1
|
Paul T, Yan C, Yu J, Tsutakawa SE, Tainer JA, Wang D, Ivanov I. Molecular model of TFIIH recruitment to the transcription-coupled repair machinery. Nat Commun 2025; 16:2341. [PMID: 40057514 PMCID: PMC11890784 DOI: 10.1038/s41467-025-57593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
Transcription-coupled repair (TCR) is a vital nucleotide excision repair sub-pathway that removes DNA lesions from actively transcribed DNA strands. Binding of CSB to lesion-stalled RNA Polymerase II (Pol II) initiates TCR by triggering the recruitment of downstream repair factors. Yet it remains unknown how transcription factor IIH (TFIIH) is recruited to the intact TCR complex. Combining existing structural data with AlphaFold predictions, we build an integrative model of the initial TFIIH-bound TCR complex. We show how TFIIH can be first recruited in an open repair-inhibited conformation, which requires subsequent CAK module removal and conformational closure to process damaged DNA. In our model, CSB, CSA, UVSSA, elongation factor 1 (ELOF1), and specific Pol II and UVSSA-bound ubiquitin moieties come together to provide interaction interfaces needed for TFIIH recruitment. STK19 acts as a linchpin of the assembly, orienting the incoming TFIIH and bridging Pol II to core TCR factors and DNA. Molecular simulations of the TCR-associated CRL4CSA ubiquitin ligase complex unveil the interplay of segmental DDB1 flexibility, continuous Cullin4A flexibility, and the key role of ELOF1 for Pol II ubiquitination that enables TCR. Collectively, these findings elucidate the coordinated assembly of repair proteins in early TCR.
Collapse
Affiliation(s)
- Tanmoy Paul
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Jina Yu
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, San Diego, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Yu J, Yan C, Paul T, Brewer L, Tsutakawa SE, Tsai CL, Hamdan SM, Tainer JA, Ivanov I. Molecular architecture and functional dynamics of the pre-incision complex in nucleotide excision repair. Nat Commun 2024; 15:8511. [PMID: 39353945 PMCID: PMC11445577 DOI: 10.1038/s41467-024-52860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Nucleotide excision repair (NER) is vital for genome integrity. Yet, our understanding of the complex NER protein machinery remains incomplete. Combining cryo-EM and XL-MS data with AlphaFold2 predictions, we build an integrative model of the NER pre-incision complex(PInC). Here TFIIH serves as a molecular ruler, defining the DNA bubble size and precisely positioning the XPG and XPF nucleases for incision. Using simulations and graph theoretical analyses, we unveil PInC's assembly, global motions, and partitioning into dynamic communities. Remarkably, XPG caps XPD's DNA-binding groove and bridges both junctions of the DNA bubble, suggesting a novel coordination mechanism of PInC's dual incision. XPA rigging interlaces XPF/ERCC1 with RPA, XPD, XPB, and 5' ssDNA, exposing XPA's crucial role in licensing the XPF/ERCC1 incision. Mapping disease mutations onto our models reveals clustering into distinct mechanistic classes, elucidating xeroderma pigmentosum and Cockayne syndrome disease etiology.
Collapse
Affiliation(s)
- Jina Yu
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Tanmoy Paul
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Lucas Brewer
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hamdan
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Hoag A, Duan M, Mao P. The role of Transcription Factor IIH complex in nucleotide excision repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:72-81. [PMID: 37545038 PMCID: PMC10903506 DOI: 10.1002/em.22568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
DNA damage occurs throughout life from a variety of sources, and it is imperative to repair damage in a timely manner to maintain genome stability. Thus, DNA repair mechanisms are a fundamental part of life. Nucleotide excision repair (NER) plays an important role in the removal of bulky DNA adducts, such as cyclobutane pyrimidine dimers from ultraviolet light or DNA crosslinking damage from platinum-based chemotherapeutics, such as cisplatin. A main component for the NER pathway is transcription factor IIH (TFIIH), a multifunctional, 10-subunit protein complex with crucial roles in both transcription and NER. In transcription, TFIIH is a component of the pre-initiation complex and is important for promoter opening and the phosphorylation of RNA Polymerase II (RNA Pol II). During repair, TFIIH is important for DNA unwinding, recruitment of downstream repair factors, and verification of the bulky lesion. Several different disease states can arise from mutations within subunits of the TFIIH complex. Most strikingly are xeroderma pigmentosum (XP), XP combined with Cockayne syndrome (CS), and trichothiodystrophy (TTD). Here, we summarize the recruitment and functions of TFIIH in the two NER subpathways, global genomic (GG-NER) and transcription-coupled NER (TC-NER). We will also discuss how TFIIH's roles in the two subpathways lead to different genetic disorders.
Collapse
Affiliation(s)
- Allyson Hoag
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
4
|
Yu J, Yan C, Dodd T, Tsai CL, Tainer JA, Tsutakawa SE, Ivanov I. Dynamic conformational switching underlies TFIIH function in transcription and DNA repair and impacts genetic diseases. Nat Commun 2023; 14:2758. [PMID: 37179334 PMCID: PMC10183003 DOI: 10.1038/s41467-023-38416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Transcription factor IIH (TFIIH) is a protein assembly essential for transcription initiation and nucleotide excision repair (NER). Yet, understanding of the conformational switching underpinning these diverse TFIIH functions remains fragmentary. TFIIH mechanisms critically depend on two translocase subunits, XPB and XPD. To unravel their functions and regulation, we build cryo-EM based TFIIH models in transcription- and NER-competent states. Using simulations and graph-theoretical analysis methods, we reveal TFIIH's global motions, define TFIIH partitioning into dynamic communities and show how TFIIH reshapes itself and self-regulates depending on functional context. Our study uncovers an internal regulatory mechanism that switches XPB and XPD activities making them mutually exclusive between NER and transcription initiation. By sequentially coordinating the XPB and XPD DNA-unwinding activities, the switch ensures precise DNA incision in NER. Mapping TFIIH disease mutations onto network models reveals clustering into distinct mechanistic classes, affecting translocase functions, protein interactions and interface dynamics.
Collapse
Affiliation(s)
- Jina Yu
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Xu D, Cao Q, Wang L, Wang J, Xu B, Attwood K, Wei L, Wu Y, Smith G, Katsuta E, Takabe K, Chatta G, Guru K, Goodrich DW, Li QJ. A Preclinical Study to Repurpose Spironolactone for Enhancing Chemotherapy Response in Bladder Cancer. Mol Cancer Ther 2022; 21:786-798. [PMID: 35247903 PMCID: PMC9081199 DOI: 10.1158/1535-7163.mct-21-0613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Neoadjuvant chemotherapy (NAC) followed by radical cystectomy is the standard-of-care for patients with muscle-invasive bladder cancer (MIBC). Defects in nucleotide excision repair (NER) are associated with improved responses to NAC. Excision Repair Cross-Complementation group 3 (ERCC3) is a key component of NER process. No NER inhibitors are available for treating patients with bladder cancer. We have developed an ex vivo cell-based assay of 6-4 pyrimidine-pyrimidinone (6-4PP) removal as a surrogate measure of NER capacity in human bladder cancer cell lines. The protein expression of ERCC3 was examined in human MIBC specimens and cell lines. Small molecule inhibitors were screened for NER inhibition in bladder cancer cell lines. Spironolactone was identified as a potent NER inhibitor. Combined effects of spironolactone with chemo-drugs were evaluated in vitro and in vivo. The efficacy between platinum and spironolactone on cytotoxicity was determined by combination index. A correlation between NER capacity and cisplatin sensitivity was demonstrated in a series of bladder cancer cell lines. Further, siRNA-mediated knockdown of ERCC3 abrogated NER capacity and enhanced cisplatin cytotoxicity. Spironolactone inhibited ERCC3 protein expression, abrogated NER capacity, and increased platinum-induced cytotoxicity in bladder cancer cells in vivo and in patient-derived organoids. Moreover, spironolactone exhibited the potential synergism effects with other clinical chemotherapy regimens in bladder cancer cell lines. Our data support the notion of repurposing spironolactone for improving the chemotherapy response of NAC in patients with MIBC. Further clinical trials are warranted to determine the safety and efficacy of spironolactone in combination with chemotherapy.
Collapse
Affiliation(s)
- Dongbo Xu
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Qiang Cao
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Li Wang
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Bo Xu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Yue Wu
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gary Smith
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Eriko Katsuta
- Department of Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kazuaki Takabe
- Department of Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Khurshid Guru
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - David W. Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Qiang J Li
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
6
|
Javaid S, Atia-tul-Wahab, Zafar H, Iqbal Choudhary M. Drugs Repurposing: An Approach used to Identify New Hits against Anticancer Drug Target TFIIH Subunit p8. Bioorg Chem 2022; 124:105755. [DOI: 10.1016/j.bioorg.2022.105755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
|
7
|
Cruz-Ruiz S, Urióstegui-Arcos M, Zurita M. The transcriptional stress response and its implications in cancer treatment. Biochim Biophys Acta Rev Cancer 2021; 1876:188620. [PMID: 34454982 DOI: 10.1016/j.bbcan.2021.188620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells require high levels of transcription to survive and maintain their cancerous phenotype. For several years, global transcription inhibitors have been used in the treatment of cancer. However, recent advances in understanding the functioning of the basal transcription machinery and the discovery of new drugs that affect the components of this machinery have generated a new boom in the use of this type of drugs to treat cancer. Inhibiting transcription at the global level in the cell generates a stress situation in which the cancer cell responds by overexpressing hundreds of genes in response to this transcriptional stress. Many of these over-transcribed genes encode factors that may be involved in the selection of cells resistant to the treatment and with a greater degree of malignancy. In this study, we reviewed various examples of substances that inhibit global transcription, as well as their targets, that have a high potential to be used against cancer. We also analysed what kinds of genes are overexpressed in the response to transcriptional stress by different substances and finally we discuss what types of studies are necessary to understand this type of stress response to have more tools to fight cancer.
Collapse
Affiliation(s)
- Samantha Cruz-Ruiz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Maritere Urióstegui-Arcos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico.
| |
Collapse
|
8
|
Uriostegui-Arcos M, Aguayo-Ortiz R, Valencia-Morales MDP, Melchy-Pérez E, Rosenstein Y, Dominguez L, Zurita M. Disruption of TFIIH activities generates a stress gene expression response and reveals possible new targets against cancer. Open Biol 2020; 10:200050. [PMID: 32543350 PMCID: PMC7333893 DOI: 10.1098/rsob.200050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Disruption of the enzymatic activities of the transcription factor TFIIH by the small molecules Triptolide (TPL) or THZ1 could be used against cancer. Here, we used the MCF10A-ErSrc oncogenesis model to compare the effect of TFIIH inhibitors between transformed cells and their progenitors. We report that tumour cells exhibited highly increased sensitivity to TPL or THZ1 and that the combination of both had a synergic effect. TPL affects the interaction between XPB and p52, causing a reduction in the levels of XPB, p52 and p8, but not other TFIIH subunits. RNA-Seq and RNAPII-ChIP-Seq experiments showed that although the levels of many transcripts were reduced, the levels of a significant number were increased after TPL treatment, with maintained or increased RNAPII promoter occupancy. A significant number of these genes encode for factors that have been related to tumour growth and metastasis, suggesting that transformed cells might rapidly develop resistance to TPL/THZ inhibitors. Some of these genes were also overexpressed in response to THZ1, of which depletion enhances the toxicity of TPL, and are possible new targets against cancer.
Collapse
Affiliation(s)
- Maritere Uriostegui-Arcos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - María del Pilar Valencia-Morales
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Erika Melchy-Pérez
- Departamento de Biomedicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Yvonne Rosenstein
- Departamento de Biomedicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| |
Collapse
|
9
|
Zurita M, Murillo-Maldonado JM. Drosophila as a Model Organism to Understand the Effects during Development of TFIIH-Related Human Diseases. Int J Mol Sci 2020; 21:ijms21020630. [PMID: 31963603 PMCID: PMC7013941 DOI: 10.3390/ijms21020630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Human mutations in the transcription and nucleotide excision repair (NER) factor TFIIH are linked with three human syndromes: xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). In particular, different mutations in the XPB, XPD and p8 subunits of TFIIH may cause one or a combination of these syndromes, and some of these mutations are also related to cancer. The participation of TFIIH in NER and transcription makes it difficult to interpret the different manifestations observed in patients, particularly since some of these phenotypes may be related to problems during development. TFIIH is present in all eukaryotic cells, and its functions in transcription and DNA repair are conserved. Therefore, Drosophila has been a useful model organism for the interpretation of different phenotypes during development as well as the understanding of the dynamics of this complex. Interestingly, phenotypes similar to those observed in humans caused by mutations in the TFIIH subunits are present in mutant flies, allowing the study of TFIIH in different developmental processes. Furthermore, studies performed in Drosophila of mutations in different subunits of TFIIH that have not been linked to any human diseases, probably because they are more deleterious, have revealed its roles in differentiation and cell death. In this review, different achievements made through studies in the fly to understand the functions of TFIIH during development and its relationship with human diseases are analysed and discussed.
Collapse
|
10
|
Sá MC, Conceição TS, de Moura Santos E, de Morais EF, Galvão HC, de Almeida Freitas R. Immunohistochemical expression of TFIIH and XPF in oral tongue squamous cell carcinoma. Eur Arch Otorhinolaryngol 2019; 277:893-902. [PMID: 31828418 DOI: 10.1007/s00405-019-05757-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The query for biomarkers that indicate tumor aggressiveness and the host's response to treatment is still one of the leading aims of cancer research. To investigate a possible role for DNA nucleotide repair proteins in oral cancer behavior, this study evaluated the immunoexpression of the proteins TFIIH and XPF and its association with clinical, histological, and survival parameters in oral tongue squamous-cell carcinoma (OTSCC). METHODS TFIIH and XPF immunoexpressions were evaluated in 82 cases of oral tongue squamous-cell carcinoma. Tumor budding and depth of invasion were assessed for histopathological grading (BD model). RESULTS Tumor cells exhibited high expression of TFIIH and XPF, which was associated to nodal status; both proteins were not associated with other clinical parameters, histopathological grading or survival. Tumor size, nodal status, tumor staging, and depth of invasion > 4 mm were significantly associated to disease-specific survival. CONCLUSIONS We have demonstrated that the overexpression of TFIIH correlates positively with node metastasis, while XPF correlates negatively with node metastasis; therefore, the expression of XPF and TFIIH had a potential value for predicting the progression of OTSCC patients.
Collapse
Affiliation(s)
- Melka Coêlho Sá
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil
| | - Thalita Santana Conceição
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil
| | - Edilmar de Moura Santos
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil
| | - Everton Freitas de Morais
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil
| | - Hébel Cavalcanti Galvão
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil
| | - Roseana de Almeida Freitas
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil. .,Department of Oral Pathology, Federal University of Rio Grande of Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil.
| |
Collapse
|
11
|
Yan C, Dodd T, He Y, Tainer JA, Tsutakawa SE, Ivanov I. Transcription preinitiation complex structure and dynamics provide insight into genetic diseases. Nat Struct Mol Biol 2019; 26:397-406. [PMID: 31110295 PMCID: PMC6642811 DOI: 10.1038/s41594-019-0220-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Transcription preinitiation complexes (PICs) are vital assemblies whose function underlies the expression of protein-encoding genes. Cryo-EM advances have begun to uncover their structural organization. Nevertheless, functional analyses are hindered by incompletely modeled regions. Here we integrate all available cryo-EM data to build a practically complete human PIC structural model. This enables simulations that reveal the assembly's global motions, define PIC partitioning into dynamic communities and delineate how structural modules function together to remodel DNA. We identify key TFIIE-p62 interactions that link core-PIC to TFIIH. p62 rigging interlaces p34, p44 and XPD while capping the DNA-binding and ATP-binding sites of XPD. PIC kinks and locks substrate DNA, creating negative supercoiling within the Pol II cleft to facilitate promoter opening. Mapping disease mutations associated with xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome onto defined communities reveals clustering into three mechanistic classes that affect TFIIH helicase functions, protein interactions and interface dynamics.
Collapse
Affiliation(s)
- Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Downregulation of miR-144 by triptolide enhanced p85α-PTEN complex formation causing S phase arrest of human nasopharyngeal carcinoma cells. Eur J Pharmacol 2019; 855:137-148. [PMID: 31059711 DOI: 10.1016/j.ejphar.2019.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Selective pharmacologic targeting of cell cycle regulators is a potent anti-cancer therapeutic strategy. Here, we show that caspase-3-mediated p21 cleavage involves p53 independent of triptolide (TPL)-induced S phase arrest in human type 1 nasopharyngeal carcinoma (NPC) cells. Coimmunoprecipitation studies demonstrated that TPL causes S phase cell cycle arrest by suppressing the formation of cyclin A-phosphor (p)-cyclin-dependent kinas 2 (CDK2) (Thr 39) complexes. Ectopic expression of constitutively active protein kinase B1 (Akt1) blocks the induction of S phase arrest and the suppression of cyclin A expression and CDK2 Thr 39 phosphorylation by TPL. Expression of the phosphomimetic mutant CDK2 (T39E) rescues the cells from TPL-induced S phase arrest, whereas phosphorylation-deficient CDK2 (T39A) expression regulates cell growth with significant S phase arrest and enhances TPL-triggered S phase arrest. Treatment with TPL induces an increase in the formation of complexes between unphosphorylated phosphatase and tensin homolog deleted from chromosome 10 (PTEN) and p85α in the plasma membrane. Decreased microRNA (miR)-144 expression and increased PTEN expression after TPL treatment were demonstrated, and TPL-enhanced p85α-PTEN complexes and inhibitory effects on Akt (Ser 473) phosphorylation and S phase arrest were suppressed by ectopic PTEN short hairpin RNA or miR-144 expression. Knockdown of endogenous miR-144 by miR-144 Trap upregulated PTEN expression and accordingly enhanced p85α-PTEN complex formation and S phase arrest. Collectively, the effect of TPL on S phase arrest in human NPC cells is likely to enhance the p85α-PTEN interaction in the plasma membrane by suppressing miR-144 expression, resulting in the attenuation of cyclin A-p-CDK2 (Thr 39) complex formation via Akt inactivation.
Collapse
|
13
|
Timmers HTM, Tora L. Transcript Buffering: A Balancing Act between mRNA Synthesis and mRNA Degradation. Mol Cell 2019; 72:10-17. [PMID: 30290147 DOI: 10.1016/j.molcel.2018.08.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Transcript buffering involves reciprocal adjustments between overall rates in mRNA synthesis and degradation to maintain similar cellular concentrations of mRNAs. This phenomenon was first discovered in yeast and encompasses coordination between the nuclear and cytoplasmic compartments. Transcript buffering was revealed by novel methods for pulse labeling of RNA to determine in vivo synthesis and degradation rates. In this Perspective, we discuss the current knowledge of transcript buffering. Emphasis is placed on the future challenges to determine the nature and directionality of the buffering signals, the generality of transcript buffering beyond yeast, and the molecular mechanisms responsible for this balancing.
Collapse
Affiliation(s)
- H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ) Zentrale Klinische Forschung (ZKF), and Medical Faculty-University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, INSERM U1258 and Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
14
|
Gervais V, Muller I, Mari PO, Mourcet A, Movellan KT, Ramos P, Marcoux J, Guillet V, Javaid S, Burlet-Schiltz O, Czaplicki G, Milon A, Giglia-Mari G. Small molecule-based targeting of TTD-A dimerization to control TFIIH transcriptional activity represents a potential strategy for anticancer therapy. J Biol Chem 2018; 293:14974-14988. [PMID: 30068551 DOI: 10.1074/jbc.ra118.003444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/25/2018] [Indexed: 11/06/2022] Open
Abstract
The human transcription factor TFIIH is a large complex composed of 10 subunits that form an intricate network of protein-protein interactions critical for regulating its transcriptional and DNA repair activities. The trichothiodystrophy group A protein (TTD-A or p8) is the smallest TFIIH subunit, shuttling between a free and a TFIIH-bound state. Its dimerization properties allow it to shift from a homodimeric state, in the absence of a functional partner, to a heterodimeric structure, enabling dynamic binding to TFIIH. Recruitment of p8 at TFIIH stabilizes the overall architecture of the complex, whereas p8's absence reduces its cellular steady-state concentration and consequently decreases basal transcription, highlighting that p8 dimerization may be an attractive target for down-regulating transcription in cancer cells. Here, using a combination of molecular dynamics simulations to study p8 conformational stability and a >3000-member library of chemical fragments, we identified small-molecule compounds that bind to the dimerization interface of p8 and provoke its destabilization, as assessed by biophysical studies. Using quantitative imaging of TFIIH in living mouse cells, we found that these molecules reduce the intracellular concentration of TFIIH and its transcriptional activity to levels similar to that observed in individuals with trichothiodystrophy owing to mutated TTD-A Our results provide a proof of concept of fragment-based drug discovery, demonstrating the utility of small molecules for targeting p8 dimerization to modulate the transcriptional machinery, an approach that may help inform further development in anticancer therapies.
Collapse
Affiliation(s)
- Virginie Gervais
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France,
| | - Isabelle Muller
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France
| | - Pierre-Olivier Mari
- the Université Claude Bernard Lyon 1, INSERM U1217, Institut NeuroMyoGène, CNRS UMR 5310, F-69008 Lyon, France, and
| | - Amandine Mourcet
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France
| | - Kumar Tekwani Movellan
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France
| | - Pascal Ramos
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France
| | - Julien Marcoux
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France
| | - Valérie Guillet
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France
| | - Sumaira Javaid
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France.,the Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France
| | - Georges Czaplicki
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France
| | - Alain Milon
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, BP-64182, F-31077 Toulouse, France
| | - Giuseppina Giglia-Mari
- the Université Claude Bernard Lyon 1, INSERM U1217, Institut NeuroMyoGène, CNRS UMR 5310, F-69008 Lyon, France, and
| |
Collapse
|