteins, and cross-references to major biological repositories. In addition, the database provides users with a number of visualization and analysis tools, including the ability to construct and visualize protein-protein interaction networks and perform functional enrichment analysis for clusters of NE proteins and their interaction partners. The capabilities of NucEnvDB and its analysis tools are showcased by two informative case studies, exploring protein-protein interactions in Hutchinson-Gilford progeria and during SARS-CoV-2 infection at the level of the nuclear envelope.
Collapse
Affiliation(s)
- Fotis A. Baltoumas
- Section of Cell Biology & Biophysics, Department of Biology, School of Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 34 Fleming St., 16672 Athens, Greece
| | - Dimitrios Sofras
- Section of Cell Biology & Biophysics, Department of Biology, School of Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
- Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg 31—Box 2438, 3001 Leuven, Belgium
| | - Avgi E. Apostolakou
- Section of Cell Biology & Biophysics, Department of Biology, School of Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Zoi I. Litou
- Section of Cell Biology & Biophysics, Department of Biology, School of Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology & Biophysics, Department of Biology, School of Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| |
Collapse
|