1
|
Pérez-Liva M, Alonso de Leciñana M, Gutiérrez-Fernández M, Camacho Sosa Dias J, F Cruza J, Rodríguez-Pardo J, García-Suárez I, Laso-García F, Herraiz JL, Elvira Segura L. Dual photoacoustic/ultrasound technologies for preclinical research: current status and future trends. Phys Med Biol 2025; 70:07TR01. [PMID: 39914003 DOI: 10.1088/1361-6560/adb368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/06/2025] [Indexed: 02/12/2025]
Abstract
Photoacoustic (PA) imaging, by integrating optical and ultrasound (US) modalities, combines high spatial resolution with deep tissue penetration, making it a transformative tool in biomedical research. This review presents a comprehensive analysis of the current status of dual PA/US imaging technologies, emphasising their applications in preclinical research. It details advancements in light excitation strategies, including tomographic and microscopic modalities, innovations in pulsed laser and alternative light sources, and US instrumentation. The review further explores preclinical methodologies, encompassing dedicated instrumentation, signal processing, and data analysis techniques essential for PA/US systems. Key applications discussed include the visualisation of blood vessels, micro-circulation, and tissue perfusion; diagnosis and monitoring of inflammation; evaluation of infections, atherosclerosis, burn injuries, healing, and scar formation; assessment of liver and renal diseases; monitoring of epilepsy and neurodegenerative conditions; studies on brain disorders and preeclampsia; cell therapy monitoring; and tumour detection, staging, and recurrence monitoring. Challenges related to imaging depth, resolution, cost, and the translation of contrast agents to clinical practice are analysed, alongside advancements in high-speed acquisition, artificial intelligence-driven reconstruction, and innovative light-delivery methods. While clinical translation remains complex, this review underscores the crucial role of preclinical studies in unravelling fundamental biomedical questions and assessing novel imaging strategies. Ultimately, this review delves into the future trends of dual PA/US imaging, highlighting its potential to bridge preclinical discoveries with clinical applications and drive advances in diagnostics, therapeutic monitoring, and personalised medicine.
Collapse
Affiliation(s)
- Mailyn Pérez-Liva
- IPARCOS Institute and EMFTEL Department, Universidad Complutense de Madrid, Pl. de las Ciencias, 1, Moncloa-Aravaca, Madrid 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/ Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - María Alonso de Leciñana
- Department of Neurology and Stroke Centre, Neurological Sciences and Cerebrovascular Research Laboratory, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - María Gutiérrez-Fernández
- Department of Neurology and Stroke Centre, Neurological Sciences and Cerebrovascular Research Laboratory, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jorge Camacho Sosa Dias
- Instituto de Tecnologías Físicas y de la Información (ITEFI, CSIC), Serrano 144, Madrid 28006, Spain
| | - Jorge F Cruza
- Instituto de Tecnologías Físicas y de la Información (ITEFI, CSIC), Serrano 144, Madrid 28006, Spain
| | - Jorge Rodríguez-Pardo
- Department of Neurology and Stroke Centre, Neurological Sciences and Cerebrovascular Research Laboratory, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Iván García-Suárez
- Department of Neurology and Stroke Centre, Neurological Sciences and Cerebrovascular Research Laboratory, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
- Department of Emergency Service, San Agustín University Hospital, Asturias, Spain
| | - Fernando Laso-García
- Department of Neurology and Stroke Centre, Neurological Sciences and Cerebrovascular Research Laboratory, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Joaquin L Herraiz
- IPARCOS Institute and EMFTEL Department, Universidad Complutense de Madrid, Pl. de las Ciencias, 1, Moncloa-Aravaca, Madrid 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/ Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - Luis Elvira Segura
- Instituto de Tecnologías Físicas y de la Información (ITEFI, CSIC), Serrano 144, Madrid 28006, Spain
| |
Collapse
|
2
|
Kubelick K, Kim J, Kim M, Huang X, Wang C, Song S, Xia Y, Emelianov SY. In Vivo Ultrasound and Photoacoustic Imaging of Nanoparticle-Engineered T Cells and Post-Treatment Assessment to Guide Adoptive Cell Immunotherapy. ACS NANO 2025; 19:6079-6094. [PMID: 39908484 PMCID: PMC11841050 DOI: 10.1021/acsnano.4c12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Despite great promise, adoptive cell therapy (ACT) continues to fail at treating a majority of cancers, especially solid tumors. To inform development and expedite the translation of more potent cellular immunotherapies, advanced immunoimaging tools are needed to better understand the in vivo requirements for generating a robust immune response. Even methods to evaluate the delivery, location, and status of transferred T cells at the tumor target are lacking. Therefore, a real-time, safe, noninvasive, longitudinal imaging method is critically needed to 1) monitor adoptive T cell location and status and 2) assess treatment progression and response through imaging biomarkers. Here, we developed a combined ultrasound (US) and photoacoustic (PA) imaging approach to enable T cell tracking following adoptive transfer for cancer immunotherapy. Our approach leverages highly photostable gold nanorods and cell surface engineering to tag the T cells without impacting effector functions, as well as generate PA contrast for imaging post-transfer. Our in vivo US/PA imaging approach detected nanoparticle-labeled T cell accumulation at the tumor, visualized changes in tumor volume, and conveyed accompanying changes in blood biomarkers. US/PA data also showed different trends according to a positive or negative antitumor response to T cell therapy over 7 days. Results highlight the potential of the approach and motivate future development to expand the platform for advanced, theranostic immunoimaging.
Collapse
Affiliation(s)
- Kelsey
P. Kubelick
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jinhwan Kim
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Myeongsoo Kim
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Xinyue Huang
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Chenxiao Wang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| | - Seoyoon Song
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Younan Xia
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stanislav Y. Emelianov
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Paul A, Mallidi S. Enhancing signal-to-noise ratio in real-time LED-based photoacoustic imaging: A comparative study of CNN-based deep learning architectures. PHOTOACOUSTICS 2025; 41:100674. [PMID: 39758833 PMCID: PMC11699471 DOI: 10.1016/j.pacs.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking. In this study, we systematically assess the efficacy of various Encoder-Decoder-based CNN architectures for enhancing SNR in real-time LED-based PA imaging. Through experimentation with in vitro phantoms, ex vivo mouse organs, and in vivo tumors, we compare basic convolutional autoencoder and U-Net architectures, explore hierarchical depth variations within U-Net, and evaluate advanced variants of U-Net. Our findings reveal that while U-Net architectures generally exhibit comparable performance, the Dense U-Net model shows promise in denoising different noise distributions in the PA image. Notably, hierarchical depth variations did not significantly impact performance, emphasizing the efficacy of the standard U-Net architecture for practical applications. Moreover, the study underscores the importance of evaluating robustness to diverse noise distributions, with Dense U-Net and R2 U-Net demonstrating resilience to Gaussian, salt and pepper, Poisson, and Speckle noise types. These insights inform the selection of appropriate deep learning architectures based on application requirements and resource constraints, contributing to advancements in PA imaging technology.
Collapse
Affiliation(s)
- Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
4
|
Sweeney A, Arora A, Edwards SA, Mallidi S. Ultrasound-guided photoacoustic image annotation toolkit in MATLAB (PHANTOM) for preclinical applications. PHOTOACOUSTICS 2025; 41:100662. [PMID: 39687485 PMCID: PMC11648259 DOI: 10.1016/j.pacs.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 12/18/2024]
Abstract
Depth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from ultrasound to generate fluence maps to depth compensate PA images. The methodology was used to analyze PA images of phantoms with varying blood oxygenation and results were validated with oxygen electrode measurements. Two preclinical models, a subcutaneous tumor and a calcified placenta, were imaged and fluence-compensated using the PHANTOM toolkit and the results were verified with immunohistochemistry. The PHANTOM toolkit provides scripts and auxiliary functions to enable biomedical researchers not specialized in optical imaging to apply fluence correction to PA images, enhancing accessibility of quantitative PAI for researchers in various fields.
Collapse
Affiliation(s)
- Allison Sweeney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Aayush Arora
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Skye A. Edwards
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Sweeney A, Langley A, Xavierselvan M, Shethia RT, Solomon P, Arora A, Mallidi S. Vascular regional analysis unveils differential responses to anti-angiogenic therapy in pancreatic xenografts through macroscopic photoacoustic imaging. Theranostics 2025; 15:2649-2671. [PMID: 39990229 PMCID: PMC11840746 DOI: 10.7150/thno.99361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/17/2024] [Indexed: 02/25/2025] Open
Abstract
Background: Amongst the various imaging techniques that provide surrogate tumor radiographic indications to aid in planning, monitoring, and predicting outcomes of therapy, ultrasound-guided photoacoustic imaging (US-PAI) is a promising non-ionizing modality based on endogenous blood (hemoglobin) and blood oxygen saturation (StO₂) contrast. Adaptation of US-PAI to the clinical realm requires macroscopic system configurations for adequate depth visualization. Methods: Here we present a vascular regional analysis (VRA) methodology of obtaining areas of low and high vessel density regions within the tumor (LVD and HVD respectively) by frequency domain filtering of macroscopic PA images. In this work, we evaluated the various vascular and oxygenation profiles of different murine xenografts of pancreatic cancer (AsPC-1, MIA PaCa-2, and BxPC-3) that have varying levels of angiogenic potentials and investigated the effects of receptor tyrosine kinase inhibitor (sunitinib) on the tumor microvessel density and StO₂. Results: The administration of sunitinib resulted in transient deoxygenation and reduction in vessel density within 72 h in two (AsPC-1 and MIA PaCa-2) of the three tumor types. Utilizing VRA, the regional change in StO2 (∆StO2) revealed the preferential targeting of sunitinib in LVD regions in only the AsPC-1 tumors. We also identified the presence of vascular normalization (validated through immunohistochemistry) in the sunitinib treated AsPC-1 tumors at day 8 post-treatment where a significant increases in HVD ∆StO2 (~20%) were seen following the 72-hour time point, indicative of improved vessel flow and functionality. Treated AsPC-1 vasculature displayed increased maturity and functionality compared to non-treated tumors on day 8, while these same metrics showed no conclusive evidence of vascular normalization in MIA PaCa-2 or BxPC-3 tumors. Conclusion: Overall, VRA as a tool to monitor treatment response allowed us to identify time points of vascular remodeling, highlighting its ability to provide insights into the tumor microenvironment for sunitinib treatment and other anti-angiogenic therapies.
Collapse
Affiliation(s)
- Allison Sweeney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Andrew Langley
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Ronak T. Shethia
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Patrick Solomon
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Aayush Arora
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
6
|
Langley A, Sweeney A, Shethia RT, Bednarke B, Wulandana F, Xavierselvan M, Mallidi S. In vivo, online label-free monitoring of heterogenous oxygen utilization during phototherapy with real-time ultrasound-guided photoacoustic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625759. [PMID: 39677615 PMCID: PMC11642742 DOI: 10.1101/2024.11.27.625759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Understanding the tumor microenvironment, particularly the vascular density and the availability of oxygen, is key in individualizing treatment approaches and determining their efficacy. While there are many therapies including radiotherapy that are ineffective in hypoxic tumor microenvironments, here we demonstrate the heterogeneous oxygen consumption during photodynamic therapy (PDT), a non-invasive treatment method using localized light to activate a photosensitive drug in the presence of oxygen that has shown high effectiveness in the treatment of various types of tumors, including those presented in head and neck cancer (HNC) patients. While our previous work has demonstrated that blood oxygen saturation (StO2) mapped before and after treatment with ultrasound-guided photoacoustic imaging (US-PAI) can be used as a surrogate marker for the regionalized long-term efficacy of PDT, real-time monitoring of StO2 during PDT could provide additional insights on oxygen consumption and inform dose design for "on the spot" treatment decisions. Specifically, in this work, we integrated the US-PAI transducer probe with PDT light delivery fibers. We tested the setup on murine tumor models intravenously injected with liposomal benzoporphyrin derivative (BPD) photosensitizer at 0.5 mg/kg dose and photodynamic illumination at 100 and 400 mW/cm2 fluence rate. As expected, we observed with our US-PAI StO2 images that the rate of oxygen utilization increases when using a high fluence rate (HFR) light dose. Particularly in the higher fluence rate group, we observed StO2 reaching a minimum mid-light dose, followed by some degree of reoxygenation. US-PAI added the advantage of spatial information to StO2 monitoring, which allowed us to match regions of re-oxygenation during therapy to retained vascular function with immunohistochemistry. Overall, our results have demonstrated the potential of US-PAI for applications in online dosimetry for cancer therapies such as PDT, using oxygen changes to detect regionalized physiological vascular response in the tumor microenvironment.
Collapse
Affiliation(s)
- Andrew Langley
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Allison Sweeney
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Ronak T Shethia
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Brooke Bednarke
- Department of Biomedical Engineering, Tufts University, MA, USA
| | | | | | | |
Collapse
|
7
|
Pedrosa TDL, de Oliveira GMF, Pereira ACMV, Crispim MJBDS, da Silva LA, da Silva MS, de Souza IA, Melo AMMDA, Gomes ASL, de Araujo RE. Tailoring Plasmonic Nanoheaters Size for Enhanced Theranostic Agent Performance. Bioengineering (Basel) 2024; 11:934. [PMID: 39329676 PMCID: PMC11428745 DOI: 10.3390/bioengineering11090934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The introduction of optimized nanoheaters, which function as theranostic agents integrating both diagnostic and therapeutic processes, holds significant promise in the medical field. Therefore, developing strategies for selecting and utilizing optimized plasmonic nanoheaters is crucial for the effective use of nanostructured biomedical agents. This work elucidates the use of the Joule number (Jo) as a figure of merit to identify high-performance plasmonic theranostic agents. A framework for optimizing metallic nanoparticles for heat generation was established, uncovering the size dependence of plasmonic nanoparticles optical heating. Gold nanospheres (AuNSs) with a diameter of 50 nm and gold nanorods (AuNRs) with dimensions of 41×10 nm were identified as effective nanoheaters for visible (530 nm) and infrared (808 nm) excitation. Notably, AuNRs achieve higher Jo values than AuNSs, even when accounting for the possible orientations of the nanorods. Theoretical results estimate that 41×10 nm gold nanorods have an average Joule number of 80, which is significantly higher compared to larger rods. The photothermal performance of optimal and suboptimal nanostructures was evaluated using photoacoustic imaging and photothermal therapy procedures. The photoacoustic images indicate that, despite having larger absorption cross-sections, the large nanoparticle volume of bigger particles leads to less efficient conversion of light into heat, which suggests that the use of optimized nanoparticles promotes higher contrast, benefiting photoacoustic-based procedures in diagnostic applications. The photothermal therapy procedure was performed on S180-bearing mice inoculated with 41×10 nm and 90×25 nm PEGylated AuNRs. Five minutes of laser irradiation of tumor tissue with 41×10 nm produced an approximately 9.5% greater temperature rise than using 90×25 AuNRs in the therapy trials. Optimizing metallic nanoparticles for heat generation may reduce the concentration of the nanoheaters used or decrease the light fluence for bioscience applications, paving the way for the development of more economical theranostic agents.
Collapse
Affiliation(s)
- Túlio de L Pedrosa
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-540, Brazil
| | - Gabrielli M F de Oliveira
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-540, Brazil
| | - Arthur C M V Pereira
- Department of Physics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Mariana J B da S Crispim
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-540, Brazil
| | - Luzia A da Silva
- Graduate Program in Biological Sciences, Federal University of Pernambuco, Recife 50670-420, Brazil
| | - Marcilene S da Silva
- Laboratory of Pharmacology and Experimental Cancerology, Federal University of Pernambuco, Recife 50740-521, Brazil
| | - Ivone A de Souza
- Laboratory of Pharmacology and Experimental Cancerology, Federal University of Pernambuco, Recife 50740-521, Brazil
| | - Ana M M de A Melo
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Anderson S L Gomes
- Department of Physics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Renato E de Araujo
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-540, Brazil
| |
Collapse
|
8
|
Spiliotis AE, Holländer S, Wagenpfeil G, Eisele R, Nika S, Mallis Kyriakides O, Laschke MW, Menger MD, Glanemann M, Gäbelein G. Electrochemotherapy with intravenous, intratumoral, or combined administration of bleomycin in the treatment of colorectal hepatic metastases in a rat model. Sci Rep 2024; 14:17361. [PMID: 39075095 PMCID: PMC11286835 DOI: 10.1038/s41598-024-67878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Electrochemotherapy (ECT) combines the reversible electroporation (rEP) with intravenous (i.v.) or intratumoral (i.t.) administration of chemotherapeutic drugs. We conducted this study to compare the efficacy of i.v., i.t., and i.v. + i.t. injection of bleomycin (BLM) in ECT treatment of colorectal hepatic metastases in a rat model. WAG/Rij rats were randomized into three groups and underwent ECT with i.v., i.t., or i.v. + i.t. injection of BLM. Tumor volumes and oxygenation were measured by means of ultrasound and photoacoustic imaging. Moreover, liver and tumor tissue were analyzed by histology and immunohistochemistry. The i.v. and i.v. + i.t. groups exhibited a 44.0% and 46.6% reduction in oxygen saturation of the tumor tissue when compared to pretreatment values, whereas the i.t. group only showed a reduction of 35.2%. The extent of tumor tissue necrosis did not statistically differ between the groups. However, the i.t. group showed a tendency towards a lower necrosis rate. Cell proliferation, apoptotic cell death, vascularization, and immune cell infiltration were comparable in the treated tumors of the three groups. ECT with i.v. administration of BLM should be preferred in clinical practice, as the combined i.v. + i.t. therapy did not show superior oncological outcomes in the present study.
Collapse
Affiliation(s)
- Antonios E Spiliotis
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany.
- Department of Surgery, Charité Universitätsmedizin Berlin, Campus Charité Mitte, Campus Virchow Klinikum, 13353, Berlin, Germany.
| | - Sebastian Holländer
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Gudrun Wagenpfeil
- Saarland University Medical Center, Institute for Medical Biometry, Epidemiology and Medical Informatics, 66421, Homburg, Germany
| | - Robert Eisele
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Spyridon Nika
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66421, Homburg, Germany
| | - Orestis Mallis Kyriakides
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias Glanemann
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Gereon Gäbelein
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| |
Collapse
|
9
|
Sweeney A, Xavierselvan M, Langley A, Solomon P, Arora A, Mallidi S. Vascular regional analysis unveils differential responses to anti-angiogenic therapy in pancreatic xenografts through macroscopic photoacoustic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595784. [PMID: 38854042 PMCID: PMC11160648 DOI: 10.1101/2024.05.27.595784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy and the third leading cause of cancer deaths in the U.S. Despite major innovations in imaging technologies, there are limited surrogate radiographic indicators to aid in therapy planning and monitoring. Amongst the various imaging techniques Ultrasound-guided photoacoustic imaging (US-PAI) is a promising modality based on endogenous blood (hemoglobin) and blood oxygen saturation (StO 2 ) contrast to monitor response to anti-angiogenic therapies. Adaptation of US-PAI to the clinical realm requires macroscopic configurations for adequate depth visualization, illuminating the need for surrogate radiographic markers, including the tumoral microvessel density (MVD). In this work, subcutaneous xenografts with PC cell lines AsPC-1 and MIA-PaCa-2 were used to investigate the effects of receptor tyrosine kinase inhibitor (sunitinib) treatment on MVD and StO 2 . Through histological correlation, we have shown that regions of high and low vascular density (HVD and LVD) can be identified through frequency domain filtering of macroscopic PA images which could not be garnered from purely global analysis. We utilized vascular regional analysis (VRA) of treatment-induced StO 2 and total hemoglobin (HbT) changes. VRA as a tool to monitor treatment response allowed us to identify potential timepoints of vascular remodeling, highlighting its ability to provide insights into the TME not only for sunitinib treatment but also other anti-angiogenic therapies.
Collapse
|
10
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
11
|
Lin X, Yang C, Lv Y, Zhang B, Kan J, Li H, Tao J, Yang C, Li X, Liu Y. Preclinical multi-physiologic monitoring of immediate-early responses to diverse treatment strategies in breast cancer by optoacoustic imaging. JOURNAL OF BIOPHOTONICS 2024; 17:e202300457. [PMID: 38221652 DOI: 10.1002/jbio.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Optoacoustic imaging enables the measurement of tissue oxygen saturation (sO2) and blood perfusion while being utilized for detecting tumor microenvironments. Our aim was to employ multispectral optoacoustic tomography (MSOT) to assess immediate-early changes of hemoglobin level and sO2 within breast tumors during diverse treatments. Mouse breast cancer models were allocated into four groups: control, everolimus (EVE), paclitaxel (PTX), and photodynamic therapy (PDT). Hemoglobin was quantified daily, as well as sO2 and blood perfusion were verified by immunohistochemical (IHC) staining. MSOT showed a temporal window of enhanced oxygenation and improved perfusion in EVE and PTX groups, while sO2 consistently remained below baseline in PDT. The same results were obtained for the IHC. Therefore, MSOT can monitor tumor hypoxia and indirectly reflect blood perfusion in a non-invasive and non-labeled way, which has the potential to monitor breast cancer progression early and enable individualized treatment in clinical practice.
Collapse
Affiliation(s)
- Xiaoqian Lin
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Changfeng Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yijie Lv
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Bowen Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Junnan Kan
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Caixia Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
12
|
Nyayapathi N, Zheng E, Zhou Q, Doyley M, Xia J. Dual-modal Photoacoustic and Ultrasound Imaging: from preclinical to clinical applications. FRONTIERS IN PHOTONICS 2024; 5:1359784. [PMID: 39185248 PMCID: PMC11343488 DOI: 10.3389/fphot.2024.1359784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Photoacoustic imaging is a novel biomedical imaging modality that has emerged over the recent decades. Due to the conversion of optical energy into the acoustic wave, photoacoustic imaging offers high-resolution imaging in depth beyond the optical diffusion limit. Photoacoustic imaging is frequently used in conjunction with ultrasound as a hybrid modality. The combination enables the acquisition of both optical and acoustic contrasts of tissue, providing functional, structural, molecular, and vascular information within the same field of view. In this review, we first described the principles of various photoacoustic and ultrasound imaging techniques and then classified the dual-modal imaging systems based on their preclinical and clinical imaging applications. The advantages of dual-modal imaging were thoroughly analyzed. Finally, the review ends with a critical discussion of existing developments and a look toward the future.
Collapse
Affiliation(s)
- Nikhila Nyayapathi
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Emily Zheng
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007
| | - Marvin Doyley
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| |
Collapse
|
13
|
Saad M, Grimaldo-Garcia S, Sweeney A, Mallidi S, Hasan T. Dual-Function Antibody Conjugate-Enabled Photoimmunotherapy Complements Fluorescence and Photoacoustic Imaging of Head and Neck Cancer Spheroids. Bioconjug Chem 2024; 35:51-63. [PMID: 38128912 PMCID: PMC10797594 DOI: 10.1021/acs.bioconjchem.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Several molecular-targeted imaging and therapeutic agents are in clinical trials for image-guided surgery and photoimmunotherapy (PIT) for head and neck cancers. In this context, we have previously reported the development, characterization, and specificity of a dual-function antibody conjugate (DFAC) for multimodal imaging and photoimmunotherapy (PIT) of EGFR-overexpressing cancer cells. The DFAC reported previously and used in the present study comprises an EGFR-targeted antibody, cetuximab, conjugated to benzoporphyrin derivative (BPD) for fluorescence imaging and PIT and a Si-centered naphthalocyanine dye for photoacoustic imaging. We report here the evaluation and performance of DFAC in detecting microscopic cancer spheroids by fluorescence and photoacoustic imaging along with their treatment by PIT. We demonstrate that while fluorescence imaging can detect spheroids with volumes greater than 0.049 mm3, photoacoustic imaging-based detection was possible even for the smallest spheroids (0.01 mm3) developed in the study. When subjected to PIT, the spheroids showed a dose-dependent response, with smaller spheroids (0.01 and 0.018 mm3) showing a complete response with no recurrence when treated with 100 J/cm2. Together our results demonstrate the complementary imaging and treatment capacity of DFAC. This potentially enables fluorescence imaging to assess the presence of tumor on a macroscopic scale, followed by photoacoustic imaging for delineating tumor margins guiding surgical resection and elimination of any residual microscopic disease by PIT, in a single intraoperative setting.
Collapse
Affiliation(s)
- Mohammad
A. Saad
- Massachusetts
General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114, United States
| | | | - Allison Sweeney
- Department
of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts 02155, United States
| | - Srivalleesha Mallidi
- Massachusetts
General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114, United States
- Department
of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts 02155, United States
| | - Tayyaba Hasan
- Massachusetts
General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114, United States
- Division
of Health Sciences and Technology, Harvard
University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Xu W, Xie W, Yu D, Sun H, Gu Y, Tao X, Qian M, Cheng L, Wang H, Cheng Q. Theoretical and experimental study of attenuation in cancellous bone. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11526. [PMID: 38505736 PMCID: PMC10949015 DOI: 10.1117/1.jbo.29.s1.s11526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Significance Photoacoustic (PA) technology shows great potential for bone assessment. However, the PA signals in cancellous bone are complex due to its complex composition and porous structure, making such signals challenging to apply directly in bone analysis. Aim We introduce a photoacoustic differential attenuation spectrum (PA-DAS) method to separate the contribution of the acoustic propagation path to the PA signal from that of the source, and theoretically and experimentally investigate the propagation attenuation characteristics of cancellous bone. Approach We modified Biot's theory by accounting for the high frequency and viscosity. In parallel with the rabbit osteoporosis model, we build an experimental PA-DAS system featuring an eccentric excitation differential detection mechanism. Moreover, we extract a PA-DAS quantization parameter-slope-to quantify the attenuation of high- and low-frequency components. Results The results show that the porosity of cancellous bone can be evaluated by fast longitude wave attenuation at different frequencies and the PA-DAS slope of the osteoporotic group is significantly lower compared with the normal group (**p < 0.01 ). Conclusions Findings demonstrate that PA-DAS effectively differentiates osteoporotic bone from healthy bone, facilitating quantitative assessment of bone mineral density, and osteoporosis diagnosis.
Collapse
Affiliation(s)
- Wenyi Xu
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Weiya Xie
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Dong Yu
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Haohan Sun
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Ying Gu
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Xingliang Tao
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Menglu Qian
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Liming Cheng
- Tongji University, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Shanghai, China
| | - Hao Wang
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Qian Cheng
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Shanghai, China
- Frontiers Science Center for Intelligent Autonomous Systems, Ministry of Education, Shanghai, China
| |
Collapse
|
15
|
Priyam J, Saxena U. Therapeutic applications of carbon nanomaterials in renal cancer. Biotechnol Lett 2023; 45:1395-1416. [PMID: 37864745 DOI: 10.1007/s10529-023-03429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/23/2023]
Abstract
Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene, and nanodiamonds (NDs), have shown great promise in detecting and treating numerous cancers, including kidney cancer. CNMs can increase the sensitivity of diagnostic techniques for better kidney cancer identification and surveillance. They enable targeted medicine delivery specifically to tumour locations, with little effect on healthy tissue. Because of their unique chemical and physical characteristics, they can avoid the body's defence mechanisms, making it easier to accumulate where tumours exist. Consequently, CNMs provide more effective drug delivery to kidney cancer cells. It also helps in improving the efficacy of treatment. This review explores the potential of several CNMs in improving therapeutic strategies for kidney cancer. We briefly covered the physicochemical properties and therapeutic applications of CNMs. Additionally, we discussed how structural modifications in CNMs enhance their precision in treating renal cancer. A thorough overview of CNM-based gene, peptide, and drug delivery strategies for the treatment of renal cancer is presented in this review. It covers information on other CNM-based therapeutic approaches, such as hyperthermia, photodynamic therapy, and photoacoustic therapy. Also, the interactions of CNMs with the tumour microenvironment (TME) are explored, including modulation of the immune response, regulation of tumour hypoxia, interactions between CNMs and TME cells, effects of TME pH on CNMs, and more. Finally, potential side effects of CNMs, such as toxicity, bio corona formation, enzymatic degradation, and biocompatibility, are also discussed.
Collapse
Affiliation(s)
- Jyotsna Priyam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Urmila Saxena
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
16
|
Menger MM, Bleimehl M, Bauer D, Scheuer C, Hans S, Saul D, Ehnert S, Menger MD, Histing T, Laschke MW. Cilostazol promotes blood vessel formation and bone regeneration in a murine non-union model. Biomed Pharmacother 2023; 168:115697. [PMID: 37864892 DOI: 10.1016/j.biopha.2023.115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Abstract
Non-unions represent a major complication in trauma and orthopedic surgery. Many factors contribute to bone regeneration, out of which an adequate vascularization has been recognized as crucial. The phosphodiesterase-3 (PDE-3) inhibitor cilostazol has been shown to exert pro-angiogenic and pro-osteogenic effects in a variety of preclinical studies. Hence, we herein investigated the effects of cilostazol on bone regeneration in an atrophic non-union model in mice. For this purpose, a 1.8 mm femoral segmental defect was stabilized by pin-clip fixation and the animals were treated daily with 30 mg/kg body weight cilostazol or saline (control) per os. At 2, 5 and 10 weeks after surgery the healing of femora was analyzed by X-ray, biomechanics, photoacoustic imaging, and micro-computed tomography (µCT). To investigate the cellular composition and the growth factor expression of the callus tissue additional histological, immunohistochemical and Western blot analyses were performed. Cilostazol-treated animals showed increased bone formation within the callus, resulting in an enhanced bending stiffness when compared to controls. This was associated with a more pronounced expression of vascular endothelial growth factor (VEGF), a higher number of CD31-positive microvessels and an increased oxygen saturation within the callus tissue. Furthermore, cilostazol induced higher numbers of tartrate-resistant acidic phosphate (TRAP)-positive osteoclasts and CD68-positive macrophages. Taken together, these findings demonstrate that cilostazol is a promising drug candidate for the adjuvant treatment of atrophic non-unions in clinical practice.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany; Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany.
| | - Michelle Bleimehl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - David Bauer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Dominik Saul
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| |
Collapse
|
17
|
Sweeney A, Arora A, Edwards S, Mallidi S. Ultrasound-guided Photoacoustic image Annotation Toolkit in MATLAB (PHANTOM) for preclinical applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565885. [PMID: 37986998 PMCID: PMC10659350 DOI: 10.1101/2023.11.07.565885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Depth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from ultrasound to generate fluence maps to depth compensate PA images. The methodology was used to analyze PA images of phantoms with varying blood oxygenation and results were validated with oxygen electrode measurements. Two preclinical models, a subcutaneous tumor and a calcified placenta, were imaged and fluence-compensated using the PHANTOM toolkit and the results were verified with immunohistochemistry. The PHANTOM toolkit provides scripts and auxiliary functions to enable biomedical researchers not specialized in optical imaging to apply fluence correction to PA images, enhancing accessibility of quantitative PAI for researchers in various fields.
Collapse
Affiliation(s)
- Allison Sweeney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Aayush Arora
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Skye Edwards
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
18
|
Li Z, Wang B, Liang H, Li Y, Zhang Z, Han L. A three-stage eccDNA based molecular profiling significantly improves the identification, prognosis assessment and recurrence prediction accuracy in patients with glioma. Cancer Lett 2023; 574:216369. [PMID: 37640198 DOI: 10.1016/j.canlet.2023.216369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) progression is influenced by intratumoral heterogeneity. Emerging evidence has emphasized the pivotal role of extrachromosomal circular DNA (eccDNA) in accelerating tumor heterogeneity, particularly in GBM. However, the eccDNA landscape of GBM has not yet been elucidated. In this study, we first identified the eccDNA profiles in GBM and adjacent tissues using circle- and RNA-sequencing data from the same samples. A three-stage model was established based on eccDNA-carried genes that exhibited consistent upregulation and downregulation trends at the mRNA level. Combinations of machine learning algorithms and stacked ensemble models were used to improve the performance and robustness of the three-stage model. In stage 1, a total of 113 combinations of machine learning algorithms were constructed and validated in multiple external cohorts to accurately distinguish between low-grade glioma (LGG) and GBM in patients with glioma. The model with the highest area under the curve (AUC) across all cohorts was selected for interpretability analysis. In stage 2, a total of 101 combinations of machine learning algorithms were established and validated for prognostic prediction in patients with glioma. This prognostic model performed well in multiple glioma cohorts. Recurrent GBM is invariably associated with aggressive and refractory disease. Therefore, accurate prediction of recurrence risk is crucial for developing individualized treatment strategies, monitoring patient status, and improving clinical management. In stage 3, a large-scale GBM cohort (including primary and recurrent GBM samples) was used to fit the GBM recurrence prediction model. Multiple machine learning and stacked ensemble models were fitted to select the model with the best performance. Finally, a web tool was developed to facilitate the clinical application of the three-stage model.
Collapse
Affiliation(s)
- Zesheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Liang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 480082, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
19
|
Menger MM, Bauer D, Bleimehl M, Scheuer C, Braun BJ, Herath SC, Rollmann MF, Menger MD, Laschke MW, Histing T. Sildenafil, a phosphodiesterase-5 inhibitor, stimulates angiogenesis and bone regeneration in an atrophic non-union model in mice. J Transl Med 2023; 21:607. [PMID: 37684656 PMCID: PMC10486066 DOI: 10.1186/s12967-023-04441-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Non-union formation represents a major complication in trauma and orthopedic surgery. The phosphodiesterase-5 (PDE-5) inhibitor sildenafil has been shown to exert pro-angiogenic and pro-osteogenic effects in vitro and in vivo. Therefore, the aim of the present study was to analyze the impact of sildenafil in an atrophic non-union model in mice. After creation of a 1.8 mm segmental defect, mice femora were stabilized by pin-clip fixation. Bone regeneration was analyzed by means of X-ray, biomechanics, photoacoustic and micro-computed tomography (µCT) imaging as well as histological, immunohistochemical and Western blot analyses at 2, 5 and 10 weeks after surgery. The animals were treated daily with either 5 mg/kg body weight sildenafil (n = 35) or saline (control; n = 35) per os. Bone formation was markedly improved in defects of sildenafil-treated mice when compared to controls. This was associated with a higher bending stiffness as well as an increased number of CD31-positive microvessels and a higher oxygen saturation within the callus tissue. Moreover, the bone defects of sildenafil-treated animals contained more tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and CD68-positive macrophages and exhibited a higher expression of the pro-angiogenic and pro-osteogenic markers cysteine rich protein (CYR)61 and vascular endothelial growth factor (VEGF) when compared to controls. These findings demonstrate that sildenafil acts as a potent stimulator of angiogenesis and bone regeneration in atrophic non-unions.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076, Tuebingen, Germany.
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany.
| | - David Bauer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Michelle Bleimehl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076, Tuebingen, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076, Tuebingen, Germany
| | - Mika F Rollmann
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076, Tuebingen, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076, Tuebingen, Germany
| |
Collapse
|
20
|
John S, Hester S, Basij M, Paul A, Xavierselvan M, Mehrmohammadi M, Mallidi S. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. PHOTOACOUSTICS 2023; 32:100533. [PMID: 37636547 PMCID: PMC10448345 DOI: 10.1016/j.pacs.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
In the past decade, photoacoustic (PA) imaging has attracted a great deal of popularity as an emergent diagnostic technology owing to its successful demonstration in both preclinical and clinical arenas by various academic and industrial research groups. Such steady growth of PA imaging can mainly be attributed to its salient features, including being non-ionizing, cost-effective, easily deployable, and having sufficient axial, lateral, and temporal resolutions for resolving various tissue characteristics and assessing the therapeutic efficacy. In addition, PA imaging can easily be integrated with the ultrasound imaging systems, the combination of which confers the ability to co-register and cross-reference various features in the structural, functional, and molecular imaging regimes. PA imaging relies on either an endogenous source of contrast (e.g., hemoglobin) or those of an exogenous nature such as nano-sized tunable optical absorbers or dyes that may boost imaging contrast beyond that provided by the endogenous sources. In this review, we discuss the applications of PA imaging with endogenous contrast as they pertain to clinically relevant niches, including tissue characterization, cancer diagnostics/therapies (termed as theranostics), cardiovascular applications, and surgical applications. We believe that PA imaging's role as a facile indicator of several disease-relevant states will continue to expand and evolve as it is adopted by an increasing number of research laboratories and clinics worldwide.
Collapse
Affiliation(s)
- Samuel John
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Scott Hester
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, Rochester, NY, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
21
|
Lobo CS, Mendes MIP, Pereira DA, Gomes-da-Silva LC, Arnaut LG. Photodynamic therapy changes tumour immunogenicity and promotes immune-checkpoint blockade response, particularly when combined with micromechanical priming. Sci Rep 2023; 13:11667. [PMID: 37468749 DOI: 10.1038/s41598-023-38862-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Photodynamic therapy (PDT) with redaporfin stimulates colon carcinoma (CT26), breast (4T1) and melanoma (B16F10) cells to display high levels of CD80 molecules on their surfaces. CD80 overexpression amplifies immunogenicity because it increases same cell (cis) CD80:PD-L1 interactions, which (i) disrupt binding of T-cells PD-1 inhibitory receptors with their ligands (PD-L1) in tumour cells, and (ii) inhibit CTLA-4 inhibitory receptors binding to CD80 in tumour cells. In some cancer cells, redaporfin-PDT also increases CTLA-4 and PD-L1 expressions and virtuous combinations between PDT and immune-checkpoint blockers (ICB) depend on CD80/PD-L1 or CD80/CTLA-4 tumour overexpression ratios post-PDT. This was confirmed using anti-CTLA-4 + PDT combinations to increase survival of mice bearing CT26 tumours, and to regress lung metastases observed with bioluminescence in mice with orthotopic 4T1 tumours. However, the primary 4T1 responded poorly to treatments. Photoacoustic imaging revealed low infiltration of redaporfin in the tumour. Priming the primary tumour with high-intensity (~ 60 bar) photoacoustic waves generated with nanosecond-pulsed lasers and light-to-pressure transducers improved the response of 4T1 tumours to PDT. Penetration-resistant tumours require a combination of approaches to respond to treatments: tumour priming to facilitate drug infiltration, PDT for a strong local effect and a change in immunogenicity, and immunotherapy for a systemic effect.
Collapse
Affiliation(s)
- Catarina S Lobo
- CQC, Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Maria Inês P Mendes
- CQC, Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Diogo A Pereira
- CQC, Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | | | - Luis G Arnaut
- CQC, Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
22
|
Sankepalle DM, Anthony B, Mallidi S. Visual inertial odometry enabled 3D ultrasound and photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:2756-2772. [PMID: 37342691 PMCID: PMC10278605 DOI: 10.1364/boe.489614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
There is an increasing need for 3D ultrasound and photoacoustic (USPA) imaging technology for real-time monitoring of dynamic changes in vasculature or molecular markers in various malignancies. Current 3D USPA systems utilize expensive 3D transducer arrays, mechanical arms or limited-range linear stages to reconstruct the 3D volume of the object being imaged. In this study, we developed, characterized, and demonstrated an economical, portable, and clinically translatable handheld device for 3D USPA imaging. An off-the-shelf, low-cost visual odometry system (the Intel RealSense T265 camera equipped with simultaneous localization and mapping technology) to track free hand movements during imaging was attached to the USPA transducer. Specifically, we integrated the T265 camera into a commercially available USPA imaging probe to acquire 3D images and compared it to the reconstructed 3D volume acquired using a linear stage (ground truth). We were able to reliably detect 500 µm step sizes with 90.46% accuracy. Various users evaluated the potential of handheld scanning, and the volume calculated from the motion-compensated image was not significantly different from the ground truth. Overall, our results, for the first time, established the use of an off-the-shelf and low-cost visual odometry system for freehand 3D USPA imaging that can be seamlessly integrated into several photoacoustic imaging systems for various clinical applications.
Collapse
Affiliation(s)
| | - Brian Anthony
- Institute of Medical Engineering and Sciences, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Wellman Center for Photomedicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
23
|
Gezginer I, Chen Z, Yoshihara HA, Deán-Ben XL, Razansky D. Volumetric registration framework for multimodal functional magnetic resonance and optoacoustic tomography of the rodent brain. PHOTOACOUSTICS 2023; 31:100522. [PMID: 37362869 PMCID: PMC10285284 DOI: 10.1016/j.pacs.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Optoacoustic tomography (OAT) provides a non-invasive means to characterize cerebral hemodynamics across an entire murine brain while attaining multi-parametric readouts not available with other modalities. This unique capability can massively impact our understanding of brain function. However, OAT largely lacks the soft tissue contrast required for unambiguous identification of brain regions. Hence, its accurate registration to a reference brain atlas is paramount for attaining meaningful functional readings. Herein, we capitalized on the simultaneously acquired bi-modal data from the recently-developed hybrid magnetic resonance optoacoustic tomography (MROT) scanner in order to devise an image coregistration paradigm that facilitates brain parcellation and anatomical referencing. We evaluated the performance of the proposed methodology by coregistering OAT data acquired with a standalone system using different registration methods. The enhanced performance is further demonstrated for functional OAT data analysis and characterization of stimulus-evoked brain responses. The suggested approach enables better consolidation of the research findings thus facilitating wider acceptance of OAT as a powerful neuroimaging tool to study brain functions and diseases.
Collapse
Affiliation(s)
- Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Hikari A.I. Yoshihara
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
24
|
Nasri D, Manwar R, Kaushik A, Er EE, Avanaki K. Photoacoustic imaging for investigating tumor hypoxia: a strategic assessment. Theranostics 2023; 13:3346-3367. [PMID: 37351178 PMCID: PMC10283067 DOI: 10.7150/thno.84253] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/29/2023] [Indexed: 06/24/2023] Open
Abstract
Hypoxia causes the expression of signaling molecules which regulate cell division, lead to angiogenesis, and further, in the tumor microenvironment, promote resistance to chemotherapy and radiotherapy, and induce metastasis. Photoacoustic imaging (PAI) takes advantage of unique absorption characteristics of chromophores in tissues and provides the opportunity to construct images with a high degree of spatial and temporal resolution. In this review, we discuss the physiologic characteristics of tumor hypoxia, and current applications of PAI using endogenous (label free imaging) and exogenous (organic and inorganic) contrast agents. Features of various methods in terms of their efficacy for determining physiologic and proteomic phenomena are analyzed. This review demonstrates that PAI has the potential to understand tumor growth and metastasis development through measurement of regulatory molecule concentrations, oxygen gradients, and vascular distribution.
Collapse
Affiliation(s)
- Deyana Nasri
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, IL, USA
| | - Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, IL, USA
| | - Ajeet Kaushik
- Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Ekrem Emrah Er
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, IL, USA
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, IL, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Lee H, Choi W, Kim C, Park B, Kim J. Review on ultrasound-guided photoacoustic imaging for complementary analyses of biological systems in vivo. Exp Biol Med (Maywood) 2023; 248:762-774. [PMID: 37452700 PMCID: PMC10468641 DOI: 10.1177/15353702231181341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Photoacoustic imaging has been developed as a new biomedical molecular imaging modality. Due to its similarity to conventional ultrasound imaging in terms of signal detection and image generation, dual-modal photoacoustic and ultrasound imaging has been applied to visualize physiological and morphological information in biological systems in vivo. By complementing each other, dual-modal photoacoustic and ultrasound imaging showed synergistic advances in photoacoustic imaging with the guidance of ultrasound images. In this review, we introduce our recent progresses in dual-modal photoacoustic and ultrasound imaging systems at various scales of study, from preclinical small animals to clinical humans. A summary of the works reveals various strategies for combining the structural information of ultrasound images with the molecular information of photoacoustic images.
Collapse
Affiliation(s)
- Haeni Lee
- Department of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wonseok Choi
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
26
|
Lin Y, Kou S, Nie H, Luo H, Eltahir A, Chapman W, Hunt S, Mutch M, Zhu Q. Deep learning based on co-registered ultrasound and photoacoustic imaging improves the assessment of rectal cancer treatment response. BIOMEDICAL OPTICS EXPRESS 2023; 14:2015-2027. [PMID: 37206148 PMCID: PMC10191638 DOI: 10.1364/boe.487647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023]
Abstract
Identifying complete response (CR) after rectal cancer preoperative treatment is critical to deciding subsequent management. Imaging techniques, including endorectal ultrasound and MRI, have been investigated but have low negative predictive values. By imaging post-treatment vascular normalization using photoacoustic microscopy, we hypothesize that co-registered ultrasound and photoacoustic imaging will better identify complete responders. In this study, we used in vivo data from 21 patients to develop a robust deep learning model (US-PAM DenseNet) based on co-registered dual-modality ultrasound (US) and photoacoustic microscopy (PAM) images and individualized normal reference images. We tested the model's accuracy in differentiating malignant from non-cancer tissue. Compared to models based on US alone (classification accuracy 82.9 ± 1.3%, AUC 0.917(95%CI: 0.897-0.937)), the addition of PAM and normal reference images improved the model performance significantly (accuracy 92.4 ± 0.6%, AUC 0.968(95%CI: 0.960-0.976)) without increasing model complexity. Additionally, while US models could not reliably differentiate images of cancer from those of normalized tissue with complete treatment response, US-PAM DenseNet made accurate predictions from these images. For use in the clinical settings, US-PAM DenseNet was extended to classify entire US-PAM B-scans through sequential ROI classification. Finally, to help focus surgical evaluation in real time, we computed attention heat maps from the model predictions to highlight suspicious cancer regions. We conclude that US-PAM DenseNet could improve the clinical care of rectal cancer patients by identifying complete responders with higher accuracy than current imaging techniques.
Collapse
Affiliation(s)
- Yixiao Lin
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Sitai Kou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Haolin Nie
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Hongbo Luo
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Ahmed Eltahir
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Will Chapman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven Hunt
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Mutch
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Fadhel MN, Appak Baskoy S, Wang Y, Hysi E, Kolios MC. Use of photoacoustic imaging for monitoring vascular disrupting cancer treatments. JOURNAL OF BIOPHOTONICS 2023; 16:e202000209. [PMID: 32888381 DOI: 10.1002/jbio.202000209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Vascular disrupting agents disrupt tumor vessels, blocking the nutritional and oxygen supply tumors need to thrive. This is achieved by damaging the endothelium lining of blood vessels, resulting in red blood cells (RBCs) entering the tumor parenchyma. RBCs present in the extracellular matrix are exposed to external stressors resulting in biochemical and physiological changes. The detection of these changes can be used to monitor the efficacy of cancer treatments. Spectroscopic photoacoustic (PA) imaging is an ideal candidate for probing RBCs due to their high optical absorption relative to surrounding tissue. The goal of this work is to use PA imaging to monitor the efficacy of the vascular disrupting agent 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) through quantitative analysis. Then, 4T1 breast cancer cells were injected subcutaneously into the left hind leg of eight BALB/c mice. After 10 days, half of the mice were treated with 15 mg/kg of DMXAA and the other half were injected with saline. All mice were imaged using the VevoLAZR X PA system before treatment, 24 and 72 hours after treatment. The imaging was done at six wavelengths and linear spectral unmixing was applied to the PA images to quantify three forms of hemoglobin (oxy, deoxy and met-hemoglobin). After imaging, tumors were histologically processed and H&E and TUNEL staining were used to detect the tissue damage induced by the DMXAA treatment. The total hemoglobin concentration remained unchanged after treatment for the saline treated mice. For DMXAA treated mice, a 10% increase of deoxyhemoglobin concentration was detected 24 hours after treatment and a 22.6% decrease in total hemoglobin concentration was observed by 72 hours. A decrease in the PA spectral slope parameters was measured 24 hours after treatment. This suggests that DMXAA induces vascular damage, causing red blood cells to extravasate. Furthermore, H&E staining of the tumor showed areas of bleeding with erythrocyte deposition. These observations are further supported by the increase in TUNEL staining in DMXAA treated tumors, revealing increased cell death due to vascular disruption. This study demonstrates the capability of PA imaging to monitor tumor vessel disruption by the vascular disrupting agent DMXAA.
Collapse
Affiliation(s)
- Muhannad N Fadhel
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
- Department of Physics, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sila Appak Baskoy
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
- Department of Physics, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yanjie Wang
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
- Department of Physics, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eno Hysi
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
- Department of Physics, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
- Department of Physics, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Spiliotis AE, Holländer S, Rudzitis-Auth J, Wagenpfeil G, Eisele R, Nika S, Mallis Kyriakides O, Laschke MW, Menger MD, Glanemann M, Gäbelein G. Evaluation of Electrochemotherapy with Bleomycin in the Treatment of Colorectal Hepatic Metastases in a Rat Model. Cancers (Basel) 2023; 15:cancers15051598. [PMID: 36900388 PMCID: PMC10000671 DOI: 10.3390/cancers15051598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND The available ablative procedures for the treatment of hepatic cancer have contraindications due to the heat-sink effect and the risk of thermal injuries. Electrochemotherapy (ECT) as a nonthermal approach may be utilized for the treatment of tumors adjacent to high-risk regions. We evaluated the effectiveness of ECT in a rat model. METHODS WAG/Rij rats were randomized to four groups and underwent ECT, reversible electroporation (rEP), or intravenous injection of bleomycin (BLM) eight days after subcapsular hepatic tumor implantation. The fourth group served as Sham. Tumor volume and oxygenation were measured before and five days after the treatment using ultrasound and photoacoustic imaging; thereafter, liver and tumor tissue were additionally analysed by histology and immunohistochemistry. RESULTS The ECT group showed a stronger reduction in tumor oxygenation compared to the rEP and BLM groups; moreover, ECT-treated tumors exhibited the lowest levels of hemoglobin concentration compared to the other groups. Histological analyses further revealed a significantly increased tumor necrosis of >85% and a reduced tumor vascularization in the ECT group compared to the rEP, BLM, and Sham groups. CONCLUSION ECT is an effective approach for the treatment of hepatic tumors with necrosis rates >85% five days following treatment.
Collapse
Affiliation(s)
- Antonios E. Spiliotis
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence: or ; Tel.: +49-0304-5065-2625
| | - Sebastian Holländer
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Jeannette Rudzitis-Auth
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Robert Eisele
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Spyridon Nika
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Orestis Mallis Kyriakides
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias Glanemann
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Gereon Gäbelein
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| |
Collapse
|
29
|
Quílez-Alburquerque J, Saad MA, Descalzo AB, Orellana G, Hasan T. Hyaluronic acid-poly(lactic-co-glycolic acid) nanoparticles with a ruthenium photosensitizer cargo for photokilling of oral cancer cells. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Saad MA, Grimaldo-Garcia S, Sweeney A, Mallidi S, Hasan T. A Dual Function Antibody Conjugate Enabled Photoimmunotherapy Complements Fluorescence and Photoacoustic Imaging of Head and Neck Cancer Spheroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526194. [PMID: 36778405 PMCID: PMC9915525 DOI: 10.1101/2023.01.30.526194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several molecular-targeted imaging and therapeutic agents are in clinical trials for image-guided surgery and photoimmunotherapy (PIT) of head and neck cancers. In this context, we have previously reported the development, characterization, and specificity of a dual function antibody conjugate (DFAC) for multi-modal imaging and photoimmunotherapy (PIT) of EGFR over-expressing cancer cells. The DFAC reported previously and used in the present study, comprises of an EGFR targeted antibody - Cetuximab conjugated to Benzoporphyrin derivative (BPD) for fluorescence imaging and PIT, and a Si-centered naphthalocyanine dye for photoacoustic imaging. We report here the evaluation and performance of DFAC in detecting microscopic cancer spheroids by fluorescence and photoacoustic imaging along with their treatment by PIT. We demonstrate that while fluorescence imaging can detect spheroids with volumes greater than 0.049 mm3, photoacoustic imaging-based detection was possible even for the smallest spheroids (0.01 mm3), developed in the study. When subjected to PIT, the spheroids showed a dose-dependent response with smaller spheroids (0.01 and 0.018 mm3) showing a complete response with no recurrence when treated with 100 J/cm2. Together our results demonstrate the complementary imaging and treatment capacity of DFAC. This potentially enables fluorescence imaging to assess tumor presence on a macroscopic scale followed by photoacoustic imaging for delineating tumor margins guiding surgical resection and elimination of any residual microscopic disease by PIT, in a single intra-operative setting.
Collapse
Affiliation(s)
- Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Allison Sweeney
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA, USA
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Menger MM, Körbel C, Bauer D, Bleimehl M, Tobias AL, Braun BJ, Herath SC, Rollmann MF, Laschke MW, Menger MD, Histing T. Photoacoustic imaging for the study of oxygen saturation and total hemoglobin in bone healing and non-union formation. PHOTOACOUSTICS 2022; 28:100409. [PMID: 36213763 PMCID: PMC9535319 DOI: 10.1016/j.pacs.2022.100409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/14/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Non-union formation represents a major complication in trauma surgery. Adequate vascularization has been recognized as vital for bone healing. However, the role of vascularization in the pathophysiology of non-union formation remains elusive. This is due to difficulties in studying bone microcirculation in vivo. Therefore, we herein studied in a murine osteotomy model whether photoacoustic imaging may be used to analyze vascularization in bone healing and non-union formation. We found that oxygen saturation within the callus tissue is significantly lower in non-unions compared to unions and further declines over time. Moreover, the amount of total hemoglobin (HbT) within the callus tissue was markedly reduced in non-unions. Correlation analyses showed a strong positive correlation between microvessel density and HbT, indicating that photoacoustically determined HbT is a valid parameter to assess vascularization during bone healing. In summary, photoacoustic imaging is a promising approach to study vascular function and tissue oxygenation in bone regeneration.
Collapse
Affiliation(s)
- Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Christina Körbel
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - David Bauer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Michelle Bleimehl
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Anne L. Tobias
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Benedikt J. Braun
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Steven C. Herath
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Mika F. Rollmann
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Zhang K, Timilsina S, Waguespack M, Kercher EM, Spring BQ. An open-source LED array illumination system for automated multiwell plate cell culture photodynamic therapy experiments. Sci Rep 2022; 12:19341. [PMID: 36369334 PMCID: PMC9652332 DOI: 10.1038/s41598-022-22020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy (PDT) research would benefit from an automated, low-cost, and easy-to-use cell culture light treatment setup capable of illuminating multiple well replicates within standard multiwell plate formats. We present an LED-array suitable for performing high-throughput cell culture PDT experiments. The setup features a water-cooling loop to keep the LED-array temperature nearly constant, thus stabilizing the output power and spectrum. The setup also features two custom-made actuator arms, in combination with a pulse-width-modulation (PWM) technique, to achieve programmable and automatic light exposures for PDT. The setup operates at ~ 690 nm (676-702 nm, spectral output full-width half-maximum) and the array module can be readily adapted to other LED wavelengths. This system provides an illumination field with adjustable irradiance up to 400 mW/cm2 with relatively high spectral and power stability comparing with previously reported LED-based setups. The light doses provided by the LED array were validated with comparison to traditional laser PDT. This open-source illumination platform (including the detailed technical description, fabrication protocols, and parts list provided here) helps to make custom light sources more accessible and of practical use for photomedicine research.
Collapse
Affiliation(s)
- Kai Zhang
- Translational Biophotonics Cluster, Northeastern University, 360 Huntington Ave., Boston, 02115, USA.,Department of Physics, College of Science, Northeastern University, 360 Huntington Ave., Boston, 02115, USA
| | - Sudip Timilsina
- Translational Biophotonics Cluster, Northeastern University, 360 Huntington Ave., Boston, 02115, USA.,Department of Physics, College of Science, Northeastern University, 360 Huntington Ave., Boston, 02115, USA
| | - Matthew Waguespack
- Translational Biophotonics Cluster, Northeastern University, 360 Huntington Ave., Boston, 02115, USA.,Department of Physics, College of Science, Northeastern University, 360 Huntington Ave., Boston, 02115, USA
| | - Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, 360 Huntington Ave., Boston, 02115, USA.,University of Massachusetts Medical School, 55 Lake Ave. N, Worcester, MA, 01655, USA
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, 360 Huntington Ave., Boston, 02115, USA. .,Department of Physics, College of Science, Northeastern University, 360 Huntington Ave., Boston, 02115, USA. .,Department of Bioengineering, College of Engineering, Northeastern University, 360 Huntington Ave., Boston, 02115, USA.
| |
Collapse
|
33
|
A Novel PSMA-Targeted Probe for NIRF-Guided Surgery and Photodynamic Therapy: Synthesis and Preclinical Validation. Int J Mol Sci 2022; 23:ijms232112878. [PMID: 36361667 PMCID: PMC9657290 DOI: 10.3390/ijms232112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
A total of 20% to 50% of prostate cancer (PCa) patients leave the surgery room with positive tumour margins. The intraoperative combination of fluorescence guided surgery (FGS) and photodynamic therapy (PDT) may be very helpful for improving tumour margin delineation and cancer therapy. PSMA is a transmembrane protein overexpressed in 90−100% of PCa cells. The goal of this work is the development of a PSMA-targeted Near InfraRed Fluorescent probe to offer the surgeon a valuable intraoperative tool for allowing a complete tumour removal, implemented with the possibility of using PDT to kill the eventual not resected cancer cells. PSMA-617 binding motif was conjugated to IRDye700DX-NHS and the conjugation did not affect the photophysical characteristics of the fluorophore. The affinity of IRDye700DX-PSMA-617 towards PCa cells followed the order of their PSMA expression, i.e., PC3-PIP > LNCaP > PC3, PC3-FLU. NIRF imaging showed a significant PC3-PIP tumour uptake after the injection of 1 or 5 nmol with a maximum tumour-to-muscle ratio (ca. 60) observed for both doses 24 h post-injection. Importantly, urine, healthy prostate, and the bladder were not fluorescent at 24 h post-injection. Flow cytometry and confocal images highlighted a co-localization of PSMA+ cells with IRDye700DX-PSMA uptake. Very interestingly, ex vivo analysis on a tumour specimen highlighted a significant PSMA expression by tumour-associated macrophages, likely attributable to extracellular vesicles secreted by the PSMA(+) tumour cells. FGS proved that IRDye700DX-PSMA was able to easily delineate tumour margins. PDT experiments showed a concentration-dependent decrease in cell viability (from 75% at 10 nM to 12% at 500 nM), whereas controls did not show any cytotoxicity. PC3-PIP tumour-bearing mice subjected to photodynamic therapy showed a delayed tumour growth. In conclusion, a novel PSMA-targeted NIRF dye with dual imaging-PDT capabilities was synthesized and displayed superior specificity compared to other small PSMA targeted molecules.
Collapse
|
34
|
Wen Y, Guo D, Zhang J, Liu X, Liu T, Li L, Jiang S, Wu D, Jiang H. Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends. Front Physiol 2022; 13:1036621. [PMID: 36388111 PMCID: PMC9651137 DOI: 10.3389/fphys.2022.1036621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that combines optical and ultrasonic imaging, providing overlapping fields of view. This hybrid approach allows for a natural integration of PAT and ultrasound (US) imaging in a single platform. Due to the similarities in signal acquisition and processing, the combination of PAT and US imaging creates a new hybrid imaging for novel clinical applications. Over the recent years, particular attention is paid to the development of PAT/US dual-modal systems highlighting mutual benefits in clinical cases, with an aim of substantially improving the specificity and sensitivity for diagnosis of diseases. The demonstrated feasibility and accuracy in these efforts open an avenue of translating PAT/US imaging to practical clinical applications. In this review, the current PAT/US dual-modal imaging systems are discussed in detail, and their promising clinical applications are presented and compared systematically. Finally, this review describes the potential impacts of these combined systems in the coming future.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaotian Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lu Li
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
35
|
Ashraf S, Khalid A, de Vos AL, Feng Y, Rohrbach P, Hasan T. Malaria Detection Accelerated: Combing a High-Throughput NanoZoomer Platform with a ParasiteMacro Algorithm. Pathogens 2022; 11:pathogens11101182. [PMID: 36297240 PMCID: PMC9606851 DOI: 10.3390/pathogens11101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Eradication of malaria, a mosquito-borne parasitic disease that hijacks human red blood cells, is a global priority. Microscopy remains the gold standard hallmark for diagnosis and estimation of parasitemia for malaria, to date. However, this approach is time-consuming and requires much expertise especially in malaria-endemic countries or in areas with low-density malaria infection. Thus, there is a need for accurate malaria diagnosis/parasitemia estimation with standardized, fast, and more reliable methods. To this end, we performed a proof-of-concept study using the automated imaging (NanoZoomer) platform to detect the malarial parasite in infected blood. The approach can be used as a steppingstone for malaria diagnosis and parasitemia estimation. Additionally, we created an algorithm (ParasiteMacro) compatible with free online imaging software (ImageJ) that can be used with low magnification objectives (e.g., 5×, 10×, and 20×) both in the NanoZoomer and routine microscope. The novel approach to estimate malarial parasitemia based on modern technologies compared to manual light microscopy demonstrated 100% sensitivity, 87% specificity, a 100% negative predictive value (NPV) and a 93% positive predictive value (PPV). The manual and automated malaria counts showed a good Pearson correlation for low- (R2 = 0.9377, r = 0.9683 and p < 0.0001) as well as high- parasitemia (R2 = 0.8170, r = 0.9044 and p < 0.0001) with low estimation errors. Our robust strategy that identifies and quantifies malaria can play a pivotal role in disease control strategies.
Collapse
Affiliation(s)
- Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| | - Areeba Khalid
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
- Department of Computer Science, Mathematics Adelphi University, Garden City, NY 11530, USA
- Department of Biomedical Engineering, Tufts University, Medford, OR 02155, USA
| | - Arend L. de Vos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
- Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Yanfang Feng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
| | - Petra Rohrbach
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence:
| |
Collapse
|
36
|
Sivasubramanian M, Chu CH, Cheng SH, Chen NT, Chen CT, Chuang YC, Yu H, Chen YL, Liao LD, Lo LW. Multimodal Magnetic Resonance and Photoacoustic Imaging of Tumor-Specific Enzyme-Responsive Hybrid Nanoparticles for Oxygen Modulation. Front Bioeng Biotechnol 2022; 10:910902. [PMID: 35910012 PMCID: PMC9326367 DOI: 10.3389/fbioe.2022.910902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodal imaging contrast agents for cancer that can not only perform diagnostic functions but also serve as tumor microenvironment–responsive biomaterials are encouraging. In this study, we report the design and fabrication of a novel enzyme-responsive T1 magnetic resonance imaging (MRI) contrast agent that can modulate oxygen in the tumor microenvironment via the catalytic conversion of H2O2 to O2. The T1 contrast agent is a core–shell nanoparticle that consists of manganese oxide and hyaluronic acid (HA)–conjugated mesoporous silica nanoparticle (HA-MnO@MSN). The salient features of the nanoparticle developed in this study are as follows: 1) HA serves as a targeting ligand for CD44-expressing cancer cells; 2) HA allows controlled access of water molecules to the MnO core via the digestion of enzyme hyaluronidase; 3) the generation of O2 bubbles in the tumor by consuming H2O2; and 4) the capability to increase the oxygen tension in the tumor. The r1 relaxivity of HA-MnO@MSN was measured to be 1.29 mM−1s−1 at a magnetic field strength of 9.4 T. In vitro results demonstrated the ability of continuous oxygen evolution by HA-MnO@MSN. After intratumoral administration of HA-MnO@MSN to an HCT116 xenograft mouse model, T1 weighted MRI contrast was observed after 5 h postinjection and retained up to 48 h. In addition, in vivo photoacoustic imaging of HA-MnO@MSN demonstrated an increase in the tumor oxygen saturation over time after i. t. administration. Thus, the core–shell nanoparticles developed in this study could be helpful in tumor-targeted T1 MR imaging and oxygen modulation.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Hsun Cheng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Radiology, The University of Chicago, Chicago, IL, United States
| | - Nai-Tzu Chen
- College of Biopharmaceutical and Food Sciences, Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, United States
| | - Yao Chen Chuang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsia Yu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Lin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
- *Correspondence: Lun-De Liao, ; Leu-Wei Lo,
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
- *Correspondence: Lun-De Liao, ; Leu-Wei Lo,
| |
Collapse
|
37
|
Claus A, Sweeney A, Sankepalle DM, Li B, Wong D, Xavierselvan M, Mallidi S. 3D Ultrasound-Guided Photoacoustic Imaging to Monitor the Effects of Suboptimal Tyrosine Kinase Inhibitor Therapy in Pancreatic Tumors. Front Oncol 2022; 12:915319. [PMID: 35875138 PMCID: PMC9300843 DOI: 10.3389/fonc.2022.915319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer is a disease with an incredibly poor survival rate. As only about 20% of patients are eligible for surgical resection, neoadjuvant treatments that can relieve symptoms and shrink tumors for surgical resection become critical. Many forms of treatments rely on increased vulnerability of cancerous cells, but tumors or regions within the tumors that may be hypoxic could be drug resistant. Particularly for neoadjuvant therapies such as the tyrosine kinase inhibitors utilized to shrink tumors, it is critical to monitor changes in vascular function and hypoxia to predict treatment efficacy. Current clinical imaging modalities used to obtain structural and functional information regarding hypoxia or oxygen saturation (StO2) do not provide sufficient depth penetration or require the use of exogenous contrast agents. Recently, ultrasound-guided photoacoustic imaging (US-PAI) has garnered significant popularity, as it can noninvasively provide multiparametric information on tumor vasculature and function without the need for contrast agents. Here, we built upon existing literature on US-PAI and demonstrate the importance of changes in StO2 values to predict treatment response, particularly tumor growth rate, when the outcomes are suboptimal. Specifically, we image xenograft mouse models of pancreatic adenocarcinoma treated with suboptimal doses of a tyrosine kinase inhibitor cabozantinib. We utilize the US-PAI data to develop a multivariate regression model that demonstrates that a therapy-induced reduction in tumor growth rate can be predicted with 100% positive predictive power and a moderate (58.33%) negative predictive power when a combination of pretreatment tumor volume and changes in StO2 values pretreatment and immediately posttreatment was employed. Overall, our study indicates that US-PAI has the potential to provide label-free surrogate imaging biomarkers that can predict tumor growth rate in suboptimal therapy.
Collapse
|
38
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
39
|
Hafiz S, Xavierselvan M, Gokalp S, Labadini D, Barros S, Duong J, Foster M, Mallidi S. Eutectic Gallium-Indium Nanoparticles for Photodynamic Therapy of Pancreatic Cancer. ACS APPLIED NANO MATERIALS 2022; 5:6125-6139. [PMID: 35655927 PMCID: PMC9150699 DOI: 10.1021/acsanm.1c04353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 05/04/2023]
Abstract
Developing a cancer theranostic nanoplatform with diagnosis and treatment capabilities to effectively treat tumors and reduce side effects is of great significance. Herein, we present a drug delivery strategy for photosensitizers based on a new liquid metal nanoplatform that leverages the tumor microenvironment to achieve photodynamic therapeutic effects in pancreatic cancer. Eutectic gallium indium (EGaIn) nanoparticles were successfully conjugated with a water-soluble cancer targeting ligand, hyaluronic acid, and a photosensitizer, benzoporphyrin derivative, creating EGaIn nanoparticles (EGaPs) via a simple green sonication method. The prepared sphere-shaped EGaPs, with a core-shell structure, presented high biocompatibility and stability. EGaPs had greater cellular uptake, manifested targeting competence, and generated significantly higher intracellular ROS. Further, near-infrared light activation of EGaPs demonstrated their potential to effectively eliminate cancer cells due to their single oxygen generation capability. Finally, from in vivo studies, EGaPs caused tumor regression and resulted in 2.3-fold higher necrosis than the control, therefore making a good vehicle for photodynamic therapy. The overall results highlight that EGaPs provide a new way to assemble liquid metal nanomaterials with different ligands for enhanced cancer therapy.
Collapse
Affiliation(s)
- Sabrina
S. Hafiz
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Marvin Xavierselvan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Sumeyra Gokalp
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Daniela Labadini
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Sebastian Barros
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Jeanne Duong
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle Foster
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Srivalleesha Mallidi
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
40
|
Sivasubramanian M, Lo LW. Assessment of Nanoparticle-Mediated Tumor Oxygen Modulation by Photoacoustic Imaging. BIOSENSORS 2022; 12:336. [PMID: 35624636 PMCID: PMC9138624 DOI: 10.3390/bios12050336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/01/2023]
Abstract
Photoacoustic imaging (PAI) is an invaluable tool in biomedical imaging, as it provides anatomical and functional information in real time. Its ability to image at clinically relevant depths with high spatial resolution using endogenous tissues as contrast agents constitutes its major advantage. One of the most important applications of PAI is to quantify tissue oxygen saturation by measuring the differential absorption characteristics of oxy and deoxy Hb. Consequently, PAI can be utilized to monitor tumor-related hypoxia, which is a crucial factor in tumor microenvironments that has a strong influence on tumor invasiveness. Reactive oxygen species (ROS)-based therapies, such as photodynamic therapy, radiotherapy, and sonodynamic therapy, are oxygen-consuming, and tumor hypoxia is detrimental to their efficacy. Therefore, a persistent demand exists for agents that can supply oxygen to tumors for better ROS-based therapeutic outcomes. Among the various strategies, NP-mediated supplemental tumor oxygenation is especially encouraging due to its physio-chemical, tumor targeting, and theranostic properties. Here, we focus on NP-based tumor oxygenation, which includes NP as oxygen carriers and oxygen-generating strategies to alleviate hypoxia monitored by PAI. The information obtained from quantitative tumor oxygenation by PAI not only supports optimal therapeutic design but also serves as a highly effective tool to predict therapeutic outcomes.
Collapse
Affiliation(s)
| | - Leu-Wei Lo
- Department of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan;
| |
Collapse
|
41
|
Quiros-Gonzalez I, Tomaszewski MR, Golinska MA, Brown E, Ansel-Bollepalli L, Hacker L, Couturier DL, Sainz RM, Bohndiek SE. Photoacoustic Tomography Detects Response and Resistance to Bevacizumab in Breast Cancer Mouse Models. Cancer Res 2022; 82:1658-1668. [PMID: 35404400 PMCID: PMC9359720 DOI: 10.1158/0008-5472.can-21-0626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/27/2021] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
Abstract
Angiogenesis is an established prognostic factor in advanced breast cancer, yet response to antiangiogenic therapies in this disease remains highly variable. Noninvasive imaging biomarkers could help identify patients that will benefit from antiangiogenic therapy and provide an ideal tool for longitudinal monitoring, enabling dosing regimens to be altered with real-time feedback. Photoacoustic tomography (PAT) is an emerging imaging modality that provides a direct readout of tumor hemoglobin concentration and oxygenation. We hypothesized that PAT could be used in the longitudinal setting to provide an early indication of response or resistance to antiangiogenic therapy. To test this hypothesis, PAT was performed over time in estrogen receptor-positive and estrogen receptor-negative breast cancer xenograft mouse models undergoing treatment with the antiangiogenic bevacizumab as a single agent. The cohort of treated tumors, which were mostly resistant to the treatment, contained a subset that demonstrated a clear survival benefit. At endpoint, the PAT data from the responding subset showed significantly lower oxygenation and higher hemoglobin content compared with both resistant and control tumors. Longitudinal analysis revealed that tumor oxygenation diverged significantly in the responding subset, identifying early treatment response and the evolution of different vascular phenotypes between the subsets. Responding tumors were characterized by a more angiogenic phenotype when analyzed with IHC, displaying higher vessel density, yet poorer vascular maturity and elevated hypoxia. Taken together, our findings indicate that PAT shows promise in providing an early indication of response or resistance to antiangiogenic therapy. SIGNIFICANCE Photoacoustic assessment of tumor oxygenation is a noninvasive early indicator of response to bevacizumab therapy, clearly distinguishing between control, responding, and resistant tumors within just a few weeks of treatment.
Collapse
Affiliation(s)
- Isabel Quiros-Gonzalez
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Michal R. Tomaszewski
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Monika A. Golinska
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Laura Ansel-Bollepalli
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Rosa M. Sainz
- Cell Morphology and Biology Department, IUOPA and ISPA, Universidad de Oviedo, Oviedo, Spain
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
42
|
Oxygen saturation and blood volume analysis by Photoacoustic imaging to identify pre and post-PDT vascular changes. Saudi J Biol Sci 2022; 29:103304. [PMID: 35574285 PMCID: PMC9092990 DOI: 10.1016/j.sjbs.2022.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, the blood volume and oxygen saturation of tumors were measured after photoacoustic imaging (PAI) under conditions of pre-photodynamic therapy (PDT), post-PDT, and 4 hrs, and 24 hrs post-PDT. PDTs with aminolevulinic acid (ALA) and low and high doses of benzoporphyrin derivative (BPD) were conducted to observe oxygen saturation changes, and the rapid oxygen consumption in the blood detected due to the action of BPD at the vascular level resulted in the recovery of PDT completion. Likewise, blood volume changes followed by ALA-PDT and BPD-PDT at low and high doses depicted a fast expansion of the blood volume after treatment. The tumor subjected to a high dose of ALA-PDT showed a partial alteration of Hb-pO2 in the first 24 hrs, as did the tumors treated with two ALA- and BPD-mediated PDTs. The Hb-pO2 started reducing immediately post-PDT and was less than 30% after 4 hrs until 24 hrs post-PDT. Reduced vascular demand was possibly due to tumor necrosis, as shown by the permanent damage in the cancer cells' bioluminescence signal. The ALA-mediated PDT-subjected tumor showed a 50% drop in BV at 24 hrs post-PDT, which is suggestive of vascular pruning. The studied data of blood volume against BLI showed the blood volume and oxygenation variations validating the cells' metabolic activity, including cell death.
Collapse
|
43
|
Xavierselvan M, Cook J, Duong J, Diaz N, Homan K, Mallidi S. Photoacoustic nanodroplets for oxygen enhanced photodynamic therapy of cancer. PHOTOACOUSTICS 2022; 25:100306. [PMID: 34917471 PMCID: PMC8666552 DOI: 10.1016/j.pacs.2021.100306] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 05/20/2023]
Abstract
Photodynamic therapy (PDT) is a well-known cancer therapy that utilizes light to excite a photosensitizer and generate cytotoxic reactive oxygen species (ROS). The efficacy of PDT primarily depends on the photosensitizer and oxygen concentration in the tumor. Hypoxia in solid tumors promotes treatment resistance, resulting in poor PDT outcomes. Hence, there is a need to combat hypoxia while delivering sufficient photosensitizer to the tumor for ROS generation. Here we showcase our unique theranostic perfluorocarbon nanodroplets as a triple agent carrier for oxygen, photosensitizer, and indocyanine green that enables light triggered spatiotemporal delivery of oxygen to the tumors. We evaluated the characteristics of the nanodroplets and validated their ability to deliver oxygen via photoacoustic monitoring of blood oxygen saturation and subsequent PDT efficacy in a murine subcutaneous tumor model. The imaging results were validated with an oxygen sensing probe, which showed a 9.1 fold increase in oxygen content inside the tumor, following systemic administration of the nanodroplets. These results were also confirmed with immunofluorescence. In vivo studies showed that nanodroplets held higher rates of treatment efficacy than a clinically available benzoporphyrin derivative formulation. Histological analysis showed higher necrotic area within the tumor with perfluoropentane nanodroplets. Overall, the photoacoustic nanodroplets can significantly enhance image-guided PDT and has demonstrated substantial potential as a valid theranostic option for patient-specific photodynamic therapy-based treatments.
Collapse
Key Words
- 1O2, singlet oxygen
- BPD, benzoporphyrin derivative
- DLS, dynamic light scattering
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- DSPE-mPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]
- H&E, hematoxylin and eosin
- HbT, total hemoglobin
- Hypoxia
- ICG, indocyanine green
- IF, immunofluorescence
- Image guided PDT
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NIR, near infrared radiation
- PA, photoacoustic
- PBS, phosphate buffered saline
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PFP, perfluoropentane
- PS, photosensitizer
- Perfluorocarbon nanodroplets
- Photoacoustic imaging
- Photodynamic therapy
- ROS, reactive oxygen species
- SOSG, singlet oxygen sensor green
- StO2, oxygen saturation
- TBAI, tertbutylammonium iodide
- pO2, partial pressure of oxygen
Collapse
Affiliation(s)
- Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Jeanne Duong
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Nashielli Diaz
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
44
|
Zeng Y, Chang P, Ma J, Li K, Zhang C, Guo Y, Li H, Zhu Q, Liu H, Wang W, Chen Y, Chen D, Cao X, Zhan Y. DNA Origami-Anthraquinone Hybrid Nanostructures for In Vivo Quantitative Monitoring of the Progression of Tumor Hypoxia Affected by Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6387-6403. [PMID: 35077131 DOI: 10.1021/acsami.1c22620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hypoxia is a well-known feature of malignant solid tumors. To explain the misinterpretation of tumor hypoxia variation during chemotherapy, we developed a DNA origami-based theranostic nanoplatform with an intercalated anticancer anthraquinone as both the chemotherapeutic drug and the photoacoustic contrast agent. The size distribution of the DNA origami nanostructure is 44.5 ± 2.3 nm, whereas the encapsulation efficiency of the drug is 90.7 ± 1.0%, and the drug loading content is 92.2 ± 0.1%. The controlled cumulative release rates were measured in vitro, showing an acidic environment induced rapid drug release. The values of free energy of binding between the drugs and the DNA double helix were calculated through molecular simulations. The cell viability assay was used to characterize cytotoxicity, and fluorescence confocal cell imaging illustrates the biodistribution of the probe in vitro. Photoacoustic and fluorescence imaging were used to indicate drug delivery, release, and biodistribution to predict the drug's chemotherapeutic effect in vivo, whereas the photoacoustic signals were compared with those of deoxygenated/oxygenated hemoglobin to represent the tissue hypoxia/normoxia maps during the chemotherapeutic process and indicate alleviated tumor hypoxia. Staining of tissue sections taken from organs and tumors was used to verify the results of photoacoustic imaging. Our results suggest that photoacoustic imaging can visualize this DNA origami-based theranostic nanoplatform and reveal the mechanisms of chemotherapy on tumor hypoxia.
Collapse
Affiliation(s)
- Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Peng Chang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Jingwen Ma
- Radiology Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, P. R. China
| | - Ke Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi Province, P. R. China
| | - Chunhong Zhang
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi Province, P. R. China
| | - Yingying Guo
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Hanrui Li
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Qingxia Zhu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Huifang Liu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Wenjing Wang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Yuwei Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Xu Cao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| |
Collapse
|
45
|
Qi S, Wang X, Chang K, Shen W, Yu G, Du J. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J Nanobiotechnology 2022; 20:24. [PMID: 34991595 PMCID: PMC8740484 DOI: 10.1186/s12951-021-01232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic system is identified the second vascular system after the blood circulation in mammalian species, however the research on lymphatic system has long been hampered by the lack of comprehensive imaging modality. Nanomaterials have shown the potential to enhance the quality of lymphatic imaging due to the unparalleled advantages such as the specific passive targeting and efficient co-delivery of cocktail to peripheral lymphatic system, ease molecular engineering for precise active targeting and prolonged retention in the lymphatic system of interest. Multimodal lymphatic imaging based on nanotechnology provides a complementary means to understand the kinetics of lymphoid tissues and quantify its function. In this review, we introduce the established approaches of lymphatic imaging used in clinic and summarize their strengths and weaknesses, and list the critical influence factors on lymphatic imaging. Meanwhile, the recent developments in the field of pre-clinical lymphatic imaging are discussed to shed new lights on the design of new imaging agents, the improvement of delivery methods and imaging-guided surgery strategies.
Collapse
Affiliation(s)
- Shaolong Qi
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.,Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinyu Wang
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China
| | - Kun Chang
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Wenbin Shen
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianshi Du
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.
| |
Collapse
|
46
|
Obaid G, Hasan T. Subcutaneous Xenograft Models for Studying PDT In Vivo. Methods Mol Biol 2022; 2451:127-149. [PMID: 35505015 PMCID: PMC10516195 DOI: 10.1007/978-1-0716-2099-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The most facile, reproducible, and robust in vivo models for evaluating the anticancer efficacy of photodynamic therapy (PDT) are subcutaneous xenograft models of human tumors. The accessibility and practicality of light irradiation protocols for treating subcutaneous xenograft models also increase their value as relatively rapid tools to expedite the testing of novel photosensitizers, respective formulations, and treatment regimens for PDT. This chapter summarizes the methods used in the literature to prepare various types of subcutaneous xenograft models of human cancers and syngeneic models to explore the role of PDT in immuno-oncology. This chapter also summarizes the PDT treatment protocols tested on the subcutaneous models, and the procedures used to evaluate the efficacy at the molecular, macromolecular, and host organism levels.
Collapse
Affiliation(s)
- Girgis Obaid
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Turchin I, Bano S, Kirillin M, Orlova A, Perekatova V, Plekhanov V, Sergeeva E, Kurakina D, Khilov A, Kurnikov A, Subochev P, Shirmanova M, Komarova A, Yuzhakova D, Gavrina A, Mallidi S, Hasan T. Combined Fluorescence and Optoacoustic Imaging for Monitoring Treatments against CT26 Tumors with Photoactivatable Liposomes. Cancers (Basel) 2021; 14:197. [PMID: 35008362 PMCID: PMC8750546 DOI: 10.3390/cancers14010197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
The newly developed multimodal imaging system combining raster-scan optoacoustic (OA) microscopy and fluorescence (FL) wide-field imaging was used for characterizing the tumor vascular structure with 38/50 μm axial/transverse resolution and assessment of photosensitizer fluorescence kinetics during treatment with novel theranostic agents. A multifunctional photoactivatable multi-inhibitor liposomal (PMILs) nano platform was engineered here, containing a clinically approved photosensitizer, Benzoporphyrin derivative (BPD) in the bilayer, and topoisomerase I inhibitor, Irinotecan (IRI) in its inner core, for a synergetic therapeutic impact. The optimized PMIL was anionic, with the hydrodynamic diameter of 131.6 ± 2.1 nm and polydispersity index (PDI) of 0.05 ± 0.01, and the zeta potential between -14.9 ± 1.04 to -16.9 ± 0.92 mV. In the in vivo studies on BALB/c mice with CT26 tumors were performed to evaluate PMILs' therapeutic efficacy. PMILs demonstrated the best inhibitory effect of 97% on tumor growth compared to the treatment with BPD-PC containing liposomes (PALs), 81%, or IRI containing liposomes (L-[IRI]) alone, 50%. This confirms the release of IRI within the tumor cells upon PMILs triggering by NIR light, which is additionally illustrated by FL monitoring demonstrating enhancement of drug accumulation in tumor initiated by PDT in 24 h after the treatment. OA monitoring revealed the largest alterations of the tumor vascular structure in the PMILs treated mice as compared to BPD-PC or IRI treated mice. The results were further corroborated with histological data that also showed a 5-fold higher percentage of hemorrhages in PMIL treated mice compared to the control groups. Overall, these results suggest that multifunctional PMILs simultaneously delivering PDT and chemotherapy agents along with OA and FL multi-modal imaging offers an efficient and personalized image-guided platform to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Ilya Turchin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
| | - Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Valeriya Perekatova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Vladimir Plekhanov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Alexey Kurnikov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Pavel Subochev
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Anastasiya Komarova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Diana Yuzhakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Diffuse Optical Spectroscopy Monitoring of Experimental Tumor Oxygenation after Red and Blue Light Photodynamic Therapy. PHOTONICS 2021. [DOI: 10.3390/photonics9010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) is an effective technique for cancer treatment based on photoactivation of photosensitizer accumulated in pathological tissues resulting in singlet oxygen production. Employment of red (660 nm) or blue (405 nm) light differing in typical penetration depth within the tissue for PDT performance provides wide opportunities for improving PDT protocols. Oxygenation dynamics in the treated area can be monitored using diffuse optical spectroscopy (DOS) which allows evaluating tumor response to treatment. In this study, we report on monitoring oxygenation dynamics in experimental tumors after PDT treatment with chlorin-based photosensitizers using red or blue light. The untreated and red light PDT groups demonstrate a gradual decrease in tumor oxygen saturation during the 7-day observation period, however, the reason is different: in the untreated group, the effect is explained by the excessive tumor growth, while in the PDT group, the effect is caused by the blood flow arrest preventing delivery of oxygenated blood to the tumor. The blue light PDT procedure, on the contrary, demonstrates the preservation of the blood oxygen saturation in the tumor during the entire observation period due to superficial action of the blue-light PDT and weaker tumor growth inhibition. Irradiation-only regimes show a primarily insignificant decrease in tumor oxygen saturation owing to partial inhibition of tumor growth. The DOS observations are interpreted based on histology analysis.
Collapse
|
49
|
Zheng Z, Bindra AK, Jin H, Sun Q, Liu S, Zheng Y. Morphology-dependent resonance enhanced nonlinear photoacoustic effect in nanoparticle suspension: a temporal-spatial model. BIOMEDICAL OPTICS EXPRESS 2021; 12:7280-7296. [PMID: 35003833 PMCID: PMC8713686 DOI: 10.1364/boe.434207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 06/14/2023]
Abstract
The morphology-dependent resonances (MDRs) hotspot, ubiquity formed between the pairs of nanoparticles in close vicinity, has garnered considerable recent attention. By extending this phenomenon to pulse-laser irradiated nanoparticle suspension, we demonstrate that such collective optical/thermal enhancement can give rise to the nonlinear photoacoustic (PA) generation. In this study, a temporal-spatial analytical expression is derived to quantitatively describe the nonlinear PA signal generation from nanoparticles, incorporating the Grüneisen increase at the microscopic individual particle level and MRDs enhancement at the macroscopic suspension level. The dependence of PA nonlinearity on the critical contributors, including the laser pulse width, the particle size, and the statistical interparticle spacing, is quantitatively discussed. The theory is well validated with the finite element method (FEM) and experimentally proved with semiconducting polymer nanoparticles (SPN) suspension. This work may pave a new direction towards effective MDR based nonlinear PA contract agent design.
Collapse
Affiliation(s)
- Zesheng Zheng
- Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore
| | - Anivind Kaur Bindra
- Nanyang Technological University, School of Physical and Mathematical Sciences, Singapore 637371, Singapore
| | - Haoran Jin
- Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore
| | - Quqin Sun
- Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore
| | - Siyu Liu
- Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore
| | - Yuanjin Zheng
- Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore
| |
Collapse
|
50
|
Chen S, Zhong Y, Fan W, Xiang J, Wang G, Zhou Q, Wang J, Geng Y, Sun R, Zhang Z, Piao Y, Wang J, Zhuo J, Cong H, Jiang H, Ling J, Li Z, Yang D, Yao X, Xu X, Zhou Z, Tang J, Shen Y. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat Biomed Eng 2021; 5:1019-1037. [PMID: 33859387 DOI: 10.1038/s41551-021-00701-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Effective anticancer nanomedicines need to exhibit prolonged circulation in blood, to extravasate and accumulate in tumours, and to be taken up by tumour cells. These contrasting criteria for persistent circulation and cell-membrane affinity have often led to complex nanoparticle designs with hampered clinical translatability. Here, we show that conjugates of small-molecule anticancer drugs with the polyzwitterion poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate) have long blood-circulation half-lives and bind reversibly to cell membranes, owing to the negligible interaction of the polyzwitterion with proteins and its weak interaction with phospholipids. Adsorption of the polyzwitterion-drug conjugates to tumour endothelial cells and then to cancer cells favoured their transcytosis-mediated extravasation into tumour interstitium and infiltration into tumours, and led to the eradication of large tumours and patient-derived tumour xenografts in mice. The simplicity and potency of the polyzwitterion-drug conjugates should facilitate the design of translational anticancer nanomedicines.
Collapse
Affiliation(s)
- Siqin Chen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Yin Zhong
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Wufa Fan
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.,Department of Polymer Science and Engineering, Peking University, Beijing, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Guowei Wang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Quan Zhou
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Jinqiang Wang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yu Geng
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Rui Sun
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhen Zhang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Jianguo Wang
- Department of Surgery, First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianyong Zhuo
- Department of Surgery, First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Ling
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zichen Li
- Department of Polymer Science and Engineering, Peking University, Beijing, China
| | - Dingding Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Xu
- Department of Surgery, First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China. .,Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| |
Collapse
|