1
|
Lv J, Yang Y, Wu W, He H, Qi Q, Lian D, Jia T, Huang W. An indolium-based near-infrared fluorescent probe for non-invasive real-time monitoring of gastric pH in vitro and in vivo. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3653-3659. [PMID: 40260500 DOI: 10.1039/d5ay00170f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Abnormal gastric acidity is closely linked to severe gastrointestinal diseases, making the real-time monitoring of gastric pH critical for investigating stomach-related physiological and pathological processes, diagnosing related diseases, and evaluating drug efficacy. In this study, we developed a near-infrared (NIR) fluorescent probe, named Hcy-pH, by conjugating a p-dimethylaminophenyl moiety with an indolium fluorophore via extended double bonds. The probe displayed significant NIR fluorescence at 820 nm in a PBS buffer, with a large Stokes shift of 240 nm. The fluorescence intensity of the probe decreased progressively as the pH decreased from 4.0 to 2.5, with a calculated pKa of 2.98. Hcy-pH exhibited excellent biocompatibility and enabled the visualization of pH fluctuations in vitro by living HeLa cells. Moreover, the non-invasive monitoring of gastric pH in vivo was achieved in live mice, underscoring its great potential for studying stomach-related diseases and evaluating related pharmaceuticals.
Collapse
Affiliation(s)
- Jiaqi Lv
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiqiang Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Weijie Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Hongbo He
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Qingrong Qi
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Dongyin Lian
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Tao Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Sun C, Huang Y, Jiang C, Li Z. Updates on fluorescent probes and open-field imaging methods for fluorescence-guided cytoreductive surgery for epithelial ovarian cancer: A review. BJOG 2022; 129 Suppl 2:50-59. [PMID: 36485071 PMCID: PMC10107465 DOI: 10.1111/1471-0528.17332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescence-guided surgery has emerged as a promising imaging technique for real-time intraoperative tumour delineation and visualisation of submillimetre tumour masses in cytoreductive surgery for epithelial ovarian cancer (EOC). Researchers have developed several EOC-targeted fluorescent probes, most of which are currently in the preclinical stage. Interestingly, imaging devices designed for open surgery are proof of concept. This review summarises the recent advances in EOC-targeted fluorescent probes and open-field fluorescence imaging strategies and discusses the challenges and potential solutions for clinical translation.
Collapse
Affiliation(s)
- Chongen Sun
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Caixia Jiang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Yokomizo S, Henary M, Buabeng ER, Fukuda T, Monaco H, Baek Y, Manganiello S, Wang H, Kubota J, Ulumben AD, Lv X, Wang C, Inoue K, Fukushi M, Kang H, Bao K, Kashiwagi S, Choi HS. Topical pH Sensing NIR Fluorophores for Intraoperative Imaging and Surgery of Disseminated Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201416. [PMID: 35567348 PMCID: PMC9286000 DOI: 10.1002/advs.202201416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 05/05/2023]
Abstract
Fluorescence-guided surgery (FGS) aids surgeons with real-time visualization of small cancer foci and borders, which improves surgical and prognostic efficacy of cancer. Despite the steady advances in imaging devices, there is a scarcity of fluorophores available to achieve optimal FGS. Here, 1) a pH-sensitive near-infrared fluorophore that exhibits rapid signal changes in acidic tumor microenvironments (TME) caused by the attenuation of intramolecular quenching, 2) the inherent targeting for cancer based on chemical structure (structure inherent targeting, SIT), and 3) mitochondrial and lysosomal retention are reported. After topical application of PH08 on peritoneal tumor regions in ovarian cancer-bearing mice, a rapid fluorescence increase (< 10 min), and extended preservation of signals (> 4 h post-topical application) are observed, which together allow for the visualization of submillimeter tumors with a high tumor-to-background ratio (TBR > 5.0). In addition, PH08 is preferentially transported to cancer cells via organic anion transporter peptides (OATPs) and colocalizes in the mitochondria and lysosomes due to the positive charges, enabling a long retention time during FGS. PH08 not only has a significant impact on surgical and diagnostic applications but also provides an effective and scalable strategy to design therapeutic agents for a wide array of cancers.
Collapse
Affiliation(s)
- Shinya Yokomizo
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Maged Henary
- Department of Chemistry and Center for Diagnostics and TherapeuticsGeorgia State University100 Piedmont Avenue SEAtlantaGA30303USA
| | - Emmanuel R. Buabeng
- Department of Chemistry and Center for Diagnostics and TherapeuticsGeorgia State University100 Piedmont Avenue SEAtlantaGA30303USA
| | - Takeshi Fukuda
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Department of Obstetrics and GynecologyOsaka City University Graduate School of Medicine1‐4‐3, AsahimachiAbeno‐kuOsaka545–8585Japan
| | - Hailey Monaco
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Yoonji Baek
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Sophia Manganiello
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Haoran Wang
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Jo Kubota
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Amy Daniel Ulumben
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Xiangmin Lv
- Vincent Center for Reproductive BiologyVincent Department of Obstetrics and GynecologyMassachusetts General HospitalBostonMA02114USA
| | - Cheng Wang
- Vincent Center for Reproductive BiologyVincent Department of Obstetrics and GynecologyMassachusetts General HospitalBostonMA02114USA
| | - Kazumasa Inoue
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Masahiro Fukushi
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Homan Kang
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Kai Bao
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Hak Soo Choi
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
4
|
Naffouje SA, Goto M, Coward LU, Gorman GS, Christov K, Wang J, Green A, Shilkaitis A, Das Gupta TK, Yamada T. Nontoxic Tumor-Targeting Optical Agents for Intraoperative Breast Tumor Imaging. J Med Chem 2022; 65:7371-7379. [PMID: 35544687 DOI: 10.1021/acs.jmedchem.2c00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Precise identification of the tumor margins during breast-conserving surgery (BCS) remains a challenge given the lack of visual discrepancy between malignant and surrounding normal tissues. Therefore, we developed a fluorescent imaging agent, ICG-p28, for intraoperative imaging guidance to better aid surgeons in achieving negative margins in BCS. Here, we determined the pharmacokinetics (PK), biodistribution, and preclinical toxicity of ICG-p28. The PK and biodistribution of ICG-p28 indicated rapid tissue uptake and localization at tumor lesions. There were no dose-related effect and no significant toxicity in any of the breast cancer and normal cell lines tested. Furthermore, ICG-p28 was evaluated in clinically relevant settings with transgenic mice that spontaneously developed invasive mammary tumors. Intraoperative imaging with ICG-p28 showed a significant reduction in the tumor recurrence rate. This simple, nontoxic, and cost-effective method can offer a new approach that enables surgeons to intraoperatively identify tumor margins and potentially improves overall outcomes by reducing recurrence rates.
Collapse
Affiliation(s)
- Samer A Naffouje
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Masahide Goto
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Lori U Coward
- McWhorter School of Pharmacy, Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, Alabama 35229, United States
| | - Gregory S Gorman
- McWhorter School of Pharmacy, Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, Alabama 35229, United States
| | - Konstantin Christov
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Jing Wang
- Department of Mathematics, Statistics and Computer Science, University of Illinois College of Liberal Arts and Sciences, Urbana, Illinois 60612, United States
| | - Albert Green
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Anne Shilkaitis
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Tapas K Das Gupta
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States.,Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Medicine and Engineering, Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Tung CH, Han MS, Shen Z, Gray BD, Pak KY, Wang J. Near-Infrared Fluorogenic Spray for Rapid Tumor Sensing. ACS Sens 2021; 6:3657-3666. [PMID: 34549942 DOI: 10.1021/acssensors.1c01370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surgical resection of cancerous tissues is a critical procedure for solid tumor treatment. During the operation, the surgeon mostly identifies the cancerous tissues by naked-eye visualization under white light without aid, therefore, the outcome heavily relies on the surgeon's experience. A near-infrared pH-responsive fluorogenic dye, CypH-11, was designed to be used as a sensitive cancer spray to highlight cancerous tissues during surgical operations, minimizing the surgeon's subjective judgment. CypH-11, pKa 6.0, emits almost no fluorescence at neutral pH but fluoresces brightly in an acidic environment, a ubiquitous consequence of cancer cell proliferation. After topical application, CypH-11 was absorbed quickly, and its fluorescence signal in the cancerous tissue was developed within a minute. The signal-to-background ratio was 1.3 and 1.5 at 1 and 10 min, respectively. The fluorogenic property and near-instant signal development capability enable the "spray-and-see" concept. This fast-acting CypH-11 spray could be a handy and effective tool for fluorescence-guided surgery, identifying small cancerous lesions in real time for optimal resection without systemic toxicity.
Collapse
Affiliation(s)
- Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Myung Shin Han
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Zhenhua Shen
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Brian D. Gray
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania 19380, United States
| | - Koon Y. Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania 19380, United States
| | - Jianguang Wang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
6
|
|
7
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
8
|
Kim SY, Podder A, Lee H, Cho YJ, Han EH, Khatun S, Sessler JL, Hong KS, Bhuniya S. Self-assembled amphiphilic fluorescent probe: detecting pH-fluctuations within cancer cells and tumour tissues. Chem Sci 2020; 11:9875-9883. [PMID: 34094247 PMCID: PMC8162098 DOI: 10.1039/d0sc03795h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/28/2020] [Indexed: 12/26/2022] Open
Abstract
Abnormal anaerobic metabolism leads to a lowering of the pH of many tumours, both within specific intracellular organelles and in the surrounding extracellular regions. Information relating to pH-fluctuations in cells and tissues could aid in the identification of neoplastic lesions and in understanding the determinants of carcinogenesis. Here we report an amphiphilic fluorescent pH probe (CS-1) that, as a result of its temporal motion, provides pH-related information in cancer cell membranes and selected intracellular organelles without the need for specific tumour targeting. Time-dependent cell imaging studies reveal that CS-1 localizes within the cancer cell-membrane about 20 min post-incubation. This is followed by migration to the lysosomes at 30 min before being taken up in the mitochondria after about 60 min. Probe CS-1 can selectively label cancer cells and 3D cancer spheroids and be readily observed using the green fluorescence channel (λ em = 532 nm). In contrast, CS-1 only labels normal cells marginally, with relatively low Pearson's correlation coefficients being found when co-incubated with standard intracellular organelle probes. Both in vivo and ex vivo experiments provide support for the suggestion that CS-1 acts as a fluorescent label for the periphery of tumours, an effect ascribed to proton-induced aggregation. A much lower response is seen for muscle and liver. Based on the present results, we propose that sensors such as CS-1 may have a role to play in the clinical and pathological detection of tumour tissues or serve as guiding aids for surgery.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute Cheongju 28119 Korea
| | - Arup Podder
- Amrita Centre for Industrial Research & Innovation, Amrita Vishwa Vidyapeetham Ettimadai Coimbatore 641-112 India
| | - Hyunseung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute Cheongju 28119 Korea
| | - Youn-Joo Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute Cheongju 28119 Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Korea
| | - Eun Hee Han
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute Cheongju 28119 Korea
| | - Sabina Khatun
- Amrita Centre for Industrial Research & Innovation, Amrita Vishwa Vidyapeetham Ettimadai Coimbatore 641-112 India
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712-1224 USA
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute Cheongju 28119 Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Korea
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation, Amrita Vishwa Vidyapeetham Ettimadai Coimbatore 641-112 India
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University Kolkata 700-091 India
| |
Collapse
|
9
|
Mengji R, Acharya C, Vangala V, Jana A. A lysosome-specific near-infrared fluorescent probe for in vitro cancer cell detection and non-invasive in vivo imaging. Chem Commun (Camb) 2019; 55:14182-14185. [PMID: 31701969 DOI: 10.1039/c9cc07322a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Near-infrared (NIR) fluorescent probes have been developed as potential bio-materials having profound applications in diagnosis and clinical practice. Herein, we wish to disclose a highly photostable ultra-bright NIR probe for the specific detection of lysosomes in numerous cell lines. Furthermore, the applicability of the developed NIR probe was evaluated for in vivo imaging.
Collapse
Affiliation(s)
- Rakesh Mengji
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chiranjit Acharya
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Venugopal Vangala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avijit Jana
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India and Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| |
Collapse
|
10
|
Mai H, Wang Y, Li S, Jia R, Li S, Peng Q, Xie Y, Hu X, Wu S. A pH-sensitive near-infrared fluorescent probe with alkaline pKa for chronic wound monitoring in diabetic mice. Chem Commun (Camb) 2019; 55:7374-7377. [DOI: 10.1039/c9cc02289a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An alkaline pH-sensitive near-infrared fluorescent probe can monitor pH changes in the course of chronic wound development in mice.
Collapse
Affiliation(s)
- Hengtang Mai
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Yu Wang
- Department of Orthopaedic Trauma and Microsurgy
- Zhongnan Hospital of Wuhan University
- Wuhan
- China
| | - Shuang Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Ruizhen Jia
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Sixian Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Qian Peng
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Yan Xie
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Xiang Hu
- Department of Orthopaedic Trauma and Microsurgy
- Zhongnan Hospital of Wuhan University
- Wuhan
- China
| | - Song Wu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|
11
|
Dutta A, Goswami U, Chattopadhyay A. Probing Cancer Cells through Intracellular Aggregation-Induced Emission Kinetic Rate of Copper Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19459-19472. [PMID: 29775047 DOI: 10.1021/acsami.8b05160] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
pH-responsive luminescent copper nanoclusters (Cu NCs) with aggregation-induced emission (AIE) characteristics have been synthesized. Upon internalization into living cells, the NCs displayed a cellular pH environment-dependent luminescence change with orange-red emission at pHi 4.5, whereas bright green emission was observed over time at pHi 7.4, through their AIE attributes. Furthermore, the intracellular AIE kinetics of the NC probe was measured in MCF-7 cells and compared to that of HEK-293 cells. Intriguingly, the intracellular rate constant value derived for AIE kinetics in MCF-7 cells was found to be 3-fold higher than that in HEK-293 cell lines, whereas the value was 2-fold higher than that observed in aqueous medium. This provided a new platform to study different cell lines based on intracellular AIE in living cells, with additional potential for future applications in cellular imaging, diagnostics, and disease detection.
Collapse
|
12
|
Jing T, Yan L. pH-Responsive dye with dual-state emission in both visible and near infrared regions. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9221-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Recent advances in activatable fluorescence imaging probes for tumor imaging. Drug Discov Today 2017; 22:1367-1374. [DOI: 10.1016/j.drudis.2017.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/22/2017] [Accepted: 04/12/2017] [Indexed: 02/04/2023]
|
14
|
Hundshammer C, Düwel S, Köcher SS, Gersch M, Feuerecker B, Scheurer C, Haase A, Glaser SJ, Schwaiger M, Schilling F. Deuteration of Hyperpolarized 13
C-Labeled Zymonic Acid Enables Sensitivity-Enhanced Dynamic MRI of pH. Chemphyschem 2017; 18:2422-2425. [DOI: 10.1002/cphc.201700779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Christian Hundshammer
- Department of Nuclear Medicine; Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
| | - Stephan Düwel
- Department of Nuclear Medicine; Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
- Institute of Medical Engineering; Technical University of Munich; Boltzmannstr. 11 85748 Garching Germany
| | - Simone S. Köcher
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
- Institute of Energy and Climate Research (IEK-9); Forschungszentrum Jülich, Ostring O10 52425 Jülich Germany
| | - Malte Gersch
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
| | - Benedikt Feuerecker
- Department of Nuclear Medicine; Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
| | - Christoph Scheurer
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
| | - Axel Haase
- Institute of Medical Engineering; Technical University of Munich; Boltzmannstr. 11 85748 Garching Germany
| | - Steffen J. Glaser
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine; Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
| | - Franz Schilling
- Department of Nuclear Medicine; Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
| |
Collapse
|
15
|
Ping J, Blum JE, Vishnubhotla R, Vrudhula A, Naylor CH, Gao Z, Saven JG, Johnson ATC. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700564. [PMID: 28612484 PMCID: PMC5683177 DOI: 10.1002/smll.201700564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/16/2017] [Indexed: 05/22/2023]
Abstract
Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (<5 s), very-low-power (femtowatt) detection of the pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (<20 s) response to pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH.
Collapse
Affiliation(s)
- Jinglei Ping
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacquelyn E Blum
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramya Vishnubhotla
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amey Vrudhula
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carl H Naylor
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhaoli Gao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Jing T, Yan L. pH-Triggered Disaggregation-Induced Emission (DIE) probe for sensoring minor-pH changes in near infrared fluorescence region. Talanta 2017; 170:185-192. [DOI: 10.1016/j.talanta.2017.03.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
17
|
Cheng M, Peng W, Hua P, Chen Z, Sheng J, Yang J, Wu Y. In situ formation of pH-responsive Prussian blue for photoacoustic imaging and photothermal therapy of cancer. RSC Adv 2017. [DOI: 10.1039/c7ra01879g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual pH-responsive theranostic agent reduces the background signal in photoacoustic imaging and non-specific heating of normal tissues in photothermal therapy.
Collapse
Affiliation(s)
- Ming Cheng
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| | - Wei Peng
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| | - Peng Hua
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| | - Zhengrong Chen
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| | - Jia Sheng
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| | - Juan Yang
- Sanitation & Environment Technology Institute
- Soochow University
- Suzhou 215123
- China
| | - Yongyou Wu
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| |
Collapse
|
18
|
Xiong H, Kos P, Yan Y, Zhou K, Miller JB, Elkassih S, Siegwart DJ. Activatable Water-Soluble Probes Enhance Tumor Imaging by Responding to Dysregulated pH and Exhibiting High Tumor-to-Liver Fluorescence Emission Contrast. Bioconjug Chem 2016; 27:1737-44. [PMID: 27285307 DOI: 10.1021/acs.bioconjchem.6b00242] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dysregulated pH has been recognized as a universal tumor microenvironment signature that can delineate tumors from normal tissues. Existing fluorescent probes that activate in response to pH are hindered by either fast clearance (in the case of small molecules) or high liver background emission (in the case of large particles). There remains a need to design water-soluble, long circulating, pH-responsive nanoprobes with high tumor-to-liver contrast. Herein, we report a modular chemical strategy to create acidic pH-sensitive and water-soluble fluorescent probes for high in vivo tumor detection and minimal liver activation. A combination of a modified Knoevenagel reaction and PEGylation yielded a series of NIR BODIPY fluorophores with tunable pKas, high quantum yield, and optimal orbital energies to enable photoinduced electron transfer (PeT) activation in response to pH. After intravenous administration, Probe 5c localized to tumors and provided excellent tumor-to-liver contrast (apparent T/L = 3) because it minimally activates in the liver. This phenomenon was further confirmed by direct ex vivo imaging experiments on harvested organs. Because no targeting ligands were required, we believe that this report introduces a versatile strategy to directly synthesize soluble probes with broad potential utility including fluorescence-based image-guided surgery, cancer diagnosis, and theranostic nanomedicine.
Collapse
Affiliation(s)
- Hu Xiong
- Simmons Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Petra Kos
- Simmons Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Yunfeng Yan
- Simmons Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Kejin Zhou
- Simmons Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Jason B Miller
- Simmons Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Sussana Elkassih
- Simmons Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Daniel J Siegwart
- Simmons Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| |
Collapse
|
19
|
Lee C, Lee S, Thao LQ, Hwang HS, Kim JO, Lee ES, Oh KT, Shin BS, Choi HG, Youn YS. An albumin nanocomplex-based endosomal pH-activatable on/off probe system. Colloids Surf B Biointerfaces 2016; 144:327-334. [PMID: 27108210 DOI: 10.1016/j.colsurfb.2016.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/04/2016] [Accepted: 04/10/2016] [Indexed: 11/18/2022]
Abstract
Albumin has gained considerable interest as a material for fabricating nanoparticulate systems due to its biomedical advantages, such as biocompatibility and chemical functionality. Here, we report a new pH-sensitive albumin nanocomplex prototype with a zinc-imidazole coordination bond. Albumin was conjugated with 1-(3-aminopropyl)imidazole and mPEG10kDa-NHS, and the resulting albumin conjugate (PBI) was then modified with either Cy5.5 or BHQ-3. The newly formed albumin nanocomplex (C/BQ-PBI Zn NCs: ∼116nm) system was facilely self-assembled around pH 7.4 in the presence of Zn(2+), but it quickly disassembled in an acidic environment (∼pH 5.0). Based on this pH-sensitivity, C/BQ-PBI Zn NCs emitted strong near-infrared fluorescence and released Zn(2+), turning "off" at pH ∼7.4 (e.g., plasma) and "on" at pH ∼5.0 (e.g., endo/lysosomes in tumor cells) on account of fluorescence resonance energy transfer. C/BQ-PBI Zn NCs displayed significant cytotoxicity due to an increase in cellular Zn(2+) in response to endosomal pH (∼5.0) in breast cancer MCF-7 cells and lung adenocarcinoma A549 cells. Particularly, confocal laser scanning microscopic images showed a strong fluorescence signal caused by the disassembly of C/BQ-PBI Zn NCs in the endosomal region of MCF-7 cells. Based on these results, we believe that this albumin nanocomplex is an attractive biocompatible tumor targeting probe carrier for the theranostic purpose.
Collapse
Affiliation(s)
- Changkyu Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seunghyun Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Le Quang Thao
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ha Shin Hwang
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 38541, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Beom Soo Shin
- College of Pharmacy, Catholic University of Daegu, 330 Geumrak 1-ri, Hayang Eup, Gyeongsan si, Gyeongbuk 38430, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|