1
|
Gaurav A, Mandal PK. Synthesis of aryl thioglycosides by metal-free arylation of glycosyl thiols with diaryliodonium salts under basic conditions. Carbohydr Res 2025; 552:109437. [PMID: 40014945 DOI: 10.1016/j.carres.2025.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Herein, we demonstrate the application of unsymmetrical iodonium salts towards S-arylation of glycosyl thiols under metal-free conditions, affording a various stereoretentive thioarylglycosides in moderate to good yields. The application of an inorganic base Cs2CO3 enables the C-S bond formation under mild and experimentally simple conditions at room temperature. The proper choice of auxiliary of the unsymmetrical iodonium salt enables the access to diverse functionalized aryl moieties including biphenyl groups and its incorporation into thioarylglycosides.
Collapse
Affiliation(s)
- Anand Gaurav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Kowsalya K, Vidya N, Halka J, Preetha JSY, Saradhadevi M, Sahayarayan JJ, Gurusaravanan P, Arun M. Plant glycosides and glycosidases: classification, sources, and therapeutic insights in current medicine. Glycoconj J 2025; 42:107-124. [PMID: 39992582 DOI: 10.1007/s10719-025-10180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Plant glycosides have a broad spectrum of pharmaceutical activities primarily due to the glycosidic residues present in their structure. Especially, the therapeutic glycosides can be classified into many compounds based on the sugar moiety, chains/ saccharide units, glycosidic linkages, and aglycones. Among many classes, the widely used pharmacological classification is based on the aglycones linked to the glycoside molecule. Based on these non-sugar moiety (aglycones), plant glycosides are further classified into twelve different types of glycosides along with the recent discovery of novel (cannabinoid) glycosides. They are called alcoholic, anthraquinone, coumarin, chromone, cyanogenic, flavonoid, phenolic, cardiac, saponin, thio, steviol, iridoid, and cannabinoid glycosides. Each of the plant glycosides has been discussed in this paper with, origin, structure, and abundant presence in a specific family of plants. Besides, the therapeutic roles of these plant glycosides are further described in detail to validate their efficacies in the human health care system. On the other hand, glycosides are inactive until enzymatic hydrolysis releases their active aglycone, enabling targeted drug delivery. This process enhances aglycone solubility and stability, improving bioavailability and therapeutic efficacy. They target specific receptors or enzymes, minimizing off-target effects and enhancing pharmacological outcomes. Derived from plants, glycosides offer diverse chemical structures for drug development. They are integral to traditional medicine and modern pharmaceuticals, utilized in therapies ranging from cardiology to antimicrobial treatments.
Collapse
Affiliation(s)
- Kumaresan Kowsalya
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Nandakumar Vidya
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Jayachandran Halka
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | | | | | | | | | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| |
Collapse
|
3
|
Zhou Z, Zhang Y, Yu Z, Liu Y, Wang Z, Zhang Q, Wang L. Visible-Light-Mediated Synthesis of Anomeric S-Aryl Glycosides via Electron Donor-Acceptor Complex Using Thianthrenium Salts. Molecules 2025; 30:1315. [PMID: 40142087 PMCID: PMC11946794 DOI: 10.3390/molecules30061315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
S-Aryl glycosides are not only popular glycosyl donors in carbohydrate chemistry but also serve as valuable tools in various biological studies, which has brought significant attention to their preparation. However, there remains a pressing need for greener synthesis methods in this area. In response, a mild, sustainable, and metal- and photocatalyst-free electron donor-acceptor (EDA)-mediated approach for synthesizing S-Aryl glycosides using 1-thiosugar and aryl thianthrenium salt was developed. Our strategy utilizes 1-thiosugar as the donor, overcoming the traditional reliance on electron-rich thiols, such as aryl or carbonyl thiols, typically required for forming EDA complexes.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
4
|
Azeem Z, Dubey S, Mandal PK. Pd-Catalyzed Synthesis of 1-(Hetero)aryl Thioglycosides: Strategy for the Trapping of an Acyl Group of Glycosylthioesters by Coupling of Bis-Electrophilic-Nucleophilic Partners. J Org Chem 2024; 89:15777-15792. [PMID: 39405505 DOI: 10.1021/acs.joc.4c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Herein, we describe a stereoretentive palladium-catalyzed cross-coupling between the in situ-generated glycosyl thiolate anion and diverse (hetero)aryl iodides at room temperature for creating the library of (hetero)aryl thioglycosides. The key to success is the judicious pairing of bis-electrophilic-nucleophilic partners with a variety of thioesters in an atom-economical way in which both the glycosyl thiolate anion and the acylium cation are incorporated into the final analogue. The advantage of this method is the acyl transfer on various nucleophilic partners, including a hydroxyl, a primary or secondary amine, an amino acid, and the biologically active hSGLT1 inhibitor.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Pethő ÁG, Tapolyai M, Csongrádi É, Orosz P. Management of chronic kidney disease: The current novel and forgotten therapies. J Clin Transl Endocrinol 2024; 36:100354. [PMID: 38828402 PMCID: PMC11143912 DOI: 10.1016/j.jcte.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive and incurable condition that imposes a significant burden on an aging society. Although the exact prevalence of this disease is unknown, it is estimated to affect at least 800 million people worldwide. Patients with diabetes or hypertension are at a higher risk of developing chronic kidney damage. As the kidneys play a crucial role in vital physiological processes, damage to these organs can disrupt the balance of water and electrolytes, regulation of blood pressure, elimination of toxins, and metabolism of vitamin D. Early diagnosis is paramount to prevent potential complications. Treatment options such as dietary modifications and medications can help slow disease progression. In our narrative review, we have summarized the available therapeutic options to slow the progression of chronic kidney disease. Many new drug treatments have recently become available, offering a beacon of hope and optimism in CKD management. Nonetheless, disease prevention remains the most critical step in disease management. Given the significant impact of CKD on public health, there is a pressing need for further research. With the development of new technologies and advancements in medical knowledge, we hope to find more effective diagnostic tools and treatments for CKD patients.
Collapse
Affiliation(s)
- Ákos Géza Pethő
- Faculty of Medicine, Semmelweis University, Department of Internal
Medicine and Oncology, Budapest, Hungary
| | - Mihály Tapolyai
- Medicine Service, Ralph H. Johnson VA Medical Center, Charleston, SC,
USA
- Department of Nephrology, Szent Margit Kórhaz, Budapest,
Hungary
| | - Éva Csongrádi
- Faculty of Medicine, University of Debrecen, Debrecen,
Hungary
| | - Petronella Orosz
- Bethesda Children’s Hospital, 1146 Budapest, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen,
4032 Debrecen, Hungary
| |
Collapse
|
6
|
Li F, Liu H, Xing W, Zhang Q, Wang L. Electrochemical nickel-catalyzed cross-coupling of glycosyl thiols with preactivated phenols and ketones. Org Biomol Chem 2024; 22:3597-3601. [PMID: 38625707 DOI: 10.1039/d4ob00442f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
An efficient electrochemical nickel-catalyzed cross-coupling reaction has been reported here for the synthesis of S-glycosides from preactivated phenols and ketones under mild conditions. Various glycosyl thiols, including unprotected sugar, and a diverse range of aryl/alkenyl triflates, including some complex biorelevant phenols and ketones, were well tolerated in this method.
Collapse
Affiliation(s)
- Fuxin Li
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Hui Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Wanyu Xing
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| |
Collapse
|
7
|
Bielski R, Mencer D. New syntheses of thiosaccharides utilizing substitution reactions. Carbohydr Res 2023; 532:108915. [PMID: 37597327 DOI: 10.1016/j.carres.2023.108915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
Novel synthetic methods published since 2005 affording carbohydrates containing sulfur atom(s) are reviewed. The review is divided to subchapters based on the position of sulfur atom(s) in the sugar molecule. Only those methods that take advantage of substitution are discussed.
Collapse
Affiliation(s)
- Roman Bielski
- Department of Pharmaceutical Sciences, Wilkes University, Wilkes-Barre, PA, 18766, United States; Chemventive, LLC Chadds Ford, PA, 19317, United States.
| | - Donald Mencer
- Department of Chemistry & Biochemistry, Wilkes University, Wilkes-Barre, PA, 18766, United States.
| |
Collapse
|
8
|
Feng GJ, Guo YF, Tang Y, Li M, Jia Y, Li Z, Wang S, Liu H, Wu Y, Dong H. Design, Synthesis, and Biological Evaluation of Thioglucoside Analogues of Gliflozin as Potent New Gliflozin Drugs. J Med Chem 2023; 66:12536-12543. [PMID: 37608596 DOI: 10.1021/acs.jmedchem.3c01138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In this study, we have investigated the potential of two classes of thioglucoside analogues of gliflozins as antidiabetic drugs, one with substitutions of S-atoms in meta-positions (similar to C-glucoside SGLT2 inhibitors, TAGs A, B, and C) and the other with substitutions of S-atoms in ortho-positions (similar to O-glucoside SGLT2 inhibitors, TAGs D, E, F, and G). These TAGs were confirmed to show good stability against β-glucosidase and to have no acute toxicity to cultured cells. Most importantly, TAGs D, E, F, and G all showed high inhibitory activity against SGLT2 (IC50: 2.0-5.9 nM) and thus have great potential to be developed as new gliflozin drugs. Compared with the synthesis of C-glucoside gliflozins, the synthesis of TAGs is simple, efficient, and associated with low costs, high yields, and very mild reaction conditions.
Collapse
Affiliation(s)
- Guang-Jing Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yang-Fan Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Yuming Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Min Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Yufei Jia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Zhimeng Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Shuangshuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Hongmei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Yuzhou Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| |
Collapse
|
9
|
Sun Z, Yan W, Xie L, Liu W, Xu C, Chen FE. A Robust Copper-Catalyzed Cross-Coupling of Glycosyl Thiosulfonate and Boronic Acids Enables the Construction of Thioglycosides. Org Lett 2023; 25:5714-5718. [PMID: 37530179 DOI: 10.1021/acs.orglett.3c01798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
An efficient and stereoretentive copper-catalyzed cross-coupling of glycosyl thiosulfonate and boronic acid for the construction of thioglycosides is described. The good functional group compatibility of this method allows the preparation of many bioactive aryl/alkenyl thioglycosides, including the hSGLT1 inhibitor.
Collapse
Affiliation(s)
- Zuyao Sun
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Weitao Yan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lihuang Xie
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenchao Liu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Azeem Z, Mandal PK. Atom-Economic Synthesis of Unsymmetrical gem-Diarylmethylthio/Seleno Glycosides via Base Mediated C(O)-S/Se Bond Cleavage and Acyl Transfer Approach of Glycosylthio/Selenoacetates. J Org Chem 2023; 88:1695-1712. [PMID: 36633914 DOI: 10.1021/acs.joc.2c02704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we invented the Cs2CO3-mediated atom economic method that streamlines the scission of the C(O)-S/Se bond involving the in situ generation of an anomeric thiolate/selenolate anion, which reacted with p-QMs to yield novel unsymmetrical gem-diarylmethylthio/seleno glycosides while retaining the anomeric stereochemistry. Notably, the key features of this protocol involve unprecedented long-range acyl transfer (from S/Se to O), thus affording acylation of the final product which is not yet reported by classical methods. This straightforward protocol offers a mild, short reaction time, synthetically simple approach, and compatibility with 8 types of sugar along with phenylthio/benzylseleno esters.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
11
|
Pillet L, Lim D, Almulhim N, Benítez-Mateos AI, Paradisi F. Novel triple mutant of an extremophilic glycosyl hydrolase enables the rapid synthesis of thioglycosides. Chem Commun (Camb) 2022; 58:12118-12121. [PMID: 36226508 PMCID: PMC9609006 DOI: 10.1039/d2cc04660a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 07/25/2023]
Abstract
In order to expand the toolbox of enzymes available for thioglycoside synthesis, we describe here the first example of an extremophilic glycosyl hydrolase from Halothermothrix orenii (HorGH1) engineered towards thioglycosynthase activity with a novel combination of mutations. Using the triple mutant, HorGH1 M299R/E166A/E354G, a range of thioglycosides from glycosyl fluoride donors and aromatic thiols could be synthesised with exquisite stereoselectivity and good to excellent conversions (61-93%).
Collapse
Affiliation(s)
- Lauriane Pillet
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - David Lim
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Nourah Almulhim
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
12
|
LI L, Mahri L, de Robichon M, Fatthalla M, Ferry A, MESSAOUDI S. Directed Dehydrogenative Copper‐Catalyzed C‐H Thiolation in Pseudo‐Anomeric Position of Glycals using Thiol and Thiosugar Partners. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Convenient synthesis of mixed S–Se-linked pseudodisaccharides by sulfur and selenium exchange. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Zhu M, Ghouilem J, Messaoudi S. Visible-Light-Mediated Stadler-Ziegler Arylation of Thiosugars with Anilines. ACS ORGANIC & INORGANIC AU 2022; 2:351-358. [PMID: 36855591 PMCID: PMC9955296 DOI: 10.1021/acsorginorgau.2c00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report a one-pot Stadler-Ziegler reaction toward the synthesis of 1-thioglycosides in good yield from commercially available anilines and (un)protected 1-glycosyl thiols. This simple and mild approach employs the photoredox catalyst [Ru(bpy)3](PF6)2 under visible light.
Collapse
|
15
|
Li S, Wang Y, Zhong L, Wang S, Liu Z, Dai Y, He Y, Feng Z. Boron-Promoted Umpolung Reaction of Sulfonyl Chlorides for the Stereospecific Synthesis of Thioglycosides via Reductive Deoxygenation Coupling Reactions. Org Lett 2022; 24:2463-2468. [PMID: 35333062 DOI: 10.1021/acs.orglett.2c00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-Glycosides have broad biological activities and serve as stable mimics of natural O-glycoside counterparts and thus are of great therapeutic potential. Herein we disclose an efficient method for the stereospecific synthesis of 1-thioglycosides via a boron-promoted reductive deoxygenation coupling reaction from readily accessible sulfonyl chlorides and glycosyl bromides. Our protocol features mild conditions and excellent functional group tolerance and stereoselectivity. The translational potential of this metal-free approach is demonstrated by the late-stage glycodiversification of natural products and drug molecules.
Collapse
Affiliation(s)
- Siyu Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yujuan Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Lei Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Siyu Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhengli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yuanwei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|
16
|
Dada L, Manzano VE, Varela O. Benzyl Glycosides of Thiodisaccharides. Influence of C‐2 Configuration of the Reducing End and Substitution at Benzyl on the Inhibition of the
E. coli
β‐Galactosidase. ChemistrySelect 2021. [DOI: 10.1002/slct.202103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lucas Dada
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Orgánica. Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| | - Verónica E. Manzano
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Orgánica. Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| | - Oscar Varela
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Orgánica. Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| |
Collapse
|
17
|
Liu Y, Yu XB, Zhang XM, Zhong Q, Liao LH, Yan N. Transition-metal-free synthesis of aryl 1-thioglycosides with arynes at room temperature. RSC Adv 2021; 11:26666-26671. [PMID: 35479995 PMCID: PMC9037310 DOI: 10.1039/d1ra04013h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022] Open
Abstract
A mild, convenient and transition-metal-free protocol for the synthesis of aryl 1-thioglycosides is presented via arynes generated in situ combined with glycosyl thiols in the presence of TBAF(tBuOH)4. The methodology provides a general and efficient way to prepare a series of functionalized thioglycosides in good to excellent yields with a perfect control of the anomeric configuration at room temperature. In addition, the reaction conditions tolerate a variety of the pentoses and hexoses, and the reaction also performs smoothly on protected monosaccharides and disaccharides.
Collapse
Affiliation(s)
- Yao Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Xiao-Bing Yu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Xiang-Mei Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Qian Zhong
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Li-Hua Liao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China .,College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
18
|
Feng G, Wang S, Lv J, Luo T, Wu Y, Dong H. Improved Synthesis of 1‐Glycosyl Thioacetates and Its Application in the Synthesis of Thioglucoside Gliflozin Analogues. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guang‐Jing Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| | - Shuang‐Shuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| | - Jian Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| | - Tao Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| | - Yuzhou Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| |
Collapse
|
19
|
Ratthachag T, Buntasana S, Vilaivan T, Padungros P. Surfactant-mediated thioglycosylation of 1-hydroxy sugars in water. Org Biomol Chem 2021; 19:822-836. [PMID: 33403378 DOI: 10.1039/d0ob02246b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thioglycosides are an important class of sugars, since they can be used as non-ionic biosurfactants, biomimetic glycosides, and building blocks for carbohydrate synthesis. Previously, Brønsted- or Lewis-acid-catalyzed dehydrative glycosylations between a 1-hydroxy sugar and a thiol have been reported to yield open-chain dithioacetal sugars as the major products instead of the desired thioglycosides. These dithioacetal sugars are by-products derived from the endocyclic bond cleavage of the thioglycosides. Herein, we report dehydrative glycosylation in water mediated by a Brønsted acid-surfactant combined catalyst (BASC). Glycosylations between 1-hydroxy furanosyl/pyranosyl sugars and primary, secondary, and tertiary aliphatic/aromatic thiols in the presence of dodecyl benzenesulfonic acid (DBSA) provided the thioglycoside products in moderate to good yields. Microwave irradiation led to improvements in the yields and a shortening of the reaction time. Remarkably, open-chain dithioacetal sugars were not detected in the DBSA-mediated glycosylations in water. This method is a simple, convenient, and rapid approach to produce a library of thioglycosides without the requirement of anhydrous conditions. Moreover, this work also provides an excellent example of complementary reactivity profiles of glycosylation in organic solvents and water.
Collapse
Affiliation(s)
- Trichada Ratthachag
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Supanat Buntasana
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
20
|
Lin N, Lin H, Yang Q, Lu W, Sun Z, Sun S, Meng L, Chi J, Guo H. SGLT1 Inhibition Attenuates Apoptosis in Diabetic Cardiomyopathy via the JNK and p38 Pathway. Front Pharmacol 2021; 11:598353. [PMID: 33597877 PMCID: PMC7883645 DOI: 10.3389/fphar.2020.598353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Recent studies have revealed that a novel selective sodium-glucose cotransporter 1 (SGLT1) inhibiton has shown beneficial effects in cardiovascular diseases. However, the question of whether SGLT1 inhibition influences diabetic cardiomyopathy (DCM) remains unanswered. In this study, we investigated the influence and underlying mechanism of SGLTI inhibition on DCM. Methods: SGLT1 levels were measured in diabetic patients with similar conditions who visited our hospital from January to December 2019. Wistar male rats (n = 50) were divided into five groups: control, diabetes induced by streptozotocin infusion, and diabetes treated with 0.5, 1.0, or 1.5 mg/kg mizagliflozin via stomach gavage for 12 weeks. H9C2 cardiomyocytes were treated with mizagliflozin and then exposed to a high glucose concentration (30 mmol/L). TUNEL assays were performed, and bcl2, bax, p-p38, p-Erk, p-JNK and caspase-3 levels were measured. We used siRNA and an SGLT1 overexpression plasmid to detect the effects of SGLT1. Results: SGLT1 levels were significantly elevated in DCM patients, and receiver operating characteristic (ROC) curve analysis identified SGLT1 as influencing DCM. The area under the curve (AUC) was 0.705 (p < 0.05), with 65.8% sensitivity, and 62.2% specificity. SGLT1 inhibition appeared to attenuate apoptosis in DCM via the JNK and p38 pathway. Conclusion: SGLT1 can be used as a marker for the diagnosis of DCM, and SGLT1 inhibition can attenuate apoptosis, thereby suppressing DCM development via the JNK and p38 pathway.
Collapse
Affiliation(s)
- Na Lin
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Qi Yang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Wenqiang Lu
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhenzhu Sun
- Department of Cardiology, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Shimin Sun
- Department of Cardiology, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
21
|
Nieto-Domínguez M, Fernández de Toro B, de Eugenio LI, Santana AG, Bejarano-Muñoz L, Armstrong Z, Méndez-Líter JA, Asensio JL, Prieto A, Withers SG, Cañada FJ, Martínez MJ. Thioglycoligase derived from fungal GH3 β-xylosidase is a multi-glycoligase with broad acceptor tolerance. Nat Commun 2020; 11:4864. [PMID: 32978392 PMCID: PMC7519651 DOI: 10.1038/s41467-020-18667-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
The synthesis of customized glycoconjugates constitutes a major goal for biocatalysis. To this end, engineered glycosidases have received great attention and, among them, thioglycoligases have proved useful to connect carbohydrates to non-sugar acceptors. However, hitherto the scope of these biocatalysts was considered limited to strong nucleophilic acceptors. Based on the particularities of the GH3 glycosidase family active site, we hypothesized that converting a suitable member into a thioglycoligase could boost the acceptor range. Herein we show the engineering of an acidophilic fungal β-xylosidase into a thioglycoligase with broad acceptor promiscuity. The mutant enzyme displays the ability to form O-, N-, S- and Se- glycosides together with sugar esters and phosphoesters with conversion yields from moderate to high. Analyses also indicate that the pKa of the target compound was the main factor to determine its suitability as glycosylation acceptor. These results expand on the glycoconjugate portfolio attainable through biocatalysis.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Beatriz Fernández de Toro
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Andrés G Santana
- Glycochemistry and Molecular recognition group, Instituto de Química Orgánica General (CSIC), C/Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Lara Bejarano-Muñoz
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Zach Armstrong
- Department of Chemistry, Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Juan Antonio Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Luis Asensio
- Glycochemistry and Molecular recognition group, Instituto de Química Orgánica General (CSIC), C/Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Stephen G Withers
- Department of Chemistry, Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Francisco Javier Cañada
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Krawczyk M, Pastuch-Gawołek G, Hadasik A, Erfurt K. 8-Hydroxyquinoline Glycoconjugates Containing Sulfur at the Sugar Anomeric Position-Synthesis and Preliminary Evaluation of Their Cytotoxicity. Molecules 2020; 25:E4174. [PMID: 32933091 PMCID: PMC7570910 DOI: 10.3390/molecules25184174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
One of the main factors limiting the effectiveness of many drugs is the difficulty of their delivery to their target site in the cell and achieving the desired therapeutic dose. Moreover, the accumulation of the drug in healthy tissue can lead to serious side effects. The way to improve the selectivity of a drug to the cancer cells seems to be its conjugation with a sugar molecule, which should facilitate its selective transport through GLUT transporters (glucose transporters), whose overexpression is seen in some types of cancer. This was the idea behind the synthesis of 8-hydroxyquinoline (8-HQ) derivative glycoconjugates, for which 1-thiosugar derivatives were used as sugar moiety donors. It was expected that the introduction of a sulfur atom instead of an oxygen atom into the anomeric position of the sugar would increase the stability of the obtained glycoconjugates against untimely hydrolytic cleavage. The anticancer activity of new compounds was determined based on the results of the MTT cytotoxicity tests. Because of the assumption that the activity of this type of compounds was based on metal ion chelation, the effect of the addition of copper ions on cell proliferation was tested for some of them. It turned out that cancer cells treated with glycoconjugates in the presence of Cu2+ had a much slower growth rate compared to cells treated with free glycoconjugates in the absence of copper. The highest cytotoxic activity of the compounds was observed against the MCF-7 cell line.
Collapse
Affiliation(s)
- Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.H.)
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.H.)
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Agnieszka Hadasik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.H.)
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| |
Collapse
|
23
|
Bennai N, Ibrahim N, Marrot J, Belkadi M, Alami M, Magnier E, Anselmi E, Messaoudi S. Synthesis of S-Trifluoromethyl S-Arylsulfoximine Thioglycosides through Pd-Catalyzed Migita Cross-Coupling. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nedjwa Bennai
- CNRS, BioCIS; Université Paris-Saclay; 92290 Châtenay-Malabry France
- Université des sciences et de la technologie d'Oran-Mohamed-Boudiaf; Algeria
| | - Nada Ibrahim
- CNRS, BioCIS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Jérôme Marrot
- UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles; Université Paris-Saclay; 78000 Versailles France
| | - Mohamed Belkadi
- Université des sciences et de la technologie d'Oran-Mohamed-Boudiaf; Algeria
| | - Mouad Alami
- CNRS, BioCIS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Emmanuel Magnier
- UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles; Université Paris-Saclay; 78000 Versailles France
| | - Elsa Anselmi
- UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles; Université Paris-Saclay; 78000 Versailles France
- Faculté des Sciences et Techniques; Université de Tours; 37200 Tours France
| | - Samir Messaoudi
- CNRS, BioCIS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| |
Collapse
|
24
|
Arad M, Waldman M, Abraham NG, Hochhauser E. Therapeutic approaches to diabetic cardiomyopathy: Targeting the antioxidant pathway. Prostaglandins Other Lipid Mediat 2020; 150:106454. [PMID: 32413571 DOI: 10.1016/j.prostaglandins.2020.106454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
The global epidemic of cardiovascular disease continues unabated and remains the leading cause of death both in the US and worldwide. We hereby summarize the available therapies for diabetes and cardiovascular disease in diabetics. Clearly, the current approaches to diabetic heart disease often target the manifestations and certain mediators but not the specific pathways leading to myocardial injury, remodeling and dysfunction. Better understanding of the molecular events determining the evolution of diabetic cardiomyopathy will provide insight into the development of specific and targeted therapies. Recent studies largely increased our understanding of the role of enhanced inflammatory response, ROS production, as well as the contribution of Cyp-P450-epoxygenase-derived epoxyeicosatrienoic acid (EET), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), Heme Oxygenase (HO)-1 and 20-HETE in pathophysiology and therapy of cardiovascular disease. PGC-1α increases production of the HO-1 which has a major role in protecting the heart against oxidative stress, microcirculation and mitochondrial dysfunction. This review describes the potential drugs and their downstream targets, PGC-1α and HO-1, as major loci for developing therapeutic approaches beside diet and lifestyle modification for the treatment and prevention of heart disease associated with obesity and diabetes.
Collapse
Affiliation(s)
- Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Maayan Waldman
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Zhu M, Alami M, Messaoudi S. Electrochemical nickel-catalyzed Migita cross-coupling of 1-thiosugars with aryl, alkenyl and alkynyl bromides. Chem Commun (Camb) 2020; 56:4464-4467. [DOI: 10.1039/d0cc01126f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient electrochemical route towards the synthesis of thioglycosides is reported. This approach involves a S–C cross-coupling from protected and unprotected thiosugars with aryl bromides under base free conditions.
Collapse
Affiliation(s)
- Mingxiang Zhu
- BioCIS
- Univ. Paris-Sud
- CNRS
- University Paris-Saclay
- Châtenay-Malabry
| | - Mouad Alami
- BioCIS
- Univ. Paris-Sud
- CNRS
- University Paris-Saclay
- Châtenay-Malabry
| | - Samir Messaoudi
- BioCIS
- Univ. Paris-Sud
- CNRS
- University Paris-Saclay
- Châtenay-Malabry
| |
Collapse
|
26
|
Kalra J, Mangali SB, Dasari D, Bhat A, Goyal S, Dhar I, Sriram D, Dhar A. SGLT1 inhibition boon or bane for diabetes-associated cardiomyopathy. Fundam Clin Pharmacol 2019; 34:173-188. [PMID: 31698522 DOI: 10.1111/fcp.12516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/18/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022]
Abstract
Chronic hyperglycaemia is a peculiar feature of diabetes mellitus (DM). Sequential metabolic abnormalities accompanying glucotoxicity are some of its implications. Glucotoxicity most likely corresponds to the vascular intricacy and metabolic alterations, such as increased oxidation of free fatty acids and reduced glucose oxidation. More than half of those with diabetes also develop cardiac abnormalities due to unknown causes, posing a major threat to the currently available marketed preparations which are being used for treating these cardiac complications. Even though impairment in cardiac functioning is the principal cause of death in individuals with type 2 diabetes (T2D), reducing plasma glucose levels has little effect on cardiovascular disease (CVD) risk. In vitro and in vivo studies have demonstrated that inhibitors of sodium glucose transporter (SGLT) represent a putative therapeutic intervention for these pathological conditions. Several clinical trials have reported the efficacy of SGLT inhibitors as a novel and potent antidiabetic agent which along with its antihyperglycaemic activity possesses the potential of effectively treating its associated cardiac abnormalities. Thus, hereby, the present review highlights the role of SGLT inhibitors as a successful drug candidate for correcting the shifts in deregulation of cardiac energy substrate metabolism together with its role in treating diabetes-related cardiac perturbations.
Collapse
Affiliation(s)
- Jaspreet Kalra
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Suresh Babu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Deepika Dasari
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu, 181143, India
| | - Srashti Goyal
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Indu Dhar
- Department of Clinical Science, University of Bergen, Bergen, 5009, Norway
| | - Dharamrajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| |
Collapse
|
27
|
Zhu M, Dagousset G, Alami M, Magnier E, Messaoudi S. Ni/Photoredox-Dual-Catalyzed Functionalization of 1-Thiosugars. Org Lett 2019; 21:5132-5137. [DOI: 10.1021/acs.orglett.9b01730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingxiang Zhu
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin, 78035 Cedex Versailles, France
| | - Mouad Alami
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin, 78035 Cedex Versailles, France
| | - Samir Messaoudi
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
28
|
Abstract
The glycome describes the complete repertoire of glycoconjugates composed of carbohydrate chains, or glycans, that are covalently linked to lipid or protein molecules. Glycoconjugates are formed through a process called glycosylation and can differ in their glycan sequences, the connections between them and their length. Glycoconjugate synthesis is a dynamic process that depends on the local milieu of enzymes, sugar precursors and organelle structures as well as the cell types involved and cellular signals. Studies of rare genetic disorders that affect glycosylation first highlighted the biological importance of the glycome, and technological advances have improved our understanding of its heterogeneity and complexity. Researchers can now routinely assess how the secreted and cell-surface glycomes reflect overall cellular status in health and disease. In fact, changes in glycosylation can modulate inflammatory responses, enable viral immune escape, promote cancer cell metastasis or regulate apoptosis; the composition of the glycome also affects kidney function in health and disease. New insights into the structure and function of the glycome can now be applied to therapy development and could improve our ability to fine-tune immunological responses and inflammation, optimize the performance of therapeutic antibodies and boost immune responses to cancer. These examples illustrate the potential of the emerging field of 'glycomedicine'.
Collapse
Affiliation(s)
- Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
29
|
Dominguez Rieg JA, Rieg T. What does sodium-glucose co-transporter 1 inhibition add: Prospects for dual inhibition. Diabetes Obes Metab 2019; 21 Suppl 2:43-52. [PMID: 31081587 PMCID: PMC6516085 DOI: 10.1111/dom.13630] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022]
Abstract
Epithelial glucose transport is accomplished by Na+ -glucose co-transporters, SGLT1 and SGLT2. In the intestine, uptake of dietary glucose is for its majority mediated by SGLT1, and humans with mutations in the SGLT1 gene show glucose/galactose malabsorption. In the kidney, both transporters, SGLT1 and SGLT2, are expressed and recent studies identified that SGLT2 mediates up to 97% of glucose reabsorption. Humans with mutations in the SGLT2 gene show familial renal glucosuria. In the last three decades, significant progress was made in understanding the physiology of these transporters and their potential as therapeutic targets. Based on the structure of phlorizin, a natural compound acting as a SGLT1/2 inhibitor, initially several SGLT2, and later SGLT1 and dual SGLT1/2 inhibitors have been developed. Interestingly, SGLT2 knockout or treatment with SGLT2 selective inhibitors only causes a fractional glucose excretion in the magnitude of ∼60%, an effect mediated by up-regulation of renal SGLT1. Based on these findings the hypothesis was brought forward that dual SGLT1/2 inhibition might further improve glycaemic control via targeting two distinct organs that express SGLT1: the intestine and the kidney. Of note, SGLT1/2 double knockout mice completely lack renal glucose reabsorption. This review will address the rationale for the development of SGLT1 and dual SGLT1/2 inhibitors and potential benefits compared to sole SGLT2 inhibition.
Collapse
Affiliation(s)
- Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
30
|
Ibrahim N, Alami M, Messaoudi S. Recent Advances in Transition-Metal-Catalyzed Functionalization of 1-Thiosugars. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nada Ibrahim
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| |
Collapse
|
31
|
Benmahdjoub S, Ibrahim N, Benmerad B, Alami M, Messaoudi S. One-Pot Assembly of Unsymmetrical Biaryl Thioglycosides through Chemoselective Palladium-Catalyzed Three-Component Tandem Reaction. Org Lett 2018; 20:4067-4071. [DOI: 10.1021/acs.orglett.8b01624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara Benmahdjoub
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 06000 Bejaia, Algeria
| | - Nada Ibrahim
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Belkacem Benmerad
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 06000 Bejaia, Algeria
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
32
|
Redjdal W, Ibrahim N, Benmerad B, Alami M, Messaoudi S. Convergent Synthesis of N,S-bis Glycosylquinolin-2-ones via a Pd-G3-XantPhos Precatalyst Catalysis. Molecules 2018; 23:molecules23030519. [PMID: 29495402 PMCID: PMC6017768 DOI: 10.3390/molecules23030519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 11/20/2022] Open
Abstract
Buchwald-Hartwig-Migita cross-coupling of 1-thiosugars with α- or β-3-iodo-N-glycosylquinolin-2-ones has been accomplished under mild and operationally simple reaction conditions through the use of a Pd-G3 XantPhos palladacycle precatalyst. This new methodology has been successfully applied to a variety of α- or β-mono-, di-, and poly-thiosugar derivatives to efficiently synthesize a series of α- or β-N,S-bis-glycosyl quinolin-2-ones, which are difficult to synthesize by classical methods.
Collapse
Affiliation(s)
- Wafa Redjdal
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 0600 Bejaia, Algeria.
| | - Nada Ibrahim
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92296, France.
| | - Belkacem Benmerad
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 0600 Bejaia, Algeria.
| | - Mouad Alami
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92296, France.
| | - Samir Messaoudi
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92296, France.
| |
Collapse
|
33
|
Meguro Y, Noguchi M, Li G, Shoda SI. Glycosyl Bunte Salts: A Class of Intermediates for Sugar Chemistry. Org Lett 2017; 20:76-79. [DOI: 10.1021/acs.orglett.7b03400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuhiro Meguro
- Department of Biomolecular Engineering,
Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Masato Noguchi
- Department of Biomolecular Engineering,
Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Gefei Li
- Department of Biomolecular Engineering,
Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Shin-ichiro Shoda
- Department of Biomolecular Engineering,
Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
34
|
Cinti F, Moffa S, Impronta F, Cefalo CMA, Sun VA, Sorice GP, Mezza T, Giaccari A. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug Des Devel Ther 2017; 11:2905-2919. [PMID: 29042751 PMCID: PMC5633300 DOI: 10.2147/dddt.s114932] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are the latest therapeutic strategy in the treatment of type 2 diabetes mellitus (T2DM). Using an insulin-independent mechanism (glycosuria), they reduce glucose toxicity and improve insulin sensitivity and β-cell function. The promising results obtained in clinical trials show that SGLT2 significantly improves glycemic control and provides greater cardiovascular protection, combined with a reduction in body weight and blood pressure (BP). This review focuses on ertugliflozin, a new, highly selective, and reversible SGLT2 inhibitor. Clinical trials published to date show that ertugliflozin, both as a monotherapy and as an add-on to oral antidiabetic agents, is safe and effective in reducing glycosylated hemoglobin (HbA1c), body weight, and BP in T2DM patients.
Collapse
Affiliation(s)
- Francesca Cinti
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Moffa
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Impronta
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara MA Cefalo
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vinsin A Sun
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Pio Sorice
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Mezza
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
35
|
AL-Shuaeeb RAA, Montoir D, Alami M, Messaoudi S. Synthesis of (1 → 2)-S-Linked Saccharides and S-Linked Glycoconjugates via a Palladium-G3-XantPhos Precatalyst Catalysis. J Org Chem 2017; 82:6720-6728. [DOI: 10.1021/acs.joc.7b00861] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Riyadh Ahmed Atto AL-Shuaeeb
- Laboratoire de Chimie Thérapeutique,
Faculté de Pharmacie, University of Paris-Sud, CNRS, BioCIS-UMR 8076, 5 rue J.-B. Clément, Châtenay-Malabry F-92296, France
| | - David Montoir
- Laboratoire de Chimie Thérapeutique,
Faculté de Pharmacie, University of Paris-Sud, CNRS, BioCIS-UMR 8076, 5 rue J.-B. Clément, Châtenay-Malabry F-92296, France
| | - Mouad Alami
- Laboratoire de Chimie Thérapeutique,
Faculté de Pharmacie, University of Paris-Sud, CNRS, BioCIS-UMR 8076, 5 rue J.-B. Clément, Châtenay-Malabry F-92296, France
| | - Samir Messaoudi
- Laboratoire de Chimie Thérapeutique,
Faculté de Pharmacie, University of Paris-Sud, CNRS, BioCIS-UMR 8076, 5 rue J.-B. Clément, Châtenay-Malabry F-92296, France
| |
Collapse
|
36
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
37
|
The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther 2017; 170:148-165. [DOI: 10.1016/j.pharmthera.2016.10.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Chabrier A, Bruneau A, Benmahdjoub S, Benmerad B, Belaid S, Brion JD, Alami M, Messaoudi S. Stereoretentive Copper-Catalyzed Directed Thioglycosylation of C(sp2
)−H Bonds of Benzamides. Chemistry 2016; 22:15006-15010. [DOI: 10.1002/chem.201602909] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Amélie Chabrier
- BioCIS, Univ. Paris-Sud, CNRS; University Paris-Saclay; Châtenay-Malabry France
| | - Alexandre Bruneau
- BioCIS, Univ. Paris-Sud, CNRS; University Paris-Saclay; Châtenay-Malabry France
| | - Sara Benmahdjoub
- Laboratoire de Physico-Chimie des Matériaux et Catalyse; Faculté des Sciences Exactes; Université de Bejaia; 0600 Bejaia Algeria
| | - Belkacem Benmerad
- Laboratoire de Physico-Chimie des Matériaux et Catalyse; Faculté des Sciences Exactes; Université de Bejaia; 0600 Bejaia Algeria
| | - Sabrina Belaid
- Laboratoire de Physico-Chimie des Matériaux et Catalyse; Faculté des Sciences Exactes; Université de Bejaia; 0600 Bejaia Algeria
| | - Jean-Daniel Brion
- BioCIS, Univ. Paris-Sud, CNRS; University Paris-Saclay; Châtenay-Malabry France
| | - Mouâd Alami
- BioCIS, Univ. Paris-Sud, CNRS; University Paris-Saclay; Châtenay-Malabry France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS; University Paris-Saclay; Châtenay-Malabry France
| |
Collapse
|
39
|
Synthesis and biological evaluation of novel tetrahydroisoquinoline- C -aryl glucosides as SGLT2 inhibitors for the treatment of type 2 diabetes. Eur J Med Chem 2016; 114:89-100. [DOI: 10.1016/j.ejmech.2016.02.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 11/19/2022]
|
40
|
Song P, Onishi A, Koepsell H, Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 2016; 20:1109-25. [PMID: 26998950 DOI: 10.1517/14728222.2016.1168808] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Glycemic control is important in diabetes mellitus to minimize the progression of the disease and the risk of potentially devastating complications. Inhibition of the sodium-glucose cotransporter SGLT2 induces glucosuria and has been established as a new anti-hyperglycemic strategy. SGLT1 plays a distinct and complementing role to SGLT2 in glucose homeostasis and, therefore, SGLT1 inhibition may also have therapeutic potential. AREAS COVERED This review focuses on the physiology of SGLT1 in the small intestine and kidney and its pathophysiological role in diabetes. The therapeutic potential of SGLT1 inhibition, alone as well as in combination with SGLT2 inhibition, for anti-hyperglycemic therapy are discussed. Additionally, this review considers the effects on other SGLT1-expressing organs like the heart. EXPERT OPINION SGLT1 inhibition improves glucose homeostasis by reducing dietary glucose absorption in the intestine and by increasing the release of gastrointestinal incretins like glucagon-like peptide-1. SGLT1 inhibition has a small glucosuric effect in the normal kidney and this effect is increased in diabetes and during inhibition of SGLT2, which deliver more glucose to SGLT1 in late proximal tubule. In short-term studies, inhibition of SGLT1 and combined SGLT1/SGLT2 inhibition appeared to be safe. More data is needed on long-term safety and cardiovascular consequences of SGLT1 inhibition.
Collapse
Affiliation(s)
- Panai Song
- a Division of Nephrology & Hypertension, Department of Medicine , University of California San Diego , La Jolla , CA , USA.,b VA San Diego Healthcare System , San Diego , CA , USA.,c Department of Nephrology, Second Xiangya Hospital , Central South University , Changsha , China
| | - Akira Onishi
- a Division of Nephrology & Hypertension, Department of Medicine , University of California San Diego , La Jolla , CA , USA.,b VA San Diego Healthcare System , San Diego , CA , USA.,d Division of Nephrology, Department of Medicine , Jichi Medical University , Shimotsuke , Japan
| | - Hermann Koepsell
- e Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute , University of Würzburg , Würzburg , Germany
| | - Volker Vallon
- a Division of Nephrology & Hypertension, Department of Medicine , University of California San Diego , La Jolla , CA , USA.,b VA San Diego Healthcare System , San Diego , CA , USA.,f Department of Pharmacology , University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
41
|
AL-Shuaeeb RAA, Galvani G, Bernadat G, Brion JD, Alami M, Messaoudi S. Diversity-oriented synthesis of fused thioglycosyl benzo[e][1,4]oxathiepin-5-ones and benzo[f][1,4]thiazepin-5(2H)-ones by a sequence of palladium-catalyzed glycosyl thiol arylation and deprotection–lactonization reactions. Org Biomol Chem 2015; 13:10904-16. [DOI: 10.1039/c5ob01603g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of thioglycosylated benzo[e][1,4]-oxathiepin-5-one and benzothiazepinone derivatives has been reported.
Collapse
Affiliation(s)
| | - Gilles Galvani
- Univ. Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre Le Cancer
| | - Guillaume Bernadat
- Univ. Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre Le Cancer
| | - Jean-Daniel Brion
- Univ. Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre Le Cancer
| | - Mouad Alami
- Univ. Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre Le Cancer
| | - Samir Messaoudi
- Univ. Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre Le Cancer
| |
Collapse
|
42
|
Wang Y, Dawid C, Kottra G, Daniel H, Hofmann T. Gymnemic acids inhibit sodium-dependent glucose transporter 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5925-5931. [PMID: 24856809 DOI: 10.1021/jf501766u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To evaluate the activity of botanicals used in Chinese Traditional Medicine as hypoglycemic agents for diabetes type II prevention and/or treatment, extracts prepared from 26 medicinal herbs were screened for their inhibitory activity on sodium-dependent glucose transporter 1 (SGLT1) by using two-electrode voltage-clamp recording of glucose uptake in Xenopus laevis oocytes microinjected with cRNA for SGLT1. Showing by far the strongest SGLT1 inhibitory effect, the phytochemicals extracted from Gymnema sylvestre (Retz.) Schult were located by means of activity-guided fractionation and identified as 3-O-β-D-glucuronopyranosyl-21-O-2-tigloyl-22-O-2-tigloyl gymnemagenin (1) and 3-O-β-D-glucuronopyranosyl-21-O-2-methylbutyryl-22-O-2-tigloyl gymnemagenin (2) by means of LC-MS/MS, UPLC-TOF/MS, and 1D/2D-NMR experiments. Both saponins exhibited low IC50 values of 5.97 (1) and 0.17 μM (2), the latter of which was in the same range as found for the high-affinity inhibitor phlorizin (0.21 μM). As SGLT1 is found in high levels in brush-border membranes of intestinal epithelial cells, these findings demonstrate for the first time the potential of these saponins for inhibiting electrogenic glucose uptake in the gastrointestinal tract.
Collapse
Affiliation(s)
- Yu Wang
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universitaet Muenchen , Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | | | | | | | | |
Collapse
|
43
|
Neundlinger I, Puntheeranurak T, Wildling L, Rankl C, Wang LX, Gruber HJ, Kinne RKH, Hinterdorfer P. Forces and dynamics of glucose and inhibitor binding to sodium glucose co-transporter SGLT1 studied by single molecule force spectroscopy. J Biol Chem 2014; 289:21673-83. [PMID: 24962566 DOI: 10.1074/jbc.m113.529875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single molecule force spectroscopy was employed to investigate the dynamics of the sodium glucose co-transporter (SGLT1) upon substrate and inhibitor binding on the single molecule level. CHO cells stably expressing rbSGLT1 were probed by using atomic force microscopy tips carrying either thioglucose, 2'-aminoethyl β-d-glucopyranoside, or aminophlorizin. Poly(ethylene glycol) (PEG) chains of different length and varying end groups were used as tether. Experiments were performed at 10, 25 and 37 °C to address different conformational states of SGLT1. Unbinding forces between ligands and SGLT1 were recorded at different loading rates by changing the retraction velocity, yielding binding probability, width of energy barrier of the binding pocket, and the kinetic off rate constant of the binding reaction. With increasing temperature, width of energy barrier and average life time increased for the interaction of SGLT1 with thioglucose (coupled via acrylamide to a long PEG) but decreased for aminophlorizin binding. The former indicates that in the membrane-bound SGLT1 the pathway to sugar translocation involves several steps with different temperature sensitivity. The latter suggests that also the aglucon binding sites for transport inhibitors have specific, temperature-sensitive conformations.
Collapse
Affiliation(s)
- Isabel Neundlinger
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Theeraporn Puntheeranurak
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, Department of Biology, Faculty of Science, Mahidol University and Nanotec-MU Center of Excellence on Intelligent Materials and Systems, 272 Rama VI, Ratchathewi, Bangkok 10400, Thailand
| | - Linda Wildling
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | | | - Lai-Xi Wang
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Hermann J Gruber
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Rolf K H Kinne
- Max Planck Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Peter Hinterdorfer
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria,
| |
Collapse
|
44
|
Palladium-Catalyzed Cross-Coupling Reaction of Thioglycosides with (Hetero)aryl Halides. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200695] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Kanwal A, Singh SP, Grover P, Banerjee SK. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2. Anal Biochem 2012; 429:70-5. [DOI: 10.1016/j.ab.2012.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/23/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022]
|
46
|
Castaneda-Sceppa C, Castaneda F. Sodium-dependent glucose transporter protein as a potential therapeutic target for improving glycemic control in diabetes. Nutr Rev 2011; 69:720-9. [DOI: 10.1111/j.1753-4887.2011.00423.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
47
|
Dotsenko IA, Curtis M, Samoshina NM, Samoshin VV. Convenient synthesis of 5-aryl(alkyl)sulfanyl-1,10-phenanthrolines from 5,6-epoxy-5,6-dihydro-1,10-phenanthroline, and their activity towards fungal β-d-glycosidases. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.07.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Yoshida N, Noguchi M, Tanaka T, Matsumoto T, Aida N, Ishihara M, Kobayashi A, Shoda SI. Direct Dehydrative Pyridylthio-Glycosidation of Unprotected Sugars in Aqueous Media Using 2-Chloro-1,3-dimethylimidazolinium Chloride as a Condensing Agent. Chem Asian J 2011; 6:1876-85. [DOI: 10.1002/asia.201000896] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Indexed: 11/07/2022]
|
49
|
Abstract
Recently, the idea has been developed to lower blood glucose blood glucose levels in diabetes by inhibiting sugar reabsorption sugar reabsorption in the kidney kidney . The main target is thereby the early proximal tubule proximal tubule where secondary active transport secondary active transport of the sugar is mediated by the sodium-D: -glucose D-glucose cotransporter SGLT2 SGLT2 . A model substance for the inhibitors inhibitors is the O-glucoside O-glucoside phlorizin phlorizin which inhibits transport transport competitively. Its binding to the transporter involves at least two different domains: an aglucone binding aglucone binding site at the transporter surface, involving extramembranous loops extramembraneous loops , and the sugar binding sugar binding /translocation site buried in a hydrophilic pocket of the transporter. The properties of these binding sites differ between SGLT2 and SGLT1 SGLT1 , which mediates sugar absorption sugar absorption in the intestine intestine . Various O-, C-, N- and S-glucosides have been synthesized with high affinity affinity and high specificity specificity for SGLT2 SGLT2 . Some of these glucosides are in clinical trials clinical trials and have been proven to successfully increase urinary glucose excretion urinary glucose excretion and to decrease blood sugar blood sugar levels without the danger of hypoglycaemia hypoglycaemia during fasting fasting in type 2 diabetes type 2 diabetes .
Collapse
Affiliation(s)
- Rolf K H Kinne
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| | | |
Collapse
|
50
|
Tyagi NK, Puntheeranurak T, Raja M, Kumar A, Wimmer B, Neundlinger I, Gruber H, Hinterdorfer P, Kinne RK. A biophysical glance at the outer surface of the membrane transporter SGLT1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1-18. [DOI: 10.1016/j.bbamem.2010.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
|