1
|
Baig MA, Du Y, Zan Z, Fan Z. Influence of cell shape on sonoporation efficiency in microbubble-facilitated delivery using micropatterned cell arrays. Sci Rep 2024; 14:30845. [PMID: 39730459 PMCID: PMC11680583 DOI: 10.1038/s41598-024-81410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Microbubble-facilitated sonoporation is a rapid, versatile, and non-viral intracellular delivery technique with potential for clinical and ex vivo cell engineering applications. We developed a micropatterning-based approach to investigate the impact of cell shape on sonoporation efficacy. Cationic microbubbles were employed to enhance sonoporation by binding to the cell membrane electrostatically. NIH/3T3 fibroblasts were micropatterned into circle, square, triangle, and rectangle. A two-plate system ensured high-throughput and efficient sonoporation by controlling cationic microbubble-cell attachment. High-speed video microscopy captured the acoustic dynamics of microbubbles under short ultrasound pulses. Our findings reveal that for NIH/3T3 fibroblasts, rectangular cells achieved the highest sonoporation and survival rate, while square-shaped cells demonstrated the greatest propidium iodide uptake. Triangle-shaped NIH/3T3 fibroblasts displayed an initial rise then a plateau in the sonoporation and survival rate as the ultrasound pulse duration increased from 10 cycles to 100 cycles, and then to 200 cycles. Conversely, rectangle-shaped cells showed a decrease followed by a stabilization. Circle-shaped and rectangle-shaped HeLa cells exhibited similar sonoporation outcomes, which were not as effective as NIH/3T3 fibroblasts. This study underscores the significance of cell shape in optimizing sonoporation efficiency and highlights the potential of combining micropatterning with controlled targeting sonoporation to advance intracellular delivery technologies.
Collapse
Affiliation(s)
- Mirza Albash Baig
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Yanyao Du
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhaoguang Zan
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhenzhen Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
2
|
Rostami M, Ahmadian MT. Numerical simulation of nanoneedle-cell membrane collision: minimum magnetic force and initial kinetic energy for penetration. Biomed Phys Eng Express 2024; 10:045057. [PMID: 38788696 DOI: 10.1088/2057-1976/ad5019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Aims and objectives: This research aims to develop a kinetic model that accurately captures the dynamics of nanoparticle impact and penetration into cell membranes, specifically in magnetically-driven drug delivery. The primary objective is to determine the minimum initial kinetic energy and constant external magnetic force necessary for successful penetration of the cell membrane.Model Development: Built upon our previous research on quasi-static nanoneedle penetration, the current model development is based on continuum mechanics. The modeling approach incorporates a finite element method and explicit dynamic solver to accurately represent the rapid dynamics involved in the phenomenon. Within the model, the cell is modeled as an isotropic elastic shell with a hemiellipsoidal geometry and a thickness of 200 nm, reflecting the properties of the lipid membrane and actin cortex. The surrounding cytoplasm is treated as a fluid-like Eulerian body.Scenarios and Results: This study explores three distinct scenarios to investigate the penetration of nanoneedles into cell membranes. Firstly, we examine two scenarios in which the particles are solely subjected to either a constant external force or an initial velocity. Secondly, we explore a scenario that considers the combined effects of both parameters simultaneously. In each scenario, we analyze the critical values required to induce membrane puncture and present comprehensive diagrams illustrating the results.Findings and significance: The findings of this research provide valuable insights into the mechanics of nanoneedle penetration into cell membranes and offer guidelines for optimizing magnetically-driven drug delivery systems, supporting the design of efficient and targeted drug delivery strategies.
Collapse
Affiliation(s)
- M Rostami
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Azadi Ave, P932+FM4, Iran
| | - M T Ahmadian
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Azadi Ave, P932+FM4, Iran
| |
Collapse
|
3
|
Lin J, Wu Y, Liu G, Cui R, Xu Y. Advances of ultrasound in tumor immunotherapy. Int Immunopharmacol 2024; 134:112233. [PMID: 38735256 DOI: 10.1016/j.intimp.2024.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Immunotherapy has become a revolutionary method for treating tumors, offering new hope to cancer patients worldwide. Immunotherapy strategies such as checkpoint inhibitors, chimeric antigen receptor T-cell (CAR-T) therapy, and cancer vaccines have shown significant potential in clinical trials. Despite the promising results, there are still limitations that impede the overall effectiveness of immunotherapy; the response to immunotherapy is uneven, the response rate of patients is still low, and systemic immune toxicity accompanied with tumor cell immune evasion is common. Ultrasound technology has evolved rapidly in recent years and has become a significant player in tumor immunotherapy. The introductions of high intensity focused ultrasound and ultrasound-stimulated microbubbles have opened doors for new therapeutic strategies in the fight against tumor. This paper explores the revolutionary advancements of ultrasound combined with immunotherapy in this particular field.
Collapse
Affiliation(s)
- Jing Lin
- Department of Ultrasound, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, PR China.
| | - Yuwei Wu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Guangde Liu
- Department of Ultrasound, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, PR China
| | - Rui Cui
- Department of Ultrasonography, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, PR China.
| |
Collapse
|
4
|
Liu X, Rong N, Tian Z, Rich J, Niu L, Li P, Huang L, Dong Y, Zhou W, Zhang P, Chen Y, Wang C, Meng L, Huang TJ, Zheng H. Acoustothermal transfection for cell therapy. SCIENCE ADVANCES 2024; 10:eadk1855. [PMID: 38630814 PMCID: PMC11023511 DOI: 10.1126/sciadv.adk1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Transfected stem cells and T cells are promising in personalized cell therapy and immunotherapy against various diseases. However, existing transfection techniques face a fundamental trade-off between transfection efficiency and cell viability; achieving both simultaneously remains a substantial challenge. This study presents an acoustothermal transfection method that leverages acoustic and thermal effects on cells to enhance the permeability of both the cell membrane and nuclear envelope to achieve safe, efficient, and high-throughput transfection of primary T cells and stem cells. With this method, two types of plasmids were simultaneously delivered into the nuclei of mesenchymal stem cells (MSCs) with efficiencies of 89.6 ± 1.2%. CXCR4-transfected MSCs could efficiently target cerebral ischemia sites in vivo and reduce the infarct volume in mice. Our acoustothermal transfection method addresses a key bottleneck in balancing the transfection efficiency and cell viability, which can become a powerful tool in the future for cellular and gene therapies.
Collapse
Affiliation(s)
- Xiufang Liu
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ning Rong
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lili Niu
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Pengqi Li
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Laixin Huang
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yankai Dong
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Zhou
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Yizhao Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Congzhi Wang
- National Innovation Center for Advanced Medical Devices, 385 Mintang Road, Shenzhen 518131, China
| | - Long Meng
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Hairong Zheng
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
5
|
Wu J, Wei X, Li Z, Chen H, Gao R, Ning P, Li Y, Cheng Y. Arresting the G2/M phase empowers synergy in magnetic nanomanipulator-based cancer mechanotherapy and chemotherapy. J Control Release 2024; 366:535-547. [PMID: 38185334 DOI: 10.1016/j.jconrel.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Using mechanical cues for cancer cells can realize precise control and efficient therapeutic effects. However, the cell cycle-specific response for dynamic mechanical manipulation is barely investigated. Here, RGD-modified iron oxide nanomanipulators were utilized as the intracellular magneto-mechanical transducers to investigate the mechanical impacts on the cell cycle under a dynamic magnetic field for cancer treatment. The G2/M phase was identified to be sensitive to the intracellular magneto-mechanical modulation with a synergistic treatment effect between the pretreatment of cell cycle-specific drugs and the magneto-mechanical destruction, and thus could be an important mechanical-targeted phase for regulation of cancer cell death. Finally, combining the cell cycle-specific drugs with magneto-mechanical manipulation could significantly inhibit glioma and breast cancer growth in vivo. This intracellular mechanical stimulus showed cell cycle-dependent cytotoxicity and could be developed as a spatiotemporal therapeutic modality in combination with chemotherapy drugs for treating deep-seated tumors.
Collapse
Affiliation(s)
- Jiaojiao Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xueyan Wei
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Haotian Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Rui Gao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Peng Ning
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yingze Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| |
Collapse
|
6
|
Tran NLH, Lam TQ, Duong PVQ, Doan LH, Vu MP, Nguyen KHP, Nguyen KT. Review on the Significant Interactions between Ultrafine Gas Bubbles and Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:984-996. [PMID: 38153335 DOI: 10.1021/acs.langmuir.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Having sizes comparable with living cells and high abundance, ultrafine bubbles (UBs) are prone to inevitable interactions with different types of cells and facilitate alterations in physiological properties. The interactions of four typical cell types (e.g., bacterial, fungal, plant, and mammalian cells) with UBs have been studied over recent years. For bacterial cells, UBs have been utilized in creating the capillary force to tear down biofilms. The release of high amounts of heat, pressure, and free radicals during bubble rupture is also found to affect bacterial cell growth. Similarly, the bubble gas core identity plays an important role in the development of fungal cells. By the proposed mechanism of attachment of UBs on hydrophobin proteins in the fungal cell wall, oxygen and ozone gas-filled ultrafine bubbles can either promote or hinder the cell growth rate. On the other hand, reactive oxygen species (ROS) formation and mass transfer facilitation are two means of indirect interactions between UBs and plant cells. Likewise, the use of different gas cores in generating bubbles can produce different physical effects on these cells, for example, hydrogen gas for antioxidation against infections and oxygen for oxidation of toxic metal ions. For mammalian cells, the importance of investigating their interactions with UBs lies in the bubbles' action on cell viability as membrane poration for drug delivery can greatly affect cells' survival. UBs have been utilized and tested in forming the pores by different methods, ranging from bubble oscillation and microstream generation through acoustic cavitation to bubble implosion.
Collapse
Affiliation(s)
- Nguyen Le Hanh Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thien Quang Lam
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Phuong Vu Quynh Duong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Linh Hai Doan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Mai Phuong Vu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khang Huy Phuc Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khoi Tan Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
7
|
Rostami M, Ahmadian MT. Numerical investigation of force and deflection of nanoneedle penetration into cell using finite element approach: Parameter study and experimental validation of results. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3749. [PMID: 37431177 DOI: 10.1002/cnm.3749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/07/2023] [Accepted: 06/11/2023] [Indexed: 07/12/2023]
Abstract
This paper aims to develop a numerical methodology to investigate the penetration process of nanoneedles into cells and the corresponding force and indentation length. The finite element approach via the explicit dynamic method handles convergence difficulties in the nonlinear phenomenon. The cell is modeled as an isotropic elastic hemiellipsoidal shell with a thickness of 200 nm, which represents the lipid membrane and actin cortex, encapsulating cytoplasm that is regarded as an Eulerian body because of its fluid-type behavior. Nanoneedles with diameters 400, 200, and 50 nm are considered for model development based on available experimental data. The Von Mises strain failure criterion is used for rupture detection. A parameter study using 1, 2.5, 5, 7.5, and 10 kPa shows that Young's modulus of the HeLa cell membrane is about 5 kPa. Moreover, a failure strain of 1.2 chosen among 0.2, 0.4, 0.6, 0.8, 1, and 1.2 matches best the experimental data. In addition, a diameter study shows that the relations between force-diameter and indentation length-diameter are linear and polynomial, respectively. Furthermore, regarding the experimental data and by using contour of minimum principal stress around needle and an analytical equation for calculation of buckling force of a woven fabric, we proposed that for a given cell, membrane structural stability-a function of the coupled effect of Young's modulus and actin meshwork size-contributes directly to needle insertion success rate for that type of cell.
Collapse
Affiliation(s)
- M Rostami
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - M T Ahmadian
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Ji X, Duan H, Wang S, Chang Y. Low-intensity pulsed ultrasound in obstetrics and gynecology: advances in clinical application and research progress. Front Endocrinol (Lausanne) 2023; 14:1233187. [PMID: 37593351 PMCID: PMC10431596 DOI: 10.3389/fendo.2023.1233187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
In the past decade, research on ultrasound therapy in obstetrics and gynecology has rapidly developed. Currently, high-intensity ultrasound has been widely used in clinical practice, while low-intensity ultrasound has gradually emerged as a new trend of transitioning from pre-clinical research to clinical applications. Low-intensity pulsed ultrasound (LIPUS), characterized by a non-invasive low-intensity pulse wave stimulation method, employs its non-thermal effects to achieve safe, economical, and convenient therapeutic outcomes. LIPUS converts into biochemical signals within cells through pathways such as cavitation, acoustic flow, and mechanical stimulation, regulating molecular biological mechanisms and exerting various biological effects. The molecular biology mechanisms underlying the application of LIPUS in obstetrics and gynecology mainly include signaling pathways, key gene expression, angiogenesis, inflammation inhibition, and stem cell differentiation. LIPUS plays a positive role in promoting soft tissue regeneration, bone regeneration, nerve regulation, and changes in cell membrane permeability. LIPUS can improve the treatment benefit of premature ovarian failure, pelvic floor dysfunction, nerve damage caused by intrauterine growth restriction, ovariectomized osteoporosis, and incomplete uterine involution through the above biological effects, and it also has application value in the adjuvant treatment of malignant tumors such as ovarian cancer and cervical cancer. This study outlines the biological mechanisms and applications of LIPUS in treating various obstetric and gynecologic diseases, aiming to promote its precise application and provide a theoretical basis for its use in the field.
Collapse
Affiliation(s)
| | - Hua Duan
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | | | | |
Collapse
|
9
|
Namli I, Karavelioglu Z, Sarraf SS, Aghdam AS, Varol R, Yilmaz A, Sahin SB, Ozogul B, Bozkaya DN, Acar HF, Uvet H, Çetinel S, Kutlu Ö, Ghorbani M, Koşar A. On the application of hydrodynamic cavitation on a chip in cellular injury and drug delivery. LAB ON A CHIP 2023; 23:2640-2653. [PMID: 37183761 DOI: 10.1039/d3lc00177f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hydrodynamic cavitation (HC) is a phase change phenomenon, where energy release in a fluid occurs upon the collapse of bubbles, which form due to the low local pressures. During recent years, due to advances in lab-on-a-chip technologies, HC-on-a-chip (HCOC) and its potential applications have attracted considerable interest. Microfluidic devices enable the performance of controlled experiments by enabling spatial control over the cavitation process and by precisely monitoring its evolution. In this study, we propose the adjunctive use of HC to induce distinct zones of cellular injury and enhance the anticancer efficacy of Doxorubicin (DOX). HC caused different regions (lysis, necrosis, permeabilization, and unaffected regions) upon exposure of different cancer and normal cells to HC. Moreover, HC was also applied to the confluent cell monolayer following the DOX treatment. Here, it was shown that the combination of DOX and HC exhibited a more pronounced anticancer activity on cancer cells than DOX alone. The effect of HC on cell permeabilization was also proven by using carbon dots (CDs). Finally, the cell stiffness parameter, which was associated with cell proliferation, migration and metastasis, was investigated with the use of cancer cells and normal cells under HC exposure. The HCOC offers the advantage of creating well-defined zones of bio-responses upon HC exposure simultaneously within minutes, achieving cell lysis and molecular delivery through permeabilization by providing spatial control. In conclusion, micro scale hydrodynamic cavitation proposes a promising alternative to be used to increase the therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Ilayda Namli
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Zeynep Karavelioglu
- Department of Bioengineering, Yildiz Technical University, 34349, Besiktas, Istanbul, Turkey
| | - Seyedali Seyedmirzaei Sarraf
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Araz Sheibani Aghdam
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Rahmetullah Varol
- Department of Mechatronics Engineering, Yildiz Technical University, 34349, Besiktas, Istanbul, Turkey
| | - Abdurrahim Yilmaz
- Department of Mechatronics Engineering, Yildiz Technical University, 34349, Besiktas, Istanbul, Turkey
| | - Sevilay Burcu Sahin
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Beyzanur Ozogul
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Dila Naz Bozkaya
- Department of Biology, Istanbul University, Beyazit, 34452, Istanbul, Turkey
| | - Havva Funda Acar
- Department of Chemistry, Koç University, Sariyer, 34450, Istanbul, Turkey
| | - Huseyin Uvet
- Department of Mechatronics Engineering, Yildiz Technical University, 34349, Besiktas, Istanbul, Turkey
| | - Sibel Çetinel
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| | - Özlem Kutlu
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| | - Morteza Ghorbani
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| |
Collapse
|
10
|
Hu Y, Wei J, Shen Y, Chen S, Chen X. Barrier-breaking effects of ultrasonic cavitation for drug delivery and biomarker release. ULTRASONICS SONOCHEMISTRY 2023; 94:106346. [PMID: 36870921 PMCID: PMC10040969 DOI: 10.1016/j.ultsonch.2023.106346] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Recently, emerging evidence has demonstrated that cavitation actually creates important bidirectional channels on biological barriers for both intratumoral drug delivery and extratumoral biomarker release. To promote the barrier-breaking effects of cavitation for both therapy and diagnosis, we first reviewed recent technical advances of ultrasound and its contrast agents (microbubbles, nanodroplets, and gas-stabilizing nanoparticles) and then reported the newly-revealed cavitation physical details. In particular, we summarized five types of cellular responses of cavitation in breaking the plasma membrane (membrane retraction, sonoporation, endocytosis/exocytosis, blebbing and apoptosis) and compared the vascular cavitation effects of three different types of ultrasound contrast agents in breaking the blood-tumor barrier and tumor microenvironment. Moreover, we highlighted the current achievements of the barrier-breaking effects of cavitation in mediating drug delivery and biomarker release. We emphasized that the precise induction of a specific cavitation effect for barrier-breaking was still challenged by the complex combination of multiple acoustic and non-acoustic cavitation parameters. Therefore, we provided the cutting-edge in-situ cavitation imaging and feedback control methods and suggested the development of an international cavitation quantification standard for the clinical guidance of cavitation-mediated barrier-breaking effects.
Collapse
Affiliation(s)
- Yaxin Hu
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jianpeng Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Siping Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Xin Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
11
|
Du M, Li Y, Zhang Q, Zhang J, Ouyang S, Chen Z. The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:41-49. [PMID: 35764177 DOI: 10.1016/j.pbiomolbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Li
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuming Ouyang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
12
|
Przystupski D, Ussowicz M. Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation. Int J Mol Sci 2022; 23:ijms231911222. [PMID: 36232532 PMCID: PMC9569453 DOI: 10.3390/ijms231911222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Sonoporation is the process of transient pore formation in the cell membrane triggered by ultrasound (US). Numerous studies have provided us with firm evidence that sonoporation may assist cancer treatment through effective drug and gene delivery. However, there is a massive gap in the body of literature on the issue of understanding the complexity of biophysical and biochemical sonoporation-induced cellular effects. This study provides a detailed explanation of the US-triggered bioeffects, in particular, cell compartments and the internal environment of the cell, as well as the further consequences on cell reproduction and growth. Moreover, a detailed biophysical insight into US-provoked pore formation is presented. This study is expected to review the knowledge of cellular effects initiated by US-induced sonoporation and summarize the attempts at clinical implementation.
Collapse
|
13
|
Ayana G, Ryu J, Choe SW. Ultrasound-Responsive Nanocarriers for Breast Cancer Chemotherapy. MICROMACHINES 2022; 13:1508. [PMID: 36144131 PMCID: PMC9503784 DOI: 10.3390/mi13091508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 05/13/2023]
Abstract
Breast cancer is the most common type of cancer and it is treated with surgical intervention, radiotherapy, chemotherapy, or a combination of these regimens. Despite chemotherapy's ample use, it has limitations such as bioavailability, adverse side effects, high-dose requirements, low therapeutic indices, multiple drug resistance development, and non-specific targeting. Drug delivery vehicles or carriers, of which nanocarriers are prominent, have been introduced to overcome chemotherapy limitations. Nanocarriers have been preferentially used in breast cancer chemotherapy because of their role in protecting therapeutic agents from degradation, enabling efficient drug concentration in target cells or tissues, overcoming drug resistance, and their relatively small size. However, nanocarriers are affected by physiological barriers, bioavailability of transported drugs, and other factors. To resolve these issues, the use of external stimuli has been introduced, such as ultrasound, infrared light, thermal stimulation, microwaves, and X-rays. Recently, ultrasound-responsive nanocarriers have become popular because they are cost-effective, non-invasive, specific, tissue-penetrating, and deliver high drug concentrations to their target. In this paper, we review recent developments in ultrasound-guided nanocarriers for breast cancer chemotherapy, discuss the relevant challenges, and provide insights into future directions.
Collapse
Affiliation(s)
- Gelan Ayana
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea
| | - Jaemyung Ryu
- Department of Optical Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea
| | - Se-woon Choe
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea
| |
Collapse
|
14
|
Duan X, Lo SY, Lee JCY, Wan JMF, Yu ACH. Sonoporation of Immune Cells: Heterogeneous Impact on Lymphocytes, Monocytes and Granulocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1268-1281. [PMID: 35461725 DOI: 10.1016/j.ultrasmedbio.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Microbubble-mediated ultrasound (MB-US) can be used to realize sonoporation and, in turn, facilitate the transfection of leukocytes in the immune system. Nevertheless, the bio-effects that can be induced by MB-US exposure on leukocytes have not been adequately studied, particularly for different leukocyte lineage subsets with distinct cytological characteristics. Here, we describe how that same set of MB-US exposure conditions would induce heterogeneous bio-effects on the three main leukocyte subsets: lymphocytes, monocytes and granulocytes. MB-US exposure was delivered by applying 1-MHz pulsed ultrasound (0.50-MPa peak negative pressure, 10% duty cycle, 30-s exposure period) in the presence of microbubbles (1:1 cell-to-bubble ratio); sonoporated and non-viable leukocytes were respectively labeled using calcein and propidium iodide. Flow cytometry was then performed to classify leukocytes into their corresponding subsets and to analyze each subset's post-exposure viability, sonoporation rate, uptake characteristics and morphology. Results revealed that, when subjected to MB-US exposure, granulocytes experienced the highest loss of viability (64.0 ± 11.0%) and the lowest sonoporation rate (6.3 ± 2.5%), despite maintaining their size and granularity. In contrast, lymphocytes exhibited the lowest loss of viability (20.9 ± 7.0%), while monocytes had the highest sonoporation rate (24.1 ± 13.6%). For these two sonoporated leukocyte subsets, their cell size and granularity were found to be reduced. Also, they exhibited graded levels of calcein uptake, whereas sonoporated granulocytes achieved only mild calcein uptake. These heterogeneous bio-effects should be accounted for when using MB-US and sonoporation in immunomodulation applications.
Collapse
Affiliation(s)
- Xinxing Duan
- Schlegel Research Institute for Aging and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada; School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shun Yu Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jetty C Y Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jennifer M F Wan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
15
|
Soltani S, Mansouri K, Parvaneh S, Thakor AS, Pociot F, Yarani R. Diabetes complications and extracellular vesicle therapy. Rev Endocr Metab Disord 2022; 23:357-385. [PMID: 34647239 DOI: 10.1007/s11154-021-09680-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic disorder characterized by dysregulated glycemic conditions. Diabetic complications include microvascular and macrovascular abnormalities and account for high morbidity and mortality rates in patients. Current clinical approaches for diabetic complications are limited to symptomatic treatments and tight control of blood sugar levels. Extracellular vesicles (EVs) released by somatic and stem cells have recently emerged as a new class of potent cell-free therapeutic delivery packets with a great potential to treat diabetic complications. EVs contain a mixture of bioactive molecules and can affect underlying pathological processes in favor of tissue healing. In addition, EVs have low immunogenicity and high storage capacity while maintaining nearly the same regenerative and immunomodulatory effects compared to current cell-based therapies. Therefore, EVs have received increasing attention for diabetes-related complications in recent years. In this review, we provide an outlook on diabetic complications and summarizes new knowledge and advances in EV applications. Moreover, we highlight recommendations for future EV-related research.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - Shahram Parvaneh
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Reza Yarani
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
16
|
Tu J, Yu ACH. Ultrasound-Mediated Drug Delivery: Sonoporation Mechanisms, Biophysics, and Critical Factors. BME FRONTIERS 2022; 2022:9807347. [PMID: 37850169 PMCID: PMC10521752 DOI: 10.34133/2022/9807347] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2023] Open
Abstract
Sonoporation, or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation, is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to living cells. Nevertheless, this emerging drug delivery paradigm has not yet reached widespread clinical use, because the efficiency of sonoporation is often deemed to be mediocre due to the lack of detailed understanding of the pertinent scientific mechanisms. Here, we summarize the current observational evidence available on the notion of sonoporation, and we discuss the prevailing understanding of the physical and biological processes related to sonoporation. To facilitate systematic understanding, we also present how the extent of sonoporation is dependent on a multitude of factors related to acoustic excitation parameters (ultrasound frequency, pressure, cavitation dose, exposure time), microbubble parameters (size, concentration, bubble-to-cell distance, shell composition), and cellular properties (cell type, cell cycle, biochemical contents). By adopting a science-backed approach to the realization of sonoporation, ultrasound-mediated drug delivery can be more controllably achieved to viably enhance drug uptake into living cells with high sonoporation efficiency. This drug delivery approach, when coupled with concurrent advances in ultrasound imaging, has potential to become an effective therapeutic paradigm.
Collapse
Affiliation(s)
- Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, China
| | - Alfred C. H. Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
17
|
Transient nuclear lamin A/C accretion aids in recovery from vapor nanobubble-induced permeabilisation of the plasma membrane. Cell Mol Life Sci 2022; 79:23. [PMID: 34984553 PMCID: PMC8727414 DOI: 10.1007/s00018-021-04099-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023]
Abstract
Vapor nanobubble (VNB) photoporation is a physical method for intracellular delivery that has gained significant interest in the past decade. It has successfully been used to introduce molecular cargo of diverse nature into different cell types with high throughput and minimal cytotoxicity. For translational purposes, it is important to understand whether and how photoporation affects cell homeostasis. To obtain a comprehensive view on the transcriptional rewiring that takes place after VNB photoporation, we performed a longitudinal shotgun RNA-sequencing experiment. Six hours after photoporation, we found a marked upregulation of LMNA transcripts as well as their protein products, the A-type lamins. At the same time point, we observed a significant increase in several heterochromatin marks, suggesting a global stiffening of the nucleus. These molecular features vanished 24 h after photoporation. Since VNB-induced chromatin condensation was prolonged in LMNA knockout cells, A-type lamins may be required for restoring the nucleus to its original state. Selective depletion of A-type lamins reduced cell viability after VNB photoporation, while pharmacological stimulation of LMNA transcription increased the percentage of successfully transfected cells that survived after photoporation. Therefore, our results suggest that cells respond to VNB photoporation by temporary upregulation of A-type lamins to facilitate their recovery.
Collapse
|
18
|
Chiu LLY, Subedar OD, Waldman SD. Cell Cycle Synchronization of Primary and Cultured Articular Chondrocytes. Methods Mol Biol 2022; 2579:111-123. [PMID: 36045202 DOI: 10.1007/978-1-0716-2736-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell cycle synchronization allows cells in a culture, originally at different stages of the cell cycle, to be brought to the same phase. It is normally performed by applying cell cycle arresting chemical agents to cells cultured in monolayer. While effective, isolated chondrocytes tend to dedifferentiate when cultured in monolayer and typically require 3D culturing methods to ensure phenotypic stability. Here, we describe both the conventional cell cycle synchronization method for cells in monolayer culture and an adapted method of synchronizing primary chondrocytes directly during the cell isolation process to limit potential dedifferentiation. Different methods including serum-starvation and treatment with thymidine, nocodazole, aphidicolin, and RO-3306 can synchronize the chondrocytes at different discrete phases. A cell purity of more than 90% in the S phase can be achieved with simultaneous cell isolation and synchronization using double thymidine treatment, generating a population of synchronized chondrocytes that show increased matrix synthesis when subsequently cultured in 3D.
Collapse
Affiliation(s)
- Loraine L Y Chiu
- Department of Chemical Engineering, Ryerson University, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Omar D Subedar
- Department of Chemical Engineering, Ryerson University, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Stephen D Waldman
- Department of Chemical Engineering, Ryerson University, Toronto, ON, Canada.
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
19
|
Subedar OD, Chiu LLY, Waldman SD. Cell Cycle Synchronization of Primary Articular Chondrocytes Enhances Chondrogenesis. Cartilage 2021; 12:526-535. [PMID: 30971093 PMCID: PMC8461165 DOI: 10.1177/1947603519841677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Although tissue engineering is a promising option for articular cartilage repair, it has been challenging to generate functional cartilaginous tissue. While the synthetic response of chondrocytes can be influenced by various means, most approaches treat chondrocytes as a homogeneous population that would respond similarly. However, isolated cells heterogeneously progress through the cell cycle, which can affect macromolecular biosynthesis. As it is possible to synchronize cells within discrete cell cycle phases, the purpose of this study was to investigate the effects of cell cycle synchronization on the chondrogenic potential of primary articular chondrocytes. DESIGN Different methods of cell synchronization (serum starvation, thymidine, nocodazole, aphidicolin, and RO-3306) were tested for their ability to synchronize primary articular chondrocytes during the process of cell isolation. Cells (unsynchronized and synchronized) were then encapsulated in alginate gels, cultured for 4 weeks, and analyzed for their structural and biochemical properties. RESULTS The double-thymidine method yielded the highest level of cell purity, with cells synchronized in S phase. While the cells started to lose synchronization after 24 hours, tissue constructs developed from initially S phase synchronized cells had significantly higher glycosaminoglycan and collagen II amounts than those developed using unsynchronized cells. CONCLUSIONS Initial synchronization led to long-term changes in cartilaginous tissue formation. This effect was postulated to be due to the rapid auto-induction of TGF-βs by actively dividing S phase cells, thereby stimulating chondrogenesis. Cell synchronization methods may also be applied in conjunction with redifferentiation methods to improve the chondrogenic potential of dedifferentiated or diseased chondrocytes.
Collapse
Affiliation(s)
- Omar D. Subedar
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada,Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Loraine L. Y. Chiu
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada,Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Stephen D. Waldman
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada,Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada,Stephen D. Waldman, Department of Chemical Engineering, Faculty of Engineering & Architectural Science, Ryerson University, Kerr Hall South, KHS 241N, Toronto, Ontario, Canada M5B 2K3.
| |
Collapse
|
20
|
Yan N, Tang BZ, Wang WX. Cell Cycle Control of Nanoplastics Internalization in Phytoplankton. ACS NANO 2021; 15:12237-12248. [PMID: 34156825 DOI: 10.1021/acsnano.1c03879] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticles (NPs) for delivering chemotherapeutic drugs are now in clinical trials, and cellular uptake of NPs plays an important role in determining the drug delivery efficiency. Herein, we reported that the bioaccumulation and internalization of NPs were governed by the cell cycle. Specifically, we found that the bioaccumulation of NPs was more favored in the G2/M stages, followed by the S and G0/G1 stages. We demonstrated that three key parameters-clathrin-mediated endocytosis capacity, algal cell membrane permeability, and exopolymer substance (EPS) thickness-were critical in the bioaccumulation of NPs during the cell cycling process. Over the 24-h average duration of cell cycle, clathrin-mediated endocytosis capacity was much higher at the S stage than that at the G0/G1 and G2/M stages. Besides, cell membrane permeability was measured to be higher in S and G2/M stages while the lowest in G0/G1 stage. We have also identified the change of EPS thickness during the 24-h cell cycle. Transition from G0/G1 to S and G2/M induced the attenuation in EPS thickness, and the thinnest EPS was found at the end of mitosis. The cell cycle control NPs internalization were further verified by exposing Ag nanoparticles to algae at different cell cycle stages, confirming the important roles of EPS thickness and cell cycle control in the dynamic internalization processes. The present study highlights the important roles of cell cycle controlling the NPs bioaccumulation and internalization, with possible implications in maximizing NPs internalization efficiency while reducing the cost.
Collapse
Affiliation(s)
- Neng Yan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
21
|
Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021; 172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.
Collapse
Affiliation(s)
- J Deprez
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Engelen
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
22
|
Li Y, Chen Z, Ge S. Sonoporation: Underlying Mechanisms and Applications in Cellular Regulation. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrasound combined with microbubble-mediated sonoporation has been applied to enhance drug or gene intracellular delivery. Sonoporation leads to the formation of openings in the cell membrane, triggered by ultrasound-mediated oscillations and destruction of microbubbles. Multiple mechanisms
are involved in the occurrence of sonoporation, including ultrasonic parameters, microbubbles size, and the distance of microbubbles to cells. Recent advances are beginning to extend applications through the assistance of contrast agents, which allow ultrasound to connect directly to cellular
functions such as gene expression, cellular apoptosis, differentiation, and even epigenetic reprogramming. In this review, we summarize the current state of the art concerning microbubble‐cell interactions and sonoporation effects leading to cellular functions.
Collapse
Affiliation(s)
- Yue Li
- First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhiyi Chen
- First Affiliated Hospital of University of South China, Hengyang, China
| | - Shuping Ge
- Department of Pediatrics, St Christopher’s Hospital for Children, Tower Health and Drexel University, Philadelphia, PA (S.G.)
| |
Collapse
|
23
|
Joiner JB, Pylayeva-Gupta Y, Dayton PA. Focused Ultrasound for Immunomodulation of the Tumor Microenvironment. THE JOURNAL OF IMMUNOLOGY 2021; 205:2327-2341. [PMID: 33077668 DOI: 10.4049/jimmunol.1901430] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Focused ultrasound (FUS) has recently emerged as a modulator of the tumor microenvironment, paving the way for FUS to become a safe yet formidable cancer treatment option. Several mechanisms have been proposed for the role of FUS in facilitating immune responses and overcoming drug delivery barriers. However, with the wide variety of FUS parameters used in diverse tumor types, it is challenging to pinpoint FUS specifications that may elicit the desired antitumor response. To clarify FUS bioeffects, we summarize four mechanisms of action, including thermal ablation, hyperthermia/thermal stress, mechanical perturbation, and histotripsy, each inducing unique vascular and immunological effects. Notable tumor responses to FUS include enhanced vascular permeability, increased T cell infiltration, and tumor growth suppression. In this review, we have categorized and reviewed recent methods of using therapeutic ultrasound to elicit an antitumor immune response with examples that reveal specific solutions and challenges in this new research area.
Collapse
Affiliation(s)
- Jordan B Joiner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yuliya Pylayeva-Gupta
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Paul A Dayton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599
| |
Collapse
|
24
|
Wang L, Wang P, Li X, Dong Y, Wu S, Xu M, Chen X, Wang S, Zheng C, Zou C. Combination CTLA-4 immunoglobulin treatment and ultrasound microbubble-mediated exposure improve renal function in a rat model of diabetic nephropathy. Aging (Albany NY) 2021; 13:8524-8540. [PMID: 33714204 PMCID: PMC8034886 DOI: 10.18632/aging.202664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study explored the therapeutic impact of combined cytotoxic T lymphocyte-associated antigen 4 immunoglobulin (CTLA-4-Ig) treatment and microbubble-mediated exposure in a rat model of diabetic nephropathy (DN). METHOD We treated rats using CTLA-4-Ig and/or microbubble exposure. At 8 weeks post-intervention, key parameters were evaluated including blood biochemistry, damage to renal tissue, renal parenchymal elasticity, ultrastructural changes in podocytes, and renal parenchymal expression of CD31, CD34, IL-6, Fn, Collagen I, Talin, Paxillin, α3β1, podocin, nephrin, and B7-1. RESULT We found that renal function in the rat model of DN can be significantly improved by CTLA-4-Ig and CTLA-4-Ig + ultrasound microbubble treatment. Treatment efficacy was associated with reductions in renal parenchymal hardness, decreases in podocyte reduction, decreased IL-6, Fn and Collagen I expression, increased Talin, Paxillin and α3β1 expression, elevated podocin and nephrin expression, and decreased B7-1 expression. In contrast, these treatments did not impact CD31 or CD34 expression within the renal parenchyma. CONCLUSION These findings clearly emphasize that CTLA-4-Ig can effectively prevent podocyte damage, inhibiting inflammation and fibrosis, and thereby treating and preventing DN. In addition, ultrasound microbubble exposure can improve the ability of CTLA-4-Ig to pass through the glomerular basement membrane in order to access podocytes such that combination CTLA-4-Ig + microbubble exposure treatment is superior to treatment with CTLA-4-Ig only.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Pengfei Wang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiuyun Li
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yanyan Dong
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Senmin Wu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Maosheng Xu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiu Chen
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shijia Wang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chunpeng Zou
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
25
|
Haugse R, Langer A, Murvold ET, Costea DE, Gjertsen BT, Gilja OH, Kotopoulis S, Ruiz de Garibay G, McCormack E. Low-Intensity Sonoporation-Induced Intracellular Signalling of Pancreatic Cancer Cells, Fibroblasts and Endothelial Cells. Pharmaceutics 2020; 12:pharmaceutics12111058. [PMID: 33171947 PMCID: PMC7694645 DOI: 10.3390/pharmaceutics12111058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
The use of ultrasound (US) and microbubbles (MB), usually referred to as sonoporation, has great potential to increase the efficacy of chemotherapy. However, the molecular mechanisms that mediate sonoporation response are not well-known, and recent research suggests that cell stress induced by US + MBs may contribute to the treatment benefit. Furthermore, there is a growing understanding that the effects of US + MBs are beyond only the cancer cells and involves the tumour vasculature and microenvironment. We treated pancreatic cancer cells (MIA PaCa-2) and stromal cells, fibroblasts (BJ) and human umbilical vein endothelial cells (HUVECs), with US ± MB, and investigated the extent of uptake of cell impermeable dye (calcein, by flow cytometry), viability (cell count, Annexin/PI and WST-1 assays) and activation of a number of key proteins in important intracellular signalling pathways immediately and 2 h after sonoporation (phospho flow cytometry). Different cell types responded differently to US ± MBs in all these aspects. In general, sonoporation induces immediate, transient activation of MAP-kinases (p38, ERK1/2), and an increase in phosphorylation of ribosomal protein S6 together with dephosphorylation of 4E-BP1. The sonoporation stress-response resembles cellular responses to electroporation and pore-forming toxins in membrane repair and restoring cellular homeostasis, and may be exploited therapeutically. The stromal cells were more sensitive to sonoporation than tumoural cells, and further efforts in optimising sonoporation-enhanced therapy should be targeted at the microenvironment.
Collapse
Affiliation(s)
- Ragnhild Haugse
- Centre for Pharmacy, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway;
- Department of Quality and Development, Hospital Pharmacies Enterprise in Western Norway, Møllendalsbakken 9, 5021 Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
| | - Anika Langer
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
| | - Elisa Thodesen Murvold
- KinN Therapeutics AS, Jonas Lies vei 91B, 5021 Bergen, Norway;
- Department of Clinical Medicine, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (O.H.G.); (S.K.)
| | - Daniela Elena Costea
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
- Department of Clinical Medicine, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (O.H.G.); (S.K.)
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Odd Helge Gilja
- Department of Clinical Medicine, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (O.H.G.); (S.K.)
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Spiros Kotopoulis
- Department of Clinical Medicine, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (O.H.G.); (S.K.)
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- EXACT Therapeutics AS, Ullernchausseen 64, 0379 Oslo, Norway
| | - Gorka Ruiz de Garibay
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
| | - Emmet McCormack
- Centre for Pharmacy, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway;
- Department of Quality and Development, Hospital Pharmacies Enterprise in Western Norway, Møllendalsbakken 9, 5021 Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
- KinN Therapeutics AS, Jonas Lies vei 91B, 5021 Bergen, Norway;
- Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
- Correspondence:
| |
Collapse
|
26
|
Rong N, Zhang M, Wang Y, Wu H, Qi H, Fu X, Li D, Yang C, Wang Y, Fan Z. Effects of extracellular matrix rigidity on sonoporation facilitated by targeted microbubbles: Bubble attachment, bubble dynamics, and cell membrane permeabilization. ULTRASONICS SONOCHEMISTRY 2020; 67:105125. [PMID: 32298974 DOI: 10.1016/j.ultsonch.2020.105125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the effects of extracellular matrix rigidity, an important physical property of microenvironments regulating cell morphology and functions, on sonoporation facilitated by targeted microbubbles, highlighting the role of microbubbles. We conducted mechanistic studies at the cellular level on physiologically relevant soft and rigid substrates. By developing a unique imaging strategy, we first resolved details of the 3D attachment configurations between targeted microbubbles and cell membrane. High-speed video microscopy then unveiled bubble dynamics driven by a single ultrasound pulse. Finally, we evaluated the cell membrane permeabilization using a small molecule model drug. Our results demonstrate that: (1) stronger targeted microbubble attachment was formed for cells cultured on the rigid substrate, while six different attachment configurations were revealed in total; (2) more violent bubble oscillation was observed for cells cultured on the rigid substrate, while one third of bubbles attached to cells on the soft substrate exhibited deformation shortly after ultrasound was turned off; (3) higher acoustic pressure was needed to permeabilize the cell membrane for cells on the soft substrate, while under the same ultrasound condition, acoustically-activated microbubbles generated larger pores as compared to cells cultured on the soft substrate. The current findings provide new insights to understand the underlying mechanisms of sonoporation in a physiologically relevant context and may be useful for the clinical translation of sonoporation.
Collapse
Affiliation(s)
- Ning Rong
- Department of Biomedical Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Meiru Zhang
- Department of Biomedical Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yulin Wang
- Department of Biomedical Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Hui Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xing Fu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Chunmei Yang
- Department of Biomedical Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yan Wang
- Department of Biomedical Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zhenzhen Fan
- Department of Biomedical Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
27
|
Yang Y, Li Q, Guo X, Tu J, Zhang D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. ULTRASONICS SONOCHEMISTRY 2020; 67:105096. [PMID: 32278246 DOI: 10.1016/j.ultsonch.2020.105096] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 05/04/2023]
Abstract
The past several decades have witnessed great progress in "smart drug delivery", an advance technology that can deliver genes or drugs into specific locations of patients' body with enhanced delivery efficiency. Ultrasound-activated mechanical force induced by the interactions between microbubbles and cells, which can stimulate so-called "sonoporation" process, has been regarded as one of the most promising candidates to realize spatiotemporal-controllable drug delivery to selected regions. Both experimental and numerical studies were performed to get in-depth understanding on how the microbubbles interact with cells during sonoporation processes, under different impact parameters. The current work gives an overview of the general mechanism underlying microbubble-mediated sonoporation, and the possible impact factors (e.g., the properties of cavitation agents and cells, acoustical driving parameters and bubble/cell micro-environment) that could affect sonoporation outcomes. Finally, current progress and considerations of sonoporation in clinical applications are reviewed also.
Collapse
Affiliation(s)
- Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Qunying Li
- Department of Ultrasound in Medicine, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China
| |
Collapse
|
28
|
Zhang J, Zhu S, Tan Q, Cheng D, Dai Q, Yang Z, Zhang L, Li F, Zuo Y, Dai W, Chen L, Gu E, Xu G, Wei Z, Cao Y, Liu X. Combination therapy with ropivacaine-loaded liposomes and nutrient deprivation for simultaneous cancer therapy and cancer pain relief. Am J Cancer Res 2020; 10:4885-4899. [PMID: 32308756 PMCID: PMC7163441 DOI: 10.7150/thno.43932] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy allows cancer cells to respond changes in nutrient status by degrading and recycling non-essential intracellular contents. Inhibition of autophagy combined with nutrient deprivation is an effective strategy to treat cancer. Pain is a primary determinant of poor quality of life in advanced cancer patients, but there is currently no satisfactory treatment. In addition, effective treatment of cancer does not efficiently relieve cancer pain, but may increase pain in many cases. Hence, few studies focus on simultaneous cancer therapy and pain relief, and made this situation even worse. Method: Ropivacaine was loaded into tumor-active targeted liposomes. The cytotoxicity of ropivacaine-based combination therapy in B16 and HeLa cells were tested. Moreover, a mice model of cancer pain which was induced by inoculation of melanoma near the sciatic nerve was constructed to assess the cancer suppression and pain relief effects of ropivacaine-based combination therapy. Results: Ropivacaine and ropivacaine-loaded liposomes (Rop-DPRL) were novelly found to damage autophagic degradation. Replicated administration of Rop-DPRL and calorie restriction (CR) could efficiently repress the development of tumor. In addition, administration of Rop-DPRL could relieve cancer pain with its own analgestic ability in a short duration, while repeated administration of Rop-DPRL and CR resulted in continuous alleviation of cancer pain through reduction of VEGF-A levels in advanced cancer mice. Further, dual inhibition of phosphorylation of STAT3 at Tyr705 and Ser727 by Rop-DPRL and CR contribute to the reduction of VEGF-A. Conclusion: Combination therapy with Rop-DPRL and nutrient deprivation simultaneously suppresses cancer growth and relieves cancer pain.
Collapse
|
29
|
Yang Y, Tu J, Yang D, Raymond JL, Roy RA, Zhang D. Photo- and Sono-Dynamic Therapy: A Review of Mechanisms and Considerations for Pharmacological Agents Used in Therapy Incorporating Light and Sound. Curr Pharm Des 2020; 25:401-412. [PMID: 30674248 DOI: 10.2174/1381612825666190123114107] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
Abstract
As irreplaceable energy sources of minimally invasive treatment, light and sound have, separately, laid solid foundations in their clinic applications. Constrained by the relatively shallow penetration depth of light, photodynamic therapy (PDT) typically involves involves superficial targets such as shallow seated skin conditions, head and neck cancers, eye disorders, early-stage cancer of esophagus, etc. For ultrasound-driven sonodynamic therapy (SDT), however, to various organs is facilitated by the superior... transmission and focusing ability of ultrasound in biological tissues, enabling multiple therapeutic applications including treating glioma, breast cancer, hematologic tumor and opening blood-brain-barrier (BBB). Considering the emergence of theranostics and precision therapy, these two classic energy sources and corresponding sensitizers are worth reevaluating. In this review, three typical therapies using light and sound as a trigger, PDT, SDT, and combined PDT and SDT are introduced. The therapeutic dynamics and current designs of pharmacological sensitizers involved in these therapies are presented. By introducing both the history of the field and the most up-to-date design strategies, this review provides a systemic summary on the development of PDT and SDT and fosters inspiration for researchers working on 'multi-modal' therapies involving light and sound.
Collapse
Affiliation(s)
- Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dongxin Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Jason L Raymond
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Ronald A Roy
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.,Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
30
|
Bjånes T, Kotopoulis S, Murvold ET, Kamčeva T, Gjertsen BT, Gilja OH, Schjøtt J, Riedel B, McCormack E. Ultrasound- and Microbubble-Assisted Gemcitabine Delivery to Pancreatic Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12020141. [PMID: 32046005 PMCID: PMC7076495 DOI: 10.3390/pharmaceutics12020141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death worldwide. Poor drug delivery to tumours is thought to limit chemotherapeutic treatment efficacy. Sonoporation combines ultrasound (US) and microbubbles to increase the permeability of cell membranes. We assessed gemcitabine uptake combined with sonoporation in vitro in three PDAC cell lines (BxPC-3, MIA PaCa-2 and PANC-1). Cells were cultured in hypoxic bioreactors, while gemcitabine incubation ± sonoporation was conducted in cells with operational or inhibited nucleoside membrane transporters. Intracellular active metabolite (dFdCTP), extracellular gemcitabine, and inactive metabolite (dFdU) concentrations were measured with liquid chromatography tandem mass spectrometry. Sonoporation with increasing US intensities resulted in decreasing extracellular gemcitabine concentrations in all three cell lines with inhibited membrane transporters. In cells with inhibited membrane transporters, without sonoporation, dFdCTP concentrations were reduced down to 10% of baseline. Sonoporation partially restored gemcitabine uptake in these cells, as indicated by a moderate increase in dFdCTP concentrations (up to 37% of baseline) in MIA PaCa-2 and PANC-1. In BxPC-3, gemcitabine was effectively inactivated to dFdU, which might represent a protective mechanism against dFdCTP accumulation in these cells. Intracellular dFdCTP concentrations did not change significantly following sonoporation in any of the cell lines with operational membrane transporters, indicating that the gemcitabine activation pathway may have been saturated with the drug. Sonoporation allowed a moderate increase in gemcitabine transmembrane uptake in all three cell lines, but pre-existing nucleoside transporters were the major determinants of gemcitabine uptake and retention.
Collapse
Affiliation(s)
- Tormod Bjånes
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Correspondence: (T.B.); (E.M.)
| | - Spiros Kotopoulis
- Phoenix Solutions AS, Ullernchausseen 64, 0379 Oslo, Norway;
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen 5021, Norway;
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | | | - Tina Kamčeva
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
| | - Bjørn Tore Gjertsen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen 5021, Norway
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen 5021, Norway;
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | - Jan Schjøtt
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
| | - Bettina Riedel
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
| | - Emmet McCormack
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Correspondence: (T.B.); (E.M.)
| |
Collapse
|
31
|
Cai X, Jiang Y, Lin M, Zhang J, Guo H, Yang F, Leung W, Xu C. Ultrasound-Responsive Materials for Drug/Gene Delivery. Front Pharmacol 2020; 10:1650. [PMID: 32082157 PMCID: PMC7005489 DOI: 10.3389/fphar.2019.01650] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Ultrasound is one of the most commonly used methods in the diagnosis and therapy of diseases due to its safety, deep penetration into tissue, and non-invasive nature. In the drug/gene delivery systems, ultrasound shows many advantages in terms of site-specific delivery and spatial release control of drugs/genes and attracts increasing attention. Microbubbles are the most well-known ultrasound-responsive delivery materials. Recently, nanobubbles, droplets, micelles, and nanoliposomes have been developed as novel carriers in this field. Herein, we review advances of novel ultrasound-responsive materials (nanobubbles, droplets, micelles and nanoliposomes) and discuss the challenges of ultrasound-responsive materials in delivery systems to boost the development of ultrasound-responsive materials as delivery carriers.
Collapse
Affiliation(s)
- Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiyong Zhang
- Department of Pediatrics, Shenzhen Maternity and Child Health Care Hospital, Shenzhen, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fanwen Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Tuen Mun, Hong Kong, Hong Kong
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Zou P, Li M, Wang Z, Zhang G, Jin L, Pang Y, Du L, Duan Y, Liu Z, Shi Q. Micro-Particle Image Velocimetry Investigation of Flow Fields of SonoVue Microbubbles Mediated by Ultrasound and Their Relationship With Delivery. Front Pharmacol 2020; 10:1651. [PMID: 32116672 PMCID: PMC7025580 DOI: 10.3389/fphar.2019.01651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/16/2019] [Indexed: 12/04/2022] Open
Abstract
The flow fields generated by the acoustic behavior of microbubbles can significantly increase cell permeability. This facilitates the cellular uptake of external molecules in a process known as ultrasound-mediated drug delivery. To promote its clinical translation, this study investigated the relationships among the ultrasound parameters, acoustic behavior of microbubbles, flow fields, and delivery results. SonoVue microbubbles were activated by 1 MHz pulsed ultrasound with 100 Hz pulse repetition frequency, 1:5 duty cycle, and 0.20/0.35/0.70 MPa peak rarefactional pressure. Micro-particle image velocimetry was used to detect the microbubble behavior and the resulting flow fields. Then HeLa human cervical cancer cells were treated with the same conditions for 2, 4, 10, 30, and 60 s, respectively. Fluorescein isothiocyanate and propidium iodide were used to quantitate the rates of sonoporated cells with a flow cytometer. The results indicate that (1) microbubbles exhibited different behavior in ultrasound fields of different peak rarefactional pressures. At peak rarefactional pressures of 0.20 and 0.35 MPa, the dispersed microbubbles clumped together into clusters, and the clusters showed no apparent movement. At a peak rarefactional pressure of 0.70 MPa, the microbubbles were partially broken, and the remainders underwent clustering and coalescence to form bubble clusters that exhibited translational oscillation. (2) The flow fields were unsteady before the unification of the microbubbles. After that, the flow fields showed a clear pattern. (3)The delivery efficiency improved with the shear stress of the flow fields increased. Before the formation of the microbubble/bubble cluster, the maximum shear stresses of the 0.20, 0.35, and 0.70 MPa groups were 56.0, 87.5 and 406.4 mPa, respectively, and the rates of the reversibly sonoporated cells were 2.4% ± 0.4%, 5.5% ± 1.3%, and 16.6% ± 0.2%. After the cluster formation, the maximum shear stresses of the three groups were 9.1, 8.7, and 71.7 mPa, respectively. The former two could not mediate sonoporation, whereas the last one could. These findings demonstrate the critical role of flow fields in ultrasound-mediated drug delivery and contribute to its clinical applications.
Collapse
Affiliation(s)
- Penglin Zou
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengqi Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China
| | - Ziqi Wang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoxiu Zhang
- Department of Emergency, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Lifang Jin
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China
| | - Qiusheng Shi
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Mérida F, Rinaldi C, Juan EJ, Torres-Lugo M. In vitro Ultrasonic Potentiation of 2-Phenylethynesulfonamide/Magnetic Fluid Hyperthermia Combination Treatments for Ovarian Cancer. Int J Nanomedicine 2020; 15:419-432. [PMID: 32021188 PMCID: PMC6982443 DOI: 10.2147/ijn.s217870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/25/2019] [Indexed: 01/15/2023] Open
Abstract
Background Magnetic Fluid Hyperthermia (MFH) is a promising adjuvant for chemotherapy, potentiating the action of anticancer agents. However, drug delivery to cancer cells must be optimized to improve the overall therapeutic effect of drug/MFH combination treatments. Purpose The aim of this work was to demonstrate the potentiation of 2-phenylethynesulfonamide (PES) at various combination treatments with MFH, using low-intensity ultrasound as an intracellular delivery enhancer. Methods The effect of ultrasound (US), MFH, and PES was first evaluated individually and then as combination treatments. Definity® microbubbles and polyethylene glycol (PEG)-coated iron oxide nanoparticles were used to induce cell sonoporation and MFH, respectively. Assessment of cell membrane permeabilization was evaluated via fluorescence microscopy, iron uptake by cells was quantified by UV-Vis spectroscopy, and cell viability was determined using automatic cell counting. Results Notable reductions in cancer cell viability were observed when ultrasound was incorporated. For example, the treatment US+PES reduced cell viability by 37% compared to the non-toxic effect of the drug. Similarly, the treatment US+MFH using mild hyperthermia (41°C), reduced cell viability by an additional 18% when compared to the effect of MH alone. Significant improvements were observed for the combination of US+PES+MFH with cell viability reduced by an additional 26% compared to the PES+MFH group. The improved cytotoxicity was attributed to enhanced drug/nanoparticle intracellular delivery, with iron uptake values nearly twice those achieved without ultrasound. Various treatment schedules were examined, and all of them showed substantial cell death, indicating that the time elapsed between sonoporation and magnetic field exposure was not significant. Conclusion Superior cancer cell-killing patterns took place when ultrasound was incorporated thus demonstrating the in vitro ultrasonic potentiation of PES and mild MFH. This work demonstrated that ultrasound is a promising non-invasive enhancer of PES/MFH combination treatments, aiming to establish a sono-thermo-chemotherapy in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Fernando Mérida
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - Carlos Rinaldi
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Eduardo J Juan
- Department of Electrical and Computer Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| |
Collapse
|
34
|
Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q, Yue Y, Gu N. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics 2020; 10:462-483. [PMID: 31903132 PMCID: PMC6929974 DOI: 10.7150/thno.37593] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
Drug delivery for tumor theranostics involves the extensive use of the enhanced permeability and retention (EPR) effect. Previously, various types of nanomedicines have been demonstrated to accumulate in solid tumors via the EPR effect. However, EPR is a highly variable phenomenon because of tumor heterogeneity, resulting in low drug delivery efficacy in clinical trials. Because ultrasonication using micro/nanobubbles as contrast agents can disrupt blood vessels and enhance the specific delivery of drugs, it is an effective approach to improve the EPR effect for the passive targeting of tumors. In this review, the basic thermal effect, acoustic streaming, and cavitation mechanisms of ultrasound, which are characteristics that can be utilized to enhance the EPR effect, are briefly introduced. Second, micro/nanobubble-enhanced ultrasound imaging is discussed to understand the validity and variability of the EPR effect. Third, because the tumor microenvironment is complicated owing to elevated interstitial fluid pressure and the deregulated extracellular matrix components, which may be unfavorable for the EPR effect, few new trends in smart bubble drug delivery systems, which may improve the accuracy of EPR-mediated passive drug targeting, are summarized. Finally, the challenging and major concerns that should be considered in the next generation of micro/nanobubble-contrast-enhanced ultrasound theranostics for EPR-mediated passive drug targeting are also discussed.
Collapse
Affiliation(s)
- Lei Duan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Li Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Juan Jin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Dong Liu
- West Anhui University, Lu'an, P.R. China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, P. R. China
| | - Ke Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qinxin Wang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yuanbin Yue
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
35
|
Roovers S, Lajoinie G, De Cock I, Brans T, Dewitte H, Braeckmans K, Versluis M, De Smedt SC, Lentacker I. Sonoprinting of nanoparticle-loaded microbubbles: Unraveling the multi-timescale mechanism. Biomaterials 2019; 217:119250. [DOI: 10.1016/j.biomaterials.2019.119250] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
|
36
|
Ni Z, Yin C, Xu G, Xie L, Huang J, Liu S, Tu J, Guo X, Zhang D. Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain. LAB ON A CHIP 2019; 19:2728-2740. [PMID: 31292597 DOI: 10.1039/c9lc00431a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In modelling acoustofluidic chips actuated by surface acoustic waves (SAWs) and using polydimethylsilane (PDMS) as a channel material, reduced models are often adopted to describe the acoustic behaviors of PDMS. Here, based on a standing SAW (SSAW) acoustophoresis chip, we compared three different descriptions of a PDMS chamber and looked into in-chamber physical fields and ensuing particle motion processes through finite element (FE) simulations. Specifically, the PDMS domain was considered as an elastic solid material, a non-flow fluid, and a lossy wall, respectively. The major findings include: (a) the shear waves that propagated in a solid PDMS wall did not influence the in-chamber pressure and ARF fields severely, but induced an observable difference in the acoustic streaming (AS) patterns, and distinctly changed the trajectories of polystyrene particles, especially those whose radii were below 1.5 μm; and (b) the equivalent damping coefficients were linearly dependent on the SAW frequency, characterized by a fixed loss per wavelength, indicating the wave leakage at the interface being the main source of the transmission loss of SAWs. Meanwhile, the acoustic radiation force (ARF) can be overestimated when describing PDMS as a lossy wall, especially at the bottom corners of the chamber, which could cause inaccurate predictions of the motion of big particles. Based on the damping mechanism, a rough protocol is provided for scaling of pressure fields between different models. Some suggestions for device designs and operations are also given based on the obtained findings.
Collapse
Affiliation(s)
- Zhengyang Ni
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Chuhao Yin
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Guangyao Xu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Linzhou Xie
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Junjie Huang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Shilei Liu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China. and The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China
| |
Collapse
|
37
|
Fan P, Yang D, Wu J, Yang Y, Guo X, Tu J, Zhang D. Cell-cycle-dependences of membrane permeability and viability observed for HeLa cells undergoing multi-bubble-cell interactions. ULTRASONICS SONOCHEMISTRY 2019; 53:178-186. [PMID: 30642802 DOI: 10.1016/j.ultsonch.2019.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/30/2018] [Accepted: 01/05/2019] [Indexed: 05/07/2023]
Abstract
Microbubble-mediated sonoporation is a promising strategy for intracellular gene/drug delivery, but the biophysical mechanisms involved in the interactions between microbubbles and cells are not well understood. Here, HeLa cells were synchronized in individual cycle phases, then the cell-cycle-dependences of the membrane permeability and viability of HeLa cells undergoing multi-bubble sonoporation were evaluated using focused ultrasound exposure apparatus coupled passive cavitation detection system. The results indicated that: (1) the microbubble cavitation activity should be independent on cell cycle phases; (2) G1-phase cells with the largest Young's modulus were the most robust against microbubble-mediated sonoporation; (3) G2/M-phase cells exhibited the greatest accumulated FITC uptake with the lowest viability, which should be mainly attributed to the chemical effect of synchronization drugs; and (4) more important, S-phase cells with the lowest stiffness seemed to be the most susceptible to the mechanical effect generated by microbubble cavitation activity, which resulted in the greatest enhancement in sonoporation-facilitated membrane permeabilization without further scarifying their viability. The current findings may benefit ongoing efforts aiming to pursue rational utilization of microbubble-mediated sonoporation in cell-cycle-targeted gene/drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Pengfei Fan
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China
| | - Dongxin Yang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China
| | - Jun Wu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
38
|
Van Acker T, Buckle T, Van Malderen SJM, van Willigen DM, van Unen V, van Leeuwen FWB, Vanhaecke F. High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Anal Chim Acta 2019; 1074:43-53. [PMID: 31159938 DOI: 10.1016/j.aca.2019.04.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
This work evaluates the possibility of placement of high-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) within precision medicine by assessing the suitability of LA-ICP-MS as a micro-analytical technique for the localization and quantification of membranous receptors in heterogeneous cell samples that express both the membrane-bound receptors C-X-C chemokine receptor type 4 (CXCR4) and epidermal growth factor receptor (EGFR). Staining of the breast cancer cell lines MDA-MB-231 X4 and MDA-MB-468 was achieved using receptor-specific hybrid tracers, containing both a fluorophore and a DTPA single-lanthanide chelate. Prior to LA-ICP-MS imaging, fluorescence confocal microscopy (FCM) imaging was performed to localize the receptors, hereby enabling direct comparison. Based on the different expression levels of CXCR4 and EGFR, a distinction could be made between the cell lines using both imaging modalities. Furthermore, FCM and LA-ICP-MS demonstrated complementary characteristics, as a more distinct discrimination could be made between both cell lines based on the EGFR-targeting hybrid tracer via LA-ICP-MS, due to the intrinsic CXCR4-related green fluorescent protein (GFP) signal present in the MDA-MB-231 X4 cells. Employing state-of-the-art LA-ICP-MS instrumentation in bidirectional area scanning mode for sub-cellular imaging of MDA-MB-231 X4 cells enabled the specific binding of the CXCR4-targeting hybrid tracer to the cell membrane to be clearly demonstrated. The stretching of cells over the glass substrate led to a considerably higher signal response for pixels at the cell edges, relative to the more central pixels. The determination of the expression levels of CXCR4 and EGFR for the MDA-MB-468 cell line was performed using LA-ICP-MS single-cell analysis (sc-LA-ICP-MS) and external calibration, based on the quantitative ablation of Ho-spiked dried gelatin droplet standards. Additionally, a second calibration approach was applied based on spot ablation of highly homogeneous dried gelatin gels in combination with the determination of the ablated volume using atomic force microscopy (AFM) and yielded results which were in good agreement with the expression levels determined via flow cytometry (FC) and mass cytometry (MC). Hybrid tracers enable a direct comparison between (i) FCM and LA-ICP-MS imaging for the evaluation of the microscopic binding pattern and between (ii) FC, MC and sc-LA-ICP-MS for the quantification of receptor expression levels in single cells.
Collapse
Affiliation(s)
- Thibaut Van Acker
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Stijn J M Van Malderen
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Ghent University, Department of Chemistry, X-ray Microspectroscopy and Imaging Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Vincent van Unen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
39
|
Tu J, Zhang H, Yu J, Liufu C, Chen Z. Ultrasound-mediated microbubble destruction: a new method in cancer immunotherapy. Onco Targets Ther 2018; 11:5763-5775. [PMID: 30254469 PMCID: PMC6140758 DOI: 10.2147/ott.s171019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy provides a new treatment option for cancer. However, it may be therapeutically insufficient if only using the self-immune system alone to attack the tumor without any aiding methods. To overcome this drawback and improve the efficiency of therapy, new treatment methods are emerging. In recent years, ultrasound-mediated microbubble destruction (UMMD) has shown great potential in cancer immunotherapy. Using the combination of ultrasound and targeted microbubbles, molecules such as antigens or genes encoding antigens can be efficiently and specifically delivered into the tumor tissue. This review focuses on the recent progress in the application of UMMD in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiawei Tu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Hui Zhang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Chun Liufu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| |
Collapse
|
40
|
Yu J, Chen Z, Yan F. Advances in mechanism studies on ultrasonic gene delivery at cellular level. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:1-9. [PMID: 30031881 DOI: 10.1016/j.pbiomolbio.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023]
Abstract
Ultrasound provides a means for intracellular gene delivery, contributing to a noninvasive and spatiotemporally controllable strategy suitable for clinical applications. Many studies have been done to provide mechanisms of ultrasound-mediated gene delivery at the cellular level. This review summarizes the studies on the important aspects of the mechanisms, providing an overview of recent progress in cellular experiment of ultrasound-mediated gene delivery.
Collapse
Affiliation(s)
- Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China.
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China.
| |
Collapse
|
41
|
Wang M, Zhang Y, Cai C, Tu J, Guo X, Zhang D. Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters. Sci Rep 2018; 8:3885. [PMID: 29497082 PMCID: PMC5832802 DOI: 10.1038/s41598-018-22056-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/15/2018] [Indexed: 11/30/2022] Open
Abstract
Sonoporation mediated by microbubbles has being extensively studied as a promising technique to facilitate gene/drug delivery to cells. Previous studies mainly explored the membrane-level responses to sonoporation. To provide in-depth understanding on this process, various sonoporation-induced cellular responses (e.g., membrane permeabilization and cytoskeleton disassembly) generated at different impact parameters (e.g., acoustic driving pressure and microbubble-cell distances) were systemically investigated in the present work. HeLa cells, whose α-tubulin cytoskeleton was labeled by incorporation of a green fluorescence protein (GFP)-α-tubulin fusion protein, were exposed to a single ultrasound pulse (1 MHz, 20 cycles) in the presence of microbubbles. Intracellular transport via sonoporation was assessed in real time using propidium iodide and the disassembly of α-tubulin cytoskeleton was observed by fluorescence microscope. Meanwhile, the dynamics of an interacting bubble-cell pair was theoretically simulated by boundary element method. Both the experimental observations and numerical simulations showed that, by increasing the acoustic pressure or reducing the bubble-cell distance, intensified deformation could be induced in the cellular membrane, which could result in enhanced intracellular delivery and cytoskeleton disassembly. The current results suggest that more tailored therapeutic strategies could be designed for ultrasound gene/drug delivery by adopting optimal bubble-cell distances and/or better controlling incident acoustic energy.
Collapse
Affiliation(s)
- Maochen Wang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China
| | - Yi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China
| | - Chenliang Cai
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China.
- The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing, 10080, China.
| |
Collapse
|