1
|
Gómez-González B, Basílio N, Vaz B, Paleo MR, Sardina FJ, Pérez-Lorenzo M, García-Río L. Rational Design of Supramolecular Receptors for Consistent Binding Affinities under High-Salinity Conditions. J Org Chem 2025. [PMID: 40245266 DOI: 10.1021/acs.joc.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The development of water-soluble multicharged macrocycles has opened promising pathways in biomedical applications, enabling selective molecular recognition for therapeutic and diagnostic uses. Yet, traditional polyanionic and polycationic receptors often face performance limitations under realistic operating conditions. A major drawback is the natural tendency of these polycharged hosts to experience increasing screening effects as concentration rises due to self-ion pairing phenomena, which can reduce binding efficiency by several orders of magnitude. These issues are further intensified when polyionic receptors are used in high-salinity environments, typically used to replicate physiological settings, where the abundance of ions introduces additional screening effects that diminish the supramolecular affinity for a wide range of guests. This study presents a new approach that leverages zwitterionic synthetic receptors with rationally engineered architectures to overcome these challenges. By incorporation of specific structural features, self-ion pairing is eliminated, effectively making host concentration no longer a controlling factor in the thermodynamics of the complexation process. Additionally, these dual-charged hosts achieve self-contained stabilization, naturally shielding recognition sites from external ion interference under high-salinity conditions. Furthermore, the ability of these supramolecular hosts to encapsulate zwitterionic guests, a challenging task due to the strong solvation of these molecules in aqueous solution, adds significant value to the functional versatility of these macrocycles. Altogether, these findings represent a significant advancement in the design of stable and adaptable receptor systems for complex environments.
Collapse
Affiliation(s)
- Borja Gómez-González
- Department of Physical Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Belén Vaz
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Galicia Sur Health Research Institute, Vigo 36310, Spain
| | - M Rita Paleo
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Department of Organic Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - F Javier Sardina
- Department of Organic Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Centro de Investigación Mestrelab (CIM), Av. Barcelona 7, Santiago de Compostela 15706, Spain
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Galicia Sur Health Research Institute, Vigo 36310, Spain
| | - Luis García-Río
- Department of Physical Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Centro de Investigación Mestrelab (CIM), Av. Barcelona 7, Santiago de Compostela 15706, Spain
| |
Collapse
|
2
|
Regeni I, Bonnet S. Supramolecular approaches for the treatment of hypoxic regions in tumours. Nat Rev Chem 2025:10.1038/s41570-025-00705-7. [PMID: 40185999 DOI: 10.1038/s41570-025-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 04/07/2025]
Abstract
Supramolecular chemistry provides a range of 'weak' intermolecular interactions that allow drugs and prodrugs to self-assemble. In the complex biological setting of blood and tumours, these interactions must be stable enough for efficient and selective drug delivery to the tumour site, but weak enough to allow the release of the cytotoxic load. The non-covalent nature of supramolecular interactions enables the detachment of smaller (pro)drug monomers that can penetrate cancer cells differently to the original nanoparticles. Hypoxic tumours show low oxygen levels due to poor vascularization, which poses challenges for drug delivery and generates biological resistances. Supramolecular building blocks specifically designed for hypoxic tumours offer targeted activation of prodrug self-assemblies, enhancing effectiveness against hypoxic cancer cells and hypoxic regions in tumours. This Review explores how supramolecular chemistry can improve (pro)drug delivery and activation in hypoxic tumours.
Collapse
Affiliation(s)
- Irene Regeni
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Yang J, Liu K, Chen Y, Ye H, Hao G, Du F, Wang P. A supramolecular bactericidal material for preventing and treating plant-associated biofilms. Nat Commun 2025; 16:2627. [PMID: 40097425 PMCID: PMC11914267 DOI: 10.1038/s41467-025-57839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Treating bacterial biofilms on plants poses challenges due to biofilm induced resistance and poor agent adhesion on plant leaves. Here, we report on a host-guest self-assembled material which is biocompatible, has a lamellar supramolecular structure for leaf retention and prevents and treats bacterial biofilms. Phosphate/isopropanolamine-modified ferrocene forms a host-guest complex with β-CD which assembles into a lamella structure. The agent shows control efficacy against bacterial blight, bacterial leaf streak, and citrus canker in testing.
Collapse
Affiliation(s)
- Jinghan Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Kongjun Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yazhen Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Haojie Ye
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
| | - Peiyi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China.
| |
Collapse
|
4
|
Guo C, Jiao X, Du X, Zhang T, Peng B, Xu B. Application of Self-Healing Hydrogels in the Treatment of Intervertebral Disc Degeneration. J Biomed Mater Res B Appl Biomater 2025; 113:e35532. [PMID: 39842850 DOI: 10.1002/jbm.b.35532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
Intervertebral disc degeneration (IDD) is one of the leading causes of chronic pain and disability, and traditional treatment methods often struggle to restore its complex biomechanical properties. This article explores the innovative application of self-healing hydrogels in the treatment of IDD, offering new hope for disc repair due to their exceptional self-repair capabilities and adaptability. As a key support structure in the human body, intervertebral discs are often damaged by trauma or degenerative changes. Self-healing hydrogels not only mimic the mechanical properties of natural intervertebral discs but also self-repair when damaged, thereby maintaining stable functionality. This article reviews the self-healing mechanisms and design strategies of self-healing hydrogels and, for the first time, outlines their potential in the treatment of IDD. Furthermore, the article looks forward to future developments in the field, including intelligent material design, multifunctional integration, encapsulation and release of bioactive molecules, and innovative combinations with tissue engineering and stem cell therapy, offering new perspectives and strategies for IDD treatment.
Collapse
Affiliation(s)
- Cunliang Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxun Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Bing Peng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | |
Collapse
|
5
|
Chen FY, Geng WC, Chen MM, Fu R, Han H, Zhang ZZ, Li WB, Cheng YQ, Li JJ, Stoddart JF, Cai K, Guo DS. Assembly-enhanced recognition: A biomimetic pathway to achieve ultrahigh affinities. Proc Natl Acad Sci U S A 2025; 122:e2414253122. [PMID: 39813251 PMCID: PMC11759898 DOI: 10.1073/pnas.2414253122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated. Inspired by (strept)avidin, an amphiphilic azocalix[4]arene derivative capable of assembly in aqueous solutions has been explored by us and demonstrated to exhibit ultrahigh binding affinity (up to 1012 M-1), which is almost four orders of magnitude higher than those reported for nonassembled azocalix[4]arenes. An ultrastable azocalix[4]arene/photosensitizer complex has been applied in hypoxia-targeted photodynamic therapy for tumors. These findings highlight the immense potential of an assembly-enhanced recognition strategy in the development of the next generation of artificial receptors with appropriate functionalities and extraordinary recognition properties.
Collapse
Affiliation(s)
- Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin300071, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin300071, China
| | - Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin300071, China
| | - Rong Fu
- College of Chemistry, Nankai University, Tianjin300071, China
| | - Han Han
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
| | - Zhan-Zhan Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin300203, China
| | - Wen-Bo Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin300071, China
| | - Yuan-Qiu Cheng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin300071, China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin300071, China
| | - J. Fraser Stoddart
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, Zhejiang310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin300071, China
| |
Collapse
|
6
|
Mansurova EE, Maslennikov AA, Lyubina AP, Voloshina AD, Nizameev IR, Kadirov MK, Mikhailova AA, Mikshina PV, Ziganshina AY, Antipin IS. A nanocarrier containing carboxylic and histamine groups with dual action: acetylcholine hydrolysis and antidote atropine delivery. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:11-24. [PMID: 39811244 PMCID: PMC11729679 DOI: 10.3762/bjnano.16.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Disruption of cholinesterases and, as a consequence, increased levels of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of antidote delivery systems that will release the drug only when acetylcholine levels are elevated. This approach will ensure timely delivery of the antidote and minimize side effects associated with uncontrolled drug release. Here, we describe the creation of a new smart system that serves as a carrier for delivering an antidote (i.e., atropine) and functions as a synthetic esterase to hydrolyze acetylcholine. The nanocarrier was synthesized through microemulsion polycondensation of phenylboronic acid with resorcinarenes containing hydroxy, imidazole, and carboxylic groups on the upper rim. The nanocarrier breaks down acetylcholine into choline and acetic acid. The latter acts on the boronate bonds, dissociating them. This leads to the destruction of the nanocarrier and the release of the antidote. The paper covers the creation of the nanocarrier, its physicochemical and biological properties, encapsulation of the antidote, acetylcholine hydrolysis, and antidote release.
Collapse
Affiliation(s)
- Elina E Mansurova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Lobachevsky str. 1/29, Kazan 420008, Russia
| | - Andrey A Maslennikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Lobachevsky str. 1/29, Kazan 420008, Russia
| | - Anna P Lyubina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Alexandra D Voloshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Irek R Nizameev
- Kazan National Research Technical University named after A.N. Tupolev - KAI, 10, K. Marx str., Kazan 420111, Russia
| | - Marsil K Kadirov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
- Kazan National Research Technological University, 68, K. Marx str., Kazan 420015, Russia
| | - Anzhela A Mikhailova
- Kazan Institute of Biochemistry and Biophysics FRC Kazan Scientific Centre, Russian Academy of Sciences, Lobachevsky str. 2, Kazan 420111, Russia
| | - Polina V Mikshina
- Kazan Institute of Biochemistry and Biophysics FRC Kazan Scientific Centre, Russian Academy of Sciences, Lobachevsky str. 2, Kazan 420111, Russia
| | - Albina Y Ziganshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Igor S Antipin
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Lobachevsky str. 1/29, Kazan 420008, Russia
| |
Collapse
|
7
|
Zhao M, Zhou Q, Ge Z. Supramolecular Assemblies via Host-Guest Interactions for Tumor Immunotherapy. Chemistry 2025; 31:e202403508. [PMID: 39448542 DOI: 10.1002/chem.202403508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Cancer immunotherapy has emerged as one of the most promising modalities for cancer treatment providing hopes of cancer patients with the significant advantages over traditional antitumor therapy methods. Supramolecular assemblies based on host-guest interactions have been widely explored in the field of cancer immunotherapy as the delivery systems. A variety of supramolecular materials show unique features for efficient drug encapsulation, targeting delivery and release, which are favorable to activate antitumor immune responses especially through combination of different treatment strategies. In this review article, we summarize the research progresses of supramolecular assemblies via host-guest interactions for tumor immunotherapy. The construction of various drug delivery systems including hydrogels, liposomes, and polymeric nanoparticles, the drug encapsulation and delivery, as well as advantages and disadvantages are discussed. The perspectives related to future developments in this field are also described.
Collapse
Affiliation(s)
- Meng Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
8
|
Muheyati M, Wu G, Li Y, Pan Z, Chen Y. Supramolecular nanotherapeutics based on cucurbiturils. J Nanobiotechnology 2024; 22:790. [PMID: 39710716 DOI: 10.1186/s12951-024-03024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Polymeric biomaterials have important applications in aiding clinical disease treatment, including drug delivery, bioimaging, and tissue engineering. Currently, conventional tumor chemotherapy faces obstacles such as poor solubility/stability, inability to target, and uncontrolled drug release in clinical trials, for which the emergence of supramolecular material therapeutics combining non-covalent interactions with conventional therapies is a very promising candidate. Due to their molecular recognition abilities with a range of biomolecules, cucurbit[n]uril (CB[n]), a type of macrocyclic receptors with robust backbones, hydrophobic cavities, and carbonyl-binding channels, have garnered a lot of attention. Therefore, this paper reviews recent advances in CB[n] material-based supramolecular therapeutics for clinical treatments, including targeted delivery applications and related imaging and sensing systems. This study also covers the distinctive benefits of CB materials for biological applications, as well as the trends and prospects of this interdisciplinary subject, based on numerous state-of-the-art research findings.
Collapse
Affiliation(s)
- Maiyier Muheyati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Guangheng Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Ziting Pan
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
- School of Basic Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
9
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024; 8:893-914. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
10
|
Li S, Li P, Tian Y, Zeng R, Zhang Q, Pi C. A mini review of supramolecular antagonists based on macrocyclic host compounds. Bioorg Chem 2024; 153:107974. [PMID: 39571303 DOI: 10.1016/j.bioorg.2024.107974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
In the interdisciplinary domains of medicine and chemistry, addressing the issue of residual drugs (toxicants) that fail to fully exert therapeutic effects while potentially inducing toxic side effects has become increasingly critical. Researchers are actively seeking innovative solutions to this multifaceted challenge. Conventional small-molecule antagonists, commonly used in clinical settings, typically depend on "drug-receptor interactions" yet pose substantial developmental challenges. Recent advancements in the investigation of macrocyclic host compounds present a promising alternative. By leveraging the principles of host-guest chemistry, these macrocyclic hosts form stable inclusion complexes with residual drugs (toxicants), thereby decreasing their free concentration in the bloodstream and effectively mitigating associated toxic side effects. Consequently, macrocyclic host compounds represent a novel class of supramolecular antagonists (SAs). This article reviews recent progress in the application of macrocyclic host molecules-such as cyclodextrin, calix[n]arene, pillar[n]arene, and cucurbit[n]uril-as SA and examines current issues and future development prospects within the field.
Collapse
Affiliation(s)
- Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Pengcheng Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou, 635000, China.
| | - Chuan Pi
- Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou, 635000, China
| |
Collapse
|
11
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 PMCID: PMC11560688 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
12
|
Zhang XL, Yue YX, Yang Y, Ying AK, Ma R, Chen J, Chen FY, Hou XY, Pan YC, Ren DZ, Yang T, Li ZQ, Guo DS. A single molecule carrier for ocular posterior segment diseases. J Control Release 2024:S0168-3659(24)00725-9. [PMID: 39490420 DOI: 10.1016/j.jconrel.2024.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Eye drops are envisaged as the most promising non-invasive formulation for the treatment of the ocular posterior segment diseases, while it is hindered by a series of complex ocular barriers, both static and dynamic in nature. In this context, we propose a single molecule nanomedicine based on host-guest chemistry to achieve highly efficient drug delivery targeted to ocular posterior segment. Sulfonated azocalix[4]arene (SAC4A) serves as the single molecule carrier, owing the multiple features of small size (24.0 Å in length, 21.2 Å in width, 14.8 Å in height with a Van der Waals volume of 930 Å3), negative charge, hydrophilicity, loading universality and hypoxia-triggered release. As a proof-of-concept, an eye drop formed by the complexation of SAC4A with sunitinib (SUN) is prepared to treat wet age-related macular degeneration (wAMD). SAC4A successfully transports SUN to the ocular posterior segment (the amount of SUN reaching the retinal-choroid tissue in the SUN@SAC4A group was 2.47 times larger than that in the SUN group at 30 min), significantly enhancing its anti-choroidal neoangiogenesis effect of SUN to wAMD, which played a key role in the treatment. We believe that the single molecule nanomedicine paradigm is highly amenable for treating various ocular posterior segment diseases in the future.
Collapse
Affiliation(s)
- Xiao-Ling Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China
| | - Yu-Xin Yue
- Tianjin Eye Hospital, College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Yang Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China
| | - An-Kang Ying
- Tianjin Eye Hospital, College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Rong Ma
- Tianjin Eye Hospital, College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Jie Chen
- Tianjin Eye Hospital, College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Fang-Yuan Chen
- Tianjin Eye Hospital, College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Xiao-Yun Hou
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China
| | - Yu-Chen Pan
- Tianjin Eye Hospital, College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Da-Zhuang Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China
| | - Tao Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China
| | - Zhi-Qing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China.
| | - Dong-Sheng Guo
- Tianjin Eye Hospital, College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Wu D, Du X, Xue Q, Zhou J, Ping K, Cao Y, Liu S, Zhu Q. Supramolecular Porphyrin Photosensitizers Based on Host-Guest Recognition for In Situ Bacteria-Responsive Near-Infrared Photothermal Therapy. Adv Healthc Mater 2024:e2401662. [PMID: 39388515 DOI: 10.1002/adhm.202401662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Antibiotic resistance resulting from the overuse of antibiotics sets a high challenge for brutal antimicrobial treatment. Although photothermal therapy (PTT) overcomes the awkward situation of antibiotic resistance, it usually mistakenly kills the beneficial bacteria strains when eliminating pernicious bacteria. Specifically recognizing and damaging the target pathogens is urgently required for PTT-mediated sterilization strategy. Based on the host-guest recognition between cucurbit[10]uril (CB[10]) and porphyrins, two water-soluble supramolecular porphyrins are designed and implement selective bactericidal effect via in situ bacteria-responsive near-infrared (NIR) PTT. With the help of CB[10], the π-π stacking and hydrophobic interactions of porphyrins are efficiently inhibited, thus contributing to a good photostability and a high photothermal conversion efficiency. Attributing to the matching reduction potential between facultative anaerobic Escherichia coli (E. coli) and porphyrins, they are selectively in situ reduced into supramolecular phlorin and supramolecular chlorin by E. coli, successfully achieving a selective sterilization against E. coli. In vivo, the in situ bacteria-responsive NIR PTT systems also promote the quick recovery of E. coli-infected abscesses and trauma on mice without inducing obvious systemic toxicity, providing a new alternative to the current antibiotics and helping relieve the global public health crisis of abusive antibiotics.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, P. R. China
| | - Qiangqiang Xue
- Shanxi Provincial Department of Science and Technology, Taiyuan, 030021, P. R. China
| | - Jie Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shuang Liu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou, Hangzhou, 310014, P. R. China
| |
Collapse
|
14
|
Wilson C, Puckett AO, Murray IM, Oliver AG, Hof F. Extended Sulfo-Pillar[6]arenes ─ a New Host Family and Its Application in the Binding of Direct Oral Anticoagulants. J Am Chem Soc 2024; 146. [PMID: 39356656 PMCID: PMC11487555 DOI: 10.1021/jacs.4c03905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Herein, we report the synthesis of extended sulfo-pillar[6]arenes (sP6), a new host class with a pedigree in salt tolerance and ultrahigh binding affinity toward multiple drug classes. The parent sulfo-pillar[6]arene is a high-affinity host with the potential to act as a supramolecular reversal agent. However, it lacks synthetic diversification of the core scaffold. The new extended sulfo-pillar[6]arenes have either a monodirectional (A1sP6) or bidirectional (A1A2sP6) extension of the hydrophobic cavity. This new functionality enables more noncovalent interactions and strong affinity toward guests, which we demonstrate using the direct oral anticoagulants (DOACs) dabigatran, betrixaban, and edoxaban. DOACs are highly prescribed therapeutics that are underexplored in host-guest chemistry. These agents prevent the formation of blood clots and are prime targets for supramolecular sequestration. This functionalization also introduces new fluorescent properties to the sulfo-pillar[6]arene family via an incorporated p-terphenyl (A1A2sP6). We show that these new hosts have ultrahigh affinity toward dabigatran (Kd = 27 nM, A1A2sP6) in salty solutions and that the A1A2sP6 analogue can bind betrixaban in bovine plasma with a physiologically relevant Kd (7 μM).
Collapse
Affiliation(s)
- Chelsea
R. Wilson
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8W 2Y2, Canada
| | - Austia O. Puckett
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8W 2Y2, Canada
| | - Isabella M. Murray
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
| | - Allen G. Oliver
- Department
of Chemistry and Biochemistry, University
of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Fraser Hof
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
15
|
Chen S, Huang B, Tian J, Zhang W. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater 2024; 13:e2401211. [PMID: 39073000 DOI: 10.1002/adhm.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Indexed: 07/30/2024]
Abstract
The threat posed by antibiotic-resistant bacteria and the challenge of biofilm formation has highlighted the inadequacies of conventional antibacterial therapies, leading to increased interest in antibacterial photodynamic therapy (aPDT) in recent years. This approach offers advantages such as minimal invasiveness, low systemic toxicity, and notable effectiveness against drug-resistant bacterial strains. Porphyrins and their derivatives, known for their high molar extinction coefficients and singlet oxygen quantum yields, have emerged as crucial photosensitizers in aPDT. However, their practical application is hindered by challenges such as poor water solubility and aggregation-induced quenching. To address these limitations, extensive research has focused on the development of porphyrin-based nanomaterials for aPDT, enhancing the efficacy of photodynamic sterilization and broadening the range of antimicrobial activity. This review provides an overview of various porphyrin-based nanomaterials utilized in aPDT and biofilm eradication in recent years, including porphyrin-loaded inorganic nanoparticles, porphyrin-based polymer assemblies, supramolecular assemblies, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Additionally, insights into the prospects of aPDT is offered, highlighting its potential for practical implementation.
Collapse
Affiliation(s)
- Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
16
|
Zhao CD, Cai W, Chen WJ, Yao H, Wang SM, Li K, Ma YL, Wang LL, Yang LP. Amide naphthotube as a novel supramolecular sequestration agent for tetracaine and decamethonium. Theranostics 2024; 14:5219-5234. [PMID: 39267791 PMCID: PMC11388068 DOI: 10.7150/thno.93654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
RATIONALE Anesthetics are widely used for optimizing surgical conditions, postoperative pain management, and treating various chronic pain conditions. Tetracaine and decamethonium are representative drugs of local anesthetics and neuromuscular blocking agents, respectively. However, overdose and toxicity of the drugs always lead to serious adverse events. Thus, there is a strong demand for effective antidotes. METHODS The binding interactions of amide naphthotubes with tetracaine and decamethonium were systematically studied using 1H NMR, ITC, and DFT calculations. The antidotal effects of amide naphthotube to tetracaine toxicity were assessed in vitro and in vivo, and the mechanism of detoxification was explored at a cellular level. Additionally, mouse models were established to evaluate the reversal activities of amide naphthotube on decamethonium-induced mortality and muscle relaxation, and the reversal mechanism was investigated through pharmacokinetic experiments. RESULTS We have demonstrated that the anti-isomer of amide naphthotube exhibits significant binding affinities towards tetracaine (K a = 1.89×107 M-1) and decamethonium (K a = 1.01×107 M-1) in water. The host displayed good biocompatibility both in vitro and in vivo. The administration of amide naphthotube following tetracaine overdose in mouse models notably increased the overall survival rate, indicating its effective antidotal properties. The host could reverse the tetracaine-induced Na+ channels blockage at the cellular level. Moreover, the injection of amide naphthotube also reversed the mortality and paralysis induced by decamethonium in mouse models following a pharmacokinetic mechanism. CONCLUSION An emerging artificial receptor, amide naphthotube, has strong binding affinities towards tetracaine and decamethonium. It functions as a supramolecular antidote for tetracaine poisoning and a reversal agent for decamethonium by selectively sequestering these compounds in vivo.
Collapse
Affiliation(s)
- Cheng-Da Zhao
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Wen-Jie Chen
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Huan Yao
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Song-Meng Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Yan-Long Ma
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Li-Li Wang
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liu-Pan Yang
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
17
|
Ji W, Zhang Y, Shao W, Kankala RK, Chen A. β-Cyclodextrin-based nanoassemblies for the treatment of atherosclerosis. Regen Biomater 2024; 11:rbae071. [PMID: 38966400 PMCID: PMC11223813 DOI: 10.1093/rb/rbae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 07/06/2024] Open
Abstract
Atherosclerosis, a chronic and progressive condition characterized by the accumulation of inflammatory cells and lipids within artery walls, remains a leading cause of cardiovascular diseases globally. Despite considerable advancements in drug therapeutic strategies aimed at managing atherosclerosis, more effective treatment options for atherosclerosis are still warranted. In this pursuit, the emergence of β-cyclodextrin (β-CD) as a promising therapeutic agent offers a novel therapeutic approach to drug delivery targeting atherosclerosis. The hydrophobic cavity of β-CD facilitates its role as a carrier, enabling the encapsulation and delivery of various therapeutic compounds to affected sites within the vasculature. Notably, β-CD-based nanoassemblies possess the ability to reduce cholesterol levels, mitigate inflammation, solubilize hydrophobic drugs and deliver drugs to affected tissues, making these nanocomponents promising candidates for atherosclerosis management. This review focuses on three major classes of β-CD-based nanoassemblies, including β-CD derivatives-based, β-CD/polymer conjugates-based and polymer β-CD-based nanoassemblies, highlighting a variety of formulations and assembly methods to improve drug delivery and therapeutic efficacy. These β-CD-based nanoassemblies exhibit a variety of therapeutic mechanisms for atherosclerosis and offer systematic strategies for overcoming barriers to drug delivery. Finally, we discuss the present obstacles and potential opportunities in the development and application of β-CD-based nanoassemblies as novel therapeutics for managing atherosclerosis and addressing cardiovascular diseases.
Collapse
Affiliation(s)
- Weihong Ji
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Yuanxing Zhang
- The Institute of Forensic Science, Xiamen Public Security Bureau, Xiamen, Fujian 361104, PR China
| | - Weichen Shao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
18
|
Chen FY, Li CZ, Han H, Geng WC, Zhang SX, Jiang ZT, Zhao QY, Cai K, Guo DS. Expanding the Hydrophobic Cavity Surface of Azocalix[4]arene to Enable Biotin/Avidin Affinity with Controlled Release. Angew Chem Int Ed Engl 2024; 63:e202402139. [PMID: 38563765 DOI: 10.1002/anie.202402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.
Collapse
Affiliation(s)
- Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Cheng-Zhi Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Han Han
- Department of Chemistry, The University of Hong Kong, 999077, Hong Kong SAR, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Shu-Xin Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Ze-Tao Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Qing-Yu Zhao
- College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Kang Cai
- College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| |
Collapse
|
19
|
González-González JS, Martínez-Santos A, Emparán-Legaspi MJ, Pineda-Contreras A, Martínez-Martínez FJ, Flores-Alamo M, García-Ortega H. Molecular structure and selective theophylline complexation by conformational change of diethyl N,N'-(1,3-phenylene)dicarbamate. Acta Crystallogr C Struct Chem 2024; 80:190-199. [PMID: 38712545 DOI: 10.1107/s2053229624003358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
The receptor ability of diethyl N,N'-(1,3-phenylene)dicarbamate (1) to form host-guest complexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1-TEO complex (C12H16N2O4·C7H8N4O2) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of intermolecular interactions. The formation of an N-H...O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF molecules are unable to form an N-H...O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the complex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state 13C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1-TEO complex was characterized by IR spectroscopy, solid-state 13C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Juan Saulo González-González
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán-San Antonio Nanahuatipán, km 1.7 s/n, Teotitlán de Flores Magón, Oaxaca 68540, Mexico
| | - Alfonso Martínez-Santos
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán-San Antonio Nanahuatipán, km 1.7 s/n, Teotitlán de Flores Magón, Oaxaca 68540, Mexico
| | - María José Emparán-Legaspi
- Facultad de Ciencias Químicas, Universidad de Colima, km 9, Carretera Colima-Coquimatlán, Coquimatlán, Colima 28400, Mexico
| | - Armando Pineda-Contreras
- Facultad de Ciencias Químicas, Universidad de Colima, km 9, Carretera Colima-Coquimatlán, Coquimatlán, Colima 28400, Mexico
| | | | - Marcos Flores-Alamo
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Hector García-Ortega
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
20
|
Yao SY, Ying AK, Jiang ZT, Cheng YQ, Geng WC, Hu XY, Cai K, Guo DS. Single Molecular Nanomedicines Based on Macrocyclic Carrier-Drug Conjugates for Concentration-Independent Encapsulation and Precise Activation of Drugs. J Am Chem Soc 2024; 146:14203-14212. [PMID: 38733560 DOI: 10.1021/jacs.4c03238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Nanomedicines often rely on noncovalent self-assembly and encapsulation for drug loading and delivery. However, challenges such as reproducibility issues due to the multicomponent nature, off-target activation caused by premature drug release, and complex pharmacokinetics arising from assembly dissociation have hindered their clinical translation. In this study, we introduce an innovative design concept termed single molecular nanomedicine (SMNM) based on macrocyclic carrier-drug conjugates. Through the covalent linkage of two chemotherapy drugs to a hypoxia-cleavable macrocyclic carrier, azocalix[4]arene, we obtained two self-included complexes to serve as SMNMs. The intramolecular inclusion feature of the SMNMs has not only demonstrated comprehensive shielding and protection for the drugs but also effectively prevented off-target drug leakage, thereby significantly reducing their side effects and enhancing their antitumor therapeutic efficacy. Additionally, the attributes of being a single component and molecularly dispersed confer advantages such as ease of preparation and good reproducibility for SMNMs, which is desirable for clinical applications.
Collapse
Affiliation(s)
- Shun-Yu Yao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - An-Kang Ying
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ze-Tao Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuan-Qiu Cheng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| |
Collapse
|
21
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
22
|
Yan M, Wu S, Wang Y, Liang M, Wang M, Hu W, Yu G, Mao Z, Huang F, Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304249. [PMID: 37478832 DOI: 10.1002/adma.202304249] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Chemotherapy is widely recognized as an effective approach for treating cancer due to its ability to eliminate cancer cells using chemotherapeutic drugs. However, traditional chemotherapy suffers from various drawbacks, including limited solubility and stability of drugs, severe side effects, low bioavailability, drug resistance, and challenges in tracking treatment efficacy. These limitations greatly hinder its widespread clinical application. In contrast, supramolecular chemotherapy, which relies on host-guest interactions, presents a promising alternative by offering highly efficient and minimally toxic anticancer drug delivery. In this review, an overview of recent advancements in supramolecular chemotherapy based on host-guest interactions is provided. The significant role it plays in guiding cancer therapy is emphasized. Drawing on a wealth of cutting-edge research, herein, a timely and valuable resource for individuals interested in the field of supramolecular chemotherapy or cancer therapy, is presented. Furthermore, this review contributes to the progression of the field of supramolecular chemotherapy toward clinical application.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
23
|
Neamtu I, Ghilan A, Rusu AG, Nita LE, Chiriac VM, Chiriac AP. Design and applications of polymer-like peptides in biomedical nanogels. Expert Opin Drug Deliv 2024; 21:713-734. [PMID: 38916156 DOI: 10.1080/17425247.2024.2364651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Polymer nanogels are among the most promising nanoplatforms for use in biomedical applications. The substantial interest for these drug carriers is to enhance the transportation of bioactive substances, reduce the side effects, and achieve optimal action on the curative sites by targeting delivery and triggering the release of the drugs in a controlled and continuous mode. AREA COVERED The review discusses the opportunities, applications, and challenges of synthetic polypeptide nanogels in biomedicine, with an emphasis on the recent progress in cancer therapy. It is evidenced by the development of polypeptide nanogels for better controlled drug delivery and release, in complex in vivo microenvironments in biomedical applications. EXPERT OPINION Polypeptide nanogels can be developed by choosing the amino acids from the peptide structure that are suitable for the type of application. Using a stimulus - sensitive peptide nanogel, it is possible to obtain the appropriate transport and release of the drug, as well as to achieve desirable therapeutic effects, including safety, specificity, and efficiency. The final system represents an innovative way for local and sustained drug delivery at a specific site of the body.
Collapse
Affiliation(s)
- Iordana Neamtu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Loredana Elena Nita
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Vlad Mihai Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, Iaşi, Romania
| | - Aurica P Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
24
|
Burkhanbayeva T, Ukhov A, Fedorishin D, Gubankov A, Kurzina I, Bakibaev A, Yerkassov R, Mashan T, Suyundikova F, Nurmukhanbetova N, Khamitova A. Development of New Composite Materials by Modifying the Surface of Porous Hydroxyapatite Using Cucurbit[n]urils. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2041. [PMID: 38730849 PMCID: PMC11084799 DOI: 10.3390/ma17092041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
This study represents an advancement in the field of composite material engineering, focusing on the synthesis of composite materials derived from porous hydroxyapatite via surface modification employing cucurbit[n]urils, which are highly promising macrocyclic compounds. The surface modification procedure entailed the application of cucurbit[n]urils in an aqueous medium onto the hydroxyapatite surface. A comprehensive characterization of the resulting materials was undertaken, employing analytical techniques including infrared (IR) spectroscopy and scanning electron microscopy (SEM). Subsequently, the materials were subjected to rigorous evaluation for their hemolytic effect, anti-inflammatory properties, and cytotoxicity. Remarkably, the findings revealed a notable absence of typical hemolytic effects in materials incorporating surface-bound cucurbit[n]urils. This observation underscores the potential of these modified materials as biocompatible alternatives. Notably, this discovery presents a promising avenue for the fabrication of resilient and efficient biocomposites, offering a viable alternative to conventional approaches. Furthermore, these findings hint at the prospect of employing supramolecular strategies involving encapsulated cucurbit[n]urils in analogous processes. This suggests a novel direction for further research, potentially unlocking new frontiers in material engineering through the exploitation of supramolecular interactions.
Collapse
Affiliation(s)
- Tolkynay Burkhanbayeva
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (R.Y.); (T.M.); (F.S.)
| | - Arthur Ukhov
- Faculty of Chemistry, National Research Tomsk State University, Arkady Ivanov St. 49, 634028 Tomsk, Russia; (A.U.); (D.F.); (A.G.); (I.K.); (A.B.)
| | - Dmitry Fedorishin
- Faculty of Chemistry, National Research Tomsk State University, Arkady Ivanov St. 49, 634028 Tomsk, Russia; (A.U.); (D.F.); (A.G.); (I.K.); (A.B.)
| | - Alexander Gubankov
- Faculty of Chemistry, National Research Tomsk State University, Arkady Ivanov St. 49, 634028 Tomsk, Russia; (A.U.); (D.F.); (A.G.); (I.K.); (A.B.)
| | - Irina Kurzina
- Faculty of Chemistry, National Research Tomsk State University, Arkady Ivanov St. 49, 634028 Tomsk, Russia; (A.U.); (D.F.); (A.G.); (I.K.); (A.B.)
| | - Abdigali Bakibaev
- Faculty of Chemistry, National Research Tomsk State University, Arkady Ivanov St. 49, 634028 Tomsk, Russia; (A.U.); (D.F.); (A.G.); (I.K.); (A.B.)
| | - Rakhmetulla Yerkassov
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (R.Y.); (T.M.); (F.S.)
| | - Togzhan Mashan
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (R.Y.); (T.M.); (F.S.)
| | - Faiziya Suyundikova
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (R.Y.); (T.M.); (F.S.)
| | - Nurgul Nurmukhanbetova
- Department of Chemistry and Biotechnology, Ualikhanov University, Abaya St. 76, Kokshetau 020000, Kazakhstan; (N.N.); (A.K.)
| | - Aina Khamitova
- Department of Chemistry and Biotechnology, Ualikhanov University, Abaya St. 76, Kokshetau 020000, Kazakhstan; (N.N.); (A.K.)
| |
Collapse
|
25
|
Chen MM, Tang X, Li JJ, Chen FY, Jiang ZT, Fu R, Li HB, Hu XY, Geng WC, Guo DS. Active targeting tumor therapy using host-guest drug delivery system based on biotin functionalized azocalix[4]arene. J Control Release 2024; 368:691-702. [PMID: 38492860 DOI: 10.1016/j.jconrel.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Xingchen Tang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Ze-Tao Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Rong Fu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Hua-Bin Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China.
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
26
|
Kru̅kle-Be̅rziṇa K, Lends A, Boguszewska-Czubara A. Cyclodextrin Metal-Organic Frameworks as a Drug Delivery System for Selected Active Pharmaceutical Ingredients. ACS OMEGA 2024; 9:8874-8884. [PMID: 38434855 PMCID: PMC10905577 DOI: 10.1021/acsomega.3c06745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The cyclodextrin-based metal-organic frameworks (CD MOFs) are a suitable molecular platform for drug delivery systems of various active pharmaceutical ingredients (APIs). The low toxicity and cost-efficient synthesis make CD MOFs an attractive host for the encapsulation of APIs. In this study, we created a model system based on γCD-K MOFs with widely used drugs carmofur (HCFU), 5-fluorouracil (5-FU), and salicylic acid (HBA) to study host-guest encapsulation methods using different crystallization protocols. The host-guest complexes of API:CD MOF in an in-depth study were investigated by liquid chromatography-mass spectrometry (LC-MS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 19F- and 13C-detected solid-state NMR spectroscopy (ssNMR). These techniques confirmed the structure and interaction sites within the encapsulation product in the host-guest complex. We also evaluated the toxicity and biocompatibility of the API:CD MOF complex using in vitro and in vivo methods. The cytotoxicity, hepatotoxicity, and neurotoxicity were established with cell lines of fibroblasts (BJ), human liver cell line (HepG2), and human oligodendrocytic cells (MO3.13). Then, Danio rerio was used as an in vivo experimental model of ecotoxicity. The results showed the choice of γCD-K-5 as the most protective and safe option for drug encapsulation to decrease its toxicity level against normal cells.
Collapse
Affiliation(s)
| | - Alons Lends
- Latvian
Institute of Organic Synthesis, Aizkraukles iela 21, Riga LV-1006, Latvia
| | - Anna Boguszewska-Czubara
- Department
of Medical Chemistry, Medical University
of Lublin, Chodzki 4A, Lublin 20-093, Poland
| |
Collapse
|
27
|
Alešković M, Šekutor M. Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[ n]uril assemblies for medical applications. RSC Med Chem 2024; 15:433-471. [PMID: 38389878 PMCID: PMC10880950 DOI: 10.1039/d3md00596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Adamantane, a staple in medicinal chemistry, recently became a cornerstone of a supramolecular host-guest drug delivery system, ADA/CB[n]. Owing to a good fit between the adamantane cage and the host cavity of the cucurbit[n]uril macrocycle, formed strong inclusion complexes find applications in drug delivery and controlled drug release. Note that the cucurbit[n]uril host is not solely a delivery vehicle of the ADA/CB[n] system but rather influences the bioactivity and bioavailability of drug molecules and can tune drug properties. Namely, as host-guest interactions are capable of changing the intrinsic properties of the guest molecule, inclusion complexes can become more soluble, bioavailable and more resistant to metabolic conditions compared to individual non-complexed molecules. Such synergistic effects have implications for practical bioapplicability of this complex system and provide a new viewpoint to therapy, beyond the traditional single drug molecule approach. By achieving a balance between guest encapsulation and release, the ADA/CB[n] system has also found use beyond just drug delivery, in fields like bioanalytics, sensing assays, bioimaging, etc. Thus, chemosensing in physiological conditions, indicator displacement assays, in vivo diagnostics and hybrid nanostructures are just some recent examples of the ADA/CB[n] applicability, be it for displacements purposes or as cargo vehicles.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
28
|
Yin Y, Yang Z, Li N, Yu X, Chen ML, Wang M, Ren XL. Least Absolute Shrinkage and Selection Operator-Based Prediction of the Binding Constant of p-Sulfonatocalix[6]/[8]arenes with Alkaloids. J Chem Inf Model 2024; 64:359-377. [PMID: 38164000 DOI: 10.1021/acs.jcim.3c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
p-Sulfonatocalix[n]arenes (SCnA) have demonstrated great potential for drug encapsulation through host-guest complexation to improve solubility, stability, and bioavailability. In this study, the solubilization effect of SCnA (n = 4, 6, 8) on 95 active compounds derived from traditional Chinese medicine (TCM) was investigated. Based on the significant solubilization effect on alkaloids, SC6A/SC8A and 76 alkaloids were selected as the host and guest, respectively, to determine the binding constant by competitive fluorescence titration. LASSO regression was adopted to investigate the mechanism of the complex of SCnA with alkaloids. The binding constant of alkaloids-SC6A and alkaloids-SC8A was related to the alkaloid alkalinity. Also, the electronegativity, polarization, first ionization potential, hydrogen bond potential, the molecular size, and shape of alkaloids are critical properties to determine alkaloids-SC6A binding constant as well as electronegativity, polarization, hydrophobicity, and the molecular size and shape of alkaloids play an important role for the alkaloids-SC8A binding constant.
Collapse
Affiliation(s)
- Yu Yin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuan Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mei-Ling Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao-Liang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
29
|
Hermenean A, Dossi E, Hamilton A, Trotta MC, Russo M, Lepre CC, Sajtos C, Rusznyák Á, Váradi J, Bácskay I, Budai I, D’Amico M, Fenyvesi F. Chrysin Directing an Enhanced Solubility through the Formation of a Supramolecular Cyclodextrin-Calixarene Drug Delivery System: A Potential Strategy in Antifibrotic Diabetes Therapeutics. Pharmaceuticals (Basel) 2024; 17:107. [PMID: 38256940 PMCID: PMC10819853 DOI: 10.3390/ph17010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Calixarene 0118 (OTX008) and chrysin (CHR) are promising molecules for the treatment of fibrosis and diabetes complications but require an effective delivery system to overcome their low solubility and bioavailability. Sulfobutylated β-cyclodextrin (SBECD) was evaluated for its ability to increase the solubility of CHR by forming a ternary complex with OTX008. The resulting increase in solubility and the mechanisms of complex formation were identified through phase-solubility studies, while dynamic light-scattering assessed the molecular associations within the CHR-OTX008-SBECD system. Nuclear magnetic resonance, differential scanning calorimetry, and computational studies elucidated the interactions at the molecular level, and cellular assays confirmed the system's biocompatibility. Combining SBECD with OTX008 enhances CHR solubility more than using SBECD alone by forming water-soluble molecular associates in a ternary complex. This aids in the solubilization and delivery of CHR and OTX008. Structural investigations revealed non-covalent interactions essential to complex formation, which showed no cytotoxicity in hyperglycemic in vitro conditions. A new ternary complex has been formulated to deliver promising antifibrotic agents for diabetic complications, featuring OTX008 as a key structural and pharmacological component.
Collapse
Affiliation(s)
- Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei, 310414 Arad, Romania;
| | - Eleftheria Dossi
- Centre for Defence Chemistry, Cranfield University, Defence Academy of United Kingdom, Shrivenham, Swindon SN6 8LA, UK;
| | - Alex Hamilton
- Biomolecular Sciences Research Centre (BMRC), Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK;
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (M.D.)
| | - Marina Russo
- Doctoral School of National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (M.D.)
- Doctoral School of Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Csilla Sajtos
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (C.S.); (Á.R.)
| | - Ágnes Rusznyák
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (C.S.); (Á.R.)
- Institute of Healthcare Industry, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Ildikó Bácskay
- Institute of Healthcare Industry, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Street 2-4, H-4028 Debrecen, Hungary;
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (M.D.)
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (C.S.); (Á.R.)
| |
Collapse
|
30
|
Li S, Li JJ, Zhao YY, Chen MM, Su SS, Yao SY, Wang ZH, Hu XY, Geng WC, Wang W, Wang KR, Guo DS. Supramolecular Integration of Multifunctional Nanomaterial by Mannose-Decorated Azocalixarene with Ginsenoside Rb1 for Synergistic Therapy of Rheumatoid Arthritis. ACS NANO 2023; 17:25468-25482. [PMID: 38096153 DOI: 10.1021/acsnano.3c09140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The complexity and progressive nature of diseases require the exploitation of multifunctional materials. However, introducing a function inevitably increases the complexity of materials, which complicates preparation and decreases reproducibility. Herein, we report a supramolecular integration of multifunctional nanomaterials based on mannose-modified azocalix[4]arene (ManAC4A) and ginsenoside Rb1 (Rb1), which showed advances of simplicity and reproducibility. ManAC4A possesses reactive oxygen species (ROS) scavenging capacity and hypoxia-responsiveness, together with macrophage-targeting and induction functionality. Collectively, the Rb1@ManAC4A assembly simply prepared by two components is integrated with multifunction, including triple targeting (ELVIS targeting, macrophage-targeting, and hypoxia-targeted release) and triple therapy (ROS scavenging, macrophage polarization, and the anti-inflammatory effect of Rb1). The spontaneous assembly and recognition of ManAC4A, with its precise structure and molecular weight, facilitated the simple and straightforward preparation of Rb1@ManAC4A, leading to excellent batch consistency. Progress in simplicity and reproducibility, as directed by this research, will catalyze the clinical translation of multifunctional materials.
Collapse
Affiliation(s)
- Shihui Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Ying-Ying Zhao
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Meng-Meng Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shan-Shan Su
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Shun-Yu Yao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Ze-Han Wang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Wei Wang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Ke-Rang Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Pan YC, Tian JH, Guo DS. Molecular Recognition with Macrocyclic Receptors for Application in Precision Medicine. Acc Chem Res 2023; 56:3626-3639. [PMID: 38059474 DOI: 10.1021/acs.accounts.3c00585] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Macrocyclic receptors can serve as alternatives to natural recognition systems as recognition tools. They provide effectively preorganized cavities to encapsulate guests via host-guest interactions, thereby affecting the physiochemical properties of the guests. Macrocyclic receptors exhibit chemical and thermal stabilities higher than those of natural receptors and thus are expected to resist degradation inside the body. This reduces the risk of harmful degradation byproducts and ensures optimal levels of effectiveness. Macrocyclic receptors have precise molecular weights and well-defined structures; this ensures their batch-to-batch reproducibility, which is critical for ensuring quality and effectiveness levels. Moreover, macrocyclic receptors exhibit broad modification tunabilities, rendering them adaptable to various guests. Molecular recognition is the basis of numerous biological processes. Macrocyclic receptors may display considerable potential for application in diagnosing and treating diseases, depending on the host-guest recognition of bioactive molecules. However, the binding affinities and selectivities of macrocyclic receptors toward bioactive molecules are generally insufficient, which may lead to problems such as low diagnosis accuracies, off-target leaking, and interference with normal functions. Therefore, addressing the challenge of the strong and specific complexation of bioactive molecules and macrocyclic receptors is imperative.To overcome this challenge, we proposed the innovative strategies of longitudinal cavity extension and coassembled heteromultivalent recognition for application in the recognition of small molecules and biomacromolecules, respectively. The deepened cavity provides a stronger hydrophobic effect and a larger interaction area while maintaining the framework rigidity. By coassembling two macrocyclic amphiphiles into one ensemble, we achieved the desired heteromultivalent recognition. This strategy affords the necessary binding properties while preventing the requirement of tedious steps and site mismatch in covalent synthesis. Using these two strategies, we achieved specific and strong binding of macrocyclic receptors to various bioactive molecules including biomarkers, drugs, and disease-related peptides/proteins. We then applied these macrocyclic receptor-based recognition systems in biosensing and bioimaging, drug delivery, and therapeutics.In this Account, we summarize the strategies we used in the recognition of small molecules and biomacromolecules. Thereafter, we discuss their applications in precision medicine, involving the (1) sensing of biomarkers and imaging of lesion sites, which are critical in the early screening of diseases and accurate diagnoses; (2) precise loading and targeted delivery of drugs, which are crucial in improving their therapeutic efficacies and reducing their side effects; and (3) capture and removal of disease-related biomacromolecules, which are significant for precise intervention in life processes. Finally, we propose recommendations for the further development of macrocyclic receptor-based recognition systems in biomedicine. Macrocyclic receptors exhibit considerable potential for research, and continued investigation may not only expand the applications of supramolecular chemistry but also open novel avenues for the development of precision medicine.
Collapse
Affiliation(s)
- Yu-Chen Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Jia-Hong Tian
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Wang R, Li WB, Deng JY, Han H, Chen FY, Li DY, Jing LB, Song Z, Fu R, Guo DS, Cai K. Adaptive and Ultrahigh-Affinity Recognition in Water by Sulfated Conjugated Corral[5]arene. Angew Chem Int Ed Engl 2023:e202317402. [PMID: 38078790 DOI: 10.1002/anie.202317402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 12/29/2023]
Abstract
The pursuit of synthetic receptors with high binding affinities has long been a central focus in supramolecular chemistry, driven by their significant practical relevance in various fields. Despite the numerous synthetic receptors that have been developed, most exhibit binding affinities in the micromolar range or lower. Only a few exceptional receptors achieve binding affinities exceeding 109 M-1 , and their substrate scopes remain rather limited. In this context, we introduce SC[5]A, a conjugated corral-shaped macrocycle functionalized with ten sulfate groups. Owing to its deep one-dimensional confined hydrophobic cavity and multiple sulfate groups, SC[5]A displays an extraordinarily high binding strength of up to 1011 M-1 towards several size-matched, rod-shaped organic dications in water. Besides, its conformation exhibits good adaptability, allowing it to encapsulate a wide range of other guests with diverse molecular sizes, shapes, and functionalities, exhibiting relatively strong affinities (Ka =106 -108 M-1 ). Additionally, we've explored the preliminary application of SC[5]A in alleviating blood coagulation induced by hexadimethrine bromide in vitro and in vivo. Therefore, the combination of ultrahigh binding affinities (towards complementary guests) and adaptive recognition capability (towards a wide range of functional guests) of SC[5]A positions it as exceptionally valuable for numerous practical applications.
Collapse
Affiliation(s)
- Ruiguo Wang
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wen-Bo Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Jia-Ying Deng
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Han Han
- College of Chemistry, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong SAR, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Dai-Yuan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Li-Bo Jing
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Zihang Song
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Rong Fu
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Kang Cai
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| |
Collapse
|
33
|
Subakaeva E, Zelenikhin P, Sokolova E, Pergat A, Aleksandrova Y, Shurpik D, Stoikov I. The Synthesis and Antibacterial Properties of Pillar[5]arene with Streptocide Fragments. Pharmaceutics 2023; 15:2660. [PMID: 38140001 PMCID: PMC10747162 DOI: 10.3390/pharmaceutics15122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The growing problem of bacterial resistance to antimicrobials actualizes the development of new approaches to solve this challenge. Supramolecular chemistry tools can overcome the limited bacterial resistance and side effects of classical sulfonamides that hinder their use in therapy. Here, we synthesized a number of pillar[5]arenes functionalized with different substituents, determined their ability to self-association using DLS, and characterized antimicrobial properties against S. typhimurium, K. pneumoniae, P. aeruginosa, S. epidermidis, S. aureus via a resazurin test. Biofilm prevention concentration was calculated for an agent with established antimicrobial activity by the crystal-violet staining method. We evaluated the mutagenicity of the macrocycle using the Ames test and its ability to affect the viability of A549 and LEK cells in the MTT-test. It was shown that macrocycle functionalized with sulfonamide residues exhibited antimicrobial activity an order higher than pure streptocide and also revealed the ability to prevent biofilm formation of S. aureus and P. aeruginosa. The compound did not show mutagenic activity and exhibited low toxicity to eukaryotic cells. The obtained results allow considering modification of the macrocyclic platforms with classic antimicrobials as an opportunity to give them a "second life" and return to practice with improved properties.
Collapse
Affiliation(s)
- Evgenia Subakaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (E.S.); (E.S.)
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (E.S.); (E.S.)
| | - Evgenia Sokolova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (E.S.); (E.S.)
| | - Arina Pergat
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 29, 420008 Kazan, Russia; (A.P.); (Y.A.); (D.S.)
| | - Yulia Aleksandrova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 29, 420008 Kazan, Russia; (A.P.); (Y.A.); (D.S.)
| | - Dmitriy Shurpik
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 29, 420008 Kazan, Russia; (A.P.); (Y.A.); (D.S.)
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 29, 420008 Kazan, Russia; (A.P.); (Y.A.); (D.S.)
| |
Collapse
|
34
|
Liu Y, Hu H, Qi H, Lv M, Liu Z. The Synthesis, Structure, and Dielectric Properties of a One-Dimensional Hydrogen-Bonded DL-α-Phenylglycine Supramolecular Crown-Ether-Based Inclusion Compound. Molecules 2023; 28:7586. [PMID: 38005309 PMCID: PMC10673173 DOI: 10.3390/molecules28227586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A novel hydrogen-bonded supramolecular crown-ether-based inclusion compound, [(DL-α-Phenylglycine)(18-crown-6)]+[(CoCl4)0.5]-(1), was obtained via evaporation in a methanolic solution at room temperature using DL-α-phenylglycine, 18-crown-6, cobalt chloride (CoCl2), and hydrochloric acid. Its structure, thermal properties, and electrical properties were characterized via elemental analysis, single-crystal X-ray diffraction, variable-temperature infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and variable temperature-variable frequency dielectric constant testing. The compound was a monoclinic crystal system in the C2 space group at low temperature (100 K) and room temperature (293 K). Analysis of the single crystal structure showed that [(CoCl4)0.5]- presented an edge-sharing ditetrahedral structure in the disordered state, while the protonated DL-α-phenylglycine molecule in the disordered state and intramolecular hydroxyl group (-OH) underwent dynamic rocking, causing a significant stretching motion of the O-H···Cl-type one-dimensional hydrogen bond chain. This resulted in dielectric anomalies in the three axes of the crystal, thus showing significant dielectric anisotropy.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
- Xinjiang Sub-Center, National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| | - Hongzhi Hu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Huanhuan Qi
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Meixia Lv
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Zunqi Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
- Xinjiang Sub-Center, National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| |
Collapse
|
35
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
36
|
Soleimani K, Beyranvand S, Souri Z, Ahmadian Z, Yari A, Faghani A, Shams A, Adeli M. Ferrocene/ β-cyclodextrin based supramolecular nanogels as theranostic systems. Biomed Pharmacother 2023; 166:115402. [PMID: 37660653 DOI: 10.1016/j.biopha.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
A supramolecular redox responsive nanogel (NG) with the ability to sense cancer cells and loaded with a releasing therapeutic agent was synthesized using hostguest interactions between polyethylene glycol-grafted-β-cyclodextrin and ferrocene boronic acid. Cyclic voltammetry matched with other spectroscopy and microscopy methods provided strong indications regarding host-guest interactions and formation of the NG. Moreover, the biological properties of the NG were evaluated using fluorescence silencing, confocal laser scanning microscopy, and cell toxicity assays. Nanogel with spherical core-shell architecture and 100-200 nm sized nanoparticles showed high encapsulation efficiency for doxorubicin (DOX) and luminol (LU) as therapeutic and sensing agents. High therapeutic and sensing efficiencies were manifested by complete release of DOX and dramatic quenching of LU fluorescence triggered by 0.05 mM H2O2 (as an ROS component). The NGs showed high ROS sensitivity. Taking advantage of a high loading capacity, redox sensitivity, and biocompatibility, the NGs can be used as strong theranostic systems in inflammation-associated diseases.
Collapse
Affiliation(s)
- Khadijeh Soleimani
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zeinab Souri
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdollah Yari
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Abbas Faghani
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Azim Shams
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Mohsen Adeli
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran.
| |
Collapse
|
37
|
Guo JS, Li JJ, Wang ZH, Liu Y, Yue YX, Li HB, Zhao XH, Sun YJ, Ding YH, Ding F, Guo DS, Wang L, Chen Y. Dual hypoxia-responsive supramolecular complex for cancer target therapy. Nat Commun 2023; 14:5634. [PMID: 37704601 PMCID: PMC10500001 DOI: 10.1038/s41467-023-41388-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
The prognosis with pancreatic cancer is among the poorest of any human cancer. One of the important factors is the tumor hypoxia. Targeting tumor hypoxia is considered a desirable therapeutic option. However, it has not been translated into clinical success in the treatment of pancreatic cancer. With enhanced cytotoxicities against hypoxic pancreatic cancer cells, BE-43547A2 (BE) may serve as a promising template for hypoxia target strategy. Here, based on rational modification, a BE prodrug (NMP-BE) is encapsulated into sulfonated azocalix[5]arene (SAC5A) to generate a supramolecular dual hypoxia-responsive complex NMP-BE@SAC5A. Benefited from the selective load release within cancer cells, NMP-BE@SAC5A markedly suppresses tumor growth at low dose in pancreatic cancer cells xenograft murine model without developing systemic toxicity. This research presents a strategy for the modification of covalent compounds to achieve efficient delivery within tumors, a horizon for the realization of safe and reinforced hypoxia target therapy using a simple approach.
Collapse
Affiliation(s)
- Jian-Shuang Guo
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yang Liu
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yu-Xin Yue
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Xiu-He Zhao
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yuan-Jun Sun
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Ya-Hui Ding
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Fei Ding
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China.
| | - Liang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Yue Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
38
|
Liang H, Lu Q, Yang J, Yu G. Supramolecular Biomaterials for Cancer Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2023; 6:0211. [PMID: 37705962 PMCID: PMC10496790 DOI: 10.34133/research.0211] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
Cancer immunotherapy has achieved tremendous successful clinical results and obtained historic victories in tumor treatments. However, great limitations associated with feeble immune responses and serious adverse effects still cannot be neglected due to the complicated multifactorial etiology and pathologic microenvironment in tumors. The rapid development of nanomedical science and material science has facilitated the advanced progress of engineering biomaterials to tackle critical issues. The supramolecular biomaterials with flexible and modular structures have exhibited unparalleled advantages of high cargo-loading efficiency, excellent biocompatibility, and diversiform immunomodulatory activity, thereby providing a powerful weapon for cancer immunotherapy. In past decades, supramolecular biomaterials were extensively explored as versatile delivery platforms for immunotherapeutic agents or designed to interact with the key moleculars in immune system in a precise and controllable manner. In this review, we focused on the crucial role of supramolecular biomaterials in the modulation of pivotal steps during tumor immunotherapy, including antigen delivery and presentation, T lymphocyte activation, tumor-associated macrophage elimination and repolarization, and myeloid-derived suppressor cell depletion. Based on extensive research, we explored the current limitations and development prospects of supramolecular biomaterials in cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Liang
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qingqing Lu
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jie Yang
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry,
Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
39
|
Zhang Z, Ding D, Liu J, Huang C, Li W, Lu K, Cheng N. Supramolecular Nanozyme System Based on Polydopamine and Polyoxometalate for Photothermal-Enhanced Multienzyme Cascade Catalytic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38214-38229. [PMID: 37535452 DOI: 10.1021/acsami.3c04723] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The advent of enzyme-facilitated cascade events in which endogenous substrates within the human body are used to generate reactive oxygen species (ROS) has spawned novel cancer treatment possibilities. In this study, a supramolecular cascade catalytic nanozyme system was successfully developed, exhibiting photothermal-enhanced multienzyme cascade catalytic and glutathione (GSH) depletion activities and ultimately triggering the apoptosis-ferroptosis synergistic tumor therapy. The nanozyme system was fabricated using β-cyclodextrin-functionalized polydopamine (PDA) as the substrate, which was then entangled with polyoxometalate (POM) via electrostatic forces and assembled with adamantane-grafted hyaluronic acid and glucose oxidase (GOx) via host-guest supramolecular interaction for tumor targeting and GOx loading. The catalytic function of GOx facilitates the conversion of glucose to H2O2 and gluconic acid. In turn, this process affirms the propitious generation of hydroxyl radical (•OH) through the POM-mediated cascade catalysis. Additionally, the POM species actively deplete the intracellular GSH pool, initiating a cascade catalytic tumor therapy. In addition, the PDA-POM-mediated photothermal hyperthermia boosted the cascade catalytic effect and increased ROS production. This confers considerable promise for photothermal therapy (PTT)/nanocatalytic cancer therapy on supramolecular nanozyme systems. The in vitro and in vivo antitumor efficacy studies demonstrated that the supramolecular cascade catalytic nanozyme system was effective at reducing tumor development while maintaining an acceptable level of biocompatibility. Henceforth, this study is to widen the scope of cascade catalytic nanoenzyme production using supramolecular techniques, as well as endeavor to delineate a prospective pathway for the application of PTT-enhanced nanocatalytic tumor therapy.
Collapse
Affiliation(s)
- Zhengchao Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Jinxiang Liu
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P. R. China
- Department of Special Inspection, Changyi People's Hospital, Weifang, Shandong 261399, P. R. China
| | - Changbao Huang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Wentong Li
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Keliang Lu
- School of Anesthesiology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| |
Collapse
|
40
|
Tong F, Zhou Y, Xu Y, Chen Y, Yudintceva N, Shevtsov M, Gao H. Supramolecular nanomedicines based on host-guest interactions of cyclodextrins. EXPLORATION (BEIJING, CHINA) 2023; 3:20210111. [PMID: 37933241 PMCID: PMC10624390 DOI: 10.1002/exp.20210111] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/09/2023] [Indexed: 11/08/2023]
Abstract
In the biomedical and pharmaceutical fields, cyclodextrin (CD) is undoubtedly one of the most frequently used macrocyclic compounds as the host molecule because it has good biocompatibility and can increase the solubility, bioavailability, and stability of hydrophobic drug guests. In this review, we generalized the unique properties of CDs, CD-related supramolecular nanocarriers, supramolecular controlled release systems, and targeting systems based on CDs, and introduced the paradigms of these nanomedicines. In addition, we also discussed the prospects and challenges of CD-based supramolecular nanomedicines to facilitate the development and clinical translation of these nanomedicines.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yuxiu Chen
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| |
Collapse
|
41
|
Abstract
Theranostic nanoparticles' potential in tumor treatment has been widely acknowledged thanks to their capability of integrating multifaceted functionalities into a single nanosystem. Theranostic nanoparticles are typically equipped with an inorganic core with exploitable physical properties for imaging and therapeutic functions, bioinert coatings for improved biocompatibility and immunological stealth, controlled drug-loading-release modules, and the ability to recognize specific cell type for uptake. Integrating multiple functionalities in a single nanosized construct require sophisticated molecular design and precise execution of assembly procedures. Underlying the multifunctionality of theranostic nanoparticles, ligand chemistry plays a decisive role in translating theoretical designs into fully functionalized theranostic nanoparticles. The ligand hierarchy in theranostic nanoparticles is usually threefold. As they serve to passivate the nanoparticle's surface, capping ligands form the first layer directly interfacing with the crystalline lattice of the inorganic core. The size and shape of nanoparticles are largely determined by the molecular property of capping ligands so that they have profound influences on the nanoparticles' surface chemistry and physical properties. Capping ligands are mostly chemically inert, which necessitates the presence of additional ligands for drug loading and tumor targeting. The second layer is commonly utilized for drug loading. Therapeutic drugs can either be covalently conjugated onto the capping layer or noncovalently loaded onto nanoparticles via drug-loading ligands. Drug-loading ligands need to be equally versatile in properties to accommodate the diversity of drugs. Biodegradable moieties are often incorporated into drug-loading ligands to enable smart drug release. With the aid of targeting ligands which usually stand the tallest on the nanoparticle surface to seek and bind to their corresponding receptors on the target, theranostic nanoparticles can preferentially accumulate at the tumor site to attain a higher precision and quantity for drug delivery. In this Account, the properties and utilities of representative capping ligands, drug-loading ligands, and targeting ligands are reviewed. Since these types of ligands are often assembled in close vicinity to each other, it is essential for them to be chemically compatible and able to function in tandem with each other. Relevant conjugation strategies and critical factors with a significant impact on ligands' performance on nanoparticles are discussed. Representative theranostic nanoparticles are presented to showcase how different types of ligands function synergistically from a single nanosystem. Finally, the technological outlook of evolving ligand chemistry on theranostic nanoparticles is provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
42
|
Santos FDS, Ramasamy E, da Luz LC, Ramamurthy V, Rodembusch FS. Spectroscopic Insights of an Emissive Complex between 4'- N, N-Diethylaminoflavonol in Octa-Acid Deep-Cavity Cavitand and Rhodamine 6G. Molecules 2023; 28:molecules28114260. [PMID: 37298739 DOI: 10.3390/molecules28114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Excited-state chemistry relies on the communication between molecules, making it a crucial aspect of the field. One important question that arises is whether intermolecular communication and its rate can be modified when a molecule is confined. To explore the interaction in such systems, we investigated the ground and excited states of 4'-N,N-diethylaminoflavonol (DEA3HF) in an octa acid-based (OA) confined medium and in ethanolic solution, both in the presence of Rhodamine 6G (R6G). Despite the observed spectral overlap between the flavonol emission and the R6G absorption, as well as the fluorescence quenching of the flavonol in the presence of R6G, the almost constant fluorescence lifetime at different amounts of R6G discards the presence of FRET in the studied systems. Steady-state and time-resolved fluorescence indicate the formation of an emissive complex between the proton transfer dye encapsulated within water-soluble supramolecular host octa acid (DEA3HF@(OA)2) and R6G. A similar result was observed between DEA3HF:R6G in ethanolic solution. The respective Stern-Volmer plots corroborate with these observations, suggesting a static quenching mechanism for both systems.
Collapse
Affiliation(s)
- Fabiano da Silveira Santos
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bairro Agronomia, Porto Alegre CEP 91501-970, Brazil
| | - Elamparuthi Ramasamy
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Lilian Camargo da Luz
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bairro Agronomia, Porto Alegre CEP 91501-970, Brazil
| | | | - Fabiano Severo Rodembusch
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bairro Agronomia, Porto Alegre CEP 91501-970, Brazil
| |
Collapse
|
43
|
Li JJ, Rong RX, Yang Y, Hu ZY, Hu B, Zhao YY, Li HB, Hu XY, Wang KR, Guo DS. Triple targeting host-guest drug delivery system based on lactose-modified azocalix[4]arene for tumor ablation. MATERIALS HORIZONS 2023; 10:1689-1696. [PMID: 36825769 DOI: 10.1039/d3mh00018d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Host-guest drug delivery systems (HGDDSs) have been studied in an effort to modify the characteristics of therapeutic agents through noncovalent interactions, reduce toxic side effects and improve therapeutic effects. However, it is still an important task to continuously improve the targeting ability of HGDDSs, which is conducive to the development of precision medicine. Herein, we utilize the lactose-modified azocalix[4]arene (LacAC4A) as a triple targeting drug carrier customized for antitumor purposes. LacAC4A integrates three targeting features, passive targeting through the enhancing permeability and retention effect, active targeting by the interactions of lactose and the asialoglycoprotein receptors on the surface of tumor cells, and stimuli-responsive targeting via the reduction of the azo group under a hypoxia microenvironment. After loading doxorubicin (DOX) in LacAC4A, the supramolecular nanoformulation DOX@LacAC4A clearly showed the effective suppression of tumor growth through in vivo experiments. LacAC4A can achieve effective targeting, rapid release, and improve drug bioavailability. This design principle will provide a new material for drug delivery systems.
Collapse
Affiliation(s)
- Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Rui-Xue Rong
- Department of Medical Microbiology and Immunology, School of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Yan Yang
- Department of Medical Microbiology and Immunology, School of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Zong-Ying Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Bing Hu
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Ying-Ying Zhao
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Ke-Rang Wang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
44
|
Hu W, Ye B, Yu G, Huang F, Mao Z, Ding Y, Wang W. Recent Development of Supramolecular Cancer Theranostics Based on Cyclodextrins: A Review. Molecules 2023; 28:molecules28083441. [PMID: 37110674 PMCID: PMC10147063 DOI: 10.3390/molecules28083441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
With the development of personalized medical demands for precise diagnosis, rational management and effective cancer treatment, supramolecular theranostic systems have received widespread attention due to their reversibly switchable structures, sensitive response to biological stimuli and integration ability for multiple capabilities in a single platform with a programmable fashion. Cyclodextrins (CDs), benefiting from their excellent characteristics, such as non-toxicity, easy modification, unique host-guest properties, good biocompatibility, etc., as building blocks, serve as an all-purpose strategy for the fabrication of a supramolecular cancer theranostics nanodevice that is capable of biosafety, controllability, functionality and programmability. This review focuses on the supramolecular systems of CD-bioimaging probes, CD-drugs, CD-genes, CD-proteins, CD-photosensitizers and CD-photothermal agents as well as multicomponent cooperation systems with regards to building a nanodevice with functions of diagnosis and (or) therapeutics of cancer treatment. By introducing several state-of-the-art examples, emphasis will be placed on the design of various functional modules, the supramolecular interaction strategies under the fantastic topological structures and the hidden "bridge" between their structures and therapeutic efficacy, aiming for further comprehension of the important role of a cyclodextrin-based nanoplatform in advancing supramolecular cancer theranostics.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
45
|
Sun JD, Liu Y, Zhao Z, Yu SB, Qi QY, Zhou W, Wang H, Hu K, Zhang DW, Li ZT. Host-guest binding of tetracationic cyclophanes to photodynamic agents inhibits posttreatment phototoxicity and maintains antitumour efficacy. RSC Med Chem 2023; 14:563-572. [PMID: 36970143 PMCID: PMC10034117 DOI: 10.1039/d2md00463a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
In the past two decades, photodynamic therapy (PDT) has become an effective method for the treatment of cancer. However, the posttreatment residue of photodynamic agents (PDAs) causes long-term skin phototoxicity. Here, we apply naphthalene-derived, box-like tetracationic cyclophanes, named NpBoxes, to bind to clinically used porphyrin-based PDAs to alleviate their posttreatment phototoxicity by reducing their free content in skin tissues and 1O2 quantum yield. We show that one of the cyclophanes, 2,6-NpBox, could include the PDAs to efficiently suppress their photosensitivity for the generation of reactive oxygen species. A tumour-bearing mouse model study revealed that, when Photofrin, the most widely used PDA in clinic, was administrated at a dose corresponding to the clinical one, 2,6-NpBox of the same dose could significantly suppress its posttreatment phototoxicity on the skin induced by simulated sunlight irradiation, without imposing a negative influence on its PDT efficacy.
Collapse
Affiliation(s)
- Jian-Da Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zijian Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Ke Hu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
46
|
Nikolova V, Dobrev S, Kircheva N, Yordanova V, Dudev T, Angelova S. Host-guest complexation of cucurbit[7]uril and cucurbit[8]uril with the antimuscarinic drugs tropicamide and atropine. J Mol Graph Model 2023; 119:108380. [PMID: 36455472 DOI: 10.1016/j.jmgm.2022.108380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Cucurbiturils are useful excipients in eye drop formulations: they can increase the water solubility of the drug, enhance drug absorption into the eye, improve aqueous stability and reduce local irritation. Effective and safe drug delivery is, however, a challenge and the information on the host (CBs)/guest (tropicamide and atropine) interactions can help improving the existing treatments and develop novel therapies not limited only to eye diseases/conditions. Since this carrier system can easily modify the properties of the drug and ensure its delivery at the targeted ocular tissue, further insight into the intimate mechanism of the host-guest recognition is crucial. The present DFT/SMD study focuses on the role of numerous factors governing this process, namely the specific position of the guest molecule in the cavity of the cucurbituril, the ionization form (non/protonated) of the antimuscarinic drug, the dielectric constant of the medium, and the size of the cavitant pore. The obtained results are in line with experimental observations and shed light on the mechanism, at atomic resolution, of recognition between the CBs and the two parasympatholytic drugs.
Collapse
Affiliation(s)
- Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Victoria Yordanova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
| |
Collapse
|
47
|
JothiNayaki S, Ramya R, Srividhya S, Kiruthika J, Ramya K, Karthiga S, Arunachalam M, Kavitha D. Antibacterial potentials of pillar[5]arene, pillar[4]arene[1]quinone derivative and their isatin inclusion complexes. Supramol Chem 2023. [DOI: 10.1080/10610278.2023.2173072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Sekar JothiNayaki
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ravindhiran Ramya
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Sankar Srividhya
- Department of Chemistry, the Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Jeyavelraman Kiruthika
- Department of Chemistry, the Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Krishnamurthy Ramya
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Sivarajan Karthiga
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Murugan Arunachalam
- Department of Chemistry, the Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Dhandapani Kavitha
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
48
|
Komiyama M. Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:218-232. [PMID: 36793325 PMCID: PMC9924364 DOI: 10.3762/bjnano.14.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Cyclodextrins have been widely employed for drug delivery systems (DDSs) in which drugs are selectively delivered to a target site in the body. Recent interest has been focused on the construction of cyclodextrin-based nanoarchitectures that show sophisticated DDS functions. These nanoarchitectures are precisely fabricated based on three important features of cyclodextrins, namely (1) the preorganized three-dimensional molecular structure of nanometer size, (2) the easy chemical modification to introduce functional groups, and (3) the formation of dynamic inclusion complexes with various guests in water. With the use of photoirradiation, drugs are released from cyclodextrin-based nanoarchitectures at designated timing. Alternatively, therapeutic nucleic acids are stably protected in the nanoarchitectures and delivered to the target site. The efficient delivery of the CRISPR-Cas9 system for gene editing was also successful. Even more complicated nanoarchitectures can be designed for sophisticated DDSs. Cyclodextrin-based nanoarchitectures are highly promising for future applications in medicine, pharmaceutics, and other relevant fields.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
49
|
Wang X, Pavlović RZ, Finnegan TJ, Karmakar P, Moore CE, Badjić JD. Rapid Access to Chiral and Tripodal Cavitands from β-Pinene. Chemistry 2022; 28:e202202416. [PMID: 36168151 PMCID: PMC9797447 DOI: 10.1002/chem.202202416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 12/31/2022]
Abstract
We report Pd-catalyzed cyclotrimerization of (+)-α-bromoenone, obtained from monoterpene β-pinene, into an enantiopure cyclotrimer. This C3 symmetric compound has three bicyclo[3.1.1]heptane rings fused to its central benzene with each ring carrying a carbonyl group. The cyclotrimer undergoes diastereoselective threefold alkynylation with the lithium salts of five terminal alkynes (41-63 %, de=4-83 %). The addition enabled a rapid synthesis of a small library of novel chiral cavitands that, in shape, resemble a tripod stand. These molecular tripods include a tris-bicycloannelated benzene head attached to three alkyne legs twisted in one direction to form a nonpolar cavity with polar groups as feet. Tripods with methylpyridinium and methylisoquinolinium legs, respectively, form inclusion complexes with anti-inflammatory and chiral drugs (R)/(S)-ibuprofen and (R)/(S)-naproxen. The mode of binding shows drug molecules docked in the cavity of the host through ion-ion, cation-π, and C-H-π contacts that, in addition of desolvation, give rise to complexes having millimolar to micromolar stability in water. Our findings open the door to creating a myriad of enantiopure tripods with tunable functions that, in the future, might give novel chemosensors, catalysts or sequestering agents.
Collapse
Affiliation(s)
- Xiuze Wang
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Radoslav Z. Pavlović
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Tyler J. Finnegan
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Pratik Karmakar
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
- Department of ChemistryKing Mongkut's University of Technology Thonburi (KMUTT)126 Pracha Uthit Rd., Bang ModThung Khru, Bangkok10140Thailand
| | - Curtis E. Moore
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Jovica D. Badjić
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| |
Collapse
|
50
|
Gates BD, Vyletel JB, Zou L, Webber MJ. Multivalent Cucurbituril Dendrons for Cell Membrane Engineering with Supramolecular Receptors. Bioconjug Chem 2022; 33:2262-2268. [PMID: 35802933 PMCID: PMC11144120 DOI: 10.1021/acs.bioconjchem.2c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The affinity possible from certain supramolecular motifs rivals that for some of the best-recognized interactions in biology. Cucurbit[7]uril (CB[7]) macrocycles, for example, are capable of achieving affinities in their binding to certain guests that rival that of biotin-avidin. Supramolecular host-guest recognition between CB[7] and certain guests has been demonstrated to spatially localize guest-linked agents to desired sites in vivo, offering opportunities to better exploit this affinity axis for applications in biomedicine. Herein, architectures of CB[7] are prepared from a polyamidoamine (PAMAM) dendrimer scaffold, installing a PEG-linked cholesterol anchor on the opposite end of the dendron to facilitate cell membrane integration. Cells are then modified with this dendritic CB[7] construct in vitro, demonstrating the ability to deliver a model guest-linked agent to the cell membrane. This approach to realize synthetic supramolecular "membrane receptors" may be leveraged in the future for in situ imaging or modulation of cell-based therapies or to facilitate a synthetic supramolecular recognition axis on the cell membrane.
Collapse
Affiliation(s)
- Brant D. Gates
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| | - Jackson B. Vyletel
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| | - Lei Zou
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| | - Matthew J. Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| |
Collapse
|