1
|
Sokolova V, Gruber R, Pammer LM, Kocher F, Klieser E, Amann A, Pichler R, Günther M, Ormanns S, Neureiter D, Seeber A. Prognostic and functional role of the nuclear export receptor 1 (XPO1) in gastrointestinal cancers: a potential novel target? Mol Biol Rep 2024; 52:87. [PMID: 39729162 PMCID: PMC11680630 DOI: 10.1007/s11033-024-10169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
In the last decades the survival of metastatic gastrointestinal (GI) cancer patients could have been significantly extended due to the introduction of targeted- and immunotherapy. However, only the minority of patients will experience long-lasting survival. Hence, novel therapeutics are clearly necessary for GI cancer patients. Molecular high-throughput profiling techniques have revealed potential novel targetable molecular alterations, emphasizing the necessity for tailored therapeutic approaches. Nuclear export proteins, particularly Exportin-1 (XPO1), have emerged as promising targets in cancer therapy due to their crucial role in cellular homeostasis and regulation of key cellular functions. Dysregulation of XPO1-mediated nuclear export leads to the functional loss of tumor suppressors and pro-apoptotic factors, facilitating cancer progression. Selinexor, a XPO1 inhibitor, has shown promising activity in preclinical and clinical studies, particularly in hematological malignancies. However, its efficacy in GI cancers remains underexplored. This review aims to elucidate the functional and pathophysiological role of XPO1 in GI cancers. Despite the potential of XPO1 inhibitors in suppressing cell proliferation and inducing apoptosis, comprehensive molecular landscape data and validation of selective inhibitors in GI cancers are lacking. Targeting XPO1 presents a significant therapeutic potential for the treatment of GI cancer patients. Further research is necessary to fully elucidate the molecular landscape according to XPO1 expression in GI tumors and to validate the efficacy of selective XPO1 inhibitors. These efforts are expected to contribute to the development of more effective and personalized therapeutic strategies for GI cancer patients.
Collapse
Affiliation(s)
- Viktorija Sokolova
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Eckhard Klieser
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Günther
- Institute of Pathology, INNPATH GmbH, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Steffen Ormanns
- Institute of Pathology, INNPATH GmbH, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Andreas Seeber
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy.
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Ke CH, Wu HY, Wang YS, Huang WH, Lin CS. Tumors Established in a Defective Immune Environment Reprogram the Oncogenic Signaling Pathways to Escalate Tumor Antigenicity. Biomedicines 2024; 12:846. [PMID: 38672200 PMCID: PMC11047836 DOI: 10.3390/biomedicines12040846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Tumors developed in immunocompromised hosts are more immunogenic. However, few studies have addressed the potential mechanisms underlying the high immunogenicity of tumors found in a suppressed immune system. Therefore, we aimed to elucidate the impacts of the immune system on tumor behaviors and immunogenicity sculpting. A murine colorectal adenocarcinoma cell line, CT26wt, was administrated into immunocompetent (BALB/c) and immunocompromised (NOD.SCID) mice, respectively. On day 11, the CT26 cells slowly progressed in the NOD.SCID mice compared to the BALB/c mice. We then performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) and analyzed the differentially expressed proteins (DEPs). The DEPs participated in numerous oncogenic pathways, PI3K/AKT/mTOR cell signaling, and the silencing of several tumor suppressors, such as PTEN and RBL1, during tumorigenesis. On day 34, the CT26/SCID tumors inversely became malignant counterparts; then the CT26/SCID tumors were harvested and re-inoculated into immunocompetent mice (CT26/SCID-Re tumors) to determine the immunogenicity. The CT26/SCID-Re tumor growth rate significantly decreased. Furthermore, increased infiltrations of dendritic cells and tumor-infiltrating T lymphocytes were found in the CT26/SCID-Re tumors. These findings suggest that immunogenic tumors might express multiple tumor rejection antigens, unlike wild-type tumors, and attract more immune cells, therefore decreasing the growth rate. Collectively, our study first revealed that in immunodeficient hosts, tumor suppressors were silenced and oncogenic signaling pathways were changed during the initial phase of tumor development. With tumor progression, the tumor antigens were overexpressed, exhibiting elevated immunogenicity. This study offers a hint on the mechanisms of tumorigenesis and provides a niche for investigating the interaction between host immunity and cancer development.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.K.); (Y.-S.W.)
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Shan Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.K.); (Y.-S.W.)
- Uni-Pharma Co., Ltd., Taipei 11494, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.K.); (Y.-S.W.)
| |
Collapse
|
3
|
Wang Z, Wang X, Shi Y, Wu S, Ding Y, Yao G, Chen J. Advancements in elucidating the pathogenesis of actinic keratosis: present state and future prospects. Front Med (Lausanne) 2024; 11:1330491. [PMID: 38566927 PMCID: PMC10985158 DOI: 10.3389/fmed.2024.1330491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Solar keratosis, also known as actinic keratosis (AK), is becoming increasingly prevalent. It is a benign tumor that develops in the epidermis. Individuals with AK typically exhibit irregular, red, scaly bumps or patches as a result of prolonged exposure to UV rays. These growths primarily appear on sun-exposed areas of the skin such as the face, scalp, and hands. Presently, dermatologists are actively studying AK due to its rising incidence rate in the United States. However, the underlying causes of AK remain poorly understood. Previous research has indicated that the onset of AK involves various mechanisms including UV ray-induced inflammation, oxidative stress, complex mutagenesis, resulting immunosuppression, inhibited apoptosis, dysregulated cell cycle, altered cell proliferation, tissue remodeling, and human papillomavirus (HPV) infection. AK can develop in three ways: spontaneous regression, persistence, or progression into invasive cutaneous squamous cell carcinoma (cSCC). Multiple risk factors and diverse signaling pathways collectively contribute to its complex pathogenesis. To mitigate the risk of cancerous changes associated with long-term UV radiation exposure, prompt identification, management, and prevention of AK are crucial. The objective of this review is to elucidate the primary mechanisms underlying AK malignancy and identify potential treatment targets for dermatologists in clinical settings.
Collapse
Affiliation(s)
- Zhongzhi Wang
- Department of Dermatology, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China
| | - Xiaolie Wang
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuanyang Shi
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Siyu Wu
- Department of Dermatology, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China
| | - Yu Ding
- Department of Dermatology, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China
| | - Guotai Yao
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianghan Chen
- Department of Dermatology, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Fang KT, Su CS, Layos JJ, Lau NYS, Cheng KH. Haploinsufficiency of Adenomatous Polyposis Coli Coupled with Kirsten Rat Sarcoma Viral Oncogene Homologue Activation and P53 Loss Provokes High-Grade Glioblastoma Formation in Mice. Cancers (Basel) 2024; 16:1046. [PMID: 38473403 DOI: 10.3390/cancers16051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadly type of brain tumor originating from glial cells. Despite decades of clinical trials and research, there has been limited success in improving survival rates. However, molecular pathology studies have provided a detailed understanding of the genetic alterations associated with the formation and progression of glioblastoma-such as Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling activation (5%), P53 mutations (25%), and adenomatous polyposis coli (APC) alterations (2%)-laying the groundwork for further investigation into the biological and biochemical basis of this malignancy. These analyses have been crucial in revealing the sequential appearance of specific genetic lesions at distinct histopathological stages during the development of GBM. To further explore the pathogenesis and progression of glioblastoma, here, we developed the glial-fibrillary-acidic-protein (GFAP)-Cre-driven mouse model and demonstrated that activated KRAS and p53 deficiencies play distinct and cooperative roles in initiating glioma tumorigenesis. Additionally, the combination of APC haploinsufficiency with mutant Kras activation and p53 deletion resulted in the rapid progression of GBM, characterized by perivascular inflammation, large necrotic areas, and multinucleated giant cells. Consequently, our GBM models have proven to be invaluable resources for identifying early disease biomarkers in glioblastoma, as they closely mimic the human disease. The insights gained from these models may pave the way for potential advancements in the diagnosis and treatment of this challenging brain tumor.
Collapse
Affiliation(s)
- Kuan-Te Fang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chuan-Shiang Su
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jhoanna Jane Layos
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Nga Yin Sadonna Lau
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
6
|
Soltan MA, Alhanshani AA, Shati AA, Alqahtani YA, Alshaya DS, Alharthi J, Altalhi SA, Fayad E, Zaki MSA, Eid RA. Cyclin Dependent Kinase Inhibitor 2A Genetic and Epigenetic Alterations Interfere with Several Immune Components and Predict Poor Clinical Outcome. Biomedicines 2023; 11:2254. [PMID: 37626750 PMCID: PMC10452213 DOI: 10.3390/biomedicines11082254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Cyclin dependent kinase inhibitor 2A (CDKN2A) is a well-known tumor suppressor gene as it functions as a cell cycle regulator. While several reports correlate the malfunction of CDKN2A with the initiation and progression of several types of human tumors, there is a lack of a comprehensive study that analyzes the potential effect of CDKN2A genetic alterations on the human immune components and the consequences of that effect on tumor progression and patient survival in a pan-cancer model. The first stage of the current study was the analysis of CDKN2A differential expression in tumor tissues and the corresponding normal ones and correlating that with tumor stage, grade, metastasis, and clinical outcome. Next, a detailed profile of CDKN2A genetic alteration under tumor conditions was described and assessed for its effect on the status of different human immune components. CDKN2A was found to be upregulated in cancerous tissues versus normal ones and that predicted the progression of tumor stage, grade, and metastasis in addition to poor prognosis under different forms of tumors. Additionally, CDKN2A experienced different forms of genetic alteration under tumor conditions, a characteristic that influenced the infiltration and the status of CD8, the chemokine CCL4, and the chemokine receptor CCR6. Collectively, the current study demonstrates the potential employment of CDKN2A genetic alteration as a prognostic and immunological biomarker under several types of human cancers.
Collapse
Affiliation(s)
- Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Ahmad A. Alhanshani
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Jawaher Alharthi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sarah Awwadh Altalhi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
7
|
Angwa LM, Nyadanu SD, Kanyugo AM, Adampah T, Pereira G. Fluoride-induced apoptosis in non-skeletal tissues of experimental animals: A systematic review and meta-analysis. Heliyon 2023; 9:e18646. [PMID: 37560699 PMCID: PMC10407679 DOI: 10.1016/j.heliyon.2023.e18646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Different studies have suggested that fluoride can induce apoptosis in non-skeletal tissues, however, evidence from these experimental studies is still controversial. This meta-analysis aims to clarify the mechanism of fluoride-induced apoptosis in non-skeletal tissues of experimental animals. Primary studies which measured apoptosis were identified through exhaustive database searching in PubMed, Embase, Web of Science Core Collection, Scopus, and references of included studies. A random effects model with standardized mean difference (SMD) was used for meta-analyses. The heterogeneity of the studies was evaluated using Higgin's I2 statistics. The risk of bias and publication bias were assessed using the SYRCLE's risk of bias tool and Egger's test, respectively. There was an increase in total apoptotic cells, and the expression of Bax, Bax/Bcl-2 ratio, caspase-3, caspase-8, caspase-9, Cyt c, and p53, and a decrease in the expression of Bcl-2 in the fluoride-treated groups as compared to the control groups. However, there was no evidence of a difference in the expression of APAF-1 in the two groups. The subgroup analysis highlighted the role of the intervention period in modification of the apoptotic effect of fluoride and that the susceptibility and tolerance of different animal species and tissues vary. Meta-regression analysis indicated that the studies' effect size for total apoptotic cells was influenced by animal species and that of Bax by the sample source. The results of this meta-analysis revealed that fluoride causes apoptosis by up-regulating caspase-3, -8, and -9, Cyt c, p53, Bax, and down-regulating Bcl-2 with a concomitant up-regulation of the Bax/Bcl-2 ratio.
Collapse
Affiliation(s)
- Linet Musungu Angwa
- Department of Clinical Medicine, Kabarak University, Private Bag, 20157, Kabarak, Kenya
| | - Sylvester Dodzi Nyadanu
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia
- Education, Culture, and Health Opportunities (ECHO) Research Group International, Aflao, Ghana
| | - Anne Murugi Kanyugo
- Department of Clinical Medicine, Kabarak University, Private Bag, 20157, Kabarak, Kenya
| | - Timothy Adampah
- Education, Culture, and Health Opportunities (ECHO) Research Group International, Aflao, Ghana
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
- enAble Institute, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia
| |
Collapse
|
8
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Liu S, Matsuo T, Abe T. Revisiting Cryptocyanine Dye, NK-4, as an Old and New Drug: Review and Future Perspectives. Int J Mol Sci 2023; 24:4411. [PMID: 36901839 PMCID: PMC10002675 DOI: 10.3390/ijms24054411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
NK-4 plays a key role in the treatment of various diseases, such as in hay fever to expect anti-allergic effects, in bacterial infections and gum abscesses to expect anti-inflammatory effects, in scratches, cuts, and mouth sores from bites inside the mouth for enhanced wound healing, in herpes simplex virus (HSV)-1 infections for antiviral effects, and in peripheral nerve disease that causes tingling pain and numbness in hands and feet, while NK-4 is used also to expect antioxidative and neuroprotective effects. We review all therapeutic directions for the cyanine dye NK-4, as well as the pharmacological mechanism of NK-4 in animal models of related diseases. Currently, NK-4, which is sold as an over-the-counter drug in drugstores, is approved for treating allergic diseases, loss of appetite, sleepiness, anemia, peripheral neuropathy, acute suppurative diseases, wounds, heat injuries, frostbite, and tinea pedis in Japan. The therapeutic effects of NK-4's antioxidative and neuroprotective properties in animal models are now under development, and we hope to apply these pharmacological effects of NK-4 to the treatment of more diseases. All experimental data suggest that different kinds of utility of NK-4 in the treatment of diseases can be developed based on the various pharmacological properties of NK-4. It is expected that NK-4 could be developed in more therapeutic strategies to treat many types of diseases, such as neurodegenerative and retinal degenerative diseases.
Collapse
Affiliation(s)
- Shihui Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan
- Department of Ophthalmology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Mehmood S, Aslam S, Dilshad E, Ismail H, Khan AN. Transforming Diagnosis and Therapeutics Using Cancer Genomics. Cancer Treat Res 2023; 185:15-47. [PMID: 37306902 DOI: 10.1007/978-3-031-27156-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In past quarter of the century, much has been understood about the genetic variation and abnormal genes that activate cancer in humans. All the cancers somehow possess alterations in the DNA sequence of cancer cell's genome. In present, we are heading toward the era where it is possible to obtain complete genome of the cancer cells for their better diagnosis, categorization and to explore treatment options.
Collapse
Affiliation(s)
- Sabba Mehmood
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| | - Hammad Ismail
- Departments of Biochemistry and Biotechnology, University of Gujrat (UOG) Gujrat, Gujrat, Pakistan
| | - Amna Naheed Khan
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| |
Collapse
|
11
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Kurabi A, Hur DG, Pak K, Gibson M, Webster NJG, Baird A, Eliceiri BP, Ryan AF. The ECRG4 cleavage product augurin binds the endotoxin receptor and influences the innate immune response during otitis media. Front Genet 2022; 13:932555. [PMID: 36092940 PMCID: PMC9461705 DOI: 10.3389/fgene.2022.932555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Otitis media (OM), the most common disease of childhood, is typically characterized by bacterial infection of the middle ear (ME). Prominent features of OM include hyperplasia of the ME mucosa, which transforms from a monolayer of simple squamous epithelium with minimal stroma into a full-thickness respiratory epithelium in 2-3 days after infection. Analysis of the murine ME transcriptome during OM showed down-regulation of the tumor suppressor gene Ecrg4 that was temporally related to mucosal hyperplasia and identified stromal cells as the primary ECRG4 source. The reduction in Ecrg4 gene expression coincided with the cleavage of ECRG4 protein to release an extracellular fragment, augurin. The duration of mucosal hyperplasia during OM was greater in Ecrg4 -/- mice, the number of infiltrating macrophages was enhanced, and ME infection cleared more rapidly. ECRG4-null macrophages showed increased bacterial phagocytosis. Co-immunoprecipitation identified an association of augurin with TLR4, CD14 and MD2, the components of the lipopolysaccharide (LPS) receptor. The results suggest that full-length ECRG4 is a sentinel molecule that potentially inhibits growth of the ME stroma. Processing of ECRG4 protein during inflammation, coupled with a decline in Ecrg4 gene expression, also influences the behavior of cells that do not express the gene, limiting the production of growth factors by epithelial and endothelial cells, as well as the activity of macrophages.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States,*Correspondence: Arwa Kurabi,
| | - Dong Gu Hur
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States,Department of Otorhinolaryngology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Kwang Pak
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Madeline Gibson
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Nicholas J. G. Webster
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States,San Diego Veterans Administration Healthcare System, San Diego, CA, United States
| | - Andrew Baird
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Brian P. Eliceiri
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Allen F. Ryan
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States,San Diego Veterans Administration Healthcare System, San Diego, CA, United States
| |
Collapse
|
13
|
Uncovering Oncogenic Mechanisms of Tumor Suppressor Genes in Breast Cancer Multi-Omics Data. Int J Mol Sci 2022; 23:ijms23179624. [PMID: 36077026 PMCID: PMC9455665 DOI: 10.3390/ijms23179624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor suppressor genes (TSGs) are essential genes in the development of cancer. While they have many roles in normal cells, mutation and dysregulation of the TSGs result in aberrant molecular processes in cancer cells. Therefore, understanding TSGs and their roles in the oncogenic process is crucial for prevention and treatment of cancer. In this research, multi-omics breast cancer data were used to identify molecular mechanisms of TSGs in breast cancer. Differentially expressed genes and differentially coexpressed genes were identified in four large-scale transcriptomics data from public repositories and multi-omics data analyses of copy number, methylation and gene expression were performed. The results of the analyses were integrated using enrichment analysis and meta-analysis of a p-value summation method. The integrative analysis revealed that TSGs have a significant relationship with genes of gene ontology terms that are related to cell cycle, genome stability, RNA processing and metastasis, indicating the regulatory mechanisms of TSGs on cancer cells. The analysis frame and research results will provide valuable information for the further identification of TSGs in different types of cancers.
Collapse
|
14
|
FAM107A Inactivation Associated with Promoter Methylation Affects Prostate Cancer Progression through the FAK/PI3K/AKT Pathway. Cancers (Basel) 2022; 14:cancers14163915. [PMID: 36010909 PMCID: PMC9405870 DOI: 10.3390/cancers14163915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is a common male malignancy. FAM107A, or actin-associated protein, is commonly downregulated in PCa and is associated with a poor patient prognosis. We investigated the role of FAM107A in PCa and found that downregulation of FAM107A expression was caused by hypermethylation of CpG islands, and DNA methyltransferase 1 (DNMT1) was involved in maintaining hypermethylation. Mechanistically, FAM107A regulated PCa cell growth through the FAK/PI3K/AKT signaling pathway. Therefore, FAM107A overexpression may represent a potential treatment for PCa, while therapies targeting epigenetic events that regulate FAM107A expression may also be an effective strategy for PCa treatment. Abstract Prostate cancer (PCa) is one of the most common cancers and is the second leading cause of mortality in men. Studies exploring novel therapeutic methods are urgently needed. FAM107A, a coding gene located in the short arm of chromosome3, is generally downregulated in PCa and is associated with a poor prognosis. However, the downregulation of FAM107A in PCa and the mechanism of its action remain challenging to determine. This investigation found that downregulation of FAM107A expression in PCa was caused by hypermethylation of CpG islands. Furthermore, DNA methyltransferase 1 (DNMT1) was involved in maintaining hypermethylation. Mechanistically, overexpression of FAM107A inhibits tumor cell proliferation, migration, invasion and promotes apoptosis through the FAK/PI3K/AKT signaling pathway, indicating that FAM107A may be a molecular brake of FAK/PI3K/AKT signaling, thus limiting the active state of the FAK/PI3K/AKT pathway. These findings will contribute to a better understanding of the effect of FAM107A in PCa, and FAM107A may represent a new therapeutic target for PCa.
Collapse
|
15
|
Nascente EDP, Amorim RL, Fonseca-Alves CE, de Moura VMBD. Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions. Cancers (Basel) 2022; 14:2727. [PMID: 35681707 PMCID: PMC9179314 DOI: 10.3390/cancers14112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
First described in 1817, prostate cancer is considered a complex neoplastic entity, and one of the main causes of death in men in the western world. In dogs, prostatic carcinoma (PC) exhibits undifferentiated morphology with different phenotypes, is hormonally independent of aggressive character, and has high rates of metastasis to different organs. Although in humans, the risk factors for tumor development are known, in dogs, this scenario is still unclear, especially regarding castration. Therefore, with the advent of molecular biology, studies were and are carried out with the aim of identifying the main molecular mechanisms and signaling pathways involved in the carcinogenesis and progression of canine PC, aiming to identify potential biomarkers for diagnosis, prognosis, and targeted treatment. However, there are extensive gaps to be filled, especially when considering the dog as experimental model for the study of this neoplasm in humans. Thus, due to the complexity of the subject, the objective of this review is to present the main pathobiological aspects of canine PC from a comparative point of view to the same neoplasm in the human species, addressing the historical context and current understanding in the scientific field.
Collapse
Affiliation(s)
- Eduardo de Paula Nascente
- School of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia 74001-970, Brazil;
| | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | | |
Collapse
|
16
|
Pathak MP, Pathak K, Saikia R, Gogoi U, Ahmad MZ, Patowary P, Das A. Immunomodulatory effect of mushrooms and their bioactive compounds in cancer: A comprehensive review. Biomed Pharmacother 2022; 149:112901. [DOI: 10.1016/j.biopha.2022.112901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
|
17
|
Identification and External Validation of a Transcription Factor-Related Prognostic Signature in Pediatric Neuroblastoma. JOURNAL OF ONCOLOGY 2022; 2021:1370451. [PMID: 34992653 PMCID: PMC8727167 DOI: 10.1155/2021/1370451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Background Neuroblastoma is a common solid tumor originating from the sympathetic nervous system, commonly found in children, and it is one of the leading causes of tumor-related deaths in children. In addition to pathological features, molecular-level features, such as how much gene expression is present and the mutational profile, may provide useful information for the precise treatment of neuroblastoma. Transcription factors (TFs) play an important regulatory role in all aspects of cellular life activities. But there are currently no studies on transcription factor-based biomarkers of neuroblastoma prognosis, and this study is much needed. Methods We downloaded RNA transcriptome data and clinical data from the TARGET database to construct a prognostic model. The prognostic model was constructed by using univariate Cox analysis, LASSO, and multivariate Cox regression. We divided the patients into low-risk and high-risk groups using the median value of the risk score as the cut-off. Then, we validated the prognostic model with the dataset GSE49710. Results We constructed a prognostic model consisting of eight genes (SATB1, ZNF564, SOX14, EN1, IKZF2, SLC2A4RG, FOXJ2, and ZNF521). Patients in the high-risk group had a lower survival rate than those in the low-risk group. The area under the 3-year ROC curve of the model reached 0.825, suggesting a good predictive efficacy. We performed target gene prediction for the eight transcription factors in the model using six online databases and found that TUT1 may be a target gene for transcription factor EN1 and is associated with immune infiltration. Conclusion This prognostic model consisting of eight transcription factor-associated genes demonstrated reliable predictive efficacy. This prediction model may provide new potential targets for the treatment of neuroblastoma and personalized monitoring of neuroblastoma patients with high and low risk.
Collapse
|
18
|
Avdoshina DV, Kondrashova AS, Belikova MG, Bayurova EO. Murine Models of Chronic Viral Infections and Associated Cancers. Mol Biol 2022; 56:649-667. [PMID: 36217336 PMCID: PMC9534466 DOI: 10.1134/s0026893322050028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Viruses are now recognized as bona fide etiologic factors of human cancer. Carcinogenic viruses include Epstein– Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), human immunodeficiency virus type 1 (HIV-1, indirectly), and several candidate human cancer viruses. It is estimated that 15% of all human tumors worldwide are caused by viruses. Tumor viruses establish long-term persistent infections in humans, and cancer is an accidental side effect of viral replication strategies. Viruses are usually not complete carcinogens, supporting the concept that cancer results from the accumulation of multiple cooperating events, in which human cancer viruses display different, often opposing roles. The laboratory mouse Mus musculus is one of the best in vivo experimental systems for modeling human pathology, including viral infections and cancer. However, mice are unsusceptible to infection with the known carcinogenic viruses. Many murine models were developed to overcome this limitation and to address various aspects of virus-associated carcinogenesis, from tumors resulting from xenografts of human tissues and cells, including cancerous and virus infected, to genetically engineered mice susceptible to viral infections and associated cancer. The review considers the main existing models, analyzes their advantages and drawbacks, describes their applications, outlines the prospects of their further development.
Collapse
Affiliation(s)
- D. V. Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - A. S. Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - M. G. Belikova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia ,Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - E. O. Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
19
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
20
|
Bona Fide Tumor Suppressor Genes Hypermethylated in Melanoma: A Narrative Review. Int J Mol Sci 2021; 22:ijms221910674. [PMID: 34639015 PMCID: PMC8508892 DOI: 10.3390/ijms221910674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
Loss-of-function events in tumor suppressor genes (TSGs) contribute to the development and progression of cutaneous malignant melanoma (CMM). Epigenetic alterations are the major mechanisms of TSG inactivation, in particular, silencing by promoter CpG-island hypermethylation. TSGs are valuable tools in diagnosis and prognosis and, possibly, in future targeted therapy. The aim of this narrative review is to outline bona fide TSGs affected by promoter CpG-island hypermethylation and their functional role in the progression of CMM. We conducted a systematic literature review to identify studies providing evidence of bona fide TSGs by cell line or animal experiments. We performed a broad first search and a gene-specific second search, supplemented by reference checking. We included studies describing bona fide TSGs in CMM with promoter CpG-island hypermethylation in which inactivating mechanisms were reported. We extracted data about protein role, pathway, experiments conducted to meet the bona fide criteria and hallmarks of cancer acquired by TSG inactivation. A total of 24 studies were included, describing 24 bona fide TSGs silenced by promoter CpG-island hypermethylation in CMM. Their effect on cell proliferation, apoptosis, growth, senescence, angiogenesis, migration, invasion or metastasis is also described. These data give further insight into the role of TSGs in the progression of CMM.
Collapse
|
21
|
Cocks A, Martinez-Rodriguez V, Del Vecchio F, Schukking M, Broseghini E, Giannakopoulos S, Fabbri M. Diverse roles of EV-RNA in cancer progression. Semin Cancer Biol 2021; 75:127-135. [PMID: 33440245 PMCID: PMC8271091 DOI: 10.1016/j.semcancer.2020.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
Extracellular vesicles (EVs) have emerged as important players in all aspects of cancer biology. Their function is mediated by their cargo and surface molecules including proteins, lipids, sugars and nucleic acids. RNA in particular is a key mediator of EV function both in normal and cancer cells. This statement is supported by several lines of evidence. First, cells do not always randomly load RNA in EVs, there seems to be a specific manner in which cells populate their EVs with certain RNA molecules. Moreover, cellular uptake of EV-RNA and the secondary compartmentalization of EV-RNA in recipient cells is widely reported, and these RNAs have an impact on all aspects of cancer growth and the anti-tumoral immune response. Additionally, EV-RNA seems to work through various mechanisms of action, highlighting the intricacies of EVs and their RNA cargo as prominent means of inter-cellular communication.
Collapse
Affiliation(s)
- Alexander Cocks
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA
| | - Verena Martinez-Rodriguez
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, 96813, USA
| | - Filippo Del Vecchio
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA
| | - Monique Schukking
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA; Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Elisabetta Broseghini
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA
| | | | - Muller Fabbri
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA.
| |
Collapse
|
22
|
Dhabhai B, Sharma A, Maciaczyk J, Dakal TC. X-Linked Tumor Suppressor Genes Act as Presumed Contributors in the Sex Chromosome-Autosome Crosstalk in Cancers. Cancer Invest 2021; 40:103-110. [PMID: 34519229 DOI: 10.1080/07357907.2021.1981364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the human genome contains about 6% of tumor suppressor genes (TSGs) and the X chromosome alone holds a substantial share (2%), herein, we have discussed exclusively the relative contribution of X-linked human TSGs that appear to be primarily involved in 32 different cancer types. Our analysis showed that, (a) the majority of X-linked TSGs are primarily involved in the dysregulation of breast cancer, followed by prostate cancer, (b) Despite being escaped from X chromosome inactivation (XCI), a clear pattern of altered promoter methylation linked to the mutational burden was observed among them. (c) X-linked TSGs (mainly on the q-arm) maintain spatial and genetic interactions with certain autosomal loci. Corroborating our previous findings that loss/gain of entire sex chromosomes (in XO and XXY syndromes) can profoundly affect the epigenetic status of autosomes we herein suggest that X-linked TSGs alone can also contribute significantly in the dynamics this sex chromosome-autosome crosstalk to restructure the cancer genome.
Collapse
Affiliation(s)
- Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - Amit Sharma
- Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Jarek Maciaczyk
- Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of Bonn, Bonn, Germany.,Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
23
|
Liu J, Liu Z, Zhou Y, Zeng M, Pan S, Liu H, Liu Q, Zhu H. Identification of a Novel Transcription Factor Prognostic Index for Breast Cancer. Front Oncol 2021; 11:666505. [PMID: 34249704 PMCID: PMC8264286 DOI: 10.3389/fonc.2021.666505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Transcription factors (TFs) are the mainstay of cancer and have a widely reported influence on the initiation, progression, invasion, metastasis, and therapy resistance of cancer. However, the prognostic values of TFs in breast cancer (BC) remained unknown. In this study, comprehensive bioinformatics analysis was conducted with data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We constructed the co-expression network of all TFs and linked it to clinicopathological data. Differentially expressed TFs were obtained from BC RNA-seq data in TCGA database. The prognostic TFs used to construct the risk model for progression free interval (PFI) were identified by Cox regression analyses, and the PFI was analyzed by the Kaplan-Meier method. A receiver operating characteristic (ROC) curve and clinical variables stratification analysis were used to detect the accuracy of the prognostic model. Additionally, we performed functional enrichment analysis by analyzing the differential expressed gene between high-risk and low-risk group. A total of nine co-expression modules were identified. The prognostic index based on 4 TFs (NR3C2, ZNF652, EGR3, and ARNT2) indicated that the PFI was significantly shorter in the high-risk group than their low-risk counterpart (p < 0.001). The ROC curve for PFI exhibited acceptable predictive accuracy, with an area under the curve value of 0.705 and 0.730. In the stratification analyses, the risk score index is an independent prognostic variable for PFI. Functional enrichment analyses showed that high-risk group was positively correlated with mTORC1 signaling pathway. In conclusion, the TF-related signature for PFI constructed in this study can independently predict the prognosis of BC patients and provide a deeper understanding of the potential biological mechanism of TFs in BC.
Collapse
Affiliation(s)
- Junhao Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsa, China
| | - Zexuan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsa, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsa, China
| | - Manting Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsa, China
| | - Sanshui Pan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States
| | - Huan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsa, China
| | - Qiong Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsa, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsa, China
| |
Collapse
|
24
|
Aravindhan S, Younus LA, Hadi Lafta M, Markov A, Ivanovna Enina Y, Yushchenkо NA, Thangavelu L, Mostafavi SM, Pokrovskii MV, Ahmadi M. P53 long noncoding RNA regulatory network in cancer development. Cell Biol Int 2021; 45:1583-1598. [PMID: 33760334 DOI: 10.1002/cbin.11600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
The protein p53 as a transcription factor with strong tumor-suppressive activities is known to trigger apoptosis via multiple pathways and is directly involved in the recognition of DNA damage and DNA repair processes. P53 alteration is now recognized as a common event in the pathogenesis of many types of human malignancies. Deregulation of tumor suppressor p53 pathways plays an important role in the activation of cell proliferation or inactivation of apoptotic cell death during carcinogenesis and tumor progression. Mounting evidence indicates that the p53 status of tumors and also the regulatory functions of p53 may be relevant to the long noncoding RNAs (lncRNA)-dependent gene regulation programs. Besides coding genes, lncRNAs that do not encode for proteins are induced or suppressed by p53 transcriptional response and thus control cancer progression. LncRNAs also have emerged as key regulators that impinge on the p53 signaling network orchestrating global gene-expression profile. Studies have suggested that aberrant expression of lncRNAs as a molecular-genomic signature may play important roles in cancer biology. Accordingly, it is important to elucidate the mechanisms by which the crosstalk between lncRNAs and p53 occurs in the development of numerous cancers. Here, we review how several classes of lncRNAs and p53 pathways are linked together in controlling the cell cycle and apoptosis in various cancer cells in both human and mouse model systems.
Collapse
Affiliation(s)
- Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, chennai, India
| | - Laith A Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Al Najaf Al Ashraf, Najaf, Iraq
| | | | | | - Yulianna Ivanovna Enina
- Department of Propaedeutics of Dental Diseases, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Natalya A Yushchenkо
- Department of Legal Disciplines, Kazan Federal University, Kazan, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Michail V Pokrovskii
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod, Russian Federation
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Res 2020; 49:102063. [PMID: 33137568 PMCID: PMC7849931 DOI: 10.1016/j.scr.2020.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Conventional cancer cell lines and animal models have been mainstays of cancer research. More recently, human pluripotent stem cells (hPSCs) and hPSC-derived organoid technologies, together with genome engineering approaches, have provided a complementary platform to model cancer progression. Here, we review the application of these technologies in cancer modeling with respect to the cell-of-origin, cancer propagation, and metastasis. We further discuss the benefits and challenges accompanying the use of hPSC models for cancer research and discuss their broad applicability in drug discovery, biomarker identification, decoding molecular mechanisms, and the deconstruction of clonal and intra-tumoral heterogeneity. In summary, hPSC-derived organoids provide powerful models to recapitulate the pathogenic states in cancer and to perform drug discovery.
Collapse
|
26
|
Mishra RK, Ahmad A, Vyawahare A, Kumar A, Khan R. Understanding the Monoclonal Antibody Involvement in Targeting the Activation of Tumor Suppressor Genes. Curr Top Med Chem 2020; 20:1810-1823. [PMID: 32543361 DOI: 10.2174/1568026620666200616133814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Monoclonal antibodies (mAbs) have always provided outstanding therapeutic arsenal in the
treatment of cancer, be it hematological malignancies or solid tumors. Monoclonal antibodies mediated
targeting of cancer genes in general and tumor-suppressor genes, in particular, have appreciably allowed
the possibilities of trafficking these antibodies to specific tumor mechanisms and aim for the pin-point
maneuvered tumor treatment strategies. The conventional cancer treatment options are associated with
enormous limitations like drug resistance, acute and pan-toxic side effects and collateral damage to other
unrelated cells and organs. Therefore, monoclonal antibody-mediated treatments have some special advantages
of specific targeting of cancer-related genes and minimizing the off-target side effects. A large
number of monoclonal antibody-mediated treatment regimen viz. use of immunoconjugates, clinically
targeting TGFβ with pan-TGFβ monoclonal antibodies, p53 by its monoclonal antibodies and EGFRtargeted
monoclonal antibodies, etc. have been observed in the recent past. In this review, the authors
have discussed some of the significant advances in the context of targeting tumor suppressor genes with
monoclonal antibodies. Approximately 250 articles were scanned from research databases like PubMed
central, Europe PubMed Central and google scholar up to the date of inception, and relevant reports on
monoclonal antibody-mediated targeting of cancer genes were selected. mAb mediated targeting of tumor
suppressor genes is a recent grey paradigm, which has not been explored up to its maximum potential.
Therefore, this review will be of appreciable significance that it will boost further in-depth understanding
of various aspects of mAb arbitrated cancer targeting and will warrant and promote further rigorous
research initiatives in this regard. The authors expect that this review will acquaint the readers
with the current status regarding the recent progress in the domain of mAbs and their employability and
targetability towards tumor suppressor genes in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
27
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020. [PMID: 32824207 DOI: 10.339/cancers12082296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020; 12:cancers12082296. [PMID: 32824207 PMCID: PMC7464564 DOI: 10.3390/cancers12082296] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
29
|
Gardner TJ, Bourne CM, Dacek MM, Kurtz K, Malviya M, Peraro L, Silberman PC, Vogt KC, Unti MJ, Brentjens R, Scheinberg D. Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cancers (Basel) 2020; 12:E2175. [PMID: 32764348 PMCID: PMC7465970 DOI: 10.3390/cancers12082175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
The recent emergence of engineered cellular therapies, such as Chimeric antigen receptor (CAR) CAR T and T cell receptor (TCR) engineered T cells, has shown great promise in the treatment of various cancers. These agents aggregate and expand exponentially at the tumor site, resulting in potent immune activation and tumor clearance. Moreover, the ability to elaborate these cells with therapeutic agents, such as antibodies, enzymes, and immunostimulatory molecules, presents an unprecedented opportunity to specifically modulate the tumor microenvironment through cell-mediated drug delivery. This unique pharmacology, combined with significant advances in synthetic biology and cell engineering, has established a new paradigm for cells as vectors for drug delivery. Targeted cellular micropharmacies (TCMs) are a revolutionary new class of living drugs, which we envision will play an important role in cancer medicine and beyond. Here, we review important advances and considerations underway in developing this promising advancement in biological therapeutics.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Christopher M. Bourne
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Immunology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Megan M. Dacek
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Keifer Kurtz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Manish Malviya
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Leila Peraro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Pedro C. Silberman
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Kristen C. Vogt
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mildred J. Unti
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Renier Brentjens
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| | - David Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| |
Collapse
|
30
|
Reddy D, Ghosh P, Kumavath R. Strophanthidin Attenuates MAPK, PI3K/AKT/mTOR, and Wnt/β-Catenin Signaling Pathways in Human Cancers. Front Oncol 2020; 9:1469. [PMID: 32010609 PMCID: PMC6978703 DOI: 10.3389/fonc.2019.01469] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the most prevalent in cancer-related deaths, while breast carcinoma is the second most dominant cancer in women, accounting for the most number of deaths worldwide. Cancers are heterogeneous diseases that consist of several subtypes based on the presence or absence of hormone receptors and human epidermal growth factor receptor 2. Several drugs have been developed targeting cancer biomarkers; nonetheless, their efficiency are not adequate due to the high reemergence rate of cancers and fundamental or acquired resistance toward such drugs, which leads to partial therapeutic possibilities. Recent studies on cardiac glycosides (CGs) positioned them as potent cytotoxic agents that target multiple pathways to initiate apoptosis and autophagic cell death in many cancers. In the present study, our aim is to identify the anticancer activity of a naturally available CG (strophanthidin) in human breast (MCF-7), lung (A549), and liver cancer (HepG2) cells. Our results demonstrate a dose-dependent cytotoxic effect of strophanthidin in MCF-7, A549, and HepG2 cells, which was further supported by DNA damage on drug treatment. Strophanthidin arrested the cell cycle at the G2/M phase; this effect was further validated by checking the inhibited expressions of checkpoint and cyclin-dependent kinases in strophanthidin-induced cells. Moreover, strophanthidin inhibited the expression of several key proteins such as MEK1, PI3K, AKT, mTOR, Gsk3α, and β-catenin from MAPK, PI3K/AKT/mTOR, and Wnt/β-catenin signaling. The current study adequately exhibits the role of strophanthidin in modulating the expression of various key proteins involved in cell cycle arrest, apoptosis, and autophagic cell death. Our in silico studies revealed that strophanthidin can interact with several key proteins from various pathways. Taken together, this study demonstrates the viability of strophanthidin as a promising anticancer agent, which may serve as a new anticancer drug.
Collapse
Affiliation(s)
- Dhanasekhar Reddy
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| |
Collapse
|
31
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
32
|
Kwon J, Bakhoum SF. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Cancer Discov 2019; 10:26-39. [PMID: 31852718 DOI: 10.1158/2159-8290.cd-19-0761] [Citation(s) in RCA: 728] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
Abstract
The recognition of DNA as an immune-stimulatory molecule is an evolutionarily conserved mechanism to initiate rapid innate immune responses against microbial pathogens. The cGAS-STING pathway was discovered as an important DNA-sensing machinery in innate immunity and viral defense. Recent advances have now expanded the roles of cGAS-STING to cancer. Highly aggressive, unstable tumors have evolved to co-opt this program to drive tumorigenic behaviors. In this review, we discuss the link between the cGAS-STING DNA-sensing pathway and antitumor immunity as well as cancer progression, genomic instability, the tumor microenvironment, and pharmacologic strategies for cancer therapy. SIGNIFICANCE: The cGAS-STING pathway is an evolutionarily conserved defense mechanism against viral infections. Given its role in activating immune surveillance, it has been assumed that this pathway primarily functions as a tumor suppressor. Yet, mounting evidence now suggests that depending on the context, cGAS-STING signaling can also have tumor and metastasis-promoting functions, and its chronic activation can paradoxically induce an immune-suppressive tumor microenvironment.
Collapse
Affiliation(s)
- John Kwon
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
33
|
Mazumder TH, Uddin A, Chakraborty S. Insights into the nucleotide composition and codon usage pattern of human tumor suppressor genes. Mol Carcinog 2019; 59:15-23. [PMID: 31583785 DOI: 10.1002/mc.23124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/05/2019] [Accepted: 09/21/2019] [Indexed: 01/21/2023]
Abstract
Tumor suppressor genes encode different proteins that inhibit the uncontrolled proliferation of cell growth and tumor development. To acquire clues for predicting gene expression level, it is essential to understand the codon usage bias (CUB) of genes to characterize genome which possesses its own compositional characteristics and unique coding sequences. We used bioinformatic tools to analyze the codon usage patterns of 637 human tumor suppressor genes as no work was reported earlier. The mean effective number of codons of these genes was 48, indicating low CUB. Our results exhibited a significant positive correlation among different nucleotide compositions and the codons ending with C base was most frequently used along with the most over-represented codon CTG and GTG codifying leucine and valine amino acid, respectively, in human tumor suppressor genes. The neutrality plot showed a significant positive correlation (Pearson, r = 0. 646; P < .01) suggesting that mutation on GC bias might affect the CUB. However, the linear regression coefficient of GC12 on GC3 in human tumor suppressor genes suggested that natural selection played a major role while mutation pressure played a minor role in the codon usage patterns of tumor suppressor genes in human. Our study would throw light into the factors that affect CUB and the codon usage patterns in the human tumor suppressor genes.
Collapse
Affiliation(s)
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Hailakandi, Assam, India
| | | |
Collapse
|
34
|
Nakamura S, Kanda M, Kodera Y. Incorporating molecular biomarkers into clinical practice for gastric cancer. Expert Rev Anticancer Ther 2019; 19:757-771. [PMID: 31437076 DOI: 10.1080/14737140.2019.1659136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Gastric cancer is one of the most common causes of cancer-related mortality worldwide. To improve clinical outcomes, it is critical to develop appropriate approaches to diagnosis and treatment. Biomarkers have numerous potential clinical applications, including screening, assessing risk, determining prognosis, monitoring recurrence, and predicting response to treatment. Furthermore, biomarkers may contribute to the development of effective therapies. Areas covered: Here we review recent progress in exploiting GC-specific biomarkers such as protein-coding genes, microRNAs, long noncoding RNAs, and methylated gene promoters. Expert opinion: The development of biomarkers for diagnosing and monitoring gastric cancer and for individualizing therapeutic targets shows great promise for improving gastric cancer management.
Collapse
Affiliation(s)
- Shunsuke Nakamura
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
35
|
Reid D, Mattos C. Targeting Cancer from a Structural Biology Perspective. UNRAVELLING CANCER SIGNALING PATHWAYS: A MULTIDISCIPLINARY APPROACH 2019:295-320. [DOI: 10.1007/978-981-32-9816-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
36
|
Khatri B, Hayden AM, Anthony NB, Kong BC. Whole Genome Resequencing of Arkansas Progressor and Regressor Line Chickens to Identify SNPs Associated with Tumor Regression. Genes (Basel) 2018; 9:genes9100512. [PMID: 30347774 PMCID: PMC6210987 DOI: 10.3390/genes9100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
Arkansas Regressor (AR) chickens, unlike Arkansas Progressor (AP) chickens, regress tumors induced by the v-src oncogene. To better understand the genetic factors responsible for this tumor regression property, whole genome resequencing was conducted using Illumina Hi-Seq 2 × 100 bp paired-end read method (San Diego, CA, USA) with AR (confirmed tumor regression property) and AP chickens. Sequence reads were aligned to the chicken reference genome (galgal5) and produced coverage of 11× and 14× in AR and AP, respectively. A total of 7.1 and 7.3 million single nucleotide polymorphisms (SNPs) were present in AR and AP genomes, respectively. Through a series of filtration processes, a total of 12,242 SNPs were identified in AR chickens that were associated with non-synonymous, frameshift, nonsense, no-start and no-stop mutations. Further filtering of SNPs based on read depth ≥ 10, SNP% ≥ 0.75, and non-synonymous mutations identified 63 reliable marker SNPs which were chosen for gene network analysis. The network analysis revealed that the candidate genes identified in AR chickens play roles in networks centered to ubiquitin C (UBC), phosphoinositide 3-kinases (PI3K), and nuclear factor kappa B (NF-kB) complexes suggesting that the tumor regression property in AR chickens might be associated with ubiquitylation, PI3K, and NF-kB signaling pathways. This study provides an insight into genetic factors that could be responsible for the tumor regression property.
Collapse
Affiliation(s)
- Bhuwan Khatri
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, NC AR 72701, USA.
| | - Ashley M Hayden
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, NC AR 72701, USA.
| | - Nicholas B Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, NC AR 72701, USA.
| | - Byungwhi C Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, NC AR 72701, USA.
| |
Collapse
|
37
|
Bondy-Chorney E, Denoncourt A, Sai Y, Downey M. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology 1. Biochem Cell Biol 2018; 97:30-45. [PMID: 29671337 DOI: 10.1139/bcb-2017-0297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation is a critical post-translation modification that can impact a protein's localization, stability, and function. Originally thought to only occur on histones, we now know thousands of nonhistone proteins are also acetylated. In conjunction with many other proteins, lysine acetyltransferases (KATs) are incorporated into large protein complexes that carry out these modifications. In this review we focus on the contribution of two KATs, KAT2A and KAT2B, and their potential roles in the development and progression of cancer. Systems biology demands that we take a broad look at protein function rather than focusing on individual pathways or targets. As such, in this review we examine KAT2A/2B-directed nonhistone protein acetylations in cancer in the context of the 10 "Hallmarks of Cancer", as defined by Hanahan and Weinberg. By focusing on specific examples of KAT2A/2B-directed acetylations with well-defined mechanisms or strong links to a cancer phenotype, we aim to reinforce the complex role that these enzymes play in cancer biology.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Yuka Sai
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| |
Collapse
|
38
|
A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro. Int J Mol Sci 2017; 18:ijms18061179. [PMID: 28587163 PMCID: PMC5486002 DOI: 10.3390/ijms18061179] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF, HOTAIR and ANRIL) were found to have experimental evidence showing that functional perturbations played “driver” roles in human cellular transformation. Measurement of epigenotoxicants presents challenges for short-term carcinogenicity testing, especially in the high-throughput modes emphasized in the Tox21 chemicals testing approach. There is need to develop and validate in vitro tests to detect both, locus-specific, and genome-wide, epigenetic alterations with causal links to oncogenic cellular phenotypes. Some recent examples of cell-based high throughput chemical screening assays are presented that have been applied or have shown potential for application to epigenetic endpoints.
Collapse
|
39
|
Hatzold J, Beleggia F, Herzig H, Altmüller J, Nürnberg P, Bloch W, Wollnik B, Hammerschmidt M. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit. eLife 2016; 5. [PMID: 27240166 PMCID: PMC4973367 DOI: 10.7554/elife.14277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/28/2016] [Indexed: 01/11/2023] Open
Abstract
The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression.
Collapse
Affiliation(s)
- Julia Hatzold
- Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Filippo Beleggia
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Hannah Herzig
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Janine Altmüller
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Bernd Wollnik
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Rattanasinchai C, Gallo KA. MLK3 Signaling in Cancer Invasion. Cancers (Basel) 2016; 8:cancers8050051. [PMID: 27213454 PMCID: PMC4880868 DOI: 10.3390/cancers8050051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Mixed-lineage kinase 3 (MLK3) was first cloned in 1994; however, only in the past decade has MLK3 become recognized as a player in oncogenic signaling. MLK3 is a mitogen-activated protein kinase kinase kinase (MAP3K) that mediates signals from several cell surface receptors including receptor tyrosine kinases (RTKs), chemokine receptors, and cytokine receptors. Once activated, MLK3 transduces signals to multiple downstream pathways, primarily to c-Jun terminal kinase (JNK) MAPK, as well as to extracellular-signal-regulated kinase (ERK) MAPK, P38 MAPK, and NF-κB, resulting in both transcriptional and post-translational regulation of multiple effector proteins. In several types of cancer, MLK3 signaling is implicated in promoting cell proliferation, as well as driving cell migration, invasion and metastasis.
Collapse
Affiliation(s)
| | - Kathleen A Gallo
- Cell and Molecular Biology program, Michigan State University, East Lansing, MI 48824, USA.
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
41
|
Karin M, Dhar D. Liver carcinogenesis: from naughty chemicals to soothing fat and the surprising role of NRF2. Carcinogenesis 2016; 37:541-6. [PMID: 27207669 DOI: 10.1093/carcin/bgw060] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023] Open
Abstract
The liver is a key metabolic organ that is essential for production of blood proteins, lipid and sugar metabolism and detoxification of naturally occurring and foreign harmful chemicals. To maintain its mass and many essential functions, the liver possesses remarkable regenerative capacity, but the latter also renders it highly susceptible to carcinogenesis. In fact, liver cancer often develops in the context of chronic liver injury. Currently, primary liver cancer is the second leading cause of cancer-related deaths, and as the rates of other cancers have been declining, the incidence of liver cancer continues to rise with an alarming rate. Although much remains to be accomplished in regards to liver cancer therapy, we have learned a great deal about the molecular etiology of the most common form of primary liver cancer, hepatocellular carcinoma (HCC). Much of this knowledge has been obtained from studies of mouse models, using either toxic chemicals, a combination of fatty foods and endoplasmic reticulum stress or chronic activation of specific metabolic pathways. Surprisingly, NRF2, a transcription factor that was initially thought to protect the liver from oxidative stress, was found to play a key role in promoting HCC pathogenesis.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, Department of Pathology and Moores Cancer Center, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology
| |
Collapse
|
42
|
Chen H, Gao S, Li J, Liu D, Sheng C, Yao C, Jiang W, Wu J, Chen S, Huang W. Wedelolactone disrupts the interaction of EZH2-EED complex and inhibits PRC2-dependent cancer. Oncotarget 2016; 6:13049-59. [PMID: 25944687 PMCID: PMC4536998 DOI: 10.18632/oncotarget.3790] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/18/2015] [Indexed: 01/02/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2), which is responsible for the trimethylation of H3K27 (H3K27me3), plays a part in tumorigenesis, development and/or maintenance of adult tissue specificity. The pivotal role of PRC2 in cancer makes it a therapeutic target for epigenetic cancer therapy. However, natural compounds targeting the enhancer of zeste homolog 2 (EZH2) - embryonic ectoderm development (EED) interaction to disable PRC2 complex are scarcely reported. Here, we reported the screening and identification of natural compounds which could disrupt the EZH2-EED interaction. One of these compounds, wedelolactone, binds to EED with a high affinity (KD = 2.82 μM), blocks the EZH2-EED interaction in vitro, induces the degradation of PRC2 core components and modulates the expression of detected PRC2 downstream targets and cancer-related genes. Furthermore, some PRC2-dependent cancer cells undergone growth arrest upon treatment with wedelolactone. Thus, wedelolactone and its derivatives which target the EZH2-EED interaction could be candidates for the treatment of PRC2-dependent cancer.
Collapse
Affiliation(s)
- Huiming Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, Anhui University, Hefei 230039, China
| | - Shijuan Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiandong Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunjie Sheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Yao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, Anhui University, Hefei 230039, China
| | - Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaoxiang Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, Anhui University, Hefei 230039, China
| | - Shuai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenlin Huang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,The Key Laboratory of Tumor Targeted Medicine in Guangdong Province, Guangzhou Double Bio-product Inc., Guangzhou 510663, China
| |
Collapse
|
43
|
Shandiz SAS, Farasati S, Saeedi B, Baghbani-Arani F, Asl EA, Keshavarz-Pakseresht B, Rahimi A, Assadi A, Noorbazargan H, Hesari MR, Mirzaie A. Up regulation of KAI1 gene expression and apoptosis effect of imatinib mesylate in gastric adenocarcinoma (AGS) cell line. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)60996-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Xu X, Watt DS, Liu C. Multifaceted roles for thymine DNA glycosylase in embryonic development and human carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:82-9. [PMID: 26370152 DOI: 10.1093/abbs/gmv083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/12/2015] [Indexed: 01/03/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifunctional protein that plays important roles in DNA repair, DNA demethylation, and transcriptional regulation. These diverse functions make TDG a unique enzyme in embryonic development and carcinogenesis. This review discusses the molecular function of TDG in human cancers and the previously unrecognized value of TDG as a potential target for drug therapy.
Collapse
Affiliation(s)
- Xuehe Xu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| |
Collapse
|
45
|
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
46
|
Albrecht AS, Ørom UA. Bidirectional expression of long ncRNA/protein-coding gene pairs in cancer. Brief Funct Genomics 2015; 15:167-73. [DOI: 10.1093/bfgp/elv048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
47
|
Behfarjam F, Rostamzadeh J, Zarei MA, Nikkhoo B. Association of Two Polymorphic Codons in P53 and ABCC1 Promoter with Prostate Cancer. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:49-54. [PMID: 28959281 DOI: 10.15171/ijb.1096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In prostate cancer, mutated p53 alleles typically contain missense single-base substitution in codon 72 that resides within exons 5-8. Stable p53 proteins in tumor cell nuclei have been associated with malignancy. A role of p53 is the regulation of drug transporters like ABCC1 (MRP1) by an effect on promoter region. OBJECTIVES The objective of this study was to identify association of mutations of p53 at codon 72 and 282 and promoter region of ABCC1 with increased risks of prostate cancer. MATERIALS AND METHODS Formalin fixed, paraffin-embedded malignant tissues of 45 patients and 45 control samples were evaluated. PCR-RFLP using BstUI for codon 72 and HpaII restriction enzyme for codon 282 p53 gene, and G-1666A promoter region of ABCC1 gene was performed. To assess the frequency of these mutations and to detect new mutations in cancerous samples, PCR-SSCP analysis was performed. RESULTS The frequencies of CC, GC and GG genotypes of codon 72 of p53 were 33.33%, 46.67% and 20.00% in patients with cancer and 15.56%, 48.89% and 35.55% in controls, respectively. The relative allele frequencies of ABCC1 promoter polymorphism were 60.00% A and 40.00% G in patients as opposed to 37.78% for A and 62.22% for G in controls. Genotypic frequencies of p53 codon 72 and G1666A of ABCC1 in patients vs. Controls were statistically significant(p<0.05). The study of these samples with PCR-SSCP displayed some new banding patterns. CONCLUSIONS The present findings suggest that CC homozygosity in codon 72 of p53 gene and AA genotype in G-1666A of ABCC1 gene may play a role in combination in prostate cancer and increased susceptibility for this malignancy in the Iranian Kurdish population.
Collapse
Affiliation(s)
- Farinaz Behfarjam
- Department of Biology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Jalal Rostamzadeh
- Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Ali Zarei
- Department of Biology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Bahram Nikkhoo
- Faculty of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
| |
Collapse
|
48
|
Di Lonardo A, Nasi S, Pulciani S. Cancer: we should not forget the past. J Cancer 2015; 6:29-39. [PMID: 25553086 PMCID: PMC4278912 DOI: 10.7150/jca.10336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023] Open
Abstract
Cancer has been in existence longer than human beings, and man has been facing the illness ever since he made his appearance on Earth. Amazingly, the first human cancer gene was cloned only thirty years ago. This, and other extraordinary scientific goals achieved by molecular cancer research in the last 30 years, seems to suggest that definitive answers and solutions to this severe disease have been finally found. This was not the case, as cancer still remains to be defeated. To do so, cancer must be first understood. This review highlights how cancer onset and progression has been tackled from ancient times to present day. Old theories and achievements have provided the pillars of cancer understanding, in laying the basis of 'modern era' cancer research, are discussed. The review highlights the discovery of oncogenes and suppressor tumor genes, underlining the crucial role of these achievements in cancer diagnosis and therapies. Finally, an overview of how the modern technologies have given impetuous to expedite these goals is also considered.
Collapse
Affiliation(s)
- Anna Di Lonardo
- 1. National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Sergio Nasi
- 2. Istituto di Biologia, Medicina molecolare e Nanobiotecnologie (IBMN) CNR, Sapienza University, Rome, Italy
| | - Simonetta Pulciani
- 1. National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| |
Collapse
|
49
|
Weißenborn C, Ignatov T, Ochel HJ, Costa SD, Zenclussen AC, Ignatova Z, Ignatov A. GPER functions as a tumor suppressor in triple-negative breast cancer cells. J Cancer Res Clin Oncol 2014; 140:713-23. [PMID: 24553912 DOI: 10.1007/s00432-014-1620-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND The orphan, membrane-bound estrogen receptor (GPER) is expressed at high levels in a large fraction of breast cancer patients and its expression is favorable for patients' survival. METHODS We investigated the role of GPER as a potential tumor suppressor in triple-negative breast cancer cells MDA-MB-231 and MDA-MB-468 using cell cycle analysis and apoptosis assay. The constitutive activity of GPER was investigated. RESULTS GPER-specific activation with G-1 agonist inhibited breast cancer cell growth in concentration-dependent manner via induction of the cell cycle arrest in G2/M phase, enhanced phosphorylation of histone H3 and caspase-3-mediated apoptosis. Analysis of the methylation status of the GPER promoter in the triple-negative breast cancer cells and in tissues derived from breast cancer patients revealed that GPER amount is regulated by epigenetic mechanisms and GPER expression is inactivated by promoter methylation. Furthermore, GPER expression was induced by stress factors, such as radiation, and GPER amount inversely correlated with the p53 expression level. CONCLUSIONS Overall, our results establish the protective role in breast cancer tumorigenesis, and the cell surface expression of GPER makes it an excellent potential therapeutic target for triple-negative breast cancer.
Collapse
Affiliation(s)
- Christine Weißenborn
- Department of Obstetrics and Gynecology, University of Magdeburg, Gerhart-Hauptmann Str 35, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Xu X, Yu T, Shi J, Chen X, Zhang W, Lin T, Liu Z, Wang Y, Zeng Z, Wang C, Li M, Liu C. Thymine DNA glycosylase is a positive regulator of Wnt signaling in colorectal cancer. J Biol Chem 2014; 289:8881-90. [PMID: 24532795 DOI: 10.1074/jbc.m113.538835] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt signaling plays an important role in colorectal cancer (CRC). Although the mechanisms of β-catenin degradation have been well studied, the mechanism by which β-catenin activates transcription is still not fully understood. While screening a panel of DNA demethylases, we found that thymine DNA glycosylase (TDG) up-regulated Wnt signaling. TDG interacts with the transcription factor TCF4 and coactivator CREB-binding protein/p300 in the Wnt pathway. Knocking down TDG by shRNAs inhibited the proliferation of CRC cells in vitro and in vivo. In CRC patients, TDG levels were significantly higher in tumor tissues than in the adjacent normal tissues. These results suggest that TDG warrants consideration as a potential biomarker for CRC and as a target for CRC treatment.
Collapse
Affiliation(s)
- Xuehe Xu
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40506
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|