1
|
Cao S, Wei Y, Yao Z, Yue Y, Deng J, Xu H, Sheng W, Yu F, Liu P, Xiong A, Zeng H. A bibliometric and visualized analysis of nanoparticles in musculoskeletal diseases (from 2013 to 2023). Comput Biol Med 2024; 169:107867. [PMID: 38141451 DOI: 10.1016/j.compbiomed.2023.107867] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
As the pace of research on nanomedicine for musculoskeletal (MSK) diseases accelerates, there remains a lack of comprehensive analysis regarding the development trajectory, primary authors, and research focal points in this domain. Additionally, there's a need of detailed elucidation of potential research hotspots. The study gathered articles and reviews focusing on the utilization of nanoparticles (NPs) for MSK diseases published between 2013 and 2023, extracted from the Web of Science database. Bibliometric and visualization analyses were conducted using various tools such as VOSviewer, CiteSpace, Pajek, Scimago Graphica, and the R package. China, the USA, and India emerged as the key drivers in this research domain. Among the numerous institutions involved, Shanghai Jiao Tong University, Chinese Academy of Sciences, and Sichuan University exhibited the highest productivity levels. Vallet-Regi Maria emerged as the most prolific author in this field. International Journal of Nanomedicine accounted for the largest number of publications in this area. The top five disorders of utmost significance in this field include osteosarcoma, cartilage diseases, bone fractures, bone neoplasms, and joint diseases. These findings are instrumental in providing researchers with a comprehensive understanding of this domain and offer valuable perspectives for future investigations.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yihao Wei
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Zhi Yao
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yaohang Yue
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Jiapeng Deng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Huihui Xu
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Weibei Sheng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Fei Yu
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Peng Liu
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Ao Xiong
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Hui Zeng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Lin Q, Choyke PL, Sato N. Visualizing vasculature and its response to therapy in the tumor microenvironment. Theranostics 2023; 13:5223-5246. [PMID: 37908739 PMCID: PMC10614675 DOI: 10.7150/thno.84947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor vasculature plays a critical role in the progression and metastasis of tumors, antitumor immunity, drug delivery, and resistance to therapies. The morphological and functional changes of tumor vasculature in response to therapy take place in a spatiotemporal-dependent manner, which can be predictive of treatment outcomes. Dynamic monitoring of intratumor vasculature contributes to an improved understanding of the mechanisms of action of specific therapies or reasons for treatment failure, leading to therapy optimization. There is a rich history of methods used to image the vasculature. This review describes recent advances in imaging technologies to visualize the tumor vasculature, with a focus on enhanced intravital imaging techniques and tumor window models. We summarize new insights on spatial-temporal vascular responses to various therapies, including changes in vascular perfusion and permeability and immune-vascular crosstalk, obtained from intravital imaging. Finally, we briefly discuss the clinical applications of intravital imaging techniques.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Cooley MB, Wulftange WJ, Wegierak D, Goreke U, Abenojar EC, Gurkan UA, Exner AA. Real-time imaging of nanobubble ultrasound contrast agent flow, extravasation, and diffusion through an extracellular matrix using a microfluidic model. LAB ON A CHIP 2023; 23:3453-3466. [PMID: 37424286 PMCID: PMC11684791 DOI: 10.1039/d3lc00514c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Lipid shell-stabilized nanoparticles with a perfluorocarbon gas-core, or nanobubbles, have recently attracted attention as a new contrast agent for molecular ultrasound imaging and image-guided therapy. Due to their small size (∼275 nm diameter) and flexible shell, nanobubbles have been shown to extravasate through hyperpermeable vasculature (e.g., in tumors). However, little is known about the dynamics and depth of extravasation of intact, acoustically active nanobubbles. Accordingly, in this work, we developed a microfluidic chip with a lumen and extracellular matrix (ECM) and imaging method that allows real-time imaging and characterization of the extravasation process with high-frequency ultrasound. The microfluidic device has a lumen and is surrounded by an extracellular matrix with tunable porosity. The combination of ultrasound imaging and the microfluidic chip advantageously produces real-time images of the entire length and depth of the matrix. This captures the matrix heterogeneity, offering advantages over other imaging techniques with smaller fields of view. Results from this study show that nanobubbles diffuse through a 1.3 μm pore size (2 mg mL-1) collagen I matrix 25× faster with a penetration depth that was 0.19 mm deeper than a 3.7 μm (4 mg mL-1) matrix. In the 3.7 μm pore size matrix, nanobubbles diffused 92× faster than large nanobubbles (∼875 nm diameter). Decorrelation time analysis was successfully used to differentiate flowing and extra-luminally diffusing nanobubbles. In this work, we show for the first time that combination of an ultrasound-capable microfluidic chip and real-time imaging provided valuable insight into spatiotemporal nanoparticle movement through a heterogeneous extracellular matrix. This work could help accurately predict parameters (e.g., injection dosage) that improve translation of nanoparticles from in vitro to in vivo environments.
Collapse
Affiliation(s)
- Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - William J Wulftange
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Dana Wegierak
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Eric C Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Umut A Gurkan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
4
|
Li G, Chen T, Dahlman J, Eniola‐Adefeso L, Ghiran IC, Kurre P, Lam WA, Lang JK, Marbán E, Martín P, Momma S, Moos M, Nelson DJ, Raffai RL, Ren X, Sluijter JPG, Stott SL, Vunjak‐Novakovic G, Walker ND, Wang Z, Witwer KW, Yang PC, Lundberg MS, Ochocinska MJ, Wong R, Zhou G, Chan SY, Das S, Sundd P. Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases. J Extracell Vesicles 2023; 12:e12305. [PMID: 36775986 PMCID: PMC9923045 DOI: 10.1002/jev2.12305] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/19/2022] [Accepted: 01/09/2022] [Indexed: 02/14/2023] Open
Abstract
Extracellular vesicles (EVs) carry diverse bioactive components including nucleic acids, proteins, lipids and metabolites that play versatile roles in intercellular and interorgan communication. The capability to modulate their stability, tissue-specific targeting and cargo render EVs as promising nanotherapeutics for treating heart, lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and heterogeneity pose significant challenges in their clinical application as diagnostics or therapeutics for HLBS diseases. To address these challenges, a strategic workshop with multidisciplinary experts in EV biology and U.S. Food and Drug Administration (USFDA) officials was convened by the National Heart, Lung and Blood Institute. The presentations and discussions were focused on summarizing the current state of science and technology for engineering therapeutic EVs for HLBS diseases, identifying critical knowledge gaps and regulatory challenges and suggesting potential solutions to promulgate translation of therapeutic EVs to the clinic. Benchmarks to meet the critical quality attributes set by the USFDA for other cell-based therapeutics were discussed. Development of novel strategies and approaches for scaling-up EV production and the quality control/quality analysis (QC/QA) of EV-based therapeutics were recognized as the necessary milestones for future investigations.
Collapse
Affiliation(s)
- Guoping Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Tianji Chen
- Department of Pediatrics, College of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - James Dahlman
- Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgiaUSA
| | - Lola Eniola‐Adefeso
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Ionita C. Ghiran
- Department of Anesthesia and Pain MedicineBeth Israel Deaconess Medical Center, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Peter Kurre
- Children's Hospital of Philadelphia, Comprehensive Bone Marrow Failure Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Department of PediatricsEmory School of MedicineAflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University and Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Jennifer K. Lang
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical SciencesVeterans Affairs Western New York Healthcare SystemBuffaloNew YorkUSA
| | - Eduardo Marbán
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Stefan Momma
- Institute of Neurology (Edinger Institute)University HospitalGoethe UniversityFrankfurt am MainGermany
| | - Malcolm Moos
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and ResearchUnited States Food and Drug AdministrationSilver SpringMarylandUSA
| | - Deborah J. Nelson
- Department of Pharmacological and Physiological SciencesThe University of ChicagoChicagoIllinoisUSA
| | - Robert L. Raffai
- Department of Veterans Affairs, Surgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Department of Surgery, Division of Vascular and Endovascular SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Xi Ren
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Joost P. G. Sluijter
- Department of Experimental Cardiology, Circulatory Health LaboratoryRegenerative Medicine Centre, UMC Utrecht, University UtrechtUtrechtThe Netherlands
| | - Shannon L. Stott
- Massachusetts General Hospital Cancer Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Gordana Vunjak‐Novakovic
- Department of Biomedical Engineering, Department of MedicineColumbia UniversityNew YorkNew YorkUSA
| | - Nykia D. Walker
- Department of Biological SciencesUniversity of Maryland Baltimore CountyBaltimoreMarylandUSA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashingtonUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Department of Neurology and Neurosurgeryand The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Phillip C. Yang
- Division of Cardiovascular Medicine, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Martha S. Lundberg
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Margaret J. Ochocinska
- Division of Blood Diseases and Resources, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Renee Wong
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Guofei Zhou
- Division of Lung Diseases, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Cardiology and Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Saumya Das
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Pulmonary Allergy and Critical Care Medicine and Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Simple and Robust Intravital Microscopy Procedures in Hybrid TIE2GFP-BALB/c Transgenic Mice. Mol Imaging Biol 2021; 22:486-493. [PMID: 31650483 DOI: 10.1007/s11307-019-01442-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE The endeavor of deciphering intricate phenomena within the field of molecular medicine dictates the necessity to investigate tumor/disease microenvironment real-time on cellular level. We, hereby, design simple and robust intravital microscopy strategies, which can be used to elucidate cellular or molecular interactions in a fluorescent mouse model. PROCEDURES We crossbred transgenic TIE2GFP mice with nude BALB/c mice, allowing the breeding of immunocompetent and immunodeficient mouse models expressing green fluorescent protein (GFP) in vascular endothelium. Then, we surgically exposed various tissues of interest to perform intravital microscopy. RESULTS By utilizing simple tissue preparation procedures and confocal or two-photon microscopy, we produced high-resolution static snapshots, dynamic sequences, and 3D reconstructions of orthotopically grown mammary tumor, skin inflammation, brain, and muscle. The homogenous detection of GFP expressed by endothelial cells and a combination of fluorescence agents enabled landmarking of tumor microenvironment and precise molecular tagging. CONCLUSION Simple intravital microscopy procedures on TIE2GFP mice allowed a real-time multi-color visualization of tissue microenvironment, underlining that robust microscopy strategies are relatively simple and can be readily available for many tissues of interest.
Collapse
|
6
|
Vishnevskiy DA, Garanina AS, Chernysheva AA, Chekhonin VP, Naumenko VA. Neutrophil and Nanoparticles Delivery to Tumor: Is It Going to Carry That Weight? Adv Healthc Mater 2021; 10:e2002071. [PMID: 33734620 DOI: 10.1002/adhm.202002071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/02/2021] [Indexed: 12/15/2022]
Abstract
The application of cell carriers for transporting nanodrugs to the tumor draws much attention as the alternative to the passive drug delivery. In this concept, the neutrophil (NΦ) is of special interest as this cell is able to uptake nanoparticles (NPs) and cross the vascular barrier in response to tumor signaling. There is a growing body of literature describing NP-NΦ interactions in vitro and in vivo that demonstrates the opportunity of using these cells to improve the efficacy of cancer therapy. However, a number of conceptual and technical issues need to be resolved for translating the technology into clinics. The current review summarizes the recent advances and challenges associated with NP-NΦ interactions, with the special focus on the complex interplay between the NP internalization pathways and the modulation of NΦ activity, and its potential consequences for nanodrug delivery.
Collapse
Affiliation(s)
- Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
- N. I Pirogov Russian National Research Medical University Ulitsa Ostrovityanova, 1 Moscow 117997 Russia
| | - Anastasiia S. Garanina
- National University of Science and Technology (MISIS) Leninskiy Prospekt, 4 Moscow 119049 Russia
| | - Anastasia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
- N. I Pirogov Russian National Research Medical University Ulitsa Ostrovityanova, 1 Moscow 117997 Russia
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
| |
Collapse
|
7
|
Alizadeh-Tabrizi N, Hall S, Lehmann C. Intravital Imaging of Pulmonary Immune Response in Inflammation and Infection. Front Cell Dev Biol 2021; 8:620471. [PMID: 33520993 PMCID: PMC7843704 DOI: 10.3389/fcell.2020.620471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022] Open
Abstract
Intravital microscopy (IVM) is a unique imaging method providing insights in cellular functions and interactions in real-time, without the need for tissue extraction from the body. IVM of the lungs has specific challenges such as restricted organ accessibility, respiratory movements, and limited penetration depth. Various surgical approaches and microscopic setups have been adapted in order to overcome these challenges. Among others, these include the development of suction stabilized lung windows and the use of more advanced optical techniques. Consequently, lung IVM has uncovered mechanisms of leukocyte recruitment and function in several models of pulmonary inflammation and infection. This review focuses on bacterial pneumonia, aspiration pneumonia, sepsis-induced acute lung Injury, and cystic fibrosis, as examples of lung inflammation and infection. In addition, critical details of intravital imaging techniques of the lungs are discussed.
Collapse
Affiliation(s)
| | - Stefan Hall
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Christian Lehmann
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Wang H, Li L, Li Y, Li Y, Sha Y, Wen S, You Q, Liu L, Shi M, Zhou H. Intravital imaging of interactions between iNKT and kupffer cells to clear free lipids during steatohepatitis. Theranostics 2021; 11:2149-2169. [PMID: 33500717 PMCID: PMC7797696 DOI: 10.7150/thno.51369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Invariant natural killer T (iNKT) cells and Kupffer cells represent major hepatic populations of innate immune cells. However, their roles in steatohepatitis remain poorly understood. To elucidate their functions in steatohepatitis development, real-time, in vivo analysis is necessary to understand the pathophysiological events in the dynamic interactions between them during diet-induced steatohepatitis. Methods: We used a steatohepatitis animal model induced by a methionine-choline-deficient (MCD) diet. Multi-photon confocal live imaging and conventional experimental techniques were employed to investigate the hepatic pathological microenvironment of iNKT and Kupffer cells, interactions between them, and the biological effects of these interactions in steatohepatitis. Results: We found that iNKT cells were recruited and aggregated into small clusters and interacted dynamically with Kupffer cells in the early stage of steatohepatitis. Most significantly, the iNKT cells in the cluster cleared free lipids released by necrotic hepatocytes and presented a non-classical activation state with high IFN-γ expression. Furthermore, the Kupffer cells in the cell cluster were polarized to type M1. The transcriptome sequencing of iNKT cells showed upregulation of genes related to phagocytosis and lipid processing. Adoptive transfer of iNKT cells to Jα18-/- mice showed that iNKT and Kupffer cell clusters were essential for balancing the liver and peripheral lipid levels and inhibiting liver fibrosis development. Conclusions: Our study identified an essential role for dynamic interactions between iNKT cells and Kupffer cells in promoting lipid phagocytosis and clearance by iNKT cells during early liver steatohepatitis. Therefore, modulating iNKT cells is a potential therapeutic strategy for early steatohepatitis.
Collapse
|
9
|
Neutrophils and Macrophages as Targets for Development of Nanotherapeutics in Inflammatory Diseases. Pharmaceutics 2020; 12:pharmaceutics12121222. [PMID: 33348630 PMCID: PMC7766591 DOI: 10.3390/pharmaceutics12121222] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Neutrophils and macrophages are major components of innate systems, playing central roles in inflammation responses to infections and tissue injury. If they are out of control, inflammation responses can cause the pathogenesis of a wide range of diseases, such as inflammatory disorders and autoimmune diseases. Precisely regulating the functions of neutrophils and macrophages in vivo is a potential strategy to develop immunotherapies to treat inflammatory diseases. Advances in nanotechnology have enabled us to design nanoparticles capable of targeting neutrophils or macrophages in vivo. This review discusses the current status of how nanoparticles specifically target neutrophils or macrophages and how they manipulate leukocyte functions to inhibit their activation for inflammation resolution or to restore their defense ability for pathogen clearance. Finally, we present a novel concept of hijacking leukocytes to deliver nanotherapeutics across the blood vessel barrier. This review highlights the challenges and opportunities in developing nanotherapeutics to target leukocytes for improved treatment of inflammatory diseases.
Collapse
|
10
|
Nanomedicine for Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21207600. [PMID: 33066616 PMCID: PMC7590220 DOI: 10.3390/ijms21207600] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is a severe brain disease leading to disability and death. Ischemic stroke dominates in stroke cases, and there are no effective therapies in clinic, partly due to the challenges in delivering therapeutics to ischemic sites in the brain. This review is focused on the current knowledge of pathogenesis in ischemic stroke, and its potential therapies and diagnosis. Furthermore, we present recent advances in developments of nanoparticle-based therapeutics for improved treatment of ischemic stroke using polymeric NPs, liposomes and cell-derived nanovesicles. We also address several critical questions in ischemic stroke, such as understanding how nanoparticles cross the blood brain barrier and developing in vivo imaging technologies to address this critical question. Finally, we discuss new opportunities in developing novel therapeutics by targeting activated brain endothelium and inflammatory neutrophils to improve the current therapies for ischemic stroke.
Collapse
|
11
|
Lin Q, Fathi P, Chen X. Nanoparticle delivery in vivo: A fresh look from intravital imaging. EBioMedicine 2020; 59:102958. [PMID: 32853986 PMCID: PMC7452383 DOI: 10.1016/j.ebiom.2020.102958] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Nanomedicine has proven promising in preclinical studies. However, only few formulations have been successfully translated to clinical use. A thorough understanding of how nanoparticles interact with cells in vivo is essential to accelerate the clinical translation of nanomedicine. Intravital imaging is a crucial tool to reveal the mechanisms of nanoparticle transport in vivo, allowing for the development of new strategies for nanomaterial design. Here, we first review the most recent progress in using intravital imaging to answer fundamental questions about nanoparticle delivery in vivo. We then elaborate on how nanoparticles interact with different cell types and how such interactions determine the fate of nanoparticles in vivo. Lastly, we discuss ways in which the use of intravital imaging can be expanded in the future to facilitate the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Qiaoya Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parinaz Fathi
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Boltersdorf T, Ansari J, Senchenkova EY, Groeper J, Pajonczyk D, Vital SA, Kaur G, Alexander JS, Vogl T, Rescher U, Long NJ, Gavins FNE. Targeting of Formyl Peptide Receptor 2 for in vivo imaging of acute vascular inflammation. Theranostics 2020; 10:6599-6614. [PMID: 32550892 PMCID: PMC7295040 DOI: 10.7150/thno.44226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammatory conditions are associated with a variety of diseases and can significantly contribute to their pathophysiology. Neutrophils are recognised as key players in driving vascular inflammation and promoting inflammation resolution. As a result, neutrophils, and specifically their surface formyl peptide receptors (FPRs), are attractive targets for non-invasive visualization of inflammatory disease states and studying mechanistic details of the process. Methods: A small-molecule Formyl Peptide Receptor 2 (FPR2/ALX)-targeted compound was combined with two rhodamine-derived fluorescent tags to form firstly, a targeted probe (Rho-pip-C1) and secondly a targeted, pH-responsive probe (Rho-NH-C1) for in vivo applications. We tested internalization, toxicity and functional interactions with neutrophils in vitro for both compounds, as well as the fluorescence switching response of Rho-NH-C1 to neutrophil activation. Finally, in vivo imaging (fluorescent intravital microscopy [IVM]) and therapeutic efficacy studies were performed in an inflammatory mouse model. Results: In vitro studies showed that the compounds bound to human neutrophils via FPR2/ALX without causing internalization at relevant concentrations. Additionally, the compounds did not cause toxicity or affect neutrophil functional responses (e.g. chemotaxis or transmigration). In vivo studies using IVM showed Rho-pip-C1 bound to activated neutrophils in a model of vascular inflammation. The pH-sensitive (“switchable”) version termed Rho-NH-C1 validated these findings, showing fluorescent activity only in inflammatory conditions. Conclusions: These results indicate a viable design of fluorescent probes that have the ability to detect inflammatory events by targeting activated neutrophils.
Collapse
|
13
|
Gao J, Dong X, Wang Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods 2020; 177:114-125. [PMID: 31790730 PMCID: PMC7198327 DOI: 10.1016/j.ymeth.2019.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs), derived from cell membranes, demonstrate the potential to be excellent therapeutics and drug carriers. Although EVs are promising, the process to develop high-quality and scalable EVs for their translation is demanding. Within this research, we analyzed the production of EVs, their purification and their post-bioengineering, and we also discussed the biomedical applications of EVs. We focus on the developments of methods in producing EVs including biological, physical, and chemical approaches. Furthermore, we discuss the challenges and the opportunities that arose when we translated EVs in clinic. With the advancements in nanotechnology and immunology, genetically engineering EVs is a new frontier in developing new therapeutics in order to tailor to individuals and different disease stages in treatments of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
14
|
Naumenko VA, Vlasova KY, Garanina AS, Melnikov PA, Potashnikova DM, Vishnevskiy DA, Vodopyanov SS, Chekhonin VP, Abakumov MA, Majouga AG. Extravasating Neutrophils Open Vascular Barrier and Improve Liposomes Delivery to Tumors. ACS NANO 2019; 13:12599-12612. [PMID: 31609576 DOI: 10.1021/acsnano.9b03848] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor-host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy.
Collapse
Affiliation(s)
- Victor A Naumenko
- National University of Science and Technology (MISIS) , Moscow 119049 , Russia
| | - Kseniya Yu Vlasova
- School of Chemistry , M. V. Lomonosov Moscow State University , Moscow 119991 , Russia
| | | | - Pavel A Melnikov
- Department of Medical Nanobiotechnology , N. I. Pirogov Russian National Research Medical University , Moscow 117997 , Russia
| | - Daria M Potashnikova
- School of Biology, Department of Cell Biology and Histology , M. V. Lomonosov Moscow State University , Moscow 119234 , Russia
| | - Daniil A Vishnevskiy
- Department of Medical Nanobiotechnology , N. I. Pirogov Russian National Research Medical University , Moscow 117997 , Russia
| | - Stepan S Vodopyanov
- National University of Science and Technology (MISIS) , Moscow 119049 , Russia
| | - Vladimir P Chekhonin
- Department of Medical Nanobiotechnology , N. I. Pirogov Russian National Research Medical University , Moscow 117997 , Russia
| | - Maxim A Abakumov
- National University of Science and Technology (MISIS) , Moscow 119049 , Russia
- Department of Medical Nanobiotechnology , N. I. Pirogov Russian National Research Medical University , Moscow 117997 , Russia
| | - Alexander G Majouga
- National University of Science and Technology (MISIS) , Moscow 119049 , Russia
- D. Mendeleev University of Chemical Technology of Russia , Moscow 125047 , Russia
| |
Collapse
|
15
|
Wang S, Liu J, Goh CC, Ng LG, Liu B. NIR-II-Excited Intravital Two-Photon Microscopy Distinguishes Deep Cerebral and Tumor Vasculatures with an Ultrabright NIR-I AIE Luminogen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904447. [PMID: 31523869 DOI: 10.1002/adma.201904447] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Indexed: 05/26/2023]
Abstract
Intravital fluorescence imaging of vasculature morphology and dynamics in the brain and in tumors with large penetration depth and high signal-to-background ratio (SBR) is highly desirable for the study and theranostics of vascular-related diseases and cancers. Herein, a highly bright fluorophore (BTPETQ) with long-wavelength absorption and aggregation-induced near-infrared (NIR) emission (maximum at ≈700 nm) is designed for intravital two-photon fluorescence (2PF) imaging of a mouse brain and tumor vasculatures under NIR-II light (1200 nm) excitation. BTPETQ dots fabricated via nanoprecipitation show uniform size of around 42 nm and a high quantum yield of 19 ± 1% in aqueous media. The 2PF imaging of the mouse brain vasculatures labeled by BTPETQ dots reveals a 3D blood vessel network with an ultradeep depth of 924 µm. In addition, BTPETQ dots show enhanced 2PF in tumor vasculatures due to their unique leaky structures, which facilitates the differentiation of normal blood vessels from tumor vessels with high SBR in deep tumor tissues. Moreover, the extravasation and accumulation of BTPETQ dots in deep tumor (more than 900 µm) is visualized under NIR-II excitation. This study highlights the importance of developing NIR-II light excitable efficient NIR fluorophores for in vivo deep tissue and high contrast tumor imaging.
Collapse
Affiliation(s)
- Shaowei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jie Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211800, China
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
16
|
Dong X, Zhang CY, Jin G, Wang Z. Targeting of Nanotherapeutics to Infection Sites for Antimicrobial Therapy. ADVANCED THERAPEUTICS 2019; 2:1900095. [PMID: 33313384 PMCID: PMC7731920 DOI: 10.1002/adtp.201900095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 01/07/2023]
Abstract
Bacterial infections cause a wide range of host immune disorders, resulting in local and systemic tissue damage. Antibiotics are pharmacological interventions for treating bacterial infections, but increased antimicrobial resistance and the delayed development of new antibiotics have led to a major global health threat, the so-called "superbugs". Bacterial infections consist of two processes: pathogen invasion and host immune responses. Developing nanotherapeutics to target these two pathways may be effective for eliminating bacteria and restoring host homeostasis, thus possibly finding new treatments for bacterial infections. This review offers new approaches for developing nanotherapeutics based on the pathogenesis of infectious diseases. We have discussed how nanoparticles target infectious microenvironments (IMEs) and how they target phagocytes to deliver antibiotics to eliminate intracellular pathogens. We also review a new concept-host-directed therapy for bacterial infections, such as targeting immune cells for the delivery of anti-inflammatory agents and vaccine developments using bacterial membrane-derived nanovesicles. This review demonstrates the translational potential of nanomedicine for improving infectious disease treatments.
Collapse
Affiliation(s)
| | | | | | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, United States
| |
Collapse
|
17
|
Di Martino JS, Mondal C, Bravo-Cordero JJ. Textures of the tumour microenvironment. Essays Biochem 2019; 63:619-629. [PMID: 31654075 PMCID: PMC6839695 DOI: 10.1042/ebc20190019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
In this review, we present recent findings on the dynamic nature of the tumour microenvironment (TME) and how intravital microscopy studies have defined TME components in a spatiotemporal manner. Intravital microscopy has shed light into the nature of the TME, revealing structural details of both tumour cells and other TME co-habitants in vivo, how these cells communicate with each other, and how they are organized in three-dimensional space to orchestrate tumour growth, invasion, dissemination and metastasis. We will review different imaging tools, imaging reporters and fate-mapping strategies that have begun to uncover the complexity of the TME in vivo.
Collapse
Affiliation(s)
- Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| | - Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| |
Collapse
|
18
|
Pawłowska S, Kowalewski TA, Pierini F. Fibrous polymer nanomaterials for biomedical applications and their transport by fluids: an overview. SOFT MATTER 2018; 14:8421-8444. [PMID: 30339174 DOI: 10.1039/c8sm01269e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the past few decades, there has been strong interest in the development of new micro- and nanomaterials for biomedical applications. Their use in the form of capsules, particles or filaments suspended in body fluids is associated with conformational changes and hydrodynamic interactions responsible for their transport. The dynamics of fibres or other long objects in Poiseuille flow is one of the fundamental problems in a variety of biomedical contexts, such as mobility of proteins, dynamics of DNA or other biological polymers, cell movement, tissue engineering, and drug delivery. In this review, we discuss several important applications of micro and nanoobjects in this field and try to understand the problems of their transport in flow resulting from material-environment interactions in typical, crowded, and complex biological fluids. Our aim is to elucidate the relationship between the nano- and microscopic structures of elongated polymer particles and their flow properties, thus opening the possibility to design nanoobjects that can be efficiently transported by body fluids for targeted drug release or local tissue regeneration.
Collapse
Affiliation(s)
- S Pawłowska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
19
|
Dong X, Chu D, Wang Z. Neutrophil-mediated delivery of nanotherapeutics across blood vessel barrier. Ther Deliv 2018; 9:29-35. [PMID: 29216803 PMCID: PMC5753616 DOI: 10.4155/tde-2017-0081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Nanotherapeutics, nanoparticles (NPs) loaded with drugs, show the ability of tissue targeting, long circulation and low toxicity compared with free drugs. Endothelium lying the lumen of a blood vessel is a barrier to restrain tissue deposition of nanotherapeutics. Neutrophils, a type of white blood cells, migrate across endothelium during inflammation. There is an emerging concept that in situ targeting of neutrophils allows delivery of nanotherapeutics into deep tissues at disease sites. Here we summarize the recent advances in delivery of nanotherapeutics to inflammatory tissues or tumor microenvironments via neutrophil infiltration. The studies would shift the current paradigm of nanomedicine to biology-driven design of nanotherapeutics. [Formula: see text].
Collapse
Affiliation(s)
- Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99202, USA
| | - Dafeng Chu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99202, USA
| |
Collapse
|
20
|
Yurkin ST, Wang Z. Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery. Nanomedicine (Lond) 2017; 12:2007-2019. [PMID: 28745122 DOI: 10.2217/nnm-2017-0100] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biofunctionalization of nanoparticles (NPs) is an essential component in targeted drug delivery. However, current nanotechnology remains inadequate to imitate complex intercellular interactions existing in physiological conditions in human bodies. Emerging concepts have been explored to utilize human cells to generate cell membrane-formed NPs because cells retain inherent abilities to interact with human tissues compared with synthetic nanomaterials. Neutrophils, red blood cells (RBCs), platelets and monocytes have been employed to form therapeutic NPs to treat vascular disease and cancer, and these novel drug delivery platforms show the translation potential to improve patient quality of life. In this review, we will discuss the concept of cell membrane-formed NPs, the molecular mechanisms of their disease targeting and the potential of personalized nanomedicine.
Collapse
Affiliation(s)
- Svetlana T Yurkin
- College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| |
Collapse
|
21
|
Gao J, Wang S, Wang Z. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials 2017; 135:62-73. [PMID: 28494264 DOI: 10.1016/j.biomaterials.2017.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/16/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-formed compartments naturally secreted from cells, which are intercellular mediators regulating physiology and pathogenesis, therefore they could be a novel therapeutic carrier for targeted delivery. However, the translation of EVs is hindered by the heterogeneous composition, low yield, inefficient drug loading and unlikely scalability. Here we report a strategy to generate EVs using nitrogen cavitation (NC-EVs) that instantly disrupts neutrophils to form nanosized membrane vesicles. NC-EVs are similar to naturally secreted EVs (NS-EVs), but contain less subcellular organelles and nuclear acids. The production of NC-EVs was increased by 16 folds and is easy to scale up for clinical use compared to NS-EVs. To examine the usefulness of NC-EVs as a drug delivery platform, piceatannol (an anti-inflammation drug) was remotely loaded in NC-EVs via the pH gradient. We found that piceatannol-loaded NC-EVs dramatically alleviated acute lung inflammation/injury and sepsis induced by lipopolysaccharide (LPS). Our studies reveal that nitrogen cavitation is a novel approach to efficiently generate EVs from any cell type and could be exploited for personalized nanomedicine.
Collapse
Affiliation(s)
- Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99202, USA
| | - Sihan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
22
|
Gang H, Xie J. Light-Mediated Deep-Tissue Theranostics. Am J Cancer Res 2016; 6:2292-2294. [PMID: 27877234 PMCID: PMC5118594 DOI: 10.7150/thno.17634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/29/2022] Open
Abstract
This theme issue provides an overview on recent developments of light-mediated imaging and therapy approaches, with an emphasis on those that transcend the shallow tissue penetration dogma.
Collapse
|