1
|
Quintana J, Kang M, Hu H, Ng TSC, Wojtkiewicz GR, Scott E, Parangi S, Schuemann J, Weissleder R, Miller MA. Extended Pharmacokinetics Improve Site-Specific Prodrug Activation Using Radiation. ACS CENTRAL SCIENCE 2024; 10:1371-1382. [PMID: 39071065 PMCID: PMC11273447 DOI: 10.1021/acscentsci.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Radiotherapy is commonly used to treat cancer, and localized energy deposited by radiotherapy has the potential to chemically uncage prodrugs; however, it has been challenging to demonstrate prodrug activation that is both sustained in vivo and truly localized to tumors without affecting off-target tissues. To address this, we developed a series of novel phenyl-azide-caged, radiation-activated chemotherapy drug-conjugates alongside a computational framework for understanding corresponding pharmacokinetic and pharmacodynamic (PK/PD) behaviors. We especially focused on an albumin-bound prodrug of monomethyl auristatin E (MMAE) and found it blocked tumor growth in mice, delivered a 130-fold greater amount of activated drug to irradiated tumor versus unirradiated tissue, was 7.5-fold more efficient than a non albumin-bound prodrug, and showed no appreciable toxicity compared to free or cathepsin-activatable drugs. These data guided computational modeling of drug action, which indicated that extended pharmacokinetics can improve localized and cumulative drug activation, especially for payloads with low vascular permeability and diffusivity and particularly in patients receiving daily treatments of conventional radiotherapy for weeks. This work thus offers a quantitative PK/PD framework and proof-of-principle experimental demonstration of how extending prodrug circulation can improve its localized activity in vivo.
Collapse
Affiliation(s)
- Jeremy
M. Quintana
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mikyung Kang
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Huiyu Hu
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Thomas S. C. Ng
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Gregory R. Wojtkiewicz
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Ella Scott
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Sareh Parangi
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jan Schuemann
- Department
of Radiation Oncology, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Miles A. Miller
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
2
|
Yang FR, Li HL, Hu XW, Fu R, Li XR, Li HJ. Chinese Herbal Compound Xiaoliu Pingyi Recipe Inhibits the Growth of Lung Adenocarcinoma by Regulating the Tumor Vascular Microenvironment. Integr Cancer Ther 2024; 23:15347354241273962. [PMID: 39223822 PMCID: PMC11369880 DOI: 10.1177/15347354241273962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/23/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The traditional Chinese medicine (TCM) Xiaoliu Pingyi recipe (XLPYR) has been clinically used for several decades, demonstrating favorable therapeutic effects. However, the underlying regulatory mechanisms remain unclear. The aim of this study was to explore the anti-tumor effects of XLPYR and its regulatory role in the vascular microenvironment through in vivo and in vitro experiment. MATERIALS AND METHODS In the in vivo study, a C57BL/6J mouse model of lung adenocarcinoma (LUAD) allografts was established, and various interventions were administered for 14 days (Model group: administered normal saline via oral gavage; Pemetrexed (PEM) group: intraperitoneally injected with a solution of pemetrexed, once every 3d; XLPYR group: administered XLPYR via oral gavage; Combination (COMBI) group: received XLPYR via oral gavage simultaneously with intraperitoneal injection of pemetrexed solution). Tumor volume and weight were then compared among the groups. The impact of XLPYR on the tumor vascular microenvironment was assessed using immunohistochemistry staining. In the in vitro study, XLPYR-containing serum was prepared by oral administration to SD rats. The CCK-8 assay evaluated the effect of the serum on the proliferation of normal lung epithelial BEAS-2B cells and LUAD A549 cells, determining the optimal intervention concentrations. The cell migration and invasion abilities were evaluated using the wound-healing assay and Transwell assay, respectively. Finally, ELISA assay measured VEGF secretion levels in the LUAD cell supernatant, and RT-qPCR and Western Blot were employed to detect differences in HIF-1α, VEGFA, Ang-2, and PI3K/Akt mRNA and protein expression levels in both in vivo and in vitro experiments. RESULTS In the in vivo study, XLPYR significantly inhibited the growth of mice LUAD allografts, with enhanced anti-tumor effects observed with prolonged drug intervention. Immunohistochemistry staining revealed reduced MVD and increased pericyte coverage in all intervention groups. Regarding vascular function, FITC-Dextran extravasation in the tumor tissues of the Model group was significantly higher than in the intervention groups, particularly with lower extravasation in the COMBI group compared to the PEM group. In the in vitro study, XLPYR demonstrated a time- and concentration-dependent inhibitory effect on LUAD cells, and with greater sensitivity in inhibiting LUAD cells compared to BEAS-2B cells. The wound-healing assay and Transwell assay confirmed that XLPYR significantly suppressed the migration and invasion abilities of LUAD cells. ELISA experiments further revealed a significant decrease in VEGF expression in the supernatant of each intervention group. RT-qPCR and Western Blot results showed consistent findings between the in vivo and in vitro experiments. HIF-1α, VEGFA, and Ang-2 mRNA and protein expression levels were significantly downregulated in the PEM group, XLPYR group, and COMBI group. There were no significant differences in the expression of PI3K and Akt mRNA and total protein, but the expression levels of phosphorylated p-PI3K and p-Akt were notably downregulated. CONCLUSION XLPYR significantly inhibited C57BL/6J mouse LUAD allograft growth and improved the vascular microenvironment, thereby intervening in tumor angiogenesis and inducing vascular normalization. It suppressed LUAD cell proliferation, migration, and invasion, while reducing VEGF concentration in the cell supernatant. The regulatory mechanism may involve inhibiting PI3K/Akt protein phosphorylation and downregulating angiogenesis-related factors, such as HIF-1α, VEGF, and Ang-2.
Collapse
Affiliation(s)
- Fei-ran Yang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Hong-lin Li
- Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Xi-wen Hu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Rong Fu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xiu-rong Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Hui-jie Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Small molecule compound M12 reduces vascular permeability in obese mice via blocking endothelial TRPV4-Nox2 interaction. Acta Pharmacol Sin 2022; 43:1430-1440. [PMID: 34654876 PMCID: PMC9160247 DOI: 10.1038/s41401-021-00780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Transient receptor potential channel TRPV4 and nicotinamide adenine dinucleotide phosphate oxidase (Nox2) are involved in oxidative stress that increases endothelial permeability. It has been shown that obesity enhances the physical association of TRPV4 and Nox2, but the role of TRPV4-Nox2 association in obesity has not been clarified. In this study we investigated the function of TRPV4-Nox2 complex in reducing oxidative stress and regulating abnormal vascular permeability in obesity. Obesity was induced in mice by feeding a high-fat diet (HFD) for 14 weeks. The physical interaction between TRPV4 and Nox2 was measured using FRET, co-immunoprecipitation and GST pull-down assays. The functional interaction was measured by rhodamine phalloidin, CM-H2DCFDA in vitro, the fluorescent dye dihydroethidium (DHE) staining assay, and the Evans blue permeability assay in vivo. We demonstrated that TRPV4 physically and functionally associated with Nox2, and this physical association was enhanced in aorta of obese mice. Furthermore, we showed that interrupting TRPV4-Nox2 coupling by TRPV4 knockout, or by treatment with a specific Nox2 inhibitor Nox2 dstat or a specific TRPV4 inhibitor HC067046 significantly attenuated obesity-induced ROS overproduction in aortic endothelial cells, and reversed the abnormal endothelial cytoskeletal structure. In order to discover small molecules disrupting the over-coupling of TPRV4 and Nox2 in obesity, we performed molecular docking analysis and found that compound M12 modulated TRPV4-Nox2 association, reduced ROS production, and finally reversed disruption of the vascular barrier in obesity. Together, this study, for the first time, provides evidence for the TRPV4 physically interacting with Nox2. TRPV4-Nox2 complex is a potential drug target in improving oxidative stress and disruption of the vascular barrier in obesity. Compound M12 targeting TRPV4-Nox2 complex can improve vascular barrier function in obesity.
Collapse
|
4
|
Gao W, Hu H, Dai L, He M, Yuan H, Zhang H, Liao J, Wen B, Li Y, Palmisano M, Traore MDM, Zhou S, Sun D. Structure‒tissue exposure/selectivity relationship (STR) correlates with clinical efficacy/safety. Acta Pharm Sin B 2022; 12:2462-2478. [PMID: 35646532 PMCID: PMC9136610 DOI: 10.1016/j.apsb.2022.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
Drug optimization, which improves drug potency/specificity by structure‒activity relationship (SAR) and drug-like properties, is rigorously performed to select drug candidates for clinical trials. However, the current drug optimization may overlook the structure‒tissue exposure/selectivity-relationship (STR) in disease-targeted tissues vs. normal tissues, which may mislead the drug candidate selection and impact the balance of clinical efficacy/toxicity. In this study, we investigated the STR in correlation with observed clinical efficacy/toxicity using seven selective estrogen receptor modulators (SERMs) that have similar structures, same molecular target, and similar/different pharmacokinetics. The results showed that drug's plasma exposure was not correlated with drug's exposures in the target tissues (tumor, fat pad, bone, uterus), while tissue exposure/selectivity of SERMs was correlated with clinical efficacy/safety. Slight structure modifications of four SERMs did not change drug's plasma exposure but altered drug's tissue exposure/selectivity. Seven SERMs with high protein binding showed higher accumulation in tumors compared to surrounding normal tissues, which is likely due to tumor EPR effect of protein-bound drugs. These suggest that STR alters drug's tissue exposure/selectivity in disease-targeted tissues vs. normal tissues impacting clinical efficacy/toxicity. Drug optimization needs to balance the SAR and STR in selecting drug candidate for clinical trial to improve success of clinical drug development.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lipeng Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Bordeau BM, Abuqayyas L, Nguyen TD, Chen P, Balthasar JP. Development and Evaluation of Competitive Inhibitors of Trastuzumab-HER2 Binding to Bypass the Binding-Site Barrier. Front Pharmacol 2022; 13:837744. [PMID: 35250584 PMCID: PMC8895951 DOI: 10.3389/fphar.2022.837744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
Our group has developed and experimentally validated a strategy to increase antibody penetration in solid tumors through transient inhibition of antibody-antigen binding. In prior work, we demonstrated that 1HE, an anti-trastuzumab single domain antibody that transiently inhibits trastuzumab binding to HER2, increased the penetration of trastuzumab and increased the efficacy of ado-trastuzumab emtansine (T-DM1) in HER2+ xenograft bearing mice. In the present work, 1HE variants were developed using random mutagenesis and phage display to enable optimization of tumor penetration and efficacy of trastuzumab-based therapeutics. To guide the rational selection of a particular 1HE mutant for a specific trastuzumab-therapy, we developed a mechanistic pharmacokinetic (PK) model to predict within-tumor exposure of trastuzumab/T-DM1. A pharmacodynamic (PD) component was added to the model to predict the relationship between intratumor exposure to T-DM1 and the corresponding therapeutic effect in HER2+ xenografts. To demonstrate the utility of the competitive inhibition approach for immunotoxins, PK parameters specific for a recombinant immunotoxin were incorporated into the model structure. Dissociation half-lives for variants ranged from 1.1 h (for variant LG11) to 107.9 h (for variant HE10). Simulations predicted that 1HE co-administration can increase the tumor penetration of T-DM1, with inhibitors with longer trastuzumab binding half-lives relative to 1HE (15.5 h) further increasing T-DM1 penetration at the expense of total tumor uptake of T-DM1. The PK/PD model accurately predicted the response of NCI-N87 xenografts to treatment with T-DM1 or T-DM1 co-administered with 1HE. Model predictions indicate that the 1HE mutant HF9, with a trastuzumab binding half-life of 51.1 h, would be the optimal inhibitor for increasing T-DM1 efficacy with a modest extension in the median survival time relative to T-DM1 with 1HE. Model simulations predict that LG11 co-administration will dramatically increase immunotoxin penetration within all tumor regions. We expect that the mechanistic model structure and the wide range of inhibitors developed in this work will enable optimization of trastuzumab-cytotoxin penetration and efficacy in solid tumors.
Collapse
Affiliation(s)
| | | | | | | | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Sun Z, Tong G, Liu Y, Fan H, He W, Wang B, Xia S, He P. Dual Function of a in vivo Albumin-Labeling Tracer for Assessment of Blood Perfusion and Vascular Permeability in Peripheral Arterial Disease by PET. Front Cardiovasc Med 2022; 9:738076. [PMID: 35211521 PMCID: PMC8860820 DOI: 10.3389/fcvm.2022.738076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Peripheral arterial disease (PAD) leads to tissue ischemia in the extremities. Enhanced vascular permeability plays a critical role in targeted delivery of drugs for effective therapeutic angiogenesis and resultant blood perfusion recovery. However, optimal tracers for evaluating this process in PAD patients are lacking. At this time, we employed a novel in vivo albumin-labeling tracer of dual function, termed as 18F-NEB, to assess blood perfusion as well as vascular permeability by positron emission tomography (PET). Methods and Results After successful establishment of mouse hindlimb ischemia (HI) model, static PET imaging was performed 15 min and 2 h post injection (p.i.) of 18F-NEB at 1, 3, 5, 7, 10 and 14 days post-surgery respectively. Gradual recovery of blood supply was detected by PET scan 15 min p.i. and collaborated by serial Laser Doppler. In addition, the highest vascular permeability observed by high local uptake of 18F-NEB at 2 h p.i. was consistent with histological examinations. Furthermore, we quantitatively evaluated the effect of vascular endothelial growth factor (VEGF) stimulus on vascular permeability and blood perfusion by PET scan using 18F-NEB probe in HI model, which were also confirmed by immunohistological results. Conclusion The application of 18F-NEB probe alone by PET can successfully achieve dual imaging of blood perfusion as well as vascular permeability at different time points p.i. and monitor their responses to therapy in PAD model. The simple labeling approach and multipurpose feature suggest the great promise of using this imaging probe in theranostic applications for treating ischemic disease.
Collapse
Affiliation(s)
- Zhongchan Sun
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Cardiology, Ganzhou Municipal Hospital, Ganzhou, China
- *Correspondence: Zhongchan Sun
| | - Guang Tong
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Cardiac Surgery, Ganzhou Municipal Hospital, Ganzhou, China
| | - Yuanhui Liu
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hualin Fan
- School of Medicine, Guangdong Provincial People's Hospital, South China University of Technology, Guangzhou, China
| | - Weibin He
- School of Medicine, Guangdong Provincial People's Hospital, South China University of Technology, Guangzhou, China
| | - Bo Wang
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuang Xia
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, Guangdong Provincial People's Hospital, South China University of Technology, Guangzhou, China
- Pengcheng He
| |
Collapse
|
7
|
Majumder S, Islam MT, Righetti R. Estimation of Mechanical and Transport Parameters in Cancers Using Short Time Poroelastography. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:1900411. [PMID: 36147877 PMCID: PMC9484738 DOI: 10.1109/jtehm.2022.3198316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/03/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
Mechanical and transport properties of cancers such as Young's modulus (YM), Poisson's ratio (PR), and vascular permeability (VP) have great clinical importance in cancer diagnosis, prognosis, and treatment. However, non-invasive estimation of these parameters in vivo is challenged by many practical factors. Elasticity imaging methods, such as "poroelastography", require prolonged data acquisition, which can limit their clinical applicability. In this paper, we investigate a new method to perform poroelastography experiments, which results in shorter temporal acquisition windows. This method is referred to as "short-time poroelastography" (STPE). Finite element (FE) and ultrasound simulations demonstrate that, using STPE, it is possible to accurately estimate YM, PR (within 10% error) using windows of observation (WoOs) of length as short as 1 underlying strain Time Constant (TC). The error was found to be almost negligible (< 3%) when using WoOs longer than 2 strain TCs. In the case of VP estimation, WoOs of at least 2 strain TCs are required to obtain an error < 8% (in simulations). The stricter requirement for the estimation of VP with respect to YM and PR is due its reliance on the transient strain behavior while YM and PR depend on the steady state strain values only. In vivo experimental data are used as a proof-of-principle of the potential applicability of the proposed methodology in vivo. The use of STPE may provide a means to efficiently perform poroelastography experiments without compromising the accuracy of the estimated tissue properties.
Collapse
Affiliation(s)
- Sharmin Majumder
- Department of Electrical and Computer EngineeringTexas A&M University College Station TX 77843 USA
| | - Md Tauhidul Islam
- Department of Radiation OncologyStanford University Stanford CA 94305 USA
| | - Raffaella Righetti
- Department of Electrical and Computer EngineeringTexas A&M University College Station TX 77843 USA
| |
Collapse
|
8
|
Huang L, Feng J, Fan W, Tang W, Rong X, Liao W, Wei Z, Xu Y, Wu A, Chen X, Shen Z. Intelligent Pore Switch of Hollow Mesoporous Organosilica Nanoparticles for High Contrast Magnetic Resonance Imaging and Tumor-Specific Chemotherapy. NANO LETTERS 2021; 21:9551-9559. [PMID: 34738816 DOI: 10.1021/acs.nanolett.1c03130] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hollow mesoporous organosilica nanoparticles (HMONs) are widely considered as a promising drug nanocarrier, but the loaded drugs can easily leak from HMONs, resulting in the considerably decreased drug loading capacity and increased biosafety risk. This study reports the smart use of core/shell Fe3O4/Gd2O3 (FG) hybrid nanoparticles as a gatekeeper to block the pores of HMONs, which can yield an unreported large loading content (up to 20.4%) of DOX. The conjugation of RGD dimer (R2) onto the DOX-loaded HMON with FG capping (D@HMON@FG@R2) allowed for active tumor-targeted delivery. The aggregated FG in D@HMON@FG@R2 could darken the normal tissue surrounding the tumor due to the high r2 value (253.7 mM-1 s-1) and high r2/r1 ratio (19.13), and the intratumorally released FG as a result of reducibility-triggered HMON degradation could brighten the tumor because of the high r1 value (20.1 mM-1 s-1) and low r2/r1 ratio (7.01), which contributed to high contrast magnetic resonance imaging (MRI) for guiding highly efficient tumor-specific DOX release and chemotherapy.
Collapse
Affiliation(s)
- Lin Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong 510515, China
| | - Jie Feng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong 510515, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenni Wei
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, China
| | - Yikai Xu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong 510515, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong 510515, China
| |
Collapse
|
9
|
Wang Y, Angom RS, Kulkarni TA, Hoeppner LH, Pal K, Wang E, Tam A, Valiunas RA, Dutta SK, Ji B, Jarzebska N, Chen Y, Rodionov RN, Mukhopadhyay D. Dissecting VEGF-induced acute versus chronic vascular hyperpermeability: Essential roles of dimethylarginine dimethylaminohydrolase-1. iScience 2021; 24:103189. [PMID: 34703990 PMCID: PMC8521174 DOI: 10.1016/j.isci.2021.103189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Vascular endothelial cell growth factor (VEGF) is a key regulator of vascular permeability. Herein we aim to understand how acute and chronic exposures of VEGF induce different levels of vascular permeability. We demonstrate that chronic VEGF exposure leads to decreased phosphorylation of VEGFR2 and c-Src as well as steady increases of nitric oxide (NO) as compared to that of acute exposure. Utilizing heat-inducible VEGF transgenic zebrafish (Danio rerio) and establishing an algorithm incorporating segmentation techniques for quantification, we monitored acute and chronic VEGF-induced vascular hyperpermeability in real time. Importantly, dimethylarginine dimethylaminohydrolase-1 (DDAH1), an enzyme essential for NO generation, was shown to play essential roles in both acute and chronic vascular permeability in cultured human cells, zebrafish model, and Miles assay. Taken together, our data reveal acute and chronic VEGF exposures induce divergent signaling pathways and identify DDAH1 as a critical player and potentially a therapeutic target of vascular hyperpermeability-mediated pathogenesis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Tanmay A. Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Luke H. Hoeppner
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Alexander Tam
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Rachael A. Valiunas
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Shamit K. Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Baoan Ji
- Department of Cancer Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Natalia Jarzebska
- Department of Internal Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Roman N. Rodionov
- Department of Internal Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| |
Collapse
|
10
|
Song M, Liu G, Liu Y, Cheng Z, Lin H, Liu J, Wu Z, Xue J, Hong W, Huang M, Li J, Xu P. Using porphyrins as albumin-binding molecules to enhance antitumor efficacies and reduce systemic toxicities of antimicrobial peptides. Eur J Med Chem 2021; 217:113382. [PMID: 33751980 DOI: 10.1016/j.ejmech.2021.113382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
Antimicrobial peptides (AMPs) are originally developed for anti-infective treatments. Because of their membrane-lytic property, AMPs have been considered as candidates of antitumor agents for a long time. However, their antitumor applications are mainly hampered by fast renal clearance and high systemic toxicities. This study proposes a strategy aiming at addressing these two issues by conjugating AMPs with porphyrins, which bind to albumin increasing AMPs' resistance against renal clearance and thus enhancing their antitumor efficacies. Porphyrins' photodynamic properties can further augment AMPs' antitumor effects. In addition, circulating with albumin ameliorates AMPs' systemic toxicities, i.e. hemolysis and organ dysfunctions. As an example, we conjugated an AMP, K6L9, with pyropheophorbide-a (PPA) leading to a conjugate of PPA-K6L9. PPA-K6L9 bound to albumin with a KD value at the sub-micromolar range. Combining computational and experimental approaches, we characterized the molecular interaction of PPA-K6L9 with albumin. Furthermore, PPA-conjugation promoted K6L9' antitumor effects by prolonging its in vivo retention time, and reduced the hemolysis and hepatic injuries, which confirmed our design strategy.
Collapse
Affiliation(s)
- Meiru Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Ge Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Yichang Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Ziwei Cheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Haili Lin
- Department of Pharmacy, The Peoples Hospital of Fujian Province, Fuzhou, China
| | - Jianyong Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Zaisheng Wu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jinping Xue
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A∗STAR (Agency of Science, Technology and Research), 117608, Singapore
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China.
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
11
|
Munch M, Rotstein BH, Ulrich G. Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging. Molecules 2020; 25:E6042. [PMID: 33371284 PMCID: PMC7766373 DOI: 10.3390/molecules25246042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Recent progress realized in the development of optical imaging (OPI) probes and devices has made this technique more and more affordable for imaging studies and fluorescence-guided surgery procedures. However, this imaging modality still suffers from a low depth of penetration, thus limiting its use to shallow tissues or endoscopy-based procedures. In contrast, positron emission tomography (PET) presents a high depth of penetration and the resulting signal is less attenuated, allowing for imaging in-depth tissues. Thus, association of these imaging techniques has the potential to push back the limits of each single modality. Recently, several research groups have been involved in the development of radiolabeled fluorophores with the aim of affording dual-mode PET/OPI probes used in preclinical imaging studies of diverse pathological conditions such as cancer, Alzheimer's disease, or cardiovascular diseases. Among all the available PET-active radionuclides, 18F stands out as the most widely used for clinical imaging thanks to its advantageous characteristics (t1/2 = 109.77 min; 97% β+ emitter). This review focuses on the recent efforts in the synthesis and radiofluorination of fluorescent scaffolds such as 4,4-difluoro-4-bora-diazaindacenes (BODIPYs), cyanines, and xanthene derivatives and their use in preclinical imaging studies using both PET and OPI technologies.
Collapse
Affiliation(s)
- Maxime Munch
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Benjamin H. Rotstein
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, École Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, CEDEX 02, 67087 Strasbourg, France;
| |
Collapse
|
12
|
Jussing E, Lu L, Grafström J, Tegnebratt T, Arnberg F, Rosik HW, Wennborg A, Holmin S, Feldwisch J, Stone-Elander S. [ 68Ga]ABY-028: an albumin-binding domain (ABD) protein-based imaging tracer for positron emission tomography (PET) studies of altered vascular permeability and predictions of albumin-drug conjugate transport. EJNMMI Res 2020; 10:106. [PMID: 32960353 PMCID: PMC7509035 DOI: 10.1186/s13550-020-00694-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Albumin is commonly used as a carrier platform for drugs to extend their circulatory half-lives and influence their uptake into tissues that have altered permeability to the plasma protein. The albumin-binding domain (ABD) protein, which binds in vivo to serum albumin with high affinity, has proven to be a versatile scaffold for engineering biopharmaceuticals with a range of binding capabilities. In this study, the ABD protein equipped with a mal-DOTA chelator (denoted ABY-028) was radiolabeled with gallium-68 (68Ga). This novel radiotracer was then used together with positron emission tomography (PET) imaging to examine variations in the uptake of the ABD-albumin conjugate with variations in endothelial permeability. Results ABY-028, produced by peptide synthesis in excellent purity and stored at − 20 °C, was stable for 24 months (end of study). [68Ga]ABY-028 could be obtained with labeling yields of > 80% and approximately 95% radiochemical purity. [68Ga]ABY-028 distributed in vivo with the plasma pool, with highest radioactivity in the heart ventricles and major vessels of the body, a gradual transport over time from the circulatory system into tissues and elimination via the kidneys. Early [68Ga]ABY-028 uptake differed in xenografts with different vascular properties: mean standard uptake values (SUVmean) were initially 5 times larger in FaDu than in A431 xenografts, but the difference decreased to 3 after 1 h. Cutaneously administered, vasoactive nitroglycerin increased radioactivity in the A431 xenografts. Heterogeneity in the levels and rates of increases of radioactivity uptake was observed in sub-regions of individual MMTV-PyMT mammary tumors and in FaDu xenografts. Higher uptake early after tracer administration could be observed in lower metabolic regions. Fluctuations in the increased permeability for the tracer across the blood-brain-barrier (BBB) direct after experimentally induced stroke were monitored by PET and the increased uptake was confirmed by ex vivo phosphorimaging. Conclusions [68Ga]ABY-028 is a promising new tracer for visualization of changes in albumin uptake due to disease- and pharmacologically altered vascular permeability and their potential effects on the passive uptake of targeting therapeutics based on the ABD protein technology.
Collapse
Affiliation(s)
- Emma Jussing
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden. .,Department of Oncology and Pathology, Karolinska Institutet, SE17177, Stockholm, Sweden. .,Department of Radiopharmacy, Karolinska University Hospital, SE17176, Stockholm, Sweden.
| | - Li Lu
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Comparative Medicine (KERIC), Karolinska University Hospital, SE17176, Stockholm, Sweden
| | - Jonas Grafström
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden
| | - Tetyana Tegnebratt
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Department of Radiopharmacy, Karolinska University Hospital, SE17176, Stockholm, Sweden
| | - Fabian Arnberg
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, SE17176, Stockholm, Sweden
| | - Helena Wållberg Rosik
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Affibody AB, SE17165, Solna, Sweden
| | | | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, SE17176, Stockholm, Sweden
| | | | - Sharon Stone-Elander
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, SE17176, Stockholm, Sweden
| |
Collapse
|
13
|
Yoshikawa T, Phan KQ, Tagawa H, Sasaki K, Feng H, Kishimura A, Mori T, Katayama Y. Modification of nitric oxide donors onto a monoclonal antibody boosts accumulation in solid tumors. Int J Pharm 2020; 583:119352. [PMID: 32325243 DOI: 10.1016/j.ijpharm.2020.119352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 11/17/2022]
Abstract
Although monoclonal antibodies (mAbs) have revolutionized cancer treatment, their accumulation in solid tumors is limited and requires improvement to enhance therapeutic efficacy. Here we developed a strategy to modify mAb with a donor of nitric oxide (NO) because NO functions to vasodilate as well as to enhance the permeability of vascular endothelium, which will contribute to enhancing the tumor accumulation of mAb. We selected S-nitrosothiol as a NO donor and established the procedure to modify S-nitrosothiol group on mAb under ambient conditions. The modified mAb (Ab-SNO) thus obtained released NO in a preferable speed and maintained its original properties such as binding affinity to a target antigen and efficacy to induce antibody-dependent cellular cytotoxicity. We demonstrated that Ab-SNO enhanced the tumor accumulation of co-administered proteins such as antibody and serum albumin.
Collapse
Affiliation(s)
- Takuma Yoshikawa
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Khanh Quoc Phan
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Tagawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Sasaki
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Haitao Feng
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan; International Research Center for Molecular Systems, Kyushu University, Fukuoka, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan; International Research Center for Molecular Systems, Kyushu University, Fukuoka, Japan; Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan; Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Chen X, Qian H, Qiao H, Dong B, Chen E, Huang D, Wang T, Chen W. Tumor-Adhesive and pH-Degradable Microgels by Microfluidics and Photo-Cross-Linking for Efficient Antiangiogenesis and Enhanced Cancer Chemotherapy. Biomacromolecules 2020; 21:1285-1294. [DOI: 10.1021/acs.biomac.0c00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingmei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Bin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Enping Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ting Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
15
|
Wu Y, Yan Y, Gao X, Yang L, Li Y, Guo X, Xie J, Wang K, Sun X. Gd-encapsulated carbonaceous dots for accurate characterization of tumor vessel permeability in magnetic resonance imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102074. [DOI: 10.1016/j.nano.2019.102074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 12/13/2022]
|
16
|
Tian R, Zeng Q, Zhu S, Lau J, Chandra S, Ertsey R, Hettie KS, Teraphongphom T, Hu Z, Niu G, Kiesewetter DO, Sun H, Zhang X, Antaris AL, Brooks BR, Chen X. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. SCIENCE ADVANCES 2019; 5:eaaw0672. [PMID: 31548981 PMCID: PMC6744268 DOI: 10.1126/sciadv.aaw0672] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/15/2019] [Indexed: 05/22/2023]
Abstract
NIR-II fluorescence imaging greatly reduces scattering coefficients for nearly all tissue types at long wavelengths, benefiting deep tissue imaging. However, most of the NIR-II fluorophores suffer from low quantum yields and/or short circulation time that limit the quality of NIR-II imaging. Here, we engineered a supramolecular assembly of protein complex with lodged cyanine dyes to produce a brilliant NIR-II fluorophore, providing a NIR-II quantum yield of 21.2% with prolonged circulation time. Computational modeling revealed the mechanism for fluorescence enhancement and identified key parameters governing albumin complex for NIR-II fluorophores. Our complex afforded high-resolution microvessel imaging, with a 3-hour imaging window compared to 2 min for free dye alone. Furthermore, the complexation strategy was applied to an antibody-derived assembly, offering high-contrast tumor imaging without affecting the targeting ability of the antibody. This study provides a facile strategy for producing high-performance NIR-II fluorophores by chaperoning cyanine dyes with functional proteins.
Collapse
Affiliation(s)
- Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiao Zeng
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (S.Z.); (X.C.); (H.S.)
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Swati Chandra
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Ertsey
- Department of Otolaryngology, Stanford University, Stanford, CA 94305, USA
| | - Kenneth S. Hettie
- Department of Otolaryngology, Stanford University, Stanford, CA 94305, USA
| | - Tarn Teraphongphom
- Department of Otolaryngology, Stanford University, Stanford, CA 94305, USA
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, P. R. China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, P. R. China
- Corresponding author. (S.Z.); (X.C.); (H.S.)
| | - Xiaodong Zhang
- Department of Physics, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | | | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (S.Z.); (X.C.); (H.S.)
| |
Collapse
|
17
|
Islam MT, Tasciotti E, Righetti R. Estimation of Vascular Permeability in Irregularly Shaped Cancers Using Ultrasound Poroelastography. IEEE Trans Biomed Eng 2019; 67:1083-1096. [PMID: 31331877 DOI: 10.1109/tbme.2019.2929134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Vascular permeability (VP) is a mechanical parameter which plays an important role in cancer initiation, metastasis, and progression. To date, there are only a few non-invasive methods that can be used to image VP in solid tumors. Most of these methods require the use of contrast agents and are expensive, limiting widespread use. METHODS In this paper, we propose a new method to image VP in tumors, which is based on the use of ultrasound poroelastography. Estimation of VP by poroelastography requires knowledge of the Young's modulus (YM), Poisson's ratio (PR), and strain time constant (TC) in the tumors. In our method, we find the ellipse which best fits the tumor (regardless of its shape) using an eigen-system-based fitting technique and estimate the YM and PR using Eshelby's elliptic inclusion formulation. A Fourier method is used to estimate the axial strain TC, which does not require any initial guess and is highly robust to noise. RESULTS It is demonstrated that the proposed method can estimate VP in irregularly shaped tumors with an accuracy of above [Formula: see text] using ultrasound simulation data with signal-to-noise ratio of 20 dB or higher. In vivo feasibility of the proposed technique is demonstrated in an orthotopic mouse model of breast cancer. CONCLUSION The proposed imaging method can provide accurate and localized estimation of VP in cancers non-invasively and cost-effectively. SIGNIFICANCE Accurate and non-invasive assessment of VP can have a significant impact on diagnosis, prognosis, and treatment of cancers.
Collapse
|
18
|
Islam MT, Righetti R. Estimation of mechanical parameters in cancers by empirical orthogonal function analysis of poroelastography data. Comput Biol Med 2019; 111:103343. [PMID: 31279980 DOI: 10.1016/j.compbiomed.2019.103343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/24/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
Ultrasound poroelastography is a non-invasive imaging modality that has been shown to be capable of estimating mechanical parameters such as Young's modulus (YM), Poisson's ratio (PR) and vascular permeability (VP) in cancers. However, experimental poroelastographic data are inherently noisy because of the requirement of relatively long temporal data acquisitions often in hand-held mode conditions. In this paper, we propose a new method, which allows accurate estimation of YM and PR from denoised steady state axial and lateral strains by empirical orthogonal function (EOF) analysis of poroelastographic data. The method also allows estimation of VP from the time constant (TC) of the first expansion coefficient (EC) of the temporal axial strain, which has larger dynamic range and lower noise in comparison to the actual temporal axial strain curve. We validated our technique through finite element (FE) and ultrasound simulations and tested the in vivo feasibility in experimental data obtained from a cancer animal model. The percent relative errors (PRE) in the estimation of YM, PR and VP using the EOF analysis as applied to ultrasound simulation data were 3.27%, 3.10%, 14.22%, respectively (at SNR of 20 dB). Based on the high level of accuracy by EOF analysis, the proposed technique may become a useful signal processing technique for applications focusing on the estimation of the mechanical behavior of cancers.
Collapse
Affiliation(s)
- Md Tauhidul Islam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Raffaella Righetti
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA.
| |
Collapse
|
19
|
Lau J, Jacobson O, Niu G, Lin KS, Bénard F, Chen X. Bench to Bedside: Albumin Binders for Improved Cancer Radioligand Therapies. Bioconjug Chem 2019; 30:487-502. [PMID: 30616340 DOI: 10.1021/acs.bioconjchem.8b00919] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Radioligand therapy (RLT) relies on the use of pharmacophores to selectively deliver ionization energy to cancers to exert its tumoricidal effects. Cancer cells that are not directly targeted by a radioconjugate remain susceptible to RLT because of the crossfire effect. This is significant given the inter- and intra-heterogeneity of tumors. In recent years, reversible albumin binders have been used as simple "add-ons" for radiopharmaceuticals to modify pharmacokinetics and to enhance therapeutic efficacy. In this Review, we discuss recent advances in albumin binder platforms used in RLT, with an emphasis on 4-( p-iodophenyl)butyric acid and Evans blue derivatives. We focus on four biological systems pertinent to oncology that utilize this class of compounds: folate receptor, integrin αvβ3, somatostatin receptor, and prostate-specific membrane antigen. Finally, we offer our perspectives on albumin binders for RLT, highlighting future areas of research that will help propel the technology further for clinical use.
Collapse
Affiliation(s)
- Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Kuo-Shyan Lin
- Department of Molecular Oncology , BC Cancer , Vancouver , British Columbia V5Z 1L3 , Canada
| | - François Bénard
- Department of Molecular Oncology , BC Cancer , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| |
Collapse
|
20
|
Zhang J, Wang H, Jacobson O, Cheng Y, Niu G, Li F, Bai C, Zhu Z, Chen X. Safety, Pharmacokinetics, and Dosimetry of a Long-Acting Radiolabeled Somatostatin Analog 177Lu-DOTA-EB-TATE in Patients with Advanced Metastatic Neuroendocrine Tumors. J Nucl Med 2018; 59:1699-1705. [PMID: 29653971 PMCID: PMC6225536 DOI: 10.2967/jnumed.118.209841] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
Radiolabeled somatostatin analog therapy has become an established treatment method for patients with well to moderately differentiated unresectable or metastatic neuroendocrine tumors (NETs). The most frequently used somatostatin analogs in clinical practice are octreotide and octreotate. However, both peptides showed suboptimal retention within tumors. The aim of this first-in-humans study is to explore the safety and dosimetry of a long-acting radiolabeled somatostatin analog, 177Lu-1, 4, 7, 10-tetra-azacyclododecane-1, 4, 7, 10-tetraacetic acid-Evans blue-octreotate (177Lu-DOTA-EB-TATE). Methods: Eight patients (6 men and 2 women; age range, 27-61 y) with advanced metastatic NETs were recruited. Five patients received a single dose, 0.35-0.70 GBq (9.5-18.9 mCi), of 177Lu-DOTA-EB-TATE and underwent serial whole-body planar and SPECT/CT scans at 2, 24, 72, 120, and 168 h after injection. The other 3 patients received intravenous injection of 0.28-0.41 GBq (7.5-11.1 mCi) of 177Lu-DOTATATE for the same imaging acquisition procedures at 1, 3, 4, 24, and 72 h after injection. The dosimetry was calculated using the OLINDA/EXM 1.1 software. Results: Administration of 177Lu-DOTA-EB-TATE was well tolerated, with no adverse symptoms being noticed or reported in any of the patients. Compared with 177Lu-DOTATATE, 177Lu-DOTA-EB-TATE showed extended circulation in the blood and achieved a 7.9-fold increase of tumor dose delivery. The total-body effective doses were 0.205 ± 0.161 mSv/MBq for 177Lu-DOTA-EB-TATE and 0.174 ± 0.072 mSv/MBq for 177Lu-DOTATATE. Significant dose delivery increases to the kidneys and bone marrow were also observed in patients receiving 177Lu-DOTA-EB-TATE compared with those receiving 177Lu-DOTATATE (3.2 and 18.2-fold, respectively). Conclusion: By introducing an albumin-binding moiety, 177Lu-DOTA-EB-TATE showed remarkably higher uptake and retention in NETs as well as significantly increased accumulation in the kidneys and red marrow. It has great potential to be used in peptide receptor radionuclide therapy for NETs with lower dose and less frequency of administration.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China; and
| | - Hao Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China; and
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| | - Yuejuan Cheng
- Oncology Department of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China; and
| | - Chunmei Bai
- Oncology Department of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China; and
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
21
|
Miller HA, Frieboes HB. Evaluation of Drug-Loaded Gold Nanoparticle Cytotoxicity as a Function of Tumor Vasculature-Induced Tissue Heterogeneity. Ann Biomed Eng 2018; 47:257-271. [PMID: 30298374 DOI: 10.1007/s10439-018-02146-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/01/2018] [Indexed: 01/10/2023]
Abstract
The inherent heterogeneity of tumor tissue presents a major challenge to nanoparticle-mediated drug delivery. This heterogeneity spans from the molecular (genomic, proteomic, metabolomic) to the cellular (cell types, adhesion, migration) and to the tissue (vasculature, extra-cellular matrix) scales. In particular, tumor vasculature forms abnormally, inducing proliferative, hypoxic, and necrotic tumor tissue regions. As the vasculature is the main conduit for nanotherapy transport into tumors, vasculature-induced tissue heterogeneity can cause local inadequate delivery and concentration, leading to subpar response. Further, hypoxic tissue, although viable, would be immune to the effects of cell-cycle specific drugs. In order to enable a more systematic evaluation of such effects, here we employ computational modeling to study the therapeutic response as a function of vasculature-induced tumor tissue heterogeneity. Using data with three-layered gold nanoparticles loaded with cisplatin, nanotherapy is simulated interacting with different levels of tissue heterogeneity, and the treatment response is measured in terms of tumor regression. The results quantify the influence that varying levels of tumor vascular density coupled with the drug strength have on nanoparticle uptake and washout, and the associated tissue response. The drug strength affects the proportion of proliferating, hypoxic, and necrotic tissue fractions, which in turn dynamically affect and are affected by the vascular density. Higher drug strengths may be able to achieve stronger tumor regression but only if the intra-tumoral vascular density is above a certain threshold that affords sufficient transport. This study establishes an initial step towards a more systematic methodology to assess the effect of vasculature-induced tumor tissue heterogeneity on the response to nanotherapy.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA. .,Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA. .,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
22
|
Zhu S, Yung BC, Chandra S, Niu G, Antaris AL, Chen X. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 2018; 8:4141-4151. [PMID: 30128042 PMCID: PMC6096392 DOI: 10.7150/thno.27995] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Significantly reduced photon scattering and minimal tissue autofluorescence levels in the second biological transparency window (NIR-II; 1000-1700 nm) facilitate higher resolution in vivo biological imaging compared to tradition NIR fluorophores (~700-900 nm). However, the existing palette of NIR-II fluorescent agents including semiconducting inorganic nanomaterials and recently introduced small-molecule organic dyes face significant technical and regulatory hurdles prior to clinical translation. Fortunately, recent spectroscopic characterization of NIR-I dyes (e.g., indocyanine green (ICG), IRDye800CW and IR-12N3) revealed long non-negligible emission tails reaching past 1500 nm. Repurposing the most widely used NIR dye in medicine, in addition to those in the midst of clinical trials creates an accelerated pathway for NIR-II clinical translation. This review focuses on the significant advantage of imaging past 1000 nm with NIR-I fluorophores from both a basic and clinical viewpoint. We further discuss optimizing NIR-I dyes around their NIR-II/shortwave infrared (SWIR) emission, NIR-II emission tail characteristics and prospects of NIR-II imaging with clinically available and commercially available dyes.
Collapse
Affiliation(s)
- Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 35A Convent Dr, Bethesda, Maryland 20892, United States
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 35A Convent Dr, Bethesda, Maryland 20892, United States
| | - Swati Chandra
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 35A Convent Dr, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 35A Convent Dr, Bethesda, Maryland 20892, United States
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 35A Convent Dr, Bethesda, Maryland 20892, United States
| |
Collapse
|
23
|
Wang Z, Jacobson O, Tian R, Mease RC, Kiesewetter DO, Niu G, Pomper MG, Chen X. Radioligand Therapy of Prostate Cancer with a Long-Lasting Prostate-Specific Membrane Antigen Targeting Agent 90Y-DOTA-EB-MCG. Bioconjug Chem 2018; 29:2309-2315. [PMID: 29865797 DOI: 10.1021/acs.bioconjchem.8b00292] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several radioligands targeting prostate-specific membrane antigen (PSMA) have been clinically introduced as a new class of radiotheranostics for the treatment of prostate cancer. Among them, ((( R)-1-carboxy-2-mcercaptoethyl)carbamoyl)-l-glutamic acid (MCG) has been successfully labeled with radioisotopes for prostate cancer imaging. The aim of this study is to conjugate MCG with an albumin binding moiety to further improve the in vivo pharmacokinetics. MCG was conjugated with an Evans blue (EB) derivative for albumin binding and a DOTA chelator. PSMA positive (PC3-PIP) and PSMA negative (PC3) cells were used for both in vitro and in vivo studies. Longitudinal PET imaging was performed at 1, 4, 24, and 48 h post-injection to evaluate the biodistribution and tumor uptake of 86Y-DOTA-EB-MCG. DOTA-EB-MCG was also labeled with 90Y for radionuclide therapy. Besides tumor growth measurement, tumor response to escalating therapeutic doses were also evaluated by immunohistochemistry and fluorescence microscopy. Based on quantification from 86Y-DOTA-EB-MCG PET images, the tracer uptake in PC3-PIP tumors increased from 22.33 ± 2.39%ID/g at 1 h post-injection (p.i.), to the peak of 40.40 ± 4.79%ID/g at 24 h p.i. Administration of 7.4 MBq of 90Y-DOTA-EB-MCG resulted in significant regression of tumor growth in PSMA positive xenografts. No apparent toxicity or body weight loss was observed in all treated mice. Modification of MCG with an Evans blue derivative resulted in a highly efficient prostate cancer targeting agent (EB-MCG), which showed great potential in prostate cancer treatment after being labeled with therapeutic radioisotopes.
Collapse
Affiliation(s)
- Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Ronnie C Mease
- Department of Radiology and Radiological Science , Johns Hopkins Medical Institutions , Baltimore , Maryland 21205 , United States
| | - Dale O Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Martin G Pomper
- Department of Radiology and Radiological Science , Johns Hopkins Medical Institutions , Baltimore , Maryland 21205 , United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| |
Collapse
|
24
|
Wang X, Gao S, Qin Z, Tian R, Wang G, Zhang X, Zhu L, Chen X. Evans Blue Derivative-Functionalized Gold Nanorods for Photothermal Therapy-Enhanced Tumor Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15140-15149. [PMID: 29648446 DOI: 10.1021/acsami.8b02195] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chemotherapy is a standard care for cancer management, but the lack of tumor targeting and high dose-induced side effects still limit its utility in patients. Here, we report a chemotherapy combined with photothermal therapy (PTT) for enhanced cancer ablation by functionalization of gold nanorods (GNRs) with a novel small molecule named truncated Evans blue (tEB). On the basis of the high binding affinity of tEB with albumin, an Abraxane-like nanodrug, human serum albumin/hydroxycamptothecin (HSA/HCPT), was further complexed with GNR-tEB. This formed an HCPT/HSA/tEB-GNR (HHEG) with excellent biostability and biocompatibility. With photoacoustic and fluorescence imaging, we observed HHEG tumor targeting, which is mediated by enhanced permeability retention effect. The accumulation of HHEG peaked in tumor at 12 h postinjection. Moreover, HHEG can effectively ablate tumor growth with laser illumination via chemo/thermal therapy after intravenous administration into SCC7 tumor. This combination is much better than chemotherapy or PTT alone. Collectively, we constructed a chemo/thermal therapy nanostructure based on a tEB-modified GNR for better tumor treatment effect. The use of tEB in gold nanoparticles can facilitate many new approaches to design hybrid nanoparticles.
Collapse
Affiliation(s)
- Xiangyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361005 , China
| | | | - Zainen Qin
- Collaborative Innovation Center of Guangxi Biological Medicine and the Medical and Scientific Research Center Guangxi Medical University , Nanning , Guangxi 530000 , China
| | | | - Guohao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361005 , China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361005 , China
| | - Lei Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361005 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
25
|
Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018; 8:3038-3058. [PMID: 29896301 PMCID: PMC5996358 DOI: 10.7150/thno.23459] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process. For pH-responsive nanocarriers with programmable size, changes in pH (~6.5 for tumor tissue, ~5.5 for endosomes, and ~5.0 for lysosomes) may serve as an endogenous stimulus improving the safety and therapeutic efficacy of antitumor drugs. This review focuses on current advanced pH-responsive nanocarriers with programmable size changes for anticancer drug delivery. In particular, pH-responsive mechanisms for nanocarrier retention at tumor sites, size reduction for penetrating into tumor parenchyma, escaping from endo/lysosomes, and swelling or disassembly for drug release will be highlighted. Additional trends and challenges of employing these nanocarriers in future clinical applications are also addressed.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qi Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Han-Bin Dai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jian-Shu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Gui-Xue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|