1
|
Fatima R, Soni P, Sharma M, Prasher P, Kaverikana R, Mangalpady SS, Sharifi-Rad J, Calina D. Fisetin as a chemoprotective and chemotherapeutic agent: mechanistic insights and future directions in cancer therapy. Med Oncol 2025; 42:104. [PMID: 40074915 DOI: 10.1007/s12032-025-02664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Cancer remains a leading cause of mortality globally, characterized by the uncontrolled proliferation of abnormal cells, invasion of healthy tissues, and potential metastasis. Natural compounds have become a focus in cancer research due to their potential therapeutic roles. Among these, fisetin, a dietary flavonoid, demonstrates notable anti-cancer properties through various molecular mechanisms. This review evaluates the chemoprotective and chemotherapeutic potential of fisetin, focusing on its mechanisms of action against cancer and its capacity to enhance cancer treatment. A systematic literature search was conducted across PubMed, Web of Science, and Scopus databases using keywords related to fisetin and cancer. The review synthesizes findings from in vitro and in vivo studies examining fisetin's effects on signaling pathways, apoptosis induction, oxidative stress modulation, and synergistic potential with chemotherapeutic agents. Fisetin has shown the ability to suppress tumor growth and metastasis by modulating critical signaling pathways, including PI3K/Akt/mTOR, NF-κB, and MAPK. It induces apoptosis in cancer cells through mitochondrial and endoplasmic reticulum stress responses and demonstrates antioxidative properties by reducing reactive oxygen species. Additionally, fisetin enhances the efficacy of conventional chemotherapies, indicating its role as a potential adjuvant in cancer treatment. Fisetin presents a promising natural compound with diverse anti-cancer effects, impacting cell cycle arrest, apoptosis, and oxidative stress pathways. Further clinical studies are warranted to fully elucidate its therapeutic potential and to optimize its delivery for improved bioavailability in cancer patients.
Collapse
Affiliation(s)
- Rabab Fatima
- Department of Chemistry, UPES, Dehradun, 248007, India
| | - Priyal Soni
- Amity Institute of Pharmacy, Amity University, Lucknow, 226010, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | | | - Rajesh Kaverikana
- Department of Pharmacology, Nitte (Deemed to Be University), NGSM Institute of Pharmaceuticals, Mangaluru, India
| | | | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
2
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
3
|
Ren QL, Li XL, Tian T, Li S, Shi RY, Wang Q, Zhu Y, Wang M, Hu H, Liu JG. Application of Natural Medicinal Plants Active Ingredients in Oral Squamous Cell Carcinoma. Chin J Integr Med 2024; 30:852-864. [PMID: 38607612 DOI: 10.1007/s11655-024-3804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 04/13/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant cancer of the head and neck, with high morbidity and mortality, ranking as the sixth most common cancer in the world. The treatment of OSCC is mainly radiotherapy, chemotherapy and surgery, however, the prognosis of patients is still poor and the recurrence rate is high. This paper reviews the range of effects of natural medicinal plant active ingredients (NMPAIs) on OSCC cancer, including the types of NMPAIs, anti-cancer mechanisms, involved signaling pathways, and clinical trials. The NMPAIs include terpenoids, phenols, flavonoids, glycosides, alkaloids, coumarins, and volatile oils. These active ingredients inhibit proliferation, induce apoptosis and autophagy, inhibit migration and invasion of OSCC cells, and regulate cancer immunity to exert anti-cancer effects. The mechanism involves signaling pathways such as mitogen-activated protein kinase, phosphatidylinositol 3 kinase/protein kinase B, nuclear factor kappa B, miR-22/WNT1/β-catenin and Nrf2/Keap1. Clinically, NMPAIs can inhibit the growth of OSCC, and the combined drug is more effective. Natural medicinal plants are promising candidates for the treatment of OSCC.
Collapse
Affiliation(s)
- Qun-Li Ren
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiao-Lan Li
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Tian Tian
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Shuang Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Rong-Yi Shi
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Qian Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Yuan Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Miao Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan Hu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jian-Guo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
4
|
Al Azzani M, Nizami ZN, Magramane R, Sekkal MN, Eid AH, Al Dhaheri Y, Iratni R. Phytochemical-mediated modulation of autophagy and endoplasmic reticulum stress as a cancer therapeutic approach. Phytother Res 2024; 38:4353-4385. [PMID: 38961675 DOI: 10.1002/ptr.8283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Autophagy and endoplasmic reticulum (ER) stress are conserved processes that generally promote survival, but can induce cell death when physiological thresholds are crossed. The pro-survival aspects of these processes are exploited by cancer cells for tumor development and progression. Therefore, anticancer drugs targeting autophagy or ER stress to induce cell death and/or block the pro-survival aspects are being investigated extensively. Consistently, several phytochemicals have been reported to exert their anticancer effects by modulating autophagy and/or ER stress. Various phytochemicals (e.g., celastrol, curcumin, emodin, resveratrol, among others) activate the unfolded protein response to induce ER stress-mediated apoptosis through different pathways. Similarly, various phytochemicals induce autophagy through different mechanisms (namely mechanistic target of Rapamycin [mTOR] inhibition). However, phytochemical-induced autophagy can function either as a cytoprotective mechanism or as programmed cell death type II. Interestingly, at times, the same phytochemical (e.g., 6-gingerol, emodin, shikonin, among others) can induce cytoprotective autophagy or programmed cell death type II depending on cellular contexts, such as cancer type. Although there is well-documented mechanistic interplay between autophagy and ER stress, only a one-way modulation was noted with some phytochemicals (carnosol, capsaicin, cryptotanshinone, guangsangon E, kaempferol, and δ-tocotrienol): ER stress-dependent autophagy. Plant extracts are sources of potent phytochemicals and while numerous phytochemicals have been investigated in preclinical and clinical studies, the search for novel phytochemicals with anticancer effects is ongoing from plant extracts used in traditional medicine (e.g., Origanum majorana). Nonetheless, the clinical translation of phytochemicals, a promising avenue for cancer therapeutics, is hindered by several limitations that need to be addressed in future studies.
Collapse
Affiliation(s)
- Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed N Sekkal
- Department of Surgery, Specialty Orthopedic, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Ding Y, Xie D, Xu C, Hu W, Kong B, Jia S, Cao L. Fisetin disrupts mitochondrial homeostasis via superoxide dismutase 2 acetylation in pancreatic adenocarcinoma. Phytother Res 2024; 38:4628-4649. [PMID: 39091056 DOI: 10.1002/ptr.8296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/06/2024] [Accepted: 02/11/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most lethal malignant tumors with an urgent need for precision medicine strategies. The present study seeks to assess the antitumor effects of fisetin, and characterize its impact on PDAC. Multi-omic approaches include proteomic, transcriptomic, and metabolomic analyses. Further validation includes the assessment of mitochondria-derived reactive oxygen species (mtROS), mitochondrial membrane potential, as well as ATP generation. Molecular docking, immunoprecipitation, and proximity ligation assay were used to detect the interactions among fiseitn, superoxide dismutase 2 (SOD2), and sirtuin 2 (SIRT2). We showed that fisetin disrupted mitochondrial homeostasis and induced SOD2 acetylation in PDAC. Further, we produced site mutants to determine that fisetin-induced mtROS were dependent on SOD2 acetylation. Fisetin inhibited SIRT2 expression, thus blocking SOD2 deacetylation. SIRT2 overexpression could impede fisetin-induced SOD2 acetylation. Additionally, untargeted metabolomic analysis revealed an acceleration of folate metabolism with fisetin. Collectively, our findings suggest that fisetin disrupts mitochondrial homeostasis, eliciting an important cancer-suppressive role; thus, fisetin may serve as a promising therapeutic for PDAC.
Collapse
Affiliation(s)
- Yimin Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dafei Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyi Hu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binyue Kong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Yadav M, Kandhari K, Mathan SV, Ali M, Singh RP. Fisetin induces G2/M phase arrest and caspase-mediated cleavage of p21 Cip1 and p27 Kip1 leading to apoptosis and tumor growth inhibition in HNSCC. Mol Carcinog 2024; 63:1697-1711. [PMID: 38801393 DOI: 10.1002/mc.23754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
The anticancer potential and associated mechanisms of flavonoid fisetin are yet to be fully investigated on human head and neck squamous cell carcinoma (HNSCC). In the present study, fisetin (25-75 µM for 24-48 h) dose-dependently inhibited growth and induced death in HNSCC Cal33 and UM-SCC-22B cells, without showing any death in normal cells. Fisetin (25-50 µM) induced G2/M phase arrest via decrease in Cdc25C, CDK1, cyclin B1 expression, and an increase in p53(S15). A concentration-dependent increase in fisetin-induced DNA damage and apoptosis in HNSCC cells was authenticated by comet assay, gamma-H2A.X(S139) phosphorylation, and marked cleavage of PARP protein. Interestingly, fisetin-induced cell death occurred independently of p53 and reactive oxygen species production. The activation of JNK and inhibition of PI3K/Akt, ERK1/2, EGFR, and STAT-3 signaling were identified. Further, fisetin-induced apoptosis was mediated, in part, via p21Cip1 and p27Kip1 cleavage by caspase, which was reversed by z-VAD-FMK, a pan-caspase inhibitor. Subsequently, fisetin was also found to induce autophagy; nevertheless, autophagy attenuation exaggerated apoptosis. Oral fisetin (50 mg/kg body weight) treatment to establish Cal33 xenograft in mice for 19 days showed 73% inhibition in tumor volume (p < 0.01) along with a decrease in Ki67-positive cells and an increase in cleaved caspase-3 level in tumors. Consistent with the effect of 50 µM fisetin in vitro, the protein levels of p21Cip1 and P27Kip1 were also decreased by fisetin in tumors. Together, these findings showed strong anticancer efficacy of fisetin against HNSCC with downregulation of EGFR-Akt/ERK1/2-STAT-3 pathway and activation of JNK/c-Jun, caspases and caspase-mediated cleavage of p21Cip1 and p27Kip1.
Collapse
Affiliation(s)
- Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kushal Kandhari
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sivapar V Mathan
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Wendlocha D, Kubina R, Krzykawski K, Mielczarek-Palacz A. Selected Flavonols Targeting Cell Death Pathways in Cancer Therapy: The Latest Achievements in Research on Apoptosis, Autophagy, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis. Nutrients 2024; 16:1201. [PMID: 38674891 PMCID: PMC11053927 DOI: 10.3390/nu16081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of flavonols have remained incompletely elucidated, and the results of the studies carried out so far are ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article offers an extensive overview of recent research on these compounds, focusing particularly on their role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying the anticancer effects of compounds in therapy targeting various types of cell death pathways may prove useful in developing new therapeutic regimens and counteracting resistance to previously used treatments.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
8
|
Wei K, Zhu W, Kou Y, Zheng X, Zheng Y. Advances in Small Molecular Agents against Oral Cancer. Molecules 2024; 29:1594. [PMID: 38611874 PMCID: PMC11013889 DOI: 10.3390/molecules29071594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Oral cancer is a common malignancy with a high mortality rate. Although surgery is the best treatment option for patients with cancer, this approach is ineffective for advanced metastases. Molecular agents are irreplaceable in preventing and treating distant metastases. This review aims to summarise the molecular agents used for the treatment of oral cancer in the last decade and describe their sources and curative effects. These agents are classified into phenols, isothiocyanates, anthraquinones, statins, flavonoids, terpenoids, and steroids. The mechanisms of action of these agents include regulating the expression of cell signalling pathways and related proteases to affect the proliferation, autophagy, migration, apoptosis, and other biological aspects of oral cancer cells. This paper may serve as a reference for subsequent studies on the treatment of oral cancer.
Collapse
Affiliation(s)
- Kai Wei
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Weiru Zhu
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Yanan Kou
- Affiliated Stomatology Hospital, Pingdingshan University, Pingdingshan 467000, China
| | - Xinhua Zheng
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Yunyun Zheng
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| |
Collapse
|
9
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
10
|
Deng J, Misra V, Vilash N, Wu W, Hua C, Son K, Canfora F, Kong FYS, Paolini R, McCullough M, Celentano A. Can a cup a day keep cancer away? A systematic review exploring the potential of coffee constituents in preventing oral squamous cell carcinoma. J Oral Pathol Med 2024; 53:8-19. [PMID: 37953702 DOI: 10.1111/jop.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Coffee is one of the most consumed beverages in the world. Containing an abundance of bioactive molecules including polyphenols and flavonoids, the constituents of this beverage may exert antiproliferative, antioxidant and anti-inflammatory effects. METHODS We conducted a systematic review to summarise the available evidence on the anticancer effects of coffee constituents and their potential therapeutic use for oral squamous cell carcinoma (OSCC). Studies were identified through a comprehensive search of OVID MEDLINE, OVID EMBASE and Web of Science, including articles from any year up to 15 May 2023. RESULTS Of the 60 reviewed papers, 45 were in vitro, 1 was in silico and 8 were in vivo exclusively. The remaining studies combined elements of more than one study type. A total of 55 studies demonstrated anti-proliferative effects, whilst 12 studies also investigated migration and invasion of neoplastic cells. The constituents studied most frequently were quercetin and epigallocatechin gallate (EGCG), demonstrating various cytotoxic effects whilst also influencing apoptotic mechanisms in cancer cell lines. Dose-dependent responses were consistently found amongst the studied constituents. CONCLUSION Whilst there was heterogeneity of study models and methods, consistent use of specific models such as SCC25 for in vitro studies and golden hamsters for in vivo studies enabled relative comparability. The constituents of coffee have gained significant interest over the last 30 years, particularly in the last decade, and present an area of interest with significant public health implications. Currently, there is a paucity of literature on utilization of active coffee constituents for the therapeutic treatment of oral cancers.
Collapse
Affiliation(s)
- Jonathan Deng
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Vaidehi Misra
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Neehal Vilash
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Wendi Wu
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Cindy Hua
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Kate Son
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Federica Canfora
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Fabian Y S Kong
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| |
Collapse
|
11
|
Gupta M, Ahmad J, Ahamad J, Kundu S, Goel A, Mishra A. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope. Phytother Res 2023; 37:5159-5192. [PMID: 37668281 DOI: 10.1002/ptr.7975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Flavonoids are natural polyphenolic compounds considered safe, pleiotropic, and readily available molecules. It is widely distributed in various food products such as fruits and vegetables and beverages such as green tea, wine, and coca-based products. Many studies have reported the anticancer potential of flavonoids against different types of cancers, including solid tumors. The chemopreventive effect of flavonoids is attributed to various mechanisms, including modulation of autophagy, induction of cell cycle arrest, apoptosis, and antioxidant defense. Despite of significant anticancer activity of flavonoids, their clinical translation is limited due to their poor biopharmaceutical attributes (such as low aqueous solubility, limited permeability across the biological membranes (intestinal and blood-brain barrier), and stability issue in biological systems). A nanoparticulate system is an approach that is widely utilized to improve the biopharmaceutical performance and therapeutic efficacy of phytopharmaceuticals. The present review discusses the significant anticancer potential of promising flavonoids in different cancers and the utilization of nanoparticulate systems to improve their nanoantioxidant activity further to enhance the anticancer activity of loaded promising flavonoids. Although, various plant-derived secondary metabolites including flavonoids have been recommended for treating cancer, further vigilant research is warranted to prove their translational values.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Archit Goel
- All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
12
|
Pandey A, Trigun SK. Fisetin induces apoptosis in colorectal cancer cells by suppressing autophagy and down-regulating nuclear factor erythroid 2-related factor 2 (Nrf2). J Cell Biochem 2023; 124:1289-1308. [PMID: 37450699 DOI: 10.1002/jcb.30447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Modulation of autophagy is evolving as a relevant strategy in cancer pathogenesis and therapeutic intervention and hence, needs to be examined as a target for the promising anticancer agents. Fisetin, a dietary flavanol, is emerging as a potent anticancer agent, however, its tumour-specific pharmacological targets remain largely unexplored. This article describes correlative profiles of autophagy and apoptotic markers versus nuclear factor erythroid 2-related factor 2 (Nrf2) and reactive oxygen species (ROS) in the colorectal cancer (CRC) cell line SW-480. As compared to the untreated cells, significantly less number of fluorescent detected autophagic vacuoles (AVOs) in the fisetin-treated cells coincided with a similar decline of the autophagy flux markers, Beclin 1 and microtubule-associated protein-1 light chain-3 and accumulation of p62 in those cells. The significantly increased number of annexin-V/propidium iodide (+/+) positive and acridine orange/ethidium bromide-stained apoptotic cells coincided with the enhanced signals for the cleaved caspase 3 and nuclear PARP-1 in those fisetin-treated cells. This was consistent with the collapse of mitochondrial membrane potential and release of cytochrome c. The fisetin-treated cells showed increased ROS level and a significant decline in nuclear Nrf2 immunosignal versus recovery in nuclear Nrf2 due to the treatment with curcumin and resveratrol (Nrf2 activators) and thus, suggesting a role of Nrf2 suppression in fisetin-mediated apoptosis in SW-480 cells. The effect of chloroquine, an autophagy inhibitor, resulted into declined number of AVOs and enhanced apoptosis, similar to that of the fisetin effect. Also, regaining of AVOs number and reduced apoptosis of CRC cells due to the treatment with rapamycin, an autophagy inducer, could be observed. These loss and gain of functions experiments thus suggested a correlation between fisetin-mediated autophagy suppression and apoptotic induction in a colorectal cell line.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Zoology, Biochemistry Section, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra Kumar Trigun
- Department of Zoology, Biochemistry Section, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Kubina R, Krzykawski K, Dziedzic A, Kabała-Dzik A. Kaempferol and Fisetin-Related Signaling Pathways Induce Apoptosis in Head and Neck Cancer Cells. Cells 2023; 12:1568. [PMID: 37371038 DOI: 10.3390/cells12121568] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the relative effectiveness of standard cancer treatment strategies, head and neck cancer (HNC) is still considered one of the leading causes of mortality and morbidity. While selected bioactive compounds of plant origin reveal a pro-apoptotic effect, kaempferol and fisetin flavonols have been reported as potential anti-cancer agents against malignant neoplasms. To date, their exact role in signaling pathways of head and neck cancer cells is largely unknown. Based on the various methods of cytotoxicity testing, we elucidated that kaempferol and fisetin inhibit proliferation, reduce the capacity of cell migration, and induce apoptosis in SCC-9, SCC-25, and A-253 HNC cells in a dose-dependent manner in vitro (p < 0.05, fisetin IC50 values of 38.85 µM, 62.34 µM, and 49.21 µM, and 45.03 µM, 49.90 µM, and 47.49 µM for kaempferol-SCC-9, SCC-25, and A-253, respectively). The obtained results showed that exposure to kaempferol and fisetin reduces Bcl-2 protein expression, simultaneously leading to the arrest in the G2/M and S phases of the cell cycle. Kaempferol and fisetin inhibit cell proliferation by interfering with the cell cycle, which is strongly associated with the induction of G2/M arrest, and induce apoptosis by activating caspase-3 and releasing cytochrome c in human HNC cells. In addition, investigating flavonols, by inhibiting anti-apoptotic proteins from the Bcl-2 family and damaging the mitochondrial transmembrane potential, increased the level of cytochrome c. While flavonols selectively induce apoptosis of head and neck cancer cells, they may support oncological therapy as promising agents. The discovery of new derivatives may be a breakthrough in the search for effective chemotherapeutic agents with less toxicity and thus fewer side effects.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland
| | - Kamil Krzykawski
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 40-055 Katowice, Poland
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
14
|
Mahmud AR, Ema TI, Siddiquee MFR, Shahriar A, Ahmed H, Mosfeq-Ul-Hasan M, Rahman N, Islam R, Uddin MR, Mizan MFR. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:47. [PMID: 37216013 PMCID: PMC10183303 DOI: 10.1186/s43088-023-00387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Flavonols are phytoconstituents of biological and medicinal importance. In addition to functioning as antioxidants, flavonols may play a role in antagonizing diabetes, cancer, cardiovascular disease, and viral and bacterial diseases. Quercetin, myricetin, kaempferol, and fisetin are the major dietary flavonols. Quercetin is a potent scavenger of free radicals, providing protection from free radical damage and oxidation-associated diseases. Main body of the abstract An extensive literature review of specific databases (e.g., Pubmed, google scholar, science direct) were conducted using the keywords "flavonol," "quercetin," "antidiabetic," "antiviral," "anticancer," and "myricetin." Some studies concluded that quercetin is a promising antioxidant agent while kaempferol could be effective against human gastric cancer. In addition, kaempferol prevents apoptosis of pancreatic beta-cells via boosting the function and survival rate of the beta-cells, leading to increased insulin secretion. Flavonols also show potential as alternatives to conventional antibiotics, restricting viral infection by antagonizing the envelope proteins to block viral entry. Short conclusion There is substantial scientific evidence that high consumption of flavonols is associated with reduced risk of cancer and coronary diseases, free radical damage alleviation, tumor growth prevention, and insulin secretion improvement, among other diverse health benefits. Nevertheless, more studies are required to determine the appropriate dietary concentration, dose, and type of flavonol for a particular condition to prevent any adverse side effects.
Collapse
Affiliation(s)
- Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | | | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217 Bangladesh
| | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), Dhaka, 1208 Bangladesh
| | - Md. Mosfeq-Ul-Hasan
- Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | |
Collapse
|
15
|
Moustafa MA, El-Refaie WM, Elnaggar YSR, El-Mezayen NS, Awaad AK, Abdallah OY. Fucoidan/hyaluronic acid cross-linked zein nanoparticles loaded with fisetin as a novel targeted nanotherapy for oral cancer. Int J Biol Macromol 2023; 241:124528. [PMID: 37086764 DOI: 10.1016/j.ijbiomac.2023.124528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Fisetin (FS) is an anticancer drug having potential role in oral tumors management. However, its clinical application is limited due to its hydrophobicity and instability. Bioactive polymers-based nanosystems have a great potential in cancer therapy. Herein, different biopolymers were selected for their anticancer activity and targeting ability for nanoparticles preparation namely; fucoidan (FU), zein (Zn) and hyaluronic acid (HA). The selected FS-loaded cross-linked Zn nanoparticles (ZFH) which contains HA& FU for Zn nanoparticles stabilization showed the most suitable particle size (196 ± 6.53 nm), mean surface net charge (-38.8 ± 1.47 mV) and entrapment efficiency (98 ± 1.2 %). This is the first study to utilize both HA &FU not only for stabilization but also for dual targeting effect due to their targeting ability to multiple tumor targets. In-vitro anticancer activity of ZHF revealed remarkable uptake by SCC-4 cells with significant cytotoxic action. Further, ZHF was appraised using 4-nitroquinoline 1-oxide (4-NQO)-induced oral cancer in-vivo; ZHF significantly reduced OSCC-specific serum biomarkers levels, histologic tumor grade and increased caspase-3 level. Moreover, potential of destroying two key tumor regulatory cells; TECs and CSCs, was evaluated using their specific markers. The elaborated ZFH nanoparticles could be considered as promising targeted nanotherapy for oral cancer treatment with enhanced efficacy and survival rate.
Collapse
Affiliation(s)
- Mona A Moustafa
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt.
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | | | - Ashraf K Awaad
- Center for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
16
|
Arangia A, Marino Y, Fusco R, Siracusa R, Cordaro M, D’Amico R, Macrì F, Raffone E, Impellizzeri D, Cuzzocrea S, Di Paola R. Fisetin, a Natural Polyphenol, Ameliorates Endometriosis Modulating Mast Cells Derived NLRP-3 Inflammasome Pathway and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24065076. [PMID: 36982152 PMCID: PMC10049430 DOI: 10.3390/ijms24065076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
A chronic, painful, and inflammatory condition known as endometriosis is defined by the extra-uterine development of endometrial tissue. The aim of this study was to evaluate the beneficial effects of fisetin, a naturally occurring polyphenol that is frequently present in a variety of fruits and vegetables. Uterine fragments were injected intraperitoneally to cause endometriosis, and fisetin was given orally every day. At 14 days of treatment, laparotomy was performed, and the endometrial implants and peritoneal fluids were collected for histological, biochemical, and molecular analyses. Rats subjected to endometriosis presented important macroscopic and microscopic changes, increased mast cell (MC) infiltration, and fibrosis. Fisetin treatment reduced endometriotic implant area, diameter, and volumes, as well as histological alterations, neutrophil infiltration, cytokines release, the number of MCs together with the expression of chymase and tryptase, and diminished α smooth muscle actin (α-sma) and transforming growth factor beta (TGF β) expressions. In addition, fisetin was able to reduce markers of oxidative stress as well as nitrotyrosine and Poly ADP ribose expressions and increase apoptosis in endometrial lesions. In conclusion, fisetin could represent a new therapeutic strategy to control endometriosis perhaps by targeting the MC-derived NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway and oxidative stress.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Consolare Valeria, 98100 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Emanuela Raffone
- Department of Maternal and Child Obstetrics and Gynecology, Papardo Hospital, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-4734
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
17
|
Rauf A, Abu-Izneid T, Imran M, Hemeg HA, Bashir K, Aljohani ASM, Aljohani MSM, Alhumaydhi FA, Khan IN, Bin Emran T, Gondal TA, Nath N, Ahmad I, Thiruvengadam M. Therapeutic Potential and Molecular Mechanisms of the Multitargeted Flavonoid Fisetin. Curr Top Med Chem 2023; 23:2075-2096. [PMID: 37431899 DOI: 10.2174/1568026623666230710162217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Flavonoids effectively treat cancer, inflammatory disorders (cardiovascular and nervous systems), and oxidative stress. Fisetin, derived from fruits and vegetables, suppresses cancer growth by altering cell cycle parameters that lead to cell death and angiogenesis without affecting healthy cells. Clinical trials are needed in humans to prove the effectiveness of this treatment for a wide range of cancers. According to the results of this study, fisetin can be used to prevent and treat a variety of cancers. Despite early detection and treatment advances, cancer is the leading cause of death worldwide. We must take proactive steps to reduce the risk of cancer. The natural flavonoid fisetin has pharmacological properties that suppress cancer growth. This review focuses on the potential drug use of fisetin, which has been extensively explored for its cancer-fighting ability and other pharmacological activities such as diabetes, COVID-19, obesity, allergy, neurological, and bone disorders. Researchers have focused on the molecular function of fisetin. In this review, we have highlighted the biological activities against chronic disorders, including cancer, metabolic illnesses, and degenerative illnesses, of the dietary components of fisetin.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, KPK, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain Campus, Abu Dhabi, United Arab Emirates
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Punjab, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra, 41411, Saudi Arabia
| | - Kashif Bashir
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Mona S M Aljohani
- Pharmaceutical Care Department, King Saud Hospital, Ministry of Health, Unaizah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Victoria, 3125, Australia
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Ishtiaque Ahmad
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
18
|
Rahmani AH, Almatroudi A, Allemailem KS, Khan AA, Almatroodi SA. The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment. Molecules 2022; 27:9009. [PMID: 36558146 PMCID: PMC9782831 DOI: 10.3390/molecules27249009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a main culprit and the second-leading cause of death worldwide. The current mode of treatment strategies including surgery with chemotherapy and radiation therapy may be effective, but cancer is still considered a major cause of death. Plant-derived products or their purified bioactive compounds have confirmed health-promoting effects as well as cancer-preventive effects. Among these products, flavonoids belong to polyphenols, chiefly found in fruits, vegetables and in various seeds/flowers. It has been considered to be an effective antioxidant, anti-inflammatory and to play a vital role in diseases management. Besides these activities, flavonoids have been revealed to possess anticancer potential through the modulation of various cell signaling molecules. In this regard, fisetin, a naturally occurring flavonoid, has a confirmed role in disease management through antioxidant, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential. As well, its cancer-preventive effects have been confirmed via modulating various cell signaling pathways including inflammation, apoptosis, angiogenesis, growth factor, transcription factor and other cell signaling pathways. This review presents an overview of the anti-cancer potential of fisetin in different types of cancer through the modulation of cell signaling pathways based on in vivo and in vitro studies. A synergistic effect with anticancer drugs and strategies to improve the bioavailability are described. More clinical trials need to be performed to explore the anti-cancer potential and mechanism-of-action of fisetin and its optimum therapeutic dose.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
19
|
Afrasiabi M, Tahmasebi G, Eslami E, Seydi E, Pourahmad J. Cold Atmospheric Plasma Versus Cisplatin Against Oral Squamous Cell Carcinoma: A Mitochondrial Targeting Study. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e124106. [PMID: 36942058 PMCID: PMC10024331 DOI: 10.5812/ijpr-124106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Plasma therapy and the study of the effects of cold atmospheric plasma (CAP) on tissues and living cells have been considered by scientific researchers in recent years. CAP is used in the treatment of cancer, but its anti-cancer mechanism has not been fully studied. Therefore, we studied the toxicity effect of CAP by using argon as feed gas and the synergistic effects of CAP with cisplatin on tumor cells and mitochondria isolated from tumor legions of the rat model of oral squamous cell carcinoma (OSCC). For this reason, we determined the possible toxic alterations of CAP on mitochondrial upstream events and activation of caspase-3 as the key major downstream event of apoptosis. Also, the effects of cisplatin (10 µM) as a positive control and its synergistic effects with CAP (IC50 concentration) were investigated. The results showed that CAP reduced mitochondrial dysfunction by reduction in succinate dehydrogenase (SDH) activity. Also, CAP in concentrations of 1200, 2400, and 4800 a.u. has been able to increase the level of reactive oxygen species (ROS), mitochondrial swelling, damage to the mitochondrial membrane, cytochrome c release, and activation of the final mediator of apoptosis (caspase-3) only in the OSCC group. CAP at 4800 a.u concentration had similar effects to cisplatin (10 µM). Synergistic effects between CAP (2400 a.u) and cisplatin (10 µM) have also been reported. Based on all results CAP showed positive and promising results on mitochondrial upstream parameters leading to activation of caspase-3, the final mediator of apoptosis only on OSCC cells and mitochondria without any significant effect on normal cells and mitochondria.
Collapse
Affiliation(s)
- Mona Afrasiabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Tahmasebi
- Department of Atomic/Molecular Physics, Faculty of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Esmaeil Eslami
- Department of Atomic/Molecular Physics, Faculty of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
- Corresponding Author: Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
20
|
Liu JF, Chang TM, Chen PH, Lin JSW, Tsai YJ, Wu HM, Lee CJ. Naringenin induces endoplasmic reticulum stress-mediated cell apoptosis and autophagy in human oral squamous cell carcinoma cells. J Food Biochem 2022; 46:e14221. [PMID: 35596593 DOI: 10.1111/jfbc.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Human oral squamous cell carcinoma (OSCC) has been one of the most common oral cancers owing to high percentage of betel nuts chewers, smokers, and alcohol consumption. With current treatment strategies in OSCC, more than half patients relapse and develop distant metastases with poor prognosis. To overcome the incident, OSCC poses a challenge in current therapies and treatments. Naringenin, a natural flavonoid, has been noted for antitumor effects on various types of cancers; however, the effects of naringenin on OSCC remain bias. In this study, naringenin demonstrated the potential multifunction in human OSCC cells not only leading to cell apoptosis, but also alternating the general function of autophagy, serving as pro-survival mechanism by inducing the endoplasmic reticulum (ER) stress signaling through intracellular reactive oxygen species (ROS) production. In the process of programmed cell death, naringenin induced apoptotic signaling through caspase-cascade, mitochondrial dysfunction, and ER stress by aberrance of Ca2+ release. In contrast, under the presence of naringenin, the pro-survival has been altered into pro-death to activate the caspases-mediated apoptosis achieving cell death. The cross-function of apoptosis and autophagy has demonstrated the effect of naringenin-induced intracellular ROS activity in OSCC cells. Therefore, this study found that the effect of naringenin induces intracellular ROS to trigger programmed cell death and ER stress through the mechanisms of apoptosis and autophagy in human oral squamous carcinoma. PRACTICAL APPLICATIONS: This study revealed that naringenin debilitated the OSCC cell viability via the intracellular ROS production, ER stress, and autophagy, leading to cell apoptosis. Based on these studies and findings, naringenin provided an antitumor effect as a novel natural compound to improve the current therapies in OSCC.
Collapse
Affiliation(s)
- Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tsung-Ming Chang
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Han Chen
- Department of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jaster Szu-Wei Lin
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yih-Jeng Tsai
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Hsing-Mei Wu
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| |
Collapse
|
21
|
Hosseini SS, Ebrahimi SO, Haji Ghasem Kashani M, Reiisi S. Study of quercetin and fisetin synergistic effect on breast cancer and potentially involved signaling pathways. Cell Biol Int 2022; 47:98-109. [DOI: 10.1002/cbin.11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Seyede Saba Hosseini
- Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences Damghan University Damghan Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences Shahrekord University Shahrekord Iran
| | - Maryam Haji Ghasem Kashani
- Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences Damghan University Damghan Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences Shahrekord University Shahrekord Iran
| |
Collapse
|
22
|
Passiflora mollissima Seed Extract Induced Antiproliferative and Cytotoxic Effects on CAL 27 Spheroids. Adv Pharmacol Pharm Sci 2022; 2022:4602413. [PMID: 35685453 PMCID: PMC9174002 DOI: 10.1155/2022/4602413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/25/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
Multicellular tumor spheroids are used as models in drug development due to their characteristics simulating in vivo tumors. Likewise, antiproliferative properties of extracts derived from fruits have been widely described. Peels and seeds can be used as a matrix to obtain different compounds. Recently, a study demonstrated the antiproliferative activity from a P. mollissima extract (PME) on human colon cancer cells; however, its effect on oral spheroids is unknown. Objective. To evaluate the antiproliferative potential of an extract obtained from P. mollissima seeds on the spheroid-type-3D culture model of CAL 27. Methods. CAL 27-spheroids were treated with three concentrations of PME (10, 50, and 100 μg/ml). After 72 hr incubation, morphology and cellular changes, cytotoxic and proapoptotic effect, gene expression, and metastasis were determined. Additionally, changes in the cell cycle phases responded to the PME concentrations. Comparisons between groups were made through a U Mann-Whitney test. Results. It was shown that 100 μg/ml PE affects CAL 27 cells proliferation grown in spheroids through cell cycle arrest and gene regulation of p53, HIF 1α, and CDH1. However, none of the treatments employed induced MMP9 gene expression. Conclusion. Our study shows that PME inhibits the growth and proliferation of oral tumor cells cultured in spheroids through the positive regulation of cell death and metastasis genes.
Collapse
|
23
|
Zhong R, Farag MA, Chen M, He C, Xiao J. Recent advances in the biosynthesis, structure–activity relationships, formulations, pharmacology, and clinical trials of fisetin. EFOOD 2022. [DOI: 10.1002/efd2.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ruting Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Chengwei He
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
24
|
Ullah MF, Ahmad A, Bhat SH, Abuduhier FM, Mustafa SK, Usmani S. Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention. Biol Futur 2022; 73:55-69. [PMID: 35040098 DOI: 10.1007/s42977-022-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Discouraging statistics of cancer disease has projected an increase in the global cancer burden from 19.3 to 28.4 million incidences annually within the next two decades. Currently, there has been a revival of interest in nutraceuticals with evidence of pharmacological properties against human diseases including cancer. Diet is an integral part of lifestyle, and it has been proposed that an estimated one-third of human cancers can be prevented through appropriate lifestyle modification including dietary habits; hence, it is considered significant to explore the pharmacological benefits of these agents, which are easily accessible and have higher safety index. Accordingly, an impressive embodiment of evidence supports the concept that the dietary factors are critical modulators to prevent, retard, block, or reverse carcinogenesis. Such an action reflects the ability of these molecules to interfere with multitude of pathways to subdue and neutralize several oncogenic factors and thereby keep a restraint on neoplastic transformations. This review provides a series of experimental evidence based on the current literature to highlight the translational potential of nutraceuticals for the prevention of the disease through consumption of enriched diets and its efficacious management by means of novel interventions. Specifically, this review provides the current understanding of the chemopreventive pharmacology of nutraceuticals such as cucurbitacins, morin, fisetin, curcumin, luteolin and garcinol toward their potential as anticancer agents.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia.
| | - Aamir Ahmad
- University of Alabama at Birmingham, Birmingham, AL, USA
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Showket H Bhat
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology and Molecular Diagnostics, Center for Vocational Studies, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Faisel M Abuduhier
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
25
|
Lai J, Tang Y, Yang F, Chen J, Huang FH, Yang J, Wang L, Qin D, Law BYK, Wu AG, Wu JM. Targeting autophagy in ethnomedicine against human diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114516. [PMID: 34487846 DOI: 10.1016/j.jep.2021.114516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the past five years, ethnopharmacy-based drugs have been increasingly used in clinical practice. It has been reported that hundreds of ethnopharmacy-based drugs can modulate autophagy to regulate physiological and pathological processes, and ethnomedicines also have certain therapeutic effects on illnesses, revealing the important roles of these medicines in regulating autophagy and treating diseases. AIM OF THE STUDY This study reviews the regulatory effects of natural products on autophagy in recent years, and discusses their pharmacological effects and clinical applications in the process of diseases. It provides a preliminary literature basis and reference for the research of plant drugs in the regulation of autophagy. MATERIALS AND METHODS A comprehensive systematic review in the fields of relationship between autophagy and ethnomedicine in treating diseases from PubMed electronic database was performed. Information was obtained from documentary sources. RESULTS We recorded some illnesses associated with autophagy, then classified them into different categories reasonably. Based on the uses of these substances in different researches of diseases, a total of 80 active ingredients or compound preparations of natural drugs were searched. The autophagy mechanisms of these substances in the treatments of divers diseases have been summarized for the first time, we also looked forward to the clinical application of some of them. CONCLUSIONS Autophagy plays a key function in lots of illnesses, the regulation of autophagy has become one of the important means to prevent and treat these diseases. About 80 compounds and preparations involved in this review have been proved to have therapeutic effects on related diseases through the mechanism of autophagy. Experiments in vivo and in vitro showed that these compounds and preparations could treat these diseases by regulating autophagy. The typical natural products curcumin and tripterine have powerful roles in regulating autophagy and show good and diversified curative effects.
Collapse
Affiliation(s)
- Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Fei-Hong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| | - Jian-Ming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
26
|
Abd El-Aziz YS, Leck LYW, Jansson PJ, Sahni S. Emerging Role of Autophagy in the Development and Progression of Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:6152. [PMID: 34944772 PMCID: PMC8699656 DOI: 10.3390/cancers13246152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a cellular catabolic process, which is characterized by degradation of damaged proteins and organelles needed to supply the cell with essential nutrients. At basal levels, autophagy is important to maintain cellular homeostasis and development. It is also a stress responsive process that allows the cells to survive when subjected to stressful conditions such as nutrient deprivation. Autophagy has been implicated in many pathologies including cancer. It is well established that autophagy plays a dual role in different cancer types. There is emerging role of autophagy in oral squamous cell carcinoma (OSCC) development and progression. This review will focus on the role played by autophagy in relation to different aspects of cancer progression and discuss recent studies exploring the role of autophagy in OSCC. It will further discuss potential therapeutic approaches to target autophagy in OSCC.
Collapse
Affiliation(s)
- Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
| |
Collapse
|
27
|
Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. Int J Mol Sci 2021; 22:9807. [PMID: 34575981 PMCID: PMC8467030 DOI: 10.3390/ijms22189807] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.
Collapse
Affiliation(s)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2–7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Samrein Ahmed
- Department of Biosciences and Chemistry, College of Health and Wellbeing and Life Sciences, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK;
| | - Nada Radwan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Hend S. Ahmed
- Department of Hematology and Blood Transfusion, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Khartoum 786, Sudan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| |
Collapse
|
28
|
Autophagy Modulators in Cancer: Focus on Cancer Treatment. Life (Basel) 2021; 11:life11080839. [PMID: 34440583 PMCID: PMC8401266 DOI: 10.3390/life11080839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled autophagy has been associated with the development and progression of various cancers that are resistant to cancer therapy. Therefore, many efforts to modulate uncontrolled autophagy as a cancer treatment have been attempted, from basic science to clinical trials. However, it remains difficult to equally apply autophagy modulators to cancer therapy because autophagy is a double-edged sword in cancer: it can be tumor-suppressive or tumor-protective. Therefore, the precise mechanisms of autophagy modulators and their varied responsiveness to each cancer type should be addressed in detail. This study will describe the precise mechanisms of developing various autophagy modulators, their current therapeutic applications and future perspectives.
Collapse
|
29
|
Cancer chemopreventive role of fisetin: Regulation of cell signaling pathways in different cancers. Pharmacol Res 2021; 172:105784. [PMID: 34302980 DOI: 10.1016/j.phrs.2021.105784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
It is becoming progressively more understandable that pharmaceutical targeting of drug-resistant cancers is challenging because of intra- and inter-tumor heterogeneity. Interestingly, naturally derived bioactive compounds have unique ability to modulate wide-ranging deregulated oncogenic cell signaling pathways. In this review, we have focused on the available evidence related to regulation of PI3K/AKT/mTOR, Wnt/β-catenin, NF-κB and TRAIL/TRAIL-R by fisetin in different cancers. Fisetin has also been shown to inhibit the metastatic spread of cancer cells in tumor-bearing mice. We have also summarized how fisetin regulated autophagy in different cancers. In addition, this review also covers fisetin-mediated regulation of VEGF/VEGFR, EGFR, necroptosis and Hippo pathway. Fisetin has entered into clinical trials particularly in context of COVID19-associated inflammations. Furthermore, fisetin mediated effects are also being tested in clinical trials with reference to osteoarthritis and senescence. These developments will surely pave the way for full-fledge and well-designed clinical trials of fisetin in different cancers. However, we still have to comprehensively analyze and fully unlock pharmacological potential of fisetin against different oncogenic signaling cascades and non-coding RNAs. Fisetin has remarkable potential as chemopreventive agent and future studies must converge on the identification of additional regulatory roles of fisetin for inhibition and prevention of cancers.
Collapse
|
30
|
Integrated analysis and identification of nine-gene signature associated to oral squamous cell carcinoma pathogenesis. 3 Biotech 2021; 11:215. [PMID: 33928003 DOI: 10.1007/s13205-021-02737-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading cancers with poor disease survival rate. Herein, we explored molecular basis, in silico identification and in vitro verification of genes associated with OSCC. Five gene expression series including, GSE30784, GSE13601, GSE9844, GSE23558 and GSE37991 were screened for differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched by cluster Profiler. Further, protein-protein interaction network was analysed and hub genes were verified. A total of 6476 (up-regulated: 2848; down-regulated: 3628) DEGs were identified among OSCC patients and healthy controls. Gene Ontology analysis indicated DEGs enrichment in cellular motility, invasion and adhesion processes. KEGG analysis revealed enrichment of PI3K-Akt signalling, focal adhesion and regulation of actin cytoskeleton pathways. Subsequently, nine DEGs including APP, EHMT1, ACACB, PCNA, PLAU, FST, HMGA2, LAMC2 and SPP1 were correlated with TCGA expression data along with significant association towards patient's survival, recognized as hub genes. This dysregulated mRNA signature of genes was validated in two OSCC cell lines with an anti-cancer agent, fisetin. Fisetin inhibited the expression of APP, EHMT1, PCNA, PLAU, FST, HMGA2, LAMC2, SPP1 and upregulated the expression of ACACB gene which were associated with growth inhibition of both the OSCC cell lines. The regulatory effect of fisetin supported crucial role of nine hub genes identified in OSCC. This study signified that hub genes and pathways might influence the aggressiveness of OSCC. Thus, the proposed hub genes could be potential diagnostic biomarker and drug targets for OSCC. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02737-4.
Collapse
|
31
|
Huang GZ, Lu ZY, Rao Y, Gao H, Lv XZ. Screening and identification of autophagy-related biomarkers for oral squamous cell carcinoma (OSCC) via integrated bioinformatics analysis. J Cell Mol Med 2021; 25:4444-4454. [PMID: 33837652 PMCID: PMC8093968 DOI: 10.1111/jcmm.16512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing evidences have showed that autophagy played a significant role in oral squamous cell carcinoma (OSCC). Purpose of our study was to explore the prognostic value of autophagy-related genes (ATGs) and screen autophagy-related biomarkers for OSCC. RNA-seq and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database following extracting ATG expression profiles. Then, differentially expressed analysis was performed in R software and a risk score model according to ATGs was established. Moreover, comprehensive bioinformatics analyses were used to screen autophagy-related biomarkers which were later verified in OSCC tissues and cell lines. A total of 232 ATGs were extracted, and 37 genes were differentially expressed in OSCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these genes were mainly located in autophagosome membrane and associated with autophagy. Furthermore, the risk score on basis of ATGs was identified as potential independent prognostic biomarker. Moreover, ATG12 and BID were identified as potential autophagy-related biomarkers of OSCC. This study successfully constructed a risk model, and the risk score could predict the prognosis of OSCC patients accurately. Moreover, ATG12 and BID were identified as two potential independent prognostic autophagy-related biomarkers and might provide new OSCC therapeutic targets.
Collapse
Affiliation(s)
- Guang-Zhao Huang
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Yun Lu
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Rao
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Hai Gao
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Zhi Lv
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Kubina R, Iriti M, Kabała-Dzik A. Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers. Nutrients 2021; 13:nu13030845. [PMID: 33807530 PMCID: PMC7998948 DOI: 10.3390/nu13030845] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonols are ones of the most common phytochemicals found in diets rich in fruit and vegetables. Research suggests that molecular functions of flavonoids may bring a number of health benefits to people, including the following: decrease inflammation, change disease activity, and alleviate resistance to antibiotics as well as chemotherapeutics. Their antiproliferative, antioxidant, anti-inflammatory, and antineoplastic activity has been proved. They may act as antioxidants, while preventing DNA damage by scavenging reactive oxygen radicals, reinforcing DNA repair, disrupting chemical damages by induction of phase II enzymes, and modifying signal transduction pathways. One of such research areas is a potential effect of flavonoids on the risk of developing cancer. The aim of our paper is to present a systematic review of antineoplastic activity of flavonols in general. Special attention was paid to selected flavonols: fisetin, kaempferol, and quercetin in preclinical and in vitro studies. Study results prove antiproliferative and proapoptotic properties of flavonols with regard to head and neck cancer. However, few study papers evaluate specific activities during various processes associated with cancer progression. Moreover, an attempt was made to collect the majority of substantive studies on bioactive potential of the selected flavonols, especially with regard to modulation of a range of signal transduction pathways that participate in cancer development.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Correspondence: ; Tel.: +48-32-364-13-54
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy;
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
33
|
Jhou AJ, Chang HC, Hung CC, Lin HC, Lee YC, Liu WT, Han KF, Lai YW, Lin MY, Lee CH. Chlorpromazine, an antipsychotic agent, induces G2/M phase arrest and apoptosis via regulation of the PI3K/AKT/mTOR-mediated autophagy pathways in human oral cancer. Biochem Pharmacol 2021; 184:114403. [PMID: 33388284 DOI: 10.1016/j.bcp.2020.114403] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Chlorpromazine (CPZ), an FDA-approved phenothiazine derivative used to treat schizophrenia and other psychiatric disorders, has been demonstrated to have potential anti-tumor effects. However, the potential effects of CPZ on human oral cancer cells and the underlying molecular mechanisms remain unknown. In this study, treatment of human oral cancer cells with CPZ inhibited their proliferation and induced G2/M phase arrest. Treatment with CPZ induced apoptosis through the extrinsic death receptor and the intrinsic mitochondrial pathways. In addition, the induction of autophagy was observed by the formation of autophagosomes, the expression of autophagy-related proteins and activation of the PI3K/Akt/mTOR/p70S6K pathway. The CPZ-induced cell death was reversed by the pan-caspase inhibitor Z-VAD-FMK, by the autophagy inhibitor 3-MA and by the knockdown of LC3B using a shRNA (shLC3B), suggesting that autophagy promoted CPZ-induced apoptosis. Finally, CPZ significantly suppressed tumor growth in both a zebrafish oral cancer xenotransplantation model and in a murine model of 4-nitroquinoline-1-oxide (4NQO)-induced oral cancer. Overall, this evidence demonstrated that CPZ is a novel promising strategy for the treatment of oral cancer.
Collapse
Affiliation(s)
- An-Jie Jhou
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hao-Chiun Chang
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Chih-Chang Hung
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Han-Chen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Department of Medical Research, Kaohsiung Medical University Hospital, Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Department of Medical Research, Kaohsiung Medical University Hospital, Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wang-Ta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708 Taiwan
| | - Kuang-Fen Han
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 73658, Taiwan
| | - Yu-Wei Lai
- Division of Urology, Taipei City Hospital Renai Branch, Department of Urology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung 80708, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Pharmacology, School of Medicine; School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
34
|
Imran M, Saeed F, Gilani SA, Shariati MA, Imran A, Afzaal M, Atif M, Tufail T, Anjum FM. Fisetin: An anticancer perspective. Food Sci Nutr 2021; 9:3-16. [PMID: 33473265 PMCID: PMC7802565 DOI: 10.1002/fsn3.1872] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the provision of safe and cost-effective chemopreventive cancer approaches, still there are requirements to enhance their efficiency. The use of dietary agents as phytochemicals plays an imperative role against different human cancer cell lines. Among these novel dietary agents, fisetin (3,3',4',7-tetrahydroxyflavone) is present in different fruits and vegetables such as apple, persimmon, grape, strawberry, cucumber, and onion. Being a potent anticancer agent, fisetin has been used to inhibit stages in the cancer cells (proliferation, invasion), prevent cell cycle progression, inhibit cell growth, induce apoptosis, cause polymerase (PARP) cleavage, and modulate the expressions of Bcl-2 family proteins in different cancer cell lines (HT-29, U266, MDA-MB-231, BT549, and PC-3M-luc-6), respectively. Further, fisetin also suppresses the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways, reduces the NF-κB activation, and down-regulates the level of the oncoprotein securin. Fisetin also inhibited cell division and proliferation and invasion as well as lowered the TET1 expression levels. The current review article highlights and discusses the anticancer role of fisetin in cell cultures and animal and human studies. Conclusively, fisetin as a polyphenol with pleiotropic pharmacological properties showed promising anticancer activity in a wide range of cancers. Fisetin suppresses the cancer cell stages, prevents progression in cell cycle and cell growth, and induces apoptosis.
Collapse
Affiliation(s)
- Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Farhan Saeed
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial ResistanceOrel StateUniversity Named After I.S. TurgenevOrelRussia
| | - Ali Imran
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Atif
- Department of Clinical Laboratory SciencesCollege of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | | |
Collapse
|
35
|
Gruendler R, Hippe B, Sendula Jengic V, Peterlin B, Haslberger AG. Nutraceutical Approaches of Autophagy and Neuroinflammation in Alzheimer's Disease: A Systematic Review. Molecules 2020; 25:molecules25246018. [PMID: 33353228 PMCID: PMC7765980 DOI: 10.3390/molecules25246018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Aging and the emergence of age-associated illnesses are one of the major challenges of our present society. Alzheimer’s disease (AD) is closely associated with aging and is defined by increasing memory loss and severe dementia. Currently, there are no therapy options available that halt AD progression. This work investigates three hallmarks of the disease (autophagy, neuroinflammation, and senescence) and systematically analyzes if there is a beneficial effect from three substances derived from food sources, the so called “nutraceuticals” epigallocatechin gallate, fisetin, and spermidine, on these hallmarks. The results imply a positive outlook for the reviewed substances to qualify as a novel treatment option for AD. A combination of nutraceutical substances and other preventive measures could have significant clinical impact in a multi-layered therapy approach to counter AD.
Collapse
Affiliation(s)
- Reinhard Gruendler
- Department of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria;
| | - Berit Hippe
- Department of Nutritional Sciences, University of Vienna, A-1090 Vienna, Austria;
| | | | | | - Alexander G. Haslberger
- Department of Nutritional Sciences, University of Vienna, A-1090 Vienna, Austria;
- Correspondence:
| |
Collapse
|
36
|
Sundarraj K, Raghunath A, Panneerselvam L, Perumal E. Fisetin Inhibits Autophagy in HepG2 Cells via PI3K/Akt/mTOR and AMPK Pathway. Nutr Cancer 2020; 73:2502-2514. [DOI: 10.1080/01635581.2020.1836241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Lakshmikanthan Panneerselvam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| |
Collapse
|
37
|
Fan Y, Li J, Yang Y, Zhao X, Liu Y, Jiang Y, Zhou L, Feng Y, Yu Y, Cheng Y. Resveratrol modulates the apoptosis and autophagic death of human lung adenocarcinoma A549 cells via a p53‑dependent pathway: Integrated bioinformatics analysis and experimental validation. Int J Oncol 2020; 57:925-938. [PMID: 32945383 PMCID: PMC7473753 DOI: 10.3892/ijo.2020.5107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Resveratrol (RSV) has been reported to exhibit cytotoxic activity in multiple types of malignant cells; however, the mechanisms underlying the antitumor effects of RSV in non-small-cell lung cancer (NSCLC) cells remain undetermined. Combining bioinformatics analysis with experimental validation, the present study aimed to examine the effects of RSV on the apoptosis and autophagy of A549 NSCLC cells, and to determine the potential underlying molecular mechanisms. Bioinformatics analysis was used to determine the differentially expressed genes (DEGs) and identify the enriched biological functions and pathways associated with these DEGs following RSV treatment. Cell viability was determined by MTT assay, and flow cytometry and TUNEL assay were used to evaluate cell apoptosis. Monodansylcadaverine staining combined with a transmission electron microscope were used to evaluate the extent of autophagy. The expression levels of apoptosis-, autophagy-, or pathway-associated molecular markers were measured by reverse transcription-quantitative PCR and/or western blot analysis. By bioinformatics analysis, a total of 1,031 DEGs were identified in the RSV-treated A549 cells, which were enriched in apoptosis-, or autophagy-related biological functions and the p53 signaling pathway. In validation experiments, RSV significantly reduced cell viability and initiated apoptosis, with an increase in the number of apoptotic cells; it also upregulated cleaved caspase-3 expression and Bax expression, and downregulated the Bcl-2 expression levels. Additionally, there was an increase in the accumulation of green dot-like structures, indicative of autophagic vesicles, observed under a fluorescence microscope, and an increase in the presence of autophagic vacuoles observed using a transmission electron microscope following RSV treatment. Furthermore, the expression levels of the autophagy-related proteins, LC3-II/LC3-I and Beclin-1, were increased and p62 expression was decreased. 3-methyladenine (3-MA), an inhibitor of autophagy, partially reversed the RSV-induced cytotoxic effects, but did not significantly alter the number of apoptotic cells. RSV elevated the p53 levels and decreased the phosphorylated (p-)Mdm2 and p-Akt levels. Pifithrin-α, an inhibitor of p53, partially reduced RSV-induced apoptosis and autophagy. On the whole, the results of the present study demonstrated that RSV initiates the apoptosis and autophagic death of A549 cells via the activation of the p53 signaling pathway, further highlighting the potential of RSV for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yameng Fan
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiaqiao Li
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuxuan Yang
- School of Basic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaodan Zhao
- School of Basic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yamei Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yude Jiang
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Long Zhou
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Feng
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yilong Cheng
- School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
38
|
Dong W, Chen Y, Qian N, Sima G, Zhang J, Guo Z, Wang C. SATB2 knockdown decreases hypoxia-induced autophagy and stemness in oral squamous cell carcinoma. Oncol Lett 2020; 20:794-802. [PMID: 32566006 PMCID: PMC7285822 DOI: 10.3892/ol.2020.11589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/13/2020] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence has suggested that special AT-rich sequence-binding protein 2 (SATB2) may be involved in the progression of numerous types of human cancer; however, the biological function of SATB2 in oral squamous cell carcinoma (OSCC) occurrence and progression remains relatively unknown. The present study aimed to investigate the potential role of SATB2 in the regulation of biological characteristics of OSSC during hypoxia. The expression of SATB2 in SCC9 cells was knocked down using small interfering RNA. Western blotting was used to determine the protein expression levels of SATB2, autophagy-related proteins microtubule-associated protein light chain (LC)3-I/II and Beclin-1, and stemness markers such as Oct-4 (POU class 5 homeobox 1), Sox-2 (SRY-box 2) and Nanog (nanog homeobox). Transmission electron microscopy and monodansylcadaverine staining were used to detect the presence of autophagosomes. Furthermore, the self-renewal capacity of cells was analyzed using colony forming assays; the cell proliferative, migratory and invasive ability were evaluated using CCK-8, wound healing and Transwell assays, respectively; and the cell cycle distribution and rate of apoptosis were detected using flow cytometry. The expression levels of SATB2, autophagy-related proteins and stemness markers were significantly increased in SCC9 cells following hypoxic treatment. Meanwhile, the genetic knockdown of SATB2 inhibited hypoxia-mediated autophagy by decreasing the expression levels of Beclin-1, and preventing the conversion of LC3-I to LC3-II and the accumulation of autophagosomes. The knockdown of SATB2 also inhibited the hypoxia-induced colony-forming ability and the expression of stemness markers. Functionally, it also inhibited the proliferative, migratory and invasive abilities of SCC9 cells, while inducing apoptosis and cell cycle arrest under hypoxia. In conclusion, the present study suggested that SATB2 may function as an oncogene in OSCC cells, and targeting SATB2 may be a potential therapeutic strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Weijie Dong
- Department of Stomatology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China.,Department of Stomatology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yawen Chen
- Department of Stomatology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China.,Department of Stomatology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Naiying Qian
- Department of Stomatology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China.,Department of Stomatology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Guoqi Sima
- Department of Stomatology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China.,Department of Stomatology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jianming Zhang
- Department of Stomatology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China.,Department of Stomatology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhiqin Guo
- Department of Stomatology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China.,Department of Stomatology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Changlin Wang
- Department of Stomatology, Yancheng Hospital Affiliated to Medical School of Southeast University, Yancheng, Jiangsu 224001, P.R. China
| |
Collapse
|
39
|
Pak F, Oztopcu-Vatan P. Fisetin effects on cell proliferation and apoptosis in glioma cells. ACTA ACUST UNITED AC 2020; 74:295-302. [PMID: 31421049 DOI: 10.1515/znc-2019-0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
Abstract
This research investigated the antiproliferative effects of 1-500 μM fisetin in T98G and BEAS-2B cells by MTT assay. The IC50 of fisetin in T98G cells for 24 and 48 h were 93 and 75 μM, respectively. Apoptotic alterations of fisetin-treated T98G cells were observed by transmission electron microscopy. BEAS-2B was then used in comparison to T98G cells to determine the cytotoxic effects of fisetin. The IC50 of fisetin for 24 and 48 h were recorded as 270 and 90 μM in BEAS-2B cells, respectively. Different concentrations of fisetin were selected to determine the apoptotic and necrotic effects. Consequently, fisetin was determined to have more apoptotic effects in T98G than BEAS-2B cells, dose- and time-dependently. Moreover, fisetin was found to have cytotoxicity at lower doses in T98G cells compared to carmustine, as positive control. CASPASE 3, CASPASE 9, CASPASE 8, and BAX expressions were increased by the selected fisetin doses of 25 and 50 μM, while that of BCL-2 and survivin was reduced in T98G cells. These results will serve as an essential basis of future in vitro and in vivo studies, in the continuous search for alternative treatment agents for gliomas.
Collapse
Affiliation(s)
- Fulya Pak
- Graduated School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Pinar Oztopcu-Vatan
- Faculty of Arts and Sciences, Department of Biology, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey, Phone: +90 222 239 37 50
| |
Collapse
|
40
|
Wu B, Zeng W, Ouyang W, Xu Q, Chen J, Wang B, Zhang X. Quercetin induced NUPR1-dependent autophagic cell death by disturbing reactive oxygen species homeostasis in osteosarcoma cells. J Clin Biochem Nutr 2020; 67:137-145. [PMID: 33041510 PMCID: PMC7533857 DOI: 10.3164/jcbn.19-121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/25/2019] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma is a primary bone aggressive cancer, affecting adolescents worldwide. Quercetin (a natural polyphenolic compound) is a polyphenolic flavonoid compound found in a variety of plants. It has been demonstrated to exert cytostatic activity against a variety of human cancer, including the human osteosarcoma. However, its efficacy in the treatment of osteosarcoma and the underlying antitumor mechanism has not been fully elucidated yet. In this study, we exposed MG-63 cells to different concentrations of quercetin (50, 100 and 200 µM) for 24 h. Here, we show that quercetin increased autophagic flux in the MG-63 cells, as evidenced by the upregulation of LC3B-II/LC3B-I and downregulation of P62/SQSTM1. Moreover, the autophagy inhibitor Bafilomycin A1 or genetic blocking autophagy with ATG5 knockdown decreased quercetin-induced cell death, indicating quercetin triggered autophagic cell death in MG-63 cells. Specifically, quercetin increased NUPR1 expression and activated of NUPR1 reporter activity, which contributed to the expression of autophagy-related genes and subsequent initiated autophagic cell death in osteosarcoma cells. Importantly, the increased expression NUPR1 were tightly related to the disturbance of reactive oxygen species (ROS) homeostasis, which could be prevented by inhibiting intracellular ROS with NAC. Finally, NAC also abolished quercetin-induced autophagic cell death in vivo. Taken together, these data demonstrate that quercetin induces osteosarcoma cell death via inducing excessive autophagy, which is mediated through the ROS-NUPR1 pathway. Quercetin application may be a promising and practical strategy for osteosarcoma treatment in clinical practice.
Collapse
Affiliation(s)
- Bowen Wu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Wusi Zeng
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Wei Ouyang
- Department of Oncology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Qiang Xu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Jian Chen
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Biao Wang
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Xiping Zhang
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| |
Collapse
|
41
|
Zhang J, Zhao L, Hu C, Wang T, Lu J, Wu C, Chen L, Jin M, Hu H, Ji G, Cao Q, Jiang Y. Fisetin Prevents Acetaminophen-Induced Liver Injury by Promoting Autophagy. Front Pharmacol 2020; 11:162. [PMID: 32184730 PMCID: PMC7058798 DOI: 10.3389/fphar.2020.00162] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Acetaminophen (APAP) overdose is a leading cause of drug-induced acute liver failure in clinical and hospital settings. Fisetin (FST) is a phenolic compound derived from natural products such as fruit and vegetables. Our research investigated the protective mechanisms of FST in APAP-induced hepatic injury in vitro and vivo. Assessment of mouse serum levels of alanine/aspartate aminotransferases (ALT/AST), liver myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) demonstrated the protective effects of FST toward APAP-induced liver injury. FST also reversed an APAP-induced decrease in mouse L-02 cell line viability. Our results also showed that FST significantly promoted APAP-induced autophagy and inhibited inflammasome activation both in vivo and in vitro. We also found that silencing ATG5, using si-ATG5, reduced the protective effects of FST against APAP-induced hepatotoxicity and reversed the effects on autophagy. Finally, we used the autophagy inhibitor, 3-methyladenine (3-MA) to validate the involvement of autophagy in FST against APAP-induced hepatotoxicity in vitro. We demonstrated that FST prevented APAP-induced hepatotoxicity by increasing ATG5 expression, thereby promoting autophagy and inhibiting inflammasome activation.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Licong Zhao
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Hu
- Department of Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Tao Wang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan Lu
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenqu Wu
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Department of Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Mingming Jin
- Shanghai University of Medicine & Health Sciences of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Hu
- Department of Plastic and Reconstructive Surgery, East Hospital, Tongji University, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Cao
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Khan T, Relitti N, Brindisi M, Magnano S, Zisterer D, Gemma S, Butini S, Campiani G. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med Res Rev 2019; 40:1002-1060. [PMID: 31742748 DOI: 10.1002/med.21646] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinomas (OSCC) and esophageal squamous cell carcinomas (ESCC) exhibit a survival rate of less than 60% and 40%, respectively. Late-stage diagnosis and lack of effective treatment strategies make both OSCC and ESCC a significant health burden. Autophagy, a lysosome-dependent catabolic process, involves the degradation of intracellular components to maintain cell homeostasis. Targeting autophagy has been highlighted as a feasible therapeutic strategy with clinical utility in cancer treatment, although its associated regulatory mechanisms remain elusive. The detection of relevant biomarkers in biological fluids has been anticipated to facilitate early diagnosis and/or prognosis for these tumors. In this context, recent studies have indicated the presence of specific proteins and small RNAs, detectable in circulating plasma and serum, as biomarkers. Interestingly, the interplay between biomarkers (eg, exosomal microRNAs) and autophagic processes could be exploited in the quest for targeted and more effective therapies for OSCC and ESCC. In this review, we give an overview of the available biomarkers and innovative targeted therapeutic strategies, including the application of autophagy modulators in OSCC and ESCC. Additionally, we provide a viewpoint on the state of the art and on future therapeutic perspectives combining the early detection of relevant biomarkers with drug discovery for the treatment of OSCC and ESCC.
Collapse
Affiliation(s)
- Tuhina Khan
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico IL, Napoli, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| |
Collapse
|
43
|
Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Kumar M, Aggarwal V, Sandhu SS. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential. Biomolecules 2019; 9:174. [PMID: 31064104 PMCID: PMC6572624 DOI: 10.3390/biom9050174] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Despite advancements in healthcare facilities for diagnosis and treatment, cancer remains the leading cause of death worldwide. As prevention is always better than cure, efficient strategies are needed in order to deal with the menace of cancer. The use of phytochemicals as adjuvant chemotherapeutic agents in heterogeneous human carcinomas like breast, colon, lung, ovary, and prostate cancers has shown an upward trend during the last decade or so. Flavonoids are well-known products of plant derivatives that are reportedly documented to be therapeutically active phytochemicals against many diseases encompassing malignancies, inflammatory disorders (cardiovascular disease, neurodegenerative disorder), and oxidative stress. The current review focuses on two key flavonols, fisetin and quercetin, known for their potential pharmacological relevance. Also, efforts have been made to bring together most of the concrete studies pertaining to the bioactive potential of fisetin and quercetin, especially in the modulation of a range of cancer signaling pathways. Further emphasis has also been made to highlight the molecular action of quercetin and fisetin so that one could explore cancer initiation pathways and progression, which could be helpful in designing effective treatment strategies.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, Punjab, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital (GMCH), Chandigarh 160031, Punjab, India.
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey.
| | | | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India.
| | - Vaishali Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, Punjab, India.
| | | |
Collapse
|