1
|
Chen Z, Xu L, Lin S, Huang H, Long Q, Liu J. GdX inhibits the occurrence and progression of breast cancer by negatively modulating the activity of STAT3. Cancer Biol Ther 2024; 25:2420383. [PMID: 39487760 PMCID: PMC11540090 DOI: 10.1080/15384047.2024.2420383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
AIM To elucidate the biological functionality and regulatory mechanisms of GdX in breast cancer (BC). METHODS The examination of GdX expression in human BC tissues and cell lines was conducted through immunohistochemical (IHC) and Western blot. Cell proliferation capacity was assessed via the CCK-8 and colony formation assay, while cell migration was determined through the wound healing assay. The expression levels of BCL-XL, Cyclin D1, and C-myc gene were quantified using RT-qPCR and Western blot. In vivo tumor growth was evaluated in nude mice xenografted with MDA-MB-231 cells overexpressing GdX, and a mouse model with GdX-deficient BC was established to observe the impact of GdX on BC formation and metastasis. Dual-luciferase reporter assay and immunofluorescence were employed to confirm the interaction between GdX and STAT3. Western blot was employed to validate the influence of GdX overexpression on the phosphorylation process of STAT3. RESULTS GdX exhibited low expression in the cancer tissues of BC patients and cell lines. MDA-MB-231 and MCF-7 cells overexpressing GdX displayed a notable reduction in proliferation and diminished migratory capabilities, accompanied by downregulated mRNA and protein expression of BCL-XL, Cyclin D1, and C-myc. In the xenograft mouse model, heightened GdX expression correlated with a decelerated in vivo tumor growth. Furthermore, in mice deteleing GdX, both the quantity and weight of tumors increased, along with evident pulmonary metastasis. Mechanistically, STAT3 emerged as a downstream target gene of GdX. CONCLUSIONS GdX exerts its inhibitory effects on the initiation and progression of BC by negatively modulating the phosphorylation of STAT3.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shibin Lin
- Department of Ultrasound, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Hongjun Huang
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Qing Long
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Xie Q, Gong S, Cao J, Li A, Kulyar MF, Wang B, Li J. Mesenchymal stem cells: a novel therapeutic approach for feline inflammatory bowel disease. Stem Cell Res Ther 2024; 15:409. [PMID: 39522034 PMCID: PMC11550560 DOI: 10.1186/s13287-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) poses a significant and growing global health challenge, affecting both humans and domestic cats. Research on feline IBD has not kept pace with its widespread prevalence in human populations. This study aimed to develop a model of feline IBD by incorporating dextran sulfate sodium (DSS) to evaluate the therapeutic potential of MSCs and to elucidate the mechanisms that enhance their action. METHODS We conducted a comprehensive clinical assessment, including magnetic resonance imaging (MRI), endoscopy, and histopathological examination. Additionally, alterations in intestinal microbiota were characterized by 16 S rDNA sequencing, and the influence of MSCs on IBD-related gene expression was investigated through transcriptome analysis. RESULTS According to our findings, MSC treatment significantly mitigated DSS-induced clinical manifestations, reduced inflammatory cell infiltration, decreased the production of inflammatory mediators, and promoted mucosal repair. Regarding the intestinal microbiota, MSC intervention effectively corrected the DSS-induced dysbiosis, increasing the presence of beneficial bacteria and suppressing the proliferation of harmful bacteria. Transcriptome analysis revealed the ability of MSCs to modulate various inflammatory and immune-related signaling pathways, including cytokine-cytokine receptor interactions, TLR signaling pathways, and NF-κB pathways. CONCLUSION The collective findings indicate that MSCs exert multifaceted therapeutic effects on IBD, including the regulation of intestinal microbiota balance, suppression of inflammatory responses, enhancement of intestinal barrier repair, and modulation of immune responses. These insights provide a solid scientific foundation for employing MSCs as an innovative therapeutic strategy for IBD and pave the way for future clinical explorations.
Collapse
Affiliation(s)
- Qiyun Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jintao Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P.R. China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, Foshan, P.R. China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|
3
|
Peng C, Lu W, An R, Li X, Sun C, Fang Y. Resistant Starch Nanoparticles Induce Colitis through Lysosomal Exocytosis in Mice. ACS NANO 2024; 18:30749-30760. [PMID: 39442088 DOI: 10.1021/acsnano.4c10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Resistant starch (RS) is present in various natural and processed foods as well as medications. It has garnered significant attention from both scientists and consumers due to its notable health benefits. However, there is a limited understanding of how RS particles are absorbed at the cellular level and their metabolic behavior, resulting in a lack of clarity regarding the intestinal safety implications of prolonged RS exposure. Here, we demonstrate that rice-derived RS nanoparticles (RSNs) can lead to colitis in mice by triggering lysosomal exocytosis. The research shows that RSNs enter the cells through macropinocytosis and clathrin- and caveolin-mediated endocytosis and activate TRPML1 thereafter, causing the release of lysosomal calcium ions. This, in turn, triggered the TFEB signaling pathway and thus upregulated the lysosomal exocytosis level, leading to lysosomal enzymes to be released to the intestinal lumen. As a result, a decreased number of intestinal goblet cells, diminished tight junction protein expression, and imbalanced intestinal flora in mice were observed. These damages to the intestinal barrier ultimately led to the occurrence of colitis. Our study offers important insights into the cellular bioeffects and detrimental effects on intestinal health caused by RS particles and emphasizes the need to re-evaluate the safety of long-term RS consumption.
Collapse
Affiliation(s)
- Chenglu Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Lu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ran An
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyang Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cuixia Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Li D, Wang L, Shi S, Deng X, Zeng X, Li Y, Li S, Bai P. Ubiquitin-like 4A alleviates the progression of intracerebral hemorrhage by regulating oxidative stress and mitochondrial damage. Exp Anim 2024; 73:421-432. [PMID: 38852999 PMCID: PMC11534490 DOI: 10.1538/expanim.24-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
Acupuncture has obvious therapeutic effect on intracerebral hemorrhage (ICH). miR-34a-5p regulated by acupuncture was found to attenuate neurological deficits in ICH. However, the underlying mechanisms are unclear. Ubiquitin-like 4A (UBL4A) has not been studied in ICH. SD rats were injected with autologous blood to induce ICH and treated with Baihui-penetrating-Qubin acupuncture. Acupuncture resulted in an increase in forelimb placing test scores, and a decrease in corner test scores and brain water content of ICH rats. Histopathological examination showed that acupuncture inhibited ICH-induced inflammation, decreased damaged neurons and increased UBL4A expression. UBL4A overexpression increased cell viability, inhibited apoptosis, reduced reactive oxygen species (ROS) level and increased manganese superoxide dismutase (MnSOD) activity, mitochondrial membrane potential and mtDNA level in rat embryonic primary cortical neurons. miR-34a-5p knockdown increased UBL4A expression, apoptosis rate and ROS level in hemin-treated neurons. Dual luciferase assays showed that miR-34a-5p bound to UBL4A. Apoptotic cells and ROS level were increased in hemin-treated neurons with UBL4A and miR-34a-5p knockdown. We firstly demonstrate the inhibitory effect of UBL4A on neuronal apoptosis, and the regulation relationship between UBL4A and miR-34a-5p. This study provides a new candidate target for ICH treatment and more basis for elucidating the molecular mechanism of acupuncture. In the future, we will conduct a deeper exploration of the effects of UBL4A on ICH.
Collapse
Affiliation(s)
- Dan Li
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| | - Le Wang
- First Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6, Zone 1, Fangxingyuan, Fengtai District, Beijing, P.R. China
| | - Shufeng Shi
- Department of Tuina, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| | - Xiaofeng Deng
- Department of Tuina, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| | - Xuehan Zeng
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| | - Yunong Li
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| | - Shulin Li
- Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26, Heping Road, Xiangfang District, Harbin 150040, P.R. China
| | - Peng Bai
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| |
Collapse
|
5
|
Liu T, Li X, Pang M, Wang L, Li Y, Sun X. Machine learning-based endoplasmic reticulum-related diagnostic biomarker and immune microenvironment landscape for osteoarthritis. Aging (Albany NY) 2024; 16:4563-4578. [PMID: 38428406 PMCID: PMC10968715 DOI: 10.18632/aging.205611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is the most common degenerative joint disease worldwide. Further improving the current limited understanding of osteoarthritis has positive clinical value. METHODS OA samples were collected from GEO database and endoplasmic reticulum related genes (ERRGs) were identified. The WGCNA network was further built to identify the crucial gene module. Based on the expression profiles of characteristic ERRGs, LASSO algorithm was used to select key factors according to the minimum λ value. Random forest (RF) algorithm was used to calculate the importance of ERRGs. Subsequently, overlapping genes based on LASSO and RF algorithms were identified as ERRGs-related diagnostic biomarkers. In addition, OA specimens were also collected and performed qRT-PCR quantitative analysis of selected ERRGs. RESULTS We identified four ERRGs associated with OA risk assessment through machine learning methods, and verified the abnormal expressions of these screened markers in OA patients through in vitro experiments. The influence of selected markers on OA immune infiltration was also evaluated. CONCLUSIONS Our results provide new evidence for the role of ER stress in the OA progression, as well as new markers and potential intervention targets for OA.
Collapse
Affiliation(s)
- Tingting Liu
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xiaomao Li
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223023, China
| | - Mu Pang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, Guangdong 518000, China
| | - Lifen Wang
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| | - Ye Li
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Xizhe Sun
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
6
|
Liu C, Zhou C, Xia W, Zhou Y, Qiu Y, Weng J, Zhou Q, Chen W, Wang YN, Lee HH, Wang SC, Kuang M, Yu D, Ren N, Hung MC. Targeting ALK averts ribonuclease 1-induced immunosuppression and enhances antitumor immunity in hepatocellular carcinoma. Nat Commun 2024; 15:1009. [PMID: 38307859 PMCID: PMC10837126 DOI: 10.1038/s41467-024-45215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
Tumor-secreted factors contribute to the development of a microenvironment that facilitates the escape of cancer cells from immunotherapy. In this study, we conduct a retrospective comparison of the proteins secreted by hepatocellular carcinoma (HCC) cells in responders and non-responders among a cohort of ten patients who received Nivolumab (anti-PD-1 antibody). Our findings indicate that non-responders have a high abundance of secreted RNase1, which is associated with a poor prognosis in various cancer types. Furthermore, mice implanted with HCC cells that overexpress RNase1 exhibit immunosuppressive tumor microenvironments and diminished response to anti-PD-1 therapy. RNase1 induces the polarization of macrophages towards a tumor growth-promoting phenotype through activation of the anaplastic lymphoma kinase (ALK) signaling pathway. Targeting the RNase1/ALK axis reprograms the macrophage polarization, with increased CD8+ T- and Th1- cell recruitment. Moreover, simultaneous targeting of the checkpoint protein PD-1 unleashes cytotoxic CD8+ T-cell responses. Treatment utilizing both an ALK inhibitor and an anti-PD-1 antibody exhibits enhanced tumor regression and facilitates long-term immunity. Our study elucidates the role of RNase1 in mediating tumor resistance to immunotherapy and reveals an RNase1-mediated immunosuppressive tumor microenvironment, highlighting the potential of targeting RNase1 as a promising strategy for cancer immunotherapy in HCC.
Collapse
Affiliation(s)
- Chunxiao Liu
- Department of Liver Surgery, Center of Hepato-Pancreato-biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Chenhao Zhou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Yifan Zhou
- Department of laboratory medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yufan Qiu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jialei Weng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Wanyong Chen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan.
| |
Collapse
|
7
|
Tang XE, Cheng YQ, Tang CK. Protein tyrosine phosphatase non-receptor type 2 as the therapeutic target of atherosclerotic diseases: past, present and future. Front Pharmacol 2023; 14:1219690. [PMID: 37670950 PMCID: PMC10475599 DOI: 10.3389/fphar.2023.1219690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of the protein tyrosine phosphatase family, can regulate various signaling pathways and biological processes by dephosphorylating receptor protein tyrosine kinases. Accumulating evidence has demonstrated that PTPN2 is involved in the occurrence and development of atherosclerotic cardiovascular disease. Recently, it has been reported that PTPN2 exerts an anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte proliferation and migration, macrophage polarization, T cell polarization, autophagy, pyroptosis, and insulin resistance. In this review, we summarize the latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to provide a rationale for better future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University, Shaoyang, Hunan, China
| | - Ya-Qiong Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Chen Y, Zhou C, Zhao X, Che R, Wu Y, Wan S, Pei J, Yao L, Hua X. Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Promote Trophoblast Cell Proliferation and Migration by Targeting TFPI2 in Preeclampsia. Stem Cells Int 2023; 2023:7927747. [PMID: 37559681 PMCID: PMC10409582 DOI: 10.1155/2023/7927747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 08/11/2023] Open
Abstract
Preeclampsia is a pregnancy disorder characterized by systemic organ damage and high blood pressure. It has been reported that microRNA-195 (miR-195) is associated with preeclampsia. In this study, we discovered the target of miR-195 in regulating human extravillous cytotrophoblast-derived transformed cell proliferation and migration. We analyzed the clinicopathological factors of preeclampsia and normal pregnancies. The messenger ribonucleic acid (mRNA) levels of miR-195 and tissue factor pathway inhibitor 2 (TFPI2) were measured in placental tissues derived from normal and preeclampsia patients by real-time polymerase chain reaction (PCR). Human umbilical cord mesenchymal stem cell (hUC-MSC)-derived extracellular vesicles were verified by western blot. HTR8-S/Vneo cell proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and cell migration rate was assessed by the transwell assay. Relative luciferase activities were measured in TFPI2 wild-type (WT) and mutant cells. miR-195 expression was negatively correlated with TFPI2 mRNA levels in preeclampsia patients. Extracellular vesicles derived from hUC-MSCs enhanced HTR8-S/Vneo cell proliferation and migration. In addition, miR-195 isolated from hUC-MSCs enhanced HTR8-S/Vneo cell proliferation and migration by targeting TFPI2. Our findings demonstrate that the upregulation of miR-195 in extracellular vesicles derived from hUC-MSCs promotes HTR8-S/Vneo cell proliferation and migration by targeting TFPI2.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Chenchen Zhou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Xiaobo Zhao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Ronghua Che
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Yuelin Wu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
- Shanghai Key Laboratory of Maternal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Sheng Wan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
- Shanghai Key Laboratory of Maternal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jinda Pei
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liping Yao
- Department of Ultrasound, Shanghai First Maternity and Infant Hospital, Tongji University school of Medicine, Shanghai 201204, China
| | - Xiaolin Hua
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
- Shanghai Key Laboratory of Maternal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
9
|
Zhou Y, Medik YB, Patel B, Zamler DB, Chen S, Chapman T, Schneider S, Park EM, Babcock RL, Chrisikos TT, Kahn LM, Dyevoich AM, Pineda JE, Wong MC, Mishra AK, Cass SH, Cogdill AP, Johnson DH, Johnson SB, Wani K, Ledesma DA, Hudgens CW, Wang J, Wadud Khan MA, Peterson CB, Joon AY, Peng W, Li HS, Arora R, Tang X, Raso MG, Zhang X, Foo WC, Tetzlaff MT, Diehl GE, Clise-Dwyer K, Whitley EM, Gubin MM, Allison JP, Hwu P, Ajami NJ, Diab A, Wargo JA, Watowich SS. Intestinal toxicity to CTLA-4 blockade driven by IL-6 and myeloid infiltration. J Exp Med 2023; 220:e20221333. [PMID: 36367776 PMCID: PMC9664499 DOI: 10.1084/jem.20221333] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity. We found αCTLA-4 drove increased inflammation and colonic tissue damage in mice with genetic predisposition to intestinal inflammation, acute gastrointestinal infection, transplantation with a dysbiotic fecal microbiome, or dextran sodium sulfate administration. We identified an immune signature of αCTLA-4-mediated irAEs, including colonic neutrophil accumulation and systemic interleukin-6 (IL-6) release. IL-6 blockade combined with antibiotic treatment reduced intestinal damage and improved αCTLA-4 therapeutic efficacy in inflammation-prone mice. Intestinal immune signatures were validated in biopsies from patients with ICB colitis. Our work provides new preclinical models of αCTLA-4 intestinal irAEs, mechanistic insights into irAE development, and potential approaches to enhance ICB efficacy while mitigating irAEs.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yusra B. Medik
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bhakti Patel
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel B. Zamler
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Sijie Chen
- Ministry of Education Key Lab of Bioinformatics and Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, China
| | - Thomas Chapman
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah Schneider
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth M. Park
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rachel L. Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Taylor T. Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Laura M. Kahn
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Allison M. Dyevoich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Josue E. Pineda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Matthew C. Wong
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Aditya K. Mishra
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Samuel H. Cass
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexandria P. Cogdill
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Daniel H. Johnson
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah B. Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Debora A. Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney W. Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jingjing Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Md Abdul Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christine B. Peterson
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aron Y. Joon
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xuegong Zhang
- Ministry of Education Key Lab of Bioinformatics and Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, China
| | - Wai Chin Foo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael T. Tetzlaff
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gretchen E. Diehl
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth M. Whitley
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew M. Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James P. Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Patrick Hwu
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nadim J. Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Fu Y, Li J, Zhang Z, Ren F, Wang Y, Jia H, Liu J, Chang Z. Umbilical cord mesenchymal stem cell-derived exosomes alleviate collagen-induced arthritis by balancing the population of Th17 and regulatory T cells. FEBS Lett 2022; 596:2668-2677. [PMID: 35918178 DOI: 10.1002/1873-3468.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/07/2022]
Abstract
Exosomes released by mesenchymal stem cells (MSCs) are thought to function as extensions of the MSCs. However, it remains unclear whether exosomes derived from human umbilical cord MSCs (HUMSCs) possess immunoregulatory functions in rheumatoid arthritis. We report that when mice with collagen-induced arthritis were injected with exosomes derived from HUMSC (HUMSC-Exo), their paws became less swollen, and they had lower serum pro-inflammatory cytokine and anti-collagen IgG levels, and decreased synovial hyperplasia. The HUMSC-Exo appeared to restore the balance between Th17 and Treg cells, and this effect was accompanied by reduced IL-17 and enhanced TGF-β and IL-10 levels. These findings suggest that HUMSC-Exo function as important regulator of the balance between Th1/Th17 and Treg cells during immune and inflammatory responses.
Collapse
Affiliation(s)
- Yanxia Fu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Jun Li
- TsCell Biotech Inc., Beijing, China
| | - Ziyu Zhang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Huihui Jia
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Jihe Liu
- Beijing No. 2 Middle School, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Feng Z, Zhou P, Wu X, Zhang J, Zhang M. Hydroxysafflor yellow A protects against ulcerative colitis via suppressing TLR4/NF-κB signaling pathway. Chem Biol Drug Des 2022; 99:897-907. [PMID: 35319164 DOI: 10.1111/cbdd.14045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/24/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Abstract
Hydroxysafflower yellow A (HSYA) protects against acute kidney injury through TLR4/NF-κB pathway. However, the effect and potential mechanism of HSYA in ulcerative colitis (UC) have been rarely reported, which is thus investigated in this research. An in vivo UC model was established by oral administration of 5% dextran sulfate sodium (DSS) in Sprague-Dawley rats. After HSYA treatment, the daily body weight and colon length of rats were measured. Then rat colon tissues, myeloperoxidase (MPO) activity, and the levels of inflammatory cytokines were examined by histopathological examination (HE) staining, immunohistochemistry, ultraviolet spectrophotometry, and enzyme-linked immune sorbent assay (ELISA) respectively. The activated TLR4/NF-κB pathway was detected by Western blot. RAW 264.7 cell viability was detected by MTT assay after lipopolysaccharide (LPS) treatment, and ELISA and Western blot were performed again to investigate the effects of HSYA on LPS-treated cells. DSS administration increased body weight and colon length of rats and induced colon tissue injury. DSS or LPS treatment up-regulated the levels of TNF-α, IL-1β, and IL-6 and activated TLR4/NF-κB pathway of colon tissues and cells, respectively. HSYA partially reversed the above effect of DSS and LPS treatment, and the effects of the drug were improved with the dosage. Taken together, HSYA alleviates UC by suppressing TLR4/NF-κB signaling pathway, which may provide a new insight for the treatment of UC.
Collapse
Affiliation(s)
- Zhibing Feng
- Department of Anorectal, Jiangxi Province Hospital of Integrated Chinese Western Medicine, Nanchang, China
| | - Ping Zhou
- Department of Anorectal, Jiangxi Province Hospital of Integrated Chinese Western Medicine, Nanchang, China
| | - Xiao Wu
- Department of Anorectal, Jiangxi Province Hospital of Integrated Chinese Western Medicine, Nanchang, China
| | - Junbiao Zhang
- Department of Anorectal, Jiangxi Province Hospital of Integrated Chinese Western Medicine, Nanchang, China
| | - Min Zhang
- Department of Anorectal, Jiangxi Province Hospital of Integrated Chinese Western Medicine, Nanchang, China
| |
Collapse
|
12
|
Effects of Nivolumab and Ipilimumab on the suppression of cisplatin resistant small cell lung cancer cells. Invest New Drugs 2022; 40:709-717. [PMID: 35438354 DOI: 10.1007/s10637-022-01243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Small cell lung cancer (SCLC) accounts for nearly 10-15% of all lung cancer cases. Although many chemotherapy drugs, such as cisplatin and etoposide, were approved as primary therapy for SCLC patients, the prognosis is poor. In this study, we aimed to explore novel therapeutic strategy against SCLC. METHODS Two SCLC cell lines, LTEP-P and LTEP-P/DDP1.0, were treated with cisplatin, in the absence or presence of Nivolumab + Ipilimumab combination, and the cell viability was measured. Tumor size and mouse survival rate were examined upon different drug treatments. Protein levels of PD-1 and CTLA4 were detected in normal and SCLC cells by Western blot. Cellular cytotoxicity induced by T lymphocytes was measured by thymidine incorporation assay. Tumor infiltrated T cell populations from LTEP-P and LTEP/DDP1.0 tumor-bearing mice were analyzed by flow cytometry. RESULTS LTEP-P cells, but not LTEP/DDP1.0 cells, exhibited decreased cell viability upon cisplatin, Nivolumab and Ipilimumab combinational treatment. T lymphocytes significantly inhibited the growth of LTEP-P cells in the presence of nivolumab and ipilimumab. The combinational therapy improved survival rate and inhibited tumor growth in LTEP-P tumor-bearing mice, but showed no effect on LTEP/DDP1.0 tumor-bearing mice. Nivolumab and Ipilimumab synergized with cisplatin in increasing CD8 + and CD4 + T cell population, while decreasing Treg population in LTEP-P tumor-bearing mice. CONCLUSIONS The combinational therapy by cisplatin, Nivolumab and Ipilimumab could be an effective strategy against LTEP-P cells, accompanied with increased cytotoxic T cell populations, but has no significant effect against DDP-resistant lung adenocarcinoma cells.
Collapse
|
13
|
Jiang Z, Huang J, You L, Zhang J, Li B. STAT3 Contributes to Intracranial Aneurysm Formation and Rupture by Modulating Inflammatory Response. Cell Mol Neurobiol 2021; 41:1715-1725. [PMID: 32804311 PMCID: PMC11444010 DOI: 10.1007/s10571-020-00941-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/08/2020] [Indexed: 02/04/2023]
Abstract
Intracranial aneurysm (IA) is a common type of refractory cerebrovascular diseases. Inflammatory responses have been reported to be associated with the pathogenesis of IA. We aimed to study the role of STAT3 on IA formation and inflammatory response. STAT3 expression and clinicopathological factors were analyzed in IA and normal cerebral arteries. mRNA level of STAT3 was detected in normal, unruptured, and ruptured IA tissues by RT-PCR and Western blot. Inflammatory cytokines were examined by ELISA in unruptured, ruptured IA tissues, as well as cells with STAT3 overexpression or knockdown. mRNA of phenotypic modulation-related factors was tested by RT-PCR in STAT3 overexpressing or knockdown VSMCs. STAT3 expression was upregulated in ruptured IA tissues and highly associated with IA diameter and IA type. Inflammatory cytokine secretion was increased in ruptured IA samples and positively correlated with STAT3 expression. STAT3 overexpression led to enhanced expression of SM-α actin, SM-MHC, MMP2, and MMP9, and increased secretion of inflammatory cytokines. Our findings have demonstrated that STAT3 is a key regulator in IA formation by modulating inflammatory cytokine expression.
Collapse
Affiliation(s)
- Zhixian Jiang
- Inpatient Department District N13, Chendong Branch of Quanzhou First Hospital, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Jiaxin Huang
- Inpatient Department District N13, Chendong Branch of Quanzhou First Hospital, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Lingtong You
- Inpatient Department District N13, Chendong Branch of Quanzhou First Hospital, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Jinning Zhang
- Inpatient Department District N13, Chendong Branch of Quanzhou First Hospital, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Bingyu Li
- Geriatrics Dept District 7, Dongjie Branch of Quanzhou First Hospital, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
14
|
Yu C, Diao R, Khan R, Deng C, Ma H, Chang Z, Jiang X, Shi Q. The Dispensable Roles of X-Linked Ubl4a and Its Autosomal Counterpart Ubl4b in Spermatogenesis Represent a New Evolutionary Type of X-Derived Retrogenes. Front Genet 2021; 12:689902. [PMID: 34249105 PMCID: PMC8267814 DOI: 10.3389/fgene.2021.689902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
X-derived retrogenes contribute to genetic diversity in evolution and are usually specifically expressed in testis and perform important functions during spermatogenesis. Ubl4b is an autosomal retrogene with testis-specific expression derived from Ubl4a, an X-linked housekeeping gene. In the current study, we performed phylogenetic analysis and revealed that Ubl4a and Ubl4b are subject to purifying selection and may have conserved functions in evolution. Ubl4b was knocked out in mice using CRISPR/Cas9 genome editing technology and interestingly, we found no alterations in reproductive parameters of Ubl4b-/- male mice. To get insights into whether Ubl4a could compensate the absence of Ubl4b in vivo, we further obtained Ubl4a-/Y; Ubl4b-/- mice that lack both Ubl4a and Ubl4b, and the double knockout (dKO) mice also displayed normal spermatogenesis, showing that Ubl4a and Ubl4b are both dispensable for spermatogenesis. Thus, through the in vivo study of UBL4A and UBL4B, we provided a direct evidence for the first time that some X chromosome-derived autosomal retrogenes can be unfunctional in spermatogenesis, which represents an additional evolutionary type of X-derived retrogenes.
Collapse
Affiliation(s)
- Changping Yu
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Runjie Diao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ranjha Khan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hui Ma
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, National Engineering Laboratory for Anti-tumor Therapeutics, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohua Jiang
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Zhang H, Zhao Y, Yao Q, Ye Z, Mañas A, Xiang J. Ubl4A is critical for mitochondrial fusion process under nutrient deprivation stress. PLoS One 2020; 15:e0242700. [PMID: 33211772 PMCID: PMC7676689 DOI: 10.1371/journal.pone.0242700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/08/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial fusion and fission are dynamic processes regulated by the cellular microenvironment. Under nutrient starvation conditions, mitochondrial fusion is strengthened for energy conservation. We have previously shown that newborns of Ubl4A-deficient mice were more sensitive to starvation stress with a higher rate of mortality than their wild-type littermates. Ubl4A binds with the actin-related protein Arp2/3 complex to synergize the actin branching process. Here, we showed that deficiency in Ubl4A resulted in mitochondrial fragmentation and apoptosis. A defect in the fusion process was the main cause of the mitochondrial fragmentation and resulted from a shortage of primed Arp2/3 complex pool around the mitochondria in the Ubl4A-deficient cells compared to the wild-type cells. As a result, the mitochondrial fusion process was not undertaken quickly enough to sustain starvation stress-induced cell death. Consequently, fragmented mitochondria lost their membrane integrity and ROS was accumulated to trigger caspase 9-dependent apoptosis before autophagic rescue. Furthermore, the wild-type Ubl4A, but not the Arp2/3-binding deficient mutant, could rescue the starvation-induced mitochondrial fragmentation phenotype. These results suggest that Ubl4A promotes the mitochondrial fusion process via Arp2/3 complex during the initial response to nutrient deprivation for cell survival.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Yu Zhao
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Qi Yao
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Zijing Ye
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Adriana Mañas
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Jialing Xiang
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lu C, Ren C, Yang T, Sun Y, Qiao P, Han X, Yu Z. Fructose-1, 6-bisphosphatase 1 interacts with NF-κB p65 to regulate breast tumorigenesis via PIM2 induced phosphorylation. Am J Cancer Res 2020; 10:8606-8618. [PMID: 32754266 PMCID: PMC7392005 DOI: 10.7150/thno.46861] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Fructose-1, 6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was recently shown to be a tumor suppressor and could mediate the activities of multiple transcriptional factors via its non-canonical functions. However, the underlying mechanism of posttranscriptional modification on the non-canonical functions of FBP1 remains elusive. Methods: We employed immunoaffinity purification to identify binding partner(s) and used co-immunoprecipitation to verify their interactions. Kinase reaction was used to confirm PIM2 could phosphorylate FBP1. Overexpression or knockdown proteins were used to assess the role in modulating p65 protein stability. Mechanistic analysis was involved in protein degradation and polyubiquitination assays. Nude mice and PIM2-knockout mice was used to study protein functions in vitro and in vivo. Results: Here, we identified Proviral Insertion in Murine Lymphomas 2 (PIM2) as a new binding partner of FBP1, which could phosphorylate FBP1 on Ser144. Surprisingly, phosphorylated FBP1 Ser144 abrogated its interaction with NF-κB p65, promoting its protein stability through the CHIP-mediated proteasome pathway. Furthermore, phosphorylation of FBP1 on Ser144 increased p65 regulated PD-L1 expression. As a result, phosphorylation of FBP1 on Ser144 promoted breast tumor growth in vitro and in vivo. Moreover, the levels of PIM2 and pSer144-FBP1 proteins were positively correlated with each other in human breast cancer and PIM2 knockout mice. Conclusions: Our findings revealed that phosphorylation noncanonical FBP1 by PIM2 was a novel regulator of NF-κB pathway, and highlights PIM2 inhibitors as breast cancer therapeutics.
Collapse
|
17
|
He S, Wang G, Pei Y, Zhu H. miR
‐34b‐3p protects against acute kidney injury in sepsis mice via targeting ubiquitin‐like protein 4A. Kaohsiung J Med Sci 2020; 36:817-824. [PMID: 32609950 DOI: 10.1002/kjm2.12255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/20/2023] Open
Affiliation(s)
- Shu‐Yin He
- Department of Intensive Care Unit Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine Nanjing City Jiangsu Province China
| | - Gang Wang
- Department of Nephrology Nanjing Boda Hospital of Nephrology Affiliated to Nanjing University of Chinese Medicine Nanjing City Jiangsu Province China
| | - Ying‐Hao Pei
- Department of Intensive Care Unit Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine Nanjing City Jiangsu Province China
| | - Hai‐Ping Zhu
- Department of Intensive Care Unit The First Affiliated Hospital of Wenzhou Medical University Wenzhou City Zhejiang Province China
| |
Collapse
|
18
|
Du B, Wen X, Wang Y, Lin M, Lai J. Gemcitabine and checkpoint blockade exhibit synergistic anti-tumor effects in a model of murine lung carcinoma. Int Immunopharmacol 2020; 86:106694. [PMID: 32570034 DOI: 10.1016/j.intimp.2020.106694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is leading cause of cancer death in the world. Chemotherapy is currently one of the standard treatments for lung cancer. Gemcitabine is a pyrimidine nucleoside drug which has been approved by FDA to treat lung cancer. However, acquired resistance inevitable develops after Gemcitabine treatment, limiting clinical efficacy. Lewis lung carcinoma (LLC) cells were treated with Gemcitabine and cell apoptosis and programmed cell death-ligand 1 (PD-L1) expression were analyzed by flow cytometry. LLC mouse model was established to analysis the proportion and programmed cell death-1 (PD-1) expression of CD8 + T cells. Anti-tumor effect by treating with Gemcitabine and anti-PD-1 antibody was measured through in vivo LLC mouse model. Gemcitabine treatment induces tumor cell apoptosis and PD-L1 expression. Further study showed that Gemcitabine treatment also increases CD8+ and CD4+ T cells proportion, PD-1 and PD-L1 expression in LLC mouse model. Combination therapy with Gemcitabine and αPD-1 not only has strong anti-tumor effect, but also could inhibit postsurgical recurrence of LLC. Our findings demonstrated that the combination therapy of Gemcitabine and αPD-1 is an effective therapeutic strategy for lung cancer.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- B7-H1 Antigen/biosynthesis
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/immunology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Disease Models, Animal
- Drug Synergism
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred C57BL
- Neoplasm Recurrence, Local/drug therapy
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/biosynthesis
- Programmed Cell Death 1 Receptor/genetics
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Up-Regulation
- Gemcitabine
Collapse
Affiliation(s)
- Bin Du
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou 350001, Fujian, China
| | - Xiaojiao Wen
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou 350001, Fujian, China
| | - Yao Wang
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou 350001, Fujian, China
| | - Mengxin Lin
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou 350001, Fujian, China
| | - Jinhuo Lai
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou 350001, Fujian, China.
| |
Collapse
|
19
|
Kuai Y, Liu H, Liu D, Liu Y, Sun Y, Xie J, Sun J, Fang Y, Pan H, Han W. An ultralow dose of the NADPH oxidase inhibitor diphenyleneiodonium (DPI) is an economical and effective therapeutic agent for the treatment of colitis-associated colorectal cancer. Am J Cancer Res 2020; 10:6743-6757. [PMID: 32550901 PMCID: PMC7295061 DOI: 10.7150/thno.43938] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term inflammatory stimulation is considered one of the most important causes of colorectal cancer. Diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, can inhibit a variety of inflammatory responses. However, the systemic toxicity of DPI limits its clinical application. Whether DPI can inhibit colitis-associated colorectal cancer (CAC) at ultralow concentrations remains unknown. Methods: CAC was induced by azoxymethane (AOM) injection followed by treatment with dextran sulfate sodium (DSS), and DPI was intraperitoneally injected (i.p.) in the first cycle for 21 days. Colon tissue was collected and analyzed by western blotting. Immune cell infiltration and macrophage polarization were examined by immunohistochemistry, immunofluorescence, or real-time polymerase-chain reaction (PCR). Reactive oxygen species (ROS) production was measured by flow cytometry. Results: Ultralow dose DPI significantly ameliorated the DSS-induced colitis and attenuated the colon tumorigenesis in the mouse model of AOM/ DSS-induced CAC. Mechanistically, an ultralow dose of DPI inhibited the production of pro-inflammatory cytokines, (tumor necrosis factor (TNF)-α and interleukin (IL)-6), reduced the macrophage infiltration and classical polarization, and induced the ROS generation. These effects were found to be related to the inhibition of the phosphorylation of signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF -κB). Conclusion: The present study revealed that an ultralow dose of DPI, with no significant systemic toxicity involved, may be an effective way to prevent the occurrence and development of CAC.
Collapse
|
20
|
Zhou Y, Slone N, Chrisikos TT, Kyrysyuk O, Babcock RL, Medik YB, Li HS, Kleinerman ES, Watowich SS. Vaccine efficacy against primary and metastatic cancer with in vitro-generated CD103 + conventional dendritic cells. J Immunother Cancer 2020; 8:e000474. [PMID: 32273347 PMCID: PMC7254126 DOI: 10.1136/jitc-2019-000474] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Type 1 conventional dendritic cells (cDC1s) possess efficient antigen presentation and cross-presentation activity, as well as potent T cell priming ability. Tissue-resident cDC1s (CD103+ cDC1s in mice, CD141+ cDC1s in humans) are linked with improved tumor control, yet the efficacy of immunotherapy using this population is understudied. METHODS We generated murine CD103+ cDC1s in vitro and examined their expression of cDC1-related factors, antigen cross-presentation activity, and accumulation in tumor-draining lymph nodes (TdLNs). The antitumor efficacy of the in vitro-generated CD103+ cDC1s was studied in murine melanoma and osteosarcoma models. We evaluated tumor responses on vaccination with CD103+ cDC1s, compared these to vaccination with monocyte-derived DCs (MoDCs), tested CD103+ cDC1 vaccination with checkpoint blockade, and examined the antimetastatic activity of CD103+ cDC1s. RESULTS In vitro-generated CD103+ cDC1s produced cDC1-associated factors such as interleukin-12p70 and CXCL10, and demonstrated antigen cross-presentation activity on stimulation with the toll-like receptor 3 agonist polyinosinic:polycytidylic acid (poly I:C). In vitro-generated CD103+ cDC1s also migrated to TdLNs following poly I:C treatment and intratumoral delivery. Vaccination with poly I:C-activated and tumor antigen-loaded CD103+ cDC1s enhanced tumor infiltration of tumor antigen-specific and interferon-γ+ CD8+ T cells, and suppressed melanoma and osteosarcoma growth. CD103+ cDC1s showed superior antitumor efficacy compared with MoDC vaccination, and led to complete regression of 100% of osteosarcoma tumors in combination with CTLA-4 antibody-mediated checkpoint blockade. In vitro-generated CD103+ cDC1s effectively protected mice from pulmonary melanoma and osteosarcoma metastases. CONCLUSIONS Our data indicate an in vitro-generated CD103+ cDC1 vaccine elicits systemic and long-lasting tumor-specific T cell-mediated cytotoxicity, which restrains primary and metastatic tumor growth. The CD103+ cDC1 vaccine was superior to MoDCs and enhanced response to immune checkpoint blockade. These results indicate the potential for new immunotherapies based on use of cDC1s alone or in combination with checkpoint blockade.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Neoplasm/immunology
- Bone Neoplasms/immunology
- Bone Neoplasms/pathology
- Bone Neoplasms/therapy
- Cross-Priming
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Immunotherapy
- In Vitro Techniques
- Integrin alpha Chains/immunology
- Integrin alpha Chains/metabolism
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Osteosarcoma/immunology
- Osteosarcoma/pathology
- Osteosarcoma/therapy
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/pathology
- Sarcoma, Experimental/therapy
- Tumor Cells, Cultured
- Vaccines/administration & dosage
Collapse
Affiliation(s)
- Yifan Zhou
- Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Natalie Slone
- Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Taylor T Chrisikos
- Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Oleksandr Kyrysyuk
- Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rachel L Babcock
- Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yusra B Medik
- Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haiyan S Li
- Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | |
Collapse
|
21
|
Cao Q, Gao X, Lin Y, Yue C, Wang Y, Quan F, Zhang Z, Liu X, Lu Y, Zhan Y, Yang H, Li X, Qin D, Birnbaumer L, Hao K, Yang Y. Thymopentin ameliorates dextran sulfate sodium-induced colitis by triggering the production of IL-22 in both innate and adaptive lymphocytes. Theranostics 2019; 9:7490-7505. [PMID: 31695782 PMCID: PMC6831468 DOI: 10.7150/thno.35015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic inflammatory gastrointestinal disease, notoriously challenging to treat. Previous studies have found a positive correlation between thymic atrophy and colitis severity. It was, therefore, worthwhile to investigate the effect of thymopentin (TP5), a synthetic pentapeptide corresponding to the active domain of the thymopoietin, on colitis. Methods: Dextran sulfate sodium (DSS)-induced colitis mice were treated with TP5 by subcutaneous injection. Body weight, colon length, colon weight, immune organ index, disease activity index (DAI) score, and the peripheral blood profile were examined. The immune cells of the spleen and colon were analyzed by flow cytometry. Histology was performed on isolated colon tissues for cytokine analysis. Bacterial DNA was extracted from mouse colonic feces to assess the intestinal microbiota. Intestinal lamina propria mononuclear cells (LPMCs), HCT116, CT26, and splenocytes were cultured and treated with TP5. Results: TP5 treatment increased the body weight and colon length, decreased the DAI score, and restored colon architecture of colitic mice. TP5 also decreased the infiltration of immune cells and expression levels of pro-inflammatory cytokines such as IL-6. Importantly, the damaged thymus and compromised lymphocytes in peripheral blood were significantly restored by TP5. Also, the production of IL-22, both in innate and adaptive lymphoid cells, was triggered by TP5. Given the critical role of IL-22 in mucosal host defense, we tested the effect of TP5 on mucus barrier and gut microbiota and found that the number of goblet cells and the level of Mucin-2 expression were restored, and the composition of the gut microbiome was normalized after TP5 treatment. The critical role of IL-22 in the protective effect of TP5 on colitis was further confirmed by administering the anti-IL-22 antibody (αIL-22), which completely abolished the effect of TP5. Furthermore, TP5 significantly increased the expression level of retinoic acid receptor-related orphan receptor γ (RORγt), a transcription factor for IL-22. Consistent with this, RORγt inhibitor abrogated the upregulation of IL-22 induced by TP5. Conclusion: TP5 exerts a protective effect on DSS-induced colitis by triggering the production of IL-22 in both innate and adaptive lymphocytes. This study delineates TP5 as an immunomodulator that may be a potential drug for the treatment of UC.
Collapse
Affiliation(s)
- Qiuhua Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Xinghua Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yanting Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Chongxiu Yue
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yue Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Fei Quan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Zixuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yuan Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yanling Zhan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Hongbao Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Xianjing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Di Qin
- School of Sports and Health, Nanjing sport institute, Nanjing, Jiangsu 210001, PR China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA, and Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires C1107AFF, Argentina
| | - Kun Hao
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| |
Collapse
|
22
|
Zhang J, Yin C, Zhao Q, Zhao Z, Wang J, Miron RJ, Zhang Y. Anti-inflammation effects of injectable platelet-rich fibrin via macrophages and dendritic cells. J Biomed Mater Res A 2019; 108:61-68. [PMID: 31449340 DOI: 10.1002/jbm.a.36792] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
Immune response to implantation materials plays a critical role during early local inflammation and biomaterial-induced regeneration or restoration. A novel platelet concentrate termed i-PRF (injectable platelet-rich fibrin) has recently been developed without any additives by low centrifugation speeds. To date, scientists have investigated the capability of releasing growth factors to improve regeneration but have ignored whether i-PRF can inhibit the inflammatory effect around the wound. The present study investigated the anti-inflammation effects of i-PRF on immune response-related cells, especially macrophages and dendric cells. We found that i-PRF reduced pro-inflammatory M1 phenotype of macrophages and activated dendritic cells around muscle defect that was injected with bacterial suspension. Moreover, in vitro experiments showed similar results. i-PRF deleted inflammatory response caused by lipopolysaccharide to some extent. We determined that TLR4, an activator of inflammatory stimulation and p-p65, a key factor belongs to classical inflammatory related NF-κB signal pathway, can be inhibited by use of i-PRF. Results indicate the potential anti-inflammatory role of i-PRF during regeneration and restoration.
Collapse
Affiliation(s)
- Jinglun Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chengcheng Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zifan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinyang Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Richard J Miron
- Centre for Collaborative Research, Nova Southeastern University, Cell Therapy Institute, Fort Lauderdale, Florida.,Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida.,Department of Periodontics and Oral Surgery, University of Ann Arbor, Ann Arbor, Michigan
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Chen H, Li L, Hu J, Zhao Z, Ji L, Cheng C, Zhang G, zhang T, Li Y, Chen H, Pan S, Sun B. UBL4A inhibits autophagy-mediated proliferation and metastasis of pancreatic ductal adenocarcinoma via targeting LAMP1. J Exp Clin Cancer Res 2019; 38:297. [PMID: 31288830 PMCID: PMC6617940 DOI: 10.1186/s13046-019-1278-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/13/2019] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Ubiquitin-like protein 4A (UBL4A) plays a significant role in protein metabolism and the maintenance of cellular homeostasis. In cancer, UBL4A represses tumorigenesis and is involved in various signaling pathways. Pancreatic ductal adenocarcinoma (PDAC) is still a major cause of cancer-related death and the underlying molecular mechanism of UBL4A and PDAC remains unknown. METHODS First, the prognostic role of UBL4A and its expression in human PDAC patients and in pancreatic cancer cell lines were detected by survival analysis and qRT-PCR, western blotting, and immunohistochemistry. Next, the effects of UBL4A on proliferation and metastasis in pancreatic cancer were evaluated by functional assays in vitro and in vivo. In addition, chloroquine was introduced to determine the role of autophagy in UBL4A-related tumor proliferation and metastasis. Ultimately, coimmunoprecipitation was used to confirm the interaction between UBL4A and lysosome associated membrane protein-1 (LAMP1), and western blotting was performed to explore the UBL4A mechanism. RESULTS We found that UBL4A was decreased in PDAC and that high levels of UBL4A correlated with a favorable prognosis. We observed that UBL4A inhibited tumor proliferation and metastasis through suppression of autophagy, a critical intracellular catabolic process that reportedly protects cells from nutrient starvation and other stress conditions. UBL4A caused impaired autophagic degradation in vitro, a crucial process in autophagy, by disturbing the function of lysosomes and contributing to autophagosome accumulation. We found a positive correlation between UBL4A and LAMP1. Furthermore, UBL4A caused lysosomal dysfunction by directly interacting with LAMP1, and LAMP1 overexpression reversed the antitumor effects of UBL4A in pancreatic cancer. In addition, we demonstrated that UBL4A suppressed tumor growth and metastasis in a pancreatic orthotopic tumor model. CONCLUSIONS These findings suggest that UBL4A exerts an antitumor effect on autophagy-related proliferation and metastasis in PDAC by directly targeting LAMP1. Herein, we describe a novel mechanism of UBL4A that suppresses the progression of pancreatic cancer. UBL4A might be a promising target for the treatment and prognostication of PDAC.
Collapse
Affiliation(s)
- Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Liang Ji
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang China
| | - Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Guangquan Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Tao zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
| | - Shangha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
| |
Collapse
|
24
|
彭 淑, 李 浔, 刘 琴, 张 颖, 邹 黎, 龚 小, 王 苗, 马 晓. [Identification of differentially expressed genes between lung adenocarcinoma and squamous cell carcinoma using transcriber signature analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:641-649. [PMID: 31270041 PMCID: PMC6743921 DOI: 10.12122/j.issn.1673-4254.2019.06.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the differentially expressed genes (DEGs) between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) with bioinformatics analysis and search for potential biomarkers for clinical diagnosis of nonsmall cell lung cancer (NSCLC). METHODS The gene expression profiling datasets of LUAD and LUSC were acquired. The transcriptome differences between LUAD and LUSC were identified using R language processing and t-test analysis. The differential expressions of the genes were shown by Venn diagram. The DEGs identified by GEO2R were analyzed with DAVID and Ingenuity Pathway Analysis (IPA) to identify the signaling pathways and biomarkers that could be used for differential diagnosis of LUAD and LUSC. The TCGA data and the biomarker expression data from clinical lung cancer samples were used to verify the differential expressions of the Osteoarthritis pathway and LXR/RXR between LUAD and LUSC. We further examined the differential expressions of miR-181 and its two target genes, WNT5A and MBD2, in 23 clinical specimens of lung squamous cell carcinoma and the paired adjacent tissues. RESULTS GEO data analysis identified 851 DEGs (including 276 up-regulated and 575 down-regulated genes) in LUAD and 885 DEGs (including 406 up-regulated and 479 down-regulated genes) in LUSC. DAVID and IPA analysis revealed that leukocyte migration and inflammatory responses were more abundant in LUAD than in LUSC. Osteoarthritis pathway was inhibited in LUAD and activated in LUSC. IPA analysis showed that transcription factors (GATA4, RELA, YBX1, TP63 and MBD2), cytokines (WNT5A and IL1A) and microRNAs (miR-34a, miR-181b and miR-15a) differed significantly between LUAD and LUSC. miR-34a with IL-1A, miR-15a with YBX1, and miR-181b with WNT5A and MBD2 could serve as the paired microRNA and mRNA targets for differential diagnosis of NSCLC subtypes. Analysis of the clinical samples showed an increased expression of miR-181b-5p and the down-regulation of WNT5A, which could be used as molecular markers for the diagnosis of LUSC. CONCLUSIONS Through transcriptome analysis, we identified candidate genes, paired microRNAs and pathways for differentiating LUAD and LUSC, and they can provide novel differential diagnosis and therapeutic strategies for LUAD and LUSC.
Collapse
Affiliation(s)
- 淑贤 彭
- 广州中医药大学基础医学院中西医结合基础研究中心,广东 广州 510006Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - 浔 李
- 华南师范大学脑科学与康复医学研究院//华南师范大学心理应用研究中心//华南师范大学广东省心理健康与认知科学重点实验室脑研究所,广东 广州 510631Institute for Brain Research and Rehabilitation/Guangdong Key Laboratory of Mental Health and Cognitive Science/Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - 琴 刘
- 华南师范大学脑科学与康复医学研究院//华南师范大学心理应用研究中心//华南师范大学广东省心理健康与认知科学重点实验室脑研究所,广东 广州 510631Institute for Brain Research and Rehabilitation/Guangdong Key Laboratory of Mental Health and Cognitive Science/Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - 颖恒 张
- 广州中医药大学基础医学院中西医结合基础研究中心,广东 广州 510006Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - 黎明 邹
- 华南师范大学脑科学与康复医学研究院//华南师范大学心理应用研究中心//华南师范大学广东省心理健康与认知科学重点实验室脑研究所,广东 广州 510631Institute for Brain Research and Rehabilitation/Guangdong Key Laboratory of Mental Health and Cognitive Science/Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - 小莉 龚
- 华南师范大学脑科学与康复医学研究院//华南师范大学心理应用研究中心//华南师范大学广东省心理健康与认知科学重点实验室脑研究所,广东 广州 510631Institute for Brain Research and Rehabilitation/Guangdong Key Laboratory of Mental Health and Cognitive Science/Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - 苗淼 王
- 华南师范大学脑科学与康复医学研究院//华南师范大学心理应用研究中心//华南师范大学广东省心理健康与认知科学重点实验室脑研究所,广东 广州 510631Institute for Brain Research and Rehabilitation/Guangdong Key Laboratory of Mental Health and Cognitive Science/Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - 晓冬 马
- 华南师范大学脑科学与康复医学研究院//华南师范大学心理应用研究中心//华南师范大学广东省心理健康与认知科学重点实验室脑研究所,广东 广州 510631Institute for Brain Research and Rehabilitation/Guangdong Key Laboratory of Mental Health and Cognitive Science/Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
25
|
Fu Y, Liu S, Wang Y, Ren F, Fan X, Liang J, Liu C, Li J, Ju Y, Chang Z. GdX/UBL4A‐knockout mice resist collagen‐induced arthritis by balancing the population of T
h
1/T
h
17 and regulatory T cells. FASEB J 2019; 33:8375-8385. [DOI: 10.1096/fj.201802217rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yanxia Fu
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
- Tsinghua UniversityPeking University Joint Center for Life Sciences Beijing China
| | - Sihan Liu
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Yinyin Wang
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Fangli Ren
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Xuanzi Fan
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Jiao Liang
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Chunxiao Liu
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Jun Li
- Institute of ImmunologyPLAThe Third Military Medical University Chongqing China
| | - Yanfang Ju
- Department of GastroenterologyPLA General Hospital Beijing China
| | - Zhijie Chang
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| |
Collapse
|