1
|
Pelegrini LNDC, Manzine PR, Popolin CP, Dorta S, Grigoli MM, Alexandre-Silva V, Pedroso R, Ramos AA, Pott H, Cominetti MR. Higher soluble ADAM10 plasma levels are associated with decreased cognitive performance in older adults carrying APOEε4. Neurobiol Aging 2025; 151:70-75. [PMID: 40239317 DOI: 10.1016/j.neurobiolaging.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
The APOE gene, particularly its ε4 allele, is a significant genetic risk factor for Alzheimer's disease (AD) and influences amyloid-β (Aβ) pathology and cognitive decline. This study explores the relationship between APOEε4 genotype, plasma levels of soluble ADAM10 (sADAM10), and cognitive performance in cognitively unimpaired (CU) older adults and those with AD dementia. It is a cross-sectional analysis that included 85 participants assessed for cognitive function, APOE genotype, and plasma sADAM10 levels. ADAM10, a key enzyme in the non-amyloidogenic pathway of Aβ precursor protein (APP) processing, has emerged as a promising biomarker due to its altered levels in AD patients. Our findings revealed significantly higher plasma sADAM10 levels in AD participants compared to CU individuals, with APOEε4 carriers exhibiting a nearly twofold increase in sADAM10 levels. A negative correlation was observed between plasma sADAM10 concentrations and cognitive performance, independent of APOEε4 status. Notably, the study highlights the potential of sADAM10 as a blood-based biomarker, emphasizing its relevance in APOEε4-mediated AD pathology. Importantly, most studies exploring ADAM10 and APOE interactions have been conducted in high-income countries, limiting the generalizability of their findings to diverse populations. This study is the first to be conducted in a Global South country, offering critical insights into underrepresented populations and underscoring the need for more inclusive research in AD. Future research should include larger cohorts and longitudinal designs to validate these findings and explore targeted interventions leveraging sADAM10 activity in the context of APOEε4-associated AD progression.
Collapse
Affiliation(s)
| | - Patricia Regina Manzine
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Marie Skłodowska-Curie Actions (MSCA), Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Spain
| | | | - Sabrina Dorta
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | | | | - Renata Pedroso
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Ari Alex Ramos
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Henrique Pott
- Department of Medicine, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Marcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Global Brain Health Institute (GBHI), Dublin, Ireland.
| |
Collapse
|
2
|
Del Hoyo Soriano L, Wagemann O, Bejanin A, Levin J, Fortea J. Sex-related differences in genetically determined Alzheimer's disease. Front Aging Neurosci 2025; 17:1522434. [PMID: 40103931 PMCID: PMC11913828 DOI: 10.3389/fnagi.2025.1522434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
We reviewed the literature on sex differences in genetically determined Alzheimer's disease (AD), focusing on autosomal dominant AD (ADAD), Down syndrome-associated AD (DSAD), and APOE4 homozygosity, particularly regarding disease penetrance, symptom onset and clinical progression, and trajectories for markers of amyloidosis (A), tau pathology (T) and neurodegeneration (N). Data suggests that sex differences in disease penetrance, symptom onset, and AT(N) biomarker trajectories are typically subtle for genetically determined AD populations. Noteworthy exceptions, such as increased neurodegeneration in later stages of the disease in females while similar cognitive outcomes, suggest a potential differential cognitive reserve that warrants further investigation. Additionally, the interaction between APOE genotype and sex reveals complex and multifaceted effects in DSAD, with potential implications for ADAD that remain underexplored. The smaller sex differences observed compared to sporadic AD offer insights into the different underlying disease mechanisms in genetically determined AD populations. Future research should prioritize sex-specific investigations in genetically determined AD, focusing on refining methodologies. This includes prioritizing longitudinal designs, adjustment for key confounders, and adherence to sex-specific guidelines.
Collapse
Affiliation(s)
- Laura Del Hoyo Soriano
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Olivia Wagemann
- Department of Neurology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| |
Collapse
|
3
|
Xu X, Kwon J, Yan R, Apio C, Song S, Heo G, Yang Q, Timsina J, Liu M, Budde J, Blennow K, Zetterberg H, Lleó A, Ruiz A, Molinuevo JL, Lee VMY, Deming Y, Heslegrave AJ, Hohman TJ, Pastor P, Peskind ER, Albert MS, Morris JC, Park T, Cruchaga C, Sung YJ. Sex Differences in Apolipoprotein E and Alzheimer Disease Pathology Across Ancestries. JAMA Netw Open 2025; 8:e250562. [PMID: 40067298 PMCID: PMC11897841 DOI: 10.1001/jamanetworkopen.2025.0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/05/2025] [Indexed: 03/15/2025] Open
Abstract
Importance Age, sex, and apolipoprotein E (APOE) are the strongest risk factors for late-onset Alzheimer disease (AD). The role of APOE in AD varies with sex and ancestry. While the association of APOE with AD biomarkers also varies across sex and ancestry, no study has systematically investigated both sex-specific and ancestry differences of APOE on cerebrospinal fluid (CSF) biomarkers together, resulting in limited insights and generalizability. Objective To systematically investigate the association of sex and APOE-ε4 with 3 core CSF biomarkers across ancestries. Design, Setting, and Participants This cohort study examined 3 CSF biomarkers (amyloid β1-42 [Aβ42], phosphorylated tau 181 [p-tau], and total tau, in participants from 20 cohorts from July 1, 1985, to March 31, 2020. These individuals were grouped into African, Asian, and European ancestries based on genetic data. Data analyses were conducted from June 1, 2023, to November 10, 2024. Exposure Sex (male or female) and APOE-ε4. Main Outcomes and Measures The associations of sex and APOE-ε4 with biomarker levels were assessed within each ancestry group, adjusting for age. Meta-analyses were performed to identify these associations across ancestries. Sensitivity analyses were conducted to exclude the potential influence of the APOE-ε2 allele. Results This cohort study included 4592 individuals (mean [SD] age, 70.8 [10.2] years; 2425 [52.8%] female; 119 [2.6%] African, 52 [1.1%] Asian, and 4421 [96.3%] European). Higher APOE-ε4 dosage scores were associated with lower Aβ42 values (β [SE], -0.58 [0.02], P < .001), indicating more severe pathology; these associations were seen in men and women separately and jointly. The association with APOE-ε4 was statistically greater in men (β [SE], -0.63 [0.03]; P < .001) vs women (β [SE], -0.52 [0.03]; P < .001) of European ancestry (P = .01 for interaction). Women had higher levels of p-tau, indicating more severe neurofibrillary pathology. The association between APOE-ε4 dosage and p-tau was in the expected direction (higher APOE-ε4 dosage for higher p-tau values) in both sexes, but the difference between sexes was significant only in those of African ancestry (β [SE], 0.10 [0.18]; P = .57 for men; β [SE], 0.66 [0.17]; P < .001 for women; P = .03 for interaction). Women also had higher levels of total tau, indicating more neuronal damage. The association between APOE-ε4 dosage and total tau was stronger in women than in men in the African cohort (β [SE], 0.20 [0.22]; P = .36 for men and β [SE], 0.65 [0.22], P = .004 for women [P = .16 for interaction]) and European cohort (β [SE], 0.36 [0.03]; P < .001 in women and β [SE], 0.27 [0.03], P < .001 in men [P = .053 for interaction]); no significant associations were found in the Asian cohort. Sensitivity analysis excluding APOE-ε2 carriers yielded similar results. Conclusions and Relevance In this cohort study, the association of the APOE-ε4 risk allele with tau accumulation was higher in women than in men. These findings underscore the importance of considering sex differences in APOE-ε4's association with AD biomarkers and tau pathology mechanisms in AD. Although this study provides robust evidence of complex interplay between sex and APOE-ε4 for European ancestry, further research is needed to fully understand other ancestry differences.
Collapse
Affiliation(s)
- Xiaoyi Xu
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
| | - Jiseon Kwon
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Ruiqi Yan
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
| | - Catherine Apio
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Soomin Song
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Gyujin Heo
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Qijun Yang
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Jigyasha Timsina
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Menghan Liu
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - John Budde
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Alberto Lleó
- Sant Pau Memory Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Agustin Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Virginia Man-Yee Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Yuetiva Deming
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison
| | - Amanda J. Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Tim J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pau Pastor
- University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Elaine R. Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John C. Morris
- Department of Neurology, Washington University, St Louis, Missouri
- Knight Alzheimer’s Disease Research Center, Washington University, St Louis, Missouri
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri
| | - Yun Ju Sung
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
4
|
Chen J, Fang Q, Yang K, Pan J, Zhou L, Xu Q, Shen Y. Development and Validation of the Communities Geriatric Mild Cognitive Impairment Risk Calculator (CGMCI-Risk). Healthcare (Basel) 2024; 12:2015. [PMID: 39451430 PMCID: PMC11506964 DOI: 10.3390/healthcare12202015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives: The aim was to develop and validate the Communities Geriatric Mild Cognitive Impairment Risk Calculator (CGMCI-Risk), aiding community healthcare workers in the early identification of individuals at high risk of mild cognitive impairment (MCI). Methods: Based on nationally representative community survey data, backward stepwise regression was employed to screen the variables, and logistic regression was utilized to construct the CGMCI-Risk. Internal validation was conducted using bootstrap resampling, while external validation was performed using temporal validation. The area under the receiver operating characteristic curve (AUROC), calibration curve, and decision curve analysis (DCA) were employed to evaluate the CGMCI-Risk in terms of discrimination, calibration, and net benefit, respectively. Results: The CGMCI-Risk model included variables such as age, educational level, sex, exercise, garden work, TV watching or radio listening, Instrumental Activity of Daily Living (IADL), hearing, and masticatory function. The AUROC was 0.781 (95% CI = 0.766 to 0.796). The calibration curve showed strong agreement, and the DCA suggested substantial clinical utility. In external validation, the CGMCI-Risk model maintained a similar performance with an AUROC of 0.782 (95% CI = 0.763 to 0.801). Conclusions: CGMCI-Risk is an effective tool for assessing cognitive function risk within the community. It uses readily predictor variables, allowing community healthcare workers to identify the risk of MCI in older adults over a three-year span.
Collapse
Affiliation(s)
- Jiangwei Chen
- School of Nursing, Hangzhou Normal University, Hangzhou 311121, China; (J.C.); (Q.F.)
| | - Qing Fang
- School of Nursing, Hangzhou Normal University, Hangzhou 311121, China; (J.C.); (Q.F.)
| | - Kehua Yang
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Jiayu Pan
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou 311121, China;
| | - Lanlan Zhou
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Qunli Xu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Yuedi Shen
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou 311121, China;
| |
Collapse
|
5
|
Wang W, Huang J, Qian S, Zheng Y, Yu X, Jiang T, Ai R, Hou J, Ma E, Cai J, He H, Wang X, Xie C. Amyloid-β but not tau accumulation is strongly associated with longitudinal cognitive decline. CNS Neurosci Ther 2024; 30:e14860. [PMID: 39014268 PMCID: PMC11251873 DOI: 10.1111/cns.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) pathology is featured by the extracellular accumulation of amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles in the brain. We studied whether Aβ and tau accumulation are independently associated with future cognitive decline in the AD continuum. METHODS Data were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) public database. A total of 1272 participants were selected based on the availability of Aβ-PET and CSF tau at baseline and of those 777 participants with follow-up visits. RESULTS We found that Aβ-PET and CSF tau pathology were related to cognitive decline across the AD clinical spectrum, both as potential predictors for dementia progression. Among them, Aβ-PET (A + T- subjects) is an independent reliable predictor of longitudinal cognitive decline in terms of ADAS-13, ADNI-MEM, and MMSE scores rather than tau pathology (A - T+ subjects), indicating tau accumulation is not closely correlated with future cognitive impairment without being driven by Aβ deposition. Of note, a high percentage of APOE ε4 carriers with Aβ pathology (A+) develop poor memory and learning capacity. Interestingly, this condition is not recurrence in terms of the ADNI-MEM domain when adding APOE ε4 status. Finally, the levels of Aβ-PET SUVR related to glucose hypometabolism more strongly in subjects with A + T- than A - T+ both happen at baseline and longitudinal changes. CONCLUSIONS In conclusion, Aβ-PET alone without tau pathology (A + T-) measure is an independent reliable predictor of longitudinal cognitive decline but may nonetheless forecast different status of dementia progression. However, tau accumulation alone without Aβ pathology background (A - T+) was not enough to be an independent predictor of cognitive worsening.
Collapse
Affiliation(s)
- Wenwen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated HospitalYuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiani Huang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shuangjie Qian
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi Zheng
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xinyue Yu
- Alberta InstituteWenzhou Medical UniversityWenzhouZhejiangChina
| | - Tao Jiang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruixue Ai
- Department of Clinical Molecular Biology, Akershus University HospitalUniversity of OsloLørenskogNorway
| | - Jialong Hou
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Enzi Ma
- Department of NeurologyTraditional Chinese and Western Medicine Hospital of WenzhouWenzhouZhejiangChina
| | - Jinlai Cai
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Haijun He
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - XinShi Wang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Chenglong Xie
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Oujiang LaboratoryWenzhouZhejiangChina
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Geriatrics, Geriatric Medical CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
6
|
He K, Li B, Wang J, Wang Y, You Z, Chen X, Chen H, Li J, Huang Q, Guo Q, Huang YH, Guan Y, Chen K, Zhao J, Deng Y, Xie F. APOE ε4 is associated with decreased synaptic density in cognitively impaired participants. Alzheimers Dement 2024; 20:3157-3166. [PMID: 38477490 PMCID: PMC11095422 DOI: 10.1002/alz.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aβ) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.
Collapse
Affiliation(s)
- Kun He
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Wang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Ying Wang
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhiwen You
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xing Chen
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Haijuan Chen
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junpeng Li
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yiyun Henry Huang
- PET CenterDepartment of Radiology and Biomedical ImagingYale University School of MedicineNew HavenUSA
| | - Yihui Guan
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Kewei Chen
- Banner Alzheimer InstituteArizona State University, University of Arizona and Arizona Alzheimer's ConsortiumPhoenixUSA
| | - Jun Zhao
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Wang YT, Therriault J, Servaes S, Tissot C, Rahmouni N, Macedo AC, Fernandez-Arias J, Mathotaarachchi SS, Benedet AL, Stevenson J, Ashton NJ, Lussier FZ, Pascoal TA, Zetterberg H, Rajah MN, Blennow K, Gauthier S, Rosa-Neto P. Sex-specific modulation of amyloid-β on tau phosphorylation underlies faster tangle accumulation in females. Brain 2024; 147:1497-1510. [PMID: 37988283 PMCID: PMC10994548 DOI: 10.1093/brain/awad397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023] Open
Abstract
Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar amyloid-β (Aβ) load, a higher load of neurofibrillary tangles (NFTs) is seen in females than males. Previous literature has proposed that Aβ and phosphorylated-tau (p-tau) synergism accelerates tau tangle formation, yet the effect of biological sex in this process has been overlooked. In this observational study, we examined longitudinal neuroimaging data from the TRIAD and ADNI cohorts from Canada and USA, respectively. We assessed 457 participants across the clinical spectrum of Alzheimer's disease. All participants underwent baseline multimodal imaging assessment, including MRI and PET, with radioligands targeting Aβ plaques and tau tangles, respectively. CSF data were also collected. Follow-up imaging assessments were conducted at 1- and 2-year intervals for the TRIAD cohort and 1-, 2- and 4-year intervals for the ADNI cohort. The upstream pathological events contributing to faster tau progression in females were investigated-specifically, whether the contribution of Aβ and p-tau synergism to accelerated tau tangle formation is modulated by biological sex. We hypothesized that cortical Aβ predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings revealed that Aβ-positive females presented higher CSF p-tau181 concentrations compared with Aβ-positive males in both the TRIAD (P = 0.04, Cohen's d = 0.51) and ADNI (P = 0.027, Cohen's d = 0.41) cohorts. In addition, Aβ-positive females presented faster NFT accumulation compared with their male counterparts (TRIAD: P = 0.026, Cohen's d = 0.52; ADNI: P = 0.049, Cohen's d = 1.14). Finally, the triple interaction between female sex, Aβ and CSF p-tau181 was revealed as a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P = 0.0067, t = 2.81; Braak III: P = 0.017, t = 2.45; Braak IV: P = 0.002, t = 3.17; Braak V: P = 0.006, t = 2.88; Braak VI: P = 0.0049, t = 2.93). Overall, we report sex-specific modulation of cortical Aβ in tau phosphorylation, consequently facilitating faster NFT progression in female individuals over time. This presents important clinical implications and suggests that early intervention that targets Aβ plaques and tau phosphorylation may be a promising therapeutic strategy in females to prevent the further accumulation and spread of tau aggregates.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Arthur Cassa Macedo
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Jaime Fernandez-Arias
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Sulantha S Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London SE5 9RX, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London SE5 8AF, UK
| | - Firoza Z Lussier
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tharick A Pascoal
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Montreal Neurological Institute, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
8
|
Liu X, Wang G, Cao Y. The prevalence of mild cognitive impairment and dementia among rural dwellers: A systematic review and meta-analysis. Geriatr Nurs 2024; 56:74-82. [PMID: 38306919 DOI: 10.1016/j.gerinurse.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/04/2024]
Abstract
The mild cognitive impairment (MCI) and dementia in rural areas are increasingly attracting public attention. However, their prevalence is still unclear. This study aims to reveal the distribution of MCI and dementia in rural areas. We systematically searched PubMed, Web of Science, Embase, and PsycINFO up to June 2023 for cohort and cross-sectional studies. Meta-analysis was conducted using random-effects models to evaluate the prevalence of MCI and dementia. Thirty-five studies with 16,936 participants met the inclusion criteria. The pooled prevalence of MCI and dementia was 27 % (n = 12, 95 %CI = 0.21-0.32, I2 = 99.5 %, P < 0.001) and 7 % (n = 27, 95 %CI = 0.05-0.08, I2 = 99.30 %, P < 0.001), respectively. Subgroup analyses revealed that aged 60 years or older [(MCI: 29 %, 95 %CI = 0.20-0.38, I2 = 99.7 %, P < 0.001), (dementia: 9 % (95 %CI = 0.06-0.12, I2 = 99 %, P < 0.001)], female [(MCI: 29 %, 95 %CI = 0.19-0.40, I2 = 99.3 %, P < 0.001), (dementia: 7 %, 95 % CI = 0.04-0.12, I2 = 98.66 %, P < 0.001)], a-MCI (19 %, 95 %CI = 0.12-0.26, I2 = 97.62 %, P < 0.001) and AD (4 %, 95 %CI = 0.02-0.05, I2 = 98.60 %, P < 0.001) showed higher prevalence. The prevalence of MCI and dementia in rural China was 23 % (95 %CI = 0.18-0.29, I2 = 99.5 %, P < 0.001) and 6 % (95 %CI = 0.04-0.08, I2 = 99.6 %, P < 0.001), respectively. Implementing cognitive impairment screening and intervention measures is necessary to improve the cognitive function of the rural population.
Collapse
Affiliation(s)
- Xueyan Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Lixia District, Jinan, Shandong Province, China
| | - Guangpeng Wang
- Xiangya School of Nursing, Central South University, 172 Tongzipo Road, Yuelu District, Changsha, Hunan Province, China
| | - Yingjuan Cao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Lixia District, Jinan, Shandong Province, China; Department of Nursing, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Lixia District, Jinan, Shandong Province, China; Nursing Theory and Practice Innovation Research Center, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Wagemann O, Li Y, Hassenstab J, Aschenbrenner AJ, McKay NS, Gordon BA, Benzinger TLS, Xiong C, Cruchaga C, Renton AE, Perrin RJ, Berman SB, Chhatwal JP, Farlow MR, Day GS, Ikeuchi T, Jucker M, Lopera F, Mori H, Noble JM, Sánchez‐Valle R, Schofield PR, Morris JC, Daniels A, Levin J, Bateman RJ, McDade E, Llibre‐Guerra JJ. Investigation of sex differences in mutation carriers of the Dominantly Inherited Alzheimer Network. Alzheimers Dement 2024; 20:47-62. [PMID: 37740921 PMCID: PMC10841236 DOI: 10.1002/alz.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.
Collapse
Affiliation(s)
- Olivia Wagemann
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Yan Li
- Department of BiostatisticsWashington University St. LouisSt. LouisMissouriUSA
| | - Jason Hassenstab
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | | | - Nicole S. McKay
- Department of RadiologyWashington University St. LouisSt. LouisMissouriUSA
| | - Brian A. Gordon
- Department of RadiologyWashington University St. LouisSt. LouisMissouriUSA
| | | | - Chengjie Xiong
- Department of BiostatisticsWashington University St. LouisSt. LouisMissouriUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University St. LouisSt. LouisMissouriUSA
| | - Alan E. Renton
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Richard J. Perrin
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University St. LouisSt. LouisMissouriUSA
| | - Sarah B. Berman
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jasmeer P. Chhatwal
- Department of NeurologyMassachusetts General and Brigham & Female's HospitalsHarvard Medical SchoolBostonMassachusettsUSA
| | - Martin R. Farlow
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gregory S. Day
- Department of NeurologyMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Takeshi Ikeuchi
- Department of Molecular GeneticsBrain Research InstituteNiigata UniversityNiigataJapan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia (GNA)Universidad de AntioquiaMedellinColombia
| | - Hiroshi Mori
- Department of Clinical NeuroscienceOsaka Metropolitan University Medical SchoolNagaoka Sutoku UniversityOsakaJapan
| | - James M. Noble
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Raquel Sánchez‐Valle
- Department of NeurologyHospital Clínic de Barcelona (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - John C. Morris
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | - Alisha Daniels
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | - Johannes Levin
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Randall J. Bateman
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | - Eric McDade
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | | | | |
Collapse
|
10
|
Chen G, McKay NS, Gordon BA, Liu J, Joseph-Mathurin N, Schindler SE, Hassenstab J, Aschenbrenner AJ, Wang Q, Schultz SA, Su Y, LaMontagne PJ, Keefe SJ, Massoumzadeh P, Cruchaga C, Xiong C, Morris JC, Benzinger TLS. Predicting cognitive decline: Which is more useful, baseline amyloid levels or longitudinal change? Neuroimage Clin 2023; 41:103551. [PMID: 38150745 PMCID: PMC10788301 DOI: 10.1016/j.nicl.2023.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
The use of biomarkers for the early detection of Alzheimer's disease (AD) is crucial for developing potential therapeutic treatments. Positron Emission Tomography (PET) is a well-established tool used to detect β-amyloid (Aβ) plaques in the brain. Previous studies have shown that cross-sectional biomarkers can predict cognitive decline (Schindler et al.,2021). However, it is still unclear whether longitudinal Aβ-PET may have additional value for predicting time to cognitive impairment in AD. The current study aims to evaluate the ability of baseline- versus longitudinal rate of change in-11C-Pittsburgh compound B (PiB) Aβ-PET to predict cognitive decline. A cohort of 153 participants who previously underwent PiB-PET scans and comprehensive clinical assessments were used in this study. Our analyses revealed that baseline Aβ is significantly associated with the rate of change in cognitive composite scores, with cognition declining more rapidly when baseline PiB Aβ levels were higher. In contrast, no signification association was identified between the rate of change in PiB-PET Aβ and cognitive decline. Additionally, the ability of the rate of change in the PiB-PET measures to predict cognitive decline was significantly influenced by APOE ε4 carrier status. These results suggest that a single PiB-PET scan is sufficient to predict cognitive decline and that longitudinal measures of Aβ accumulation do not improve the prediction of cognitive decline once someone is amyloid positive.
Collapse
Affiliation(s)
- Gengsheng Chen
- Departments of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nicole S McKay
- Departments of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Brian A Gordon
- Departments of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jingxia Liu
- Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nelly Joseph-Mathurin
- Departments of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrew J Aschenbrenner
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Qing Wang
- Departments of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Stephanie A Schultz
- Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Pamela J LaMontagne
- Departments of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sarah J Keefe
- Departments of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Parinaz Massoumzadeh
- Departments of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Chengjie Xiong
- Divison of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Departments of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Departments of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
12
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted excitation-inhibition balance in cognitively normal individuals at risk of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554061. [PMID: 37662359 PMCID: PMC10473582 DOI: 10.1101/2023.08.21.554061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. Objective Examine how AD risk factors (age, APOE-ɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. Methods Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). Results In absence of AD risk factors (APOE-ɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β = -0.007). Regression modeling including APOE-ɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β = 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β = 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the trail-making test (p < 0.05). Conclusion Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOE-ɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOE-ɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL
| | - Scott Mackin
- Department of Psychiatry, University of California - San Francisco, San Francisco, CA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
13
|
Wang X, Broce I, Qiu Y, Deters KD, Fan CC, Dale AM, Edland SD, Banks SJ. A simple genetic stratification method for lower cost, more expedient clinical trials in early Alzheimer's disease: A preliminary study of tau PET and cognitive outcomes. Alzheimers Dement 2023; 19:3078-3086. [PMID: 36701211 PMCID: PMC10368787 DOI: 10.1002/alz.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Identifying individuals who are most likely to accumulate tau and exhibit cognitive decline is critical for Alzheimer's disease (AD) clinical trials. METHODS Participants (N = 235) who were cognitively normal or with mild cognitive impairment from the Alzheimer's Disease Neuroimaging Initiative were stratified by a cutoff on the polygenic hazard score (PHS) at 65th percentile (above as high-risk group and below as low-risk group). We evaluated the associations between the PHS risk groups and tau positron emission tomography and cognitive decline, respectively. Power analyses estimated the sample size needed for clinical trials to detect differences in tau accumulation or cognitive change. RESULTS The high-risk group showed faster tau accumulation and cognitive decline. Clinical trials using the high-risk group would require a fraction of the sample size as trials without this inclusion criterion. DISCUSSION Incorporating a PHS inclusion criterion represents a low-cost and accessible way to identify potential participants for AD clinical trials.
Collapse
Affiliation(s)
- Xin Wang
- University of California, San Diego, California, USA
| | - Iris Broce
- University of California, San Diego, California, USA
| | - Yuqi Qiu
- East China Normal University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang J, Wang M, Ren S, Huang L, He K, Li J, Hua F, Guan Y, Guo Q, Huang Q, Xie F. The Effect of Gender and APOE ɛ4 Status on Brain Amyloid-β Deposition in Different Age Groups of Mild Cognitively Impaired Individuals: A PET-CT Study. J Alzheimers Dis 2023:JAD221166. [PMID: 37334590 DOI: 10.3233/jad-221166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Gender, APOE ɛ4 status and age have different effects on brain amyloid deposition in patients with mild cognitively impaired (MCI). OBJECTIVE To investigate the effect of gender×APOE ɛ4 status interaction on Aβ deposition in the brains of individuals with MCI in different age groups by PET scanning. METHODS 204 individuals with MCI were classified into younger or older groups based on whether they were under or over 65 years of age. APOE genotyping, structural MRI, amyloid PET scans, and neuropsychological tests were performed. The effect of gender×APOE ɛ4 status interaction on Aβ deposition was assessed in different age groups. RESULTS APOE ɛ4 carriers had higher amyloid deposition than noncarriers in the whole group. Females with MCI had more amyloid deposition in the medial temporal lobe than males in the whole cohort and younger group. Older individuals with MCI had higher amyloid deposition than younger individuals. In stratified analysis by age, female APOE ɛ4 carriers had significantly increased amyloid deposition compared to their male counterparts only in the medial temporal lobe in the younger group. Amyloid deposition was increased in female APOE ɛ4 carriers compared to noncarriers in the younger group, whereas higher amyloid deposition was observed in male APOE ɛ4 carriers in the older group. CONCLUSION Women in the younger group with MCI who were APOE ɛ4 carriers had more amyloid deposition in the brain, while men in the older group with MCI who were APOE ɛ4 carriers had higher amyloid deposition.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengjie Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuhua Ren
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lin Huang
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Junpeng Li
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Chen XR, Shao Y, Sadowski MJ. Interaction between KLOTHO-VS Heterozygosity and APOE ε4 Allele Predicts Rate of Cognitive Decline in Late-Onset Alzheimer's Disease. Genes (Basel) 2023; 14:917. [PMID: 37107675 PMCID: PMC10137709 DOI: 10.3390/genes14040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
KLOTHO-VS heterozygosity (KL-VShet+) promotes longevity and protects against cognitive decline in aging. To determine whether KL-VShet+ mitigates Alzheimer's disease (AD) progression, we used longitudinal linear-mixed models to compare the rate of change in multiple cognitive measures in AD patients stratified by APOE ε4 carrier status. We aggregated data on 665 participants (208 KL-VShet-/ε4-, 307 KL-VShet-/ε4+, 66 KL-VShet+/ε4-, and 84 KL-VShet+/ε4+) from two prospective cohorts, the National Alzheimer's Coordinating Center and the Alzheimer's Disease Neuroimaging Initiative. All participants were initially diagnosed with mild cognitive impairment, later developed AD dementia during the study, and had at least three subsequent visits. KL-VShet+ conferred slower cognitive decline in ε4 non-carriers (+0.287 MMSE points/year, p = 0.001; -0.104 CDR-SB points/year, p = 0.026; -0.042 ADCOMS points/year, p < 0.001) but not in ε4 carriers who generally had faster rates of decline than non-carriers. Stratified analyses showed that the protective effect of KL-VShet+ was particularly prominent in male participants, those who were older than the median baseline age of 76 years, or those who had an education level of at least 16 years. For the first time, our study provides evidence that KL-VShet+ status has a protective effect on AD progression and interacts with the ε4 allele.
Collapse
Affiliation(s)
- Xi Richard Chen
- School of Medicine & Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Martin J. Sadowski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
16
|
Cui SS, Jiang QW, Chen SD. Sex difference in biological change and mechanism of Alzheimer’s disease: from macro- to micro-landscape. Ageing Res Rev 2023; 87:101918. [PMID: 36967089 DOI: 10.1016/j.arr.2023.101918] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and numerous studies reported a higher prevalence and incidence of AD among women. Although women have longer lifetime, longevity does not wholly explain the higher frequency and lifetime risk in women. It is important to understand sex differences in AD pathophysiology and pathogenesis, which could provide foundation for future clinical AD research. Here, we reviewed the most recent and relevant literature on sex differences in biological change of AD from macroscopical neuroimaging to microscopical pathologic change (neuronal degeneration, synaptic dysfunction, amyloid-beta and tau accumulation). We also discussed sex differences in cellular mechanisms related to AD (neuroinflammation, mitochondria dysfunction, oxygen stress, apoptosis, autophagy, blood-brain-barrier dysfunction, gut microbiome alteration, bulk and single cell/nucleus omics) and possible causes underlying these differences including sex-chromosome, sex hormone and hypothalamic-pituitary- adrenal (HPA) axis effects.
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Wen Jiang
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
17
|
Tumor-to-blood ratio for assessment of fibroblast activation protein receptor density in pancreatic cancer using [ 68Ga]Ga-FAPI-04. Eur J Nucl Med Mol Imaging 2023; 50:929-936. [PMID: 36334106 DOI: 10.1007/s00259-022-06010-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE [68Ga]Ga-FAPI PET/CT has been widely used in clinical diagnosis and radiopharmaceutical therapy. In this study, tumor-to-blood ratio (TBR) was evaluated as a powerful tool for semiquantitative assessment of [68Ga]Ga-FAPI-04 tumor uptake and as an effective index for tumors with high FAP expression in theranostics. METHODS Nine patients with pancreatic cancer underwent a 60-min dynamic PET/CT scan by total-body PET/CT (with a long AFOV of 194 cm) after injection of [68Ga]Ga-FAPI-04. After dynamic PET/CT scan, three patients received chemotherapy and underwent the second dynamic scan to evaluate treatment response. Time-activity curves (TACs) were obtained by drawing regions of interest for primary pancreatic lesions and metastatic lesions. The lesion TACs were fitted using four compartment models by the software PMOD PKIN kinetic modeling. The preferred pharmacokinetic model for [68Ga]Ga-FAPI-04 was evaluated based on the Akaike information criterion. The correlations between simplified methods for quantification of [68Ga]Ga-FAPI-04 (SUVs; tumor-to-blood ratios [TBRs]) and the total distribution volume (Vt) estimates obtained from pharmacokinetic analysis were calculated. RESULTS In total, 9 primary lesions and 25 metastatic lesions were evaluated. The reversible two-tissue compartment model (2TCM) was the most appropriate model among the four compartment models. The total distribution volume Vt values derived from 2TCM varied significantly in pathological lesions and background regions. A strong positive correlation was observed between TBRmean and Vt from the 2TCM model in pathological lesions (R2=0.92, P<0.001). The relative difference range for TBRmean was 2.1% compared to the reduction rate of Vt in the patients who were treated with chemotherapy. CONCLUSIONS A strong positive correlation was observed between TBRmean and Vt for [68Ga]Ga-FAPI-04. TBRmean reflects FAP receptor density better than SUVmean and SUVmax, and would be the preferred measurement tool for semiquantitative assessment of [68Ga]Ga-FAPI-04 tumor uptake and as a means for evaluating treatment response.
Collapse
|
18
|
Cheng D, Qin ZS, Zheng Y, Xie JY, Liang SS, Zhang JL, Feng YB, Zhang ZJ. Minocycline, a classic antibiotic, exerts psychotropic effects by normalizing microglial neuroinflammation-evoked tryptophan-kynurenine pathway dysregulation in chronically stressed male mice. Brain Behav Immun 2023; 107:305-318. [PMID: 36332817 DOI: 10.1016/j.bbi.2022.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of tryptophan-kynurenine pathway (TKP) is extensively involved in the pathophysiology of Alzheimer's disease, depression, and neurodegenerative disorders. Minocycline, a classic antibiotic, may exert psychotropic effects associated with the modulation of TKP. In this study, we examined the effects of minocycline in improving behaviour and modulating TKP components in chronically stressed male mice. Following repeated treatment with 22.5 mg/kg and 45 mg/kg minocycline for 27 days, the stressed mice particularly with higher dose displayed significant improvement on cognitive impairment, depression- and anxiety-like behaviour. Minocycline suppressed stress-induced overexpression of pro-inflammatory cytokines and restored anti-inflammatory cytokines. Chronic stress dramatically suppressed blood and prefrontal cortical levels of the primary substrate tryptophan (TRP), the neuroprotective metabolite kynurenic acid (KYNA), and KYNA/KYN ratio, but increased the intermediate kynurenine (KYN), 3-hydroxykynurenine (3-HK), KYN/TRP ratio, and the neurotoxic metabolite quinolinic acid (QUIN). Minocycline partially or completely reversed changes in these components. Minocycline also inhibited stress-induced overexpression of QUIN-related enzymes, indoleamine 2, 3-dioxygenase 1(iDO-1), kynureninase (KYNU), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilate 3,4-dioxygenase (3-HAO), but rescued the decreased expression of kynurenine aminotransferase (KAT) in brain regions. Behavioral improvements were correlated with multiple TKP metabolites and enzymes. These results suggest that the psychotropic effects of minocycline are mainly associated with the restoration of biodistribution of the primary substrate in the brain and normalization of neuroinflammation-evoked TKP dysregulation.
Collapse
Affiliation(s)
- Dan Cheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zong-Shi Qin
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Zheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jun-Ya Xie
- Department of Statistics and Actuarial Science, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Sui-Sha Liang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jia-Ling Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi-Bin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.
| |
Collapse
|
19
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted Excitation-Inhibition Balance in Cognitively Normal Individuals at Risk of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1449-1467. [PMID: 37718795 PMCID: PMC11260287 DOI: 10.3233/jad-230035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. OBJECTIVE Examine how AD risk factors (age, APOEɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. METHODS Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). RESULTS In absence of AD risk factors (APOEɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β= -0.007). Regression modeling including APOEɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β= 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β= 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the Trail Making Test (p < 0.05). CONCLUSIONS Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOEɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOEɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott Mackin
- Department of Psychiatry, University of California – San Francisco, San Francisco, CA, USA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Wang X, Broce I, Deters KD, Fan CC, Banks SJ. Identification of Sex-Specific Genetic Variants Associated With Tau PET. Neurol Genet 2022; 8:e200043. [PMID: 36530928 PMCID: PMC9756308 DOI: 10.1212/nxg.0000000000200043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
Background and Objectives Important sex differences exist in tau pathology along the Alzheimer disease (AD) continuum, with women showing enhanced tau deposition compared with men, especially during the mild cognitive impairment (MCI) phase. This study aims to identify specific genetic variants associated with sex differences in regional tau aggregation, as measured with PET. Methods Four hundred ninety-three participants (women, n = 246; men, n = 247) who self-identified as White from the AD Neuroimaging Initiative study, with genotyping data and 18F-Flortaucipir tau PET data, were included irrespective of clinical diagnosis (cognitively normal [CN], MCI, and AD). We focused on the genetic variants within 10 genes previously shown to have sex-dependent effects on AD to reduce the burden of multiple comparisons: BIN1, MS4A6A, DNAJA2, FERMT2, APOC1, APOC1P1, FAM193B, C2orf47, TYW5, and CR1. Multivariate analysis of variance was applied to identify genetic variants associated with tau PET data in 3 regions of interests (composite regions of Braak I, Braak III/IV, and Braak V/VI stages) in women and men separately. We controlled for age, scanner manufacture, amyloid status, APOE ε4 carriership, diagnosis (CN vs MCI vs AD), and the first 10 genetic principal components to adjust for population stratification. Results We identified 3 genetic loci within 3 different genes associated with tau deposits specifically in women: rs79711283 within DNAJA2, rs113357081 within FERMT2, and rs74614106 within TYW5. In men, we also identified 3 loci within CR1 associated with tau deposits: rs115096248, rs113698814, and rs78150633. Discussion Our findings revealed sex-specific genetic variants associated with tau deposition independent of APOE ε4, amyloid status, and clinical diagnosis. These results provide potential molecular targets for understanding the mechanism of sex-specific tau aggregation and developing sex-specific gene-guided precision prevention or therapeutic interventions for AD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurosciences (X.W., I.B., K.D.D., C.C.F., S.J.B.), University of California; and Center for Multimodal Imaging and Genetics (X.W., I.B., C.C.F., S.J.B.), University of California, San Diego, La Jolla
| | - Iris Broce
- Department of Neurosciences (X.W., I.B., K.D.D., C.C.F., S.J.B.), University of California; and Center for Multimodal Imaging and Genetics (X.W., I.B., C.C.F., S.J.B.), University of California, San Diego, La Jolla
| | - Kacie D Deters
- Department of Neurosciences (X.W., I.B., K.D.D., C.C.F., S.J.B.), University of California; and Center for Multimodal Imaging and Genetics (X.W., I.B., C.C.F., S.J.B.), University of California, San Diego, La Jolla
| | - Chun Chieh Fan
- Department of Neurosciences (X.W., I.B., K.D.D., C.C.F., S.J.B.), University of California; and Center for Multimodal Imaging and Genetics (X.W., I.B., C.C.F., S.J.B.), University of California, San Diego, La Jolla
| | - Sarah Jane Banks
- Department of Neurosciences (X.W., I.B., K.D.D., C.C.F., S.J.B.), University of California; and Center for Multimodal Imaging and Genetics (X.W., I.B., C.C.F., S.J.B.), University of California, San Diego, La Jolla
| |
Collapse
|
21
|
Yan Y, Wang X, Chaput D, Shin MK, Koh Y, Gan L, Pieper AA, Woo JAA, Kang DE. X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women. Cell 2022; 185:3913-3930.e19. [PMID: 36198316 PMCID: PMC9588697 DOI: 10.1016/j.cell.2022.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/31/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Although women experience significantly higher tau burden and increased risk for Alzheimer's disease (AD) than men, the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially protects females from acetylated tau accumulation, tau pathology, and cognitive impairment. USP11 levels also strongly associate positively with tau pathology in females but not males. Thus, inhibiting USP11-mediated tau deubiquitination may provide an effective therapeutic opportunity to protect women from increased vulnerability to AD and other tauopathies.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Dale Chaput
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Min-Kyoo Shin
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yeojung Koh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Cleveland, Louis Stokes Cleveland VA Medical Center, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jung-A A Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA.
| | - David E Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Louis Strokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA.
| |
Collapse
|
22
|
Valcic M, Khoury MA, Kim J, Fornazzari L, Churchill NW, Ismail Z, De Luca V, Tsuang D, Schweizer TA, Munoz DG, Fischer CE. Determining Whether Sex and Zygosity Modulates the Association between APOE4 and Psychosis in a Neuropathologically-Confirmed Alzheimer's Disease Cohort. Brain Sci 2022; 12:1266. [PMID: 36139002 PMCID: PMC9497154 DOI: 10.3390/brainsci12091266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The APOE4 allele is a genetic risk factor for developing late-onset Alzheimer's disease (AD). Previous work by our group revealed that female APOE4 homozygotes with Lewy body (LB) pathology were more likely to experience psychosis compared to female APOE4 non-carriers, whereas in males there was no APOE4 dose-dependent significant effect. The objective of this study was to refine our previous findings by adjusting for covariates and determining the probability of an APOE4 sex-mediated effect on psychosis. METHODS Neuropathologically confirmed AD patients with LB pathology (n = 491) and without LB pathology (n = 716) were extracted from the National Alzheimer's Coordinating Center (NACC). Patients were classified as psychotic if they scored positively for delusions and/or hallucinations on the Neuropsychiatric Inventory. Analysis consisted of a preliminary unadjusted binary logistic regression and a Generalized Additive binary logistic regression Model (GAM) to predict the relationship between APOE4 status and sex on the presence of psychosis in both cohorts, adjusting for age, education and MMSE. RESULTS In the cohort with LB pathology, female APOE4 homozygotes were significantly more likely to experience psychosis compared to female APOE4 non-carriers (OR = 4.15, 95%CI [1.21, 14.2], p = 0.023). Female heterozygotes were also more likely to experience psychosis compared to female APOE4 non-carriers, but to a lesser extent (OR = 2.37, 95%CI [1.01, 5.59], p = 0.048). There was no significant difference in males with LB pathology or in any sex in the cohort without LB pathology. CONCLUSIONS Sex and zygosity influence the effect of APOE4 on psychosis in neuropathologically confirmed AD patients, with the effect being limited to females with LB pathology.
Collapse
Affiliation(s)
- Mila Valcic
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; (M.V.); (M.A.K.); (J.K.); (L.F.); (N.W.C.); (T.A.S.); (D.G.M.)
| | - Marc A. Khoury
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; (M.V.); (M.A.K.); (J.K.); (L.F.); (N.W.C.); (T.A.S.); (D.G.M.)
| | - Julia Kim
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; (M.V.); (M.A.K.); (J.K.); (L.F.); (N.W.C.); (T.A.S.); (D.G.M.)
| | - Luis Fornazzari
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; (M.V.); (M.A.K.); (J.K.); (L.F.); (N.W.C.); (T.A.S.); (D.G.M.)
- Department of Neurology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Nathan W. Churchill
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; (M.V.); (M.A.K.); (J.K.); (L.F.); (N.W.C.); (T.A.S.); (D.G.M.)
| | - Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, Community Health Sciences, and Pathology, Hotchkiss Brain Institute and O’Brien Institute of Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada;
| | - Vincenzo De Luca
- Division of Geriatric Psychiatry, Centre for Addiction & Mental Health, Toronto, ON M5T 1R8, Canada;
| | - Debby Tsuang
- GRECC, VA Puget Sound and Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195-6560, USA;
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; (M.V.); (M.A.K.); (J.K.); (L.F.); (N.W.C.); (T.A.S.); (D.G.M.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - David G. Munoz
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; (M.V.); (M.A.K.); (J.K.); (L.F.); (N.W.C.); (T.A.S.); (D.G.M.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Pathology, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Corinne E. Fischer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; (M.V.); (M.A.K.); (J.K.); (L.F.); (N.W.C.); (T.A.S.); (D.G.M.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
23
|
Tosun D, Demir Z, Veitch DP, Weintraub D, Aisen P, Jack CR, Jagust WJ, Petersen RC, Saykin AJ, Shaw LM, Trojanowski JQ, Weiner MW. Contribution of Alzheimer's biomarkers and risk factors to cognitive impairment and decline across the Alzheimer's disease continuum. Alzheimers Dement 2022; 18:1370-1382. [PMID: 34647694 PMCID: PMC9014819 DOI: 10.1002/alz.12480] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Amyloid beta (Aβ), tau, and neurodegeneration jointly with the Alzheimer's disease (AD) risk factors affect the severity of clinical symptoms and disease progression. METHODS Within 248 Aβ-positive elderly with and without cognitive impairment and dementia, partial least squares structural equation pathway modeling was used to assess the direct and indirect effects of imaging biomarkers (global Aβ-positron emission tomography [PET] uptake, regional tau-PET uptake, and regional magnetic resonance imaging-based atrophy) and risk-factors (age, sex, education, apolipoprotein E [APOE], and white-matter lesions) on cross-sectional cognitive impairment and longitudinal cognitive decline. RESULTS Sixteen percent of variance in cross-sectional cognitive impairment was accounted for by Aβ, 46% to 47% by tau, and 25% to 29% by atrophy, although 53% to 58% of total variance in cognitive impairment was explained by incorporating mediated and direct effects of AD risk factors. The Aβ-tau-atrophy pathway accounted for 50% to 56% of variance in longitudinal cognitive decline while Aβ, tau, and atrophy independently explained 16%, 46% to 47%, and 25% to 29% of the variance, respectively. DISCUSSION These findings emphasize that treatments that remove Aβ and completely stop downstream effects on tau and neurodegeneration would only be partially effective in slowing of cognitive decline or reversing cognitive impairment.
Collapse
Affiliation(s)
- Duygu Tosun
- San Francisco Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zeynep Demir
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Dallas P. Veitch
- San Francisco Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Daniel Weintraub
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Paul Aisen
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of MedicineUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | - William J. Jagust
- School of Public Health and Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Ronald C. Petersen
- Division of EpidemiologyDepartment of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Andrew J. Saykin
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michael W. Weiner
- San Francisco Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | |
Collapse
|
24
|
Veitch DP, Weiner MW, Aisen PS, Beckett LA, DeCarli C, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Okonkwo O, Perrin RJ, Petersen RC, Rivera‐Mindt M, Saykin AJ, Shaw LM, Toga AW, Tosun D, Trojanowski JQ. Using the Alzheimer's Disease Neuroimaging Initiative to improve early detection, diagnosis, and treatment of Alzheimer's disease. Alzheimers Dement 2022; 18:824-857. [PMID: 34581485 PMCID: PMC9158456 DOI: 10.1002/alz.12422] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) has accumulated 15 years of clinical, neuroimaging, cognitive, biofluid biomarker and genetic data, and biofluid samples available to researchers, resulting in more than 3500 publications. This review covers studies from 2018 to 2020. METHODS We identified 1442 publications using ADNI data by conventional search methods and selected impactful studies for inclusion. RESULTS Disease progression studies supported pivotal roles for regional amyloid beta (Aβ) and tau deposition, and identified underlying genetic contributions to Alzheimer's disease (AD). Vascular disease, immune response, inflammation, resilience, and sex modulated disease course. Biologically coherent subgroups were identified at all clinical stages. Practical algorithms and methodological changes improved determination of Aβ status. Plasma Aβ, phosphorylated tau181, and neurofilament light were promising noninvasive biomarkers. Prognostic and diagnostic models were externally validated in ADNI but studies are limited by lack of ethnocultural cohort diversity. DISCUSSION ADNI has had a profound impact in improving clinical trials for AD.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Laurel A. Beckett
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Charles DeCarli
- Department of Neurology and Center for NeuroscienceUniversity of California DavisDavisCaliforniaUSA
| | - Robert C. Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Broad Institute, Ariadne Labsand Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | | | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuroimaging, USC Stevens Institute of Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
25
|
Tsiknia AA, Reas E, Bangen KJ, Sundermann EE, McEvoy L, Brewer JB, Edland SD, Banks SJ. Sex and APOE ε4 modify the effect of cardiovascular risk on tau in cognitively normal older adults. Brain Commun 2022; 4:fcac035. [PMID: 35233525 PMCID: PMC8882003 DOI: 10.1093/braincomms/fcac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/12/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The interaction between APOE ε4 and vascular risk factors on cognitive function is stronger in women than in men. These effects may be mediated by the amount of tau pathology in the brain. Therefore, we examined whether APOE ε4 and sex modify cross-sectional associations between cardiovascular risk and tau deposition in cognitively normal older adults from the Alzheimer’s Disease Neuroimaging Initiative. We calculated the Framingham Heart Study cardiovascular disease risk score for 141 participants (74 women, 47 APOE ε4 carriers) with complete medical history data, processed tau PET data and a Clinical Dementia Rating global score of 0.0 at the time of the tau PET scan, implying no significant cognitive or functional impairment. We used linear regression models to examine the effects of sex, APOE ε4, cardiovascular risk and their interactions on tau deposition in the entorhinal cortex, inferior temporal cortex and a composite meta-region of interest of temporal lobe areas. We found a significant three-way interaction among sex, APOE ε4 status, and cardiovascular disease risk on tau deposition in the entorhinal cortex (β = 0.04; 95% CI, 0.01 to 0.07; P =0.008), inferior temporal cortex (β = 0.02; 95% CI, 0.0 to 0.05; P =0.029) and meta-region (β = 0.02; 95% CI, 0.0–0.04; P = 0.042). After stratifying by APOE ε4 status to examine interactions between sex and cardiovascular disease risk on tau in APOE ε4 carriers and non-carriers, we found a significant two-way interaction between sex and cardiovascular disease risk on tau in the entorhinal cortex (β = 0.05; 95% CI, 0.02 to 0.08; P =0.001), inferior temporal cortex (β = 0.03; 95% CI, 0.01 to 0.05; P =0.009) and meta-region (β = 0.02; 95% CI, 0.01 to 0.04; P =0.008) only among APOE ε4 carriers. In analyses stratified by sex, higher cardiovascular risk scores were associated with higher levels of tau in the entorhinal cortex (β = 0.05; 95% CI, 0.02 to 0.08; P =0.002), inferior temporal cortex (β = 0.02; 95% CI, 0.0 to 0.05; P =0.023) and meta-region (β = 0.02; 95% CI, 0.01 to 0.04; P =0.013) in female APOE ε4 carriers but not in male carriers. Our findings suggest that cognitively normal older women carrying at least one APOE ε4 allele, may be particularly vulnerable to the effects of cardiovascular disease risk on early tau deposition.
Collapse
Affiliation(s)
- Amaryllis A. Tsiknia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Emilie Reas
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Erin E. Sundermann
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Linda McEvoy
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - James B. Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Steven D. Edland
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Sarah J. Banks
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
26
|
Li Y, Ng YL, Paranjpe MD, Ge Q, Gu F, Li P, Yan S, Lu J, Wang X, Zhou Y. Tracer-specific reference tissues selection improves detection of 18 F-FDG, 18 F-florbetapir, and 18 F-flortaucipir PET SUVR changes in Alzheimer's disease. Hum Brain Mapp 2022; 43:2121-2133. [PMID: 35165964 PMCID: PMC8996354 DOI: 10.1002/hbm.25774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 01/05/2023] Open
Abstract
This study sought to identify a reference tissue‐based quantification approach for improving the statistical power in detecting changes in brain glucose metabolism, amyloid, and tau deposition in Alzheimer's disease studies. A total of 794, 906, and 903 scans were included for 18F‐FDG, 18F‐florbetapir, and 18F‐flortaucipir, respectively. Positron emission tomography (PET) and T1‐weighted images of participants were collected from the Alzheimer's disease Neuroimaging Initiative database, followed by partial volume correction. The standardized uptake value ratios (SUVRs) calculated from the cerebellum gray matter, centrum semiovale, and pons were evaluated at both region of interest (ROI) and voxelwise levels. The statistical power of reference tissues in detecting longitudinal SUVR changes was assessed via paired t‐test. In cross‐sectional analysis, the impact of reference tissue‐based SUVR differences between cognitively normal and cognitively impaired groups was evaluated by effect sizes Cohen's d and two sample t‐test adjusted by age, sex, and education levels. The average ROI t values of pons were 86.62 and 38.40% higher than that of centrum semiovale and cerebellum gray matter in detecting glucose metabolism decreases, while the centrum semiovale reference tissue‐based SUVR provided higher t values for the detection of amyloid and tau deposition increases. The three reference tissues generated comparable d images for 18F‐FDG, 18F‐florbetapir, and 18F‐flortaucipir and comparable t maps for 18F‐florbetapir and 18F‐flortaucipir, but pons‐based t map showed superior performance in 18F‐FDG. In conclusion, the tracer‐specific reference tissue improved the detection of 18F‐FDG, 18F‐florbetapir, and 18F‐flortaucipir PET SUVR changes, which helps the early diagnosis, monitoring of disease progression, and therapeutic response in Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxiao Li
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China.,School of Computer Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Manish D Paranjpe
- Harvard-MIT Health Sciences and Technology Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Qi Ge
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Fengyun Gu
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China.,Department of Statistics, University College Cork, Cork, Ireland
| | - Panlong Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiuying Wang
- School of Computer Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | | |
Collapse
|
27
|
Li J, Zheng C, Ge Q, Yan S, Paranjpe MD, Hu S, Zhou Y. Association between long-term donepezil treatment and brain regional amyloid and tau burden among individuals with mild cognitive impairment assessed using 18 F-AV-45 and 18 F-AV-1451 PET. J Neurosci Res 2021; 100:670-680. [PMID: 34882830 DOI: 10.1002/jnr.24995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/16/2021] [Accepted: 11/06/2021] [Indexed: 11/06/2022]
Abstract
This study aims to investigate the association between long-term donepezil treatment and brain neuropathological burden and cognitive function in mild cognitive impairment (MCI) patients. Preprocessed 18 F-AV-45 amyloid and 18 F-AV-1451 tau positron emission tomography (PET) images, magnetic resonance imaging images (MRIs), demographic information, and donepezil use status were downloaded from 255 MCI participants enrolled in the Alzheimer's Disease Neuroimaging Initiative database. Partial volume correction was applied to all PET images. Structural MRIs were used for PET spatial normalization. Regions of interest (ROIs) were defined in standard space, and standardized uptake value ratio (SUVR) images relative to the cerebellum were computed. Multiple linear regression with the least absolute shrinkage selector operator was performed to analyze the effect of long-term donepezil treatment on (a) the SUVR of each 18 F-AV-45 or 18 F-AV-1451 brain PET ROI after adjusting for age, sex, education, ApoE ε4 status, and AD-associated disease risk factors; and (b) cognitive performance after adjusting for age, sex education, ApoE ε4 status, AD-associated disease risk factors, and regional amyloid or tau burden. In adjusted models, long-term donepezil treatment was associated with greater amyloid load in the orbital frontal, superior frontal, parietal, posterior precuneus, posterior cingulate, lateral temporal, inferior temporal and fusiform regions, and tau burden in the posterior cingulate, entorhinal and parahippocampal gyrus. Long-term donepezil treatment was also associated with worse performance on the 13-item Alzheimer's Disease Assessment Scale-Cognitive subscale after adjusting for AD-related risk factors and regional brain amyloid or tau load. These results indicate that long-term donepezil treatment is associated with increased regional amyloid and tau burden and worse cognitive performance among individuals with MCI. Our study highlights the importance of using noninvasive and quantitative 18 F-AV-45 and 18 F-AV-1451 PET to elucidate the consequences of drug administration in AD studies.
Collapse
Affiliation(s)
- Jian Li
- Department of Nuclear Medicine (PET Center), Xiangya Hospital Central South University, Changsha, China.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chaojie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Qi Ge
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Shaozhen Yan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Manish D Paranjpe
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Shuo Hu
- Department of Nuclear Medicine (PET Center), Xiangya Hospital Central South University, Changsha, China.,Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Yun Zhou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | | |
Collapse
|
28
|
Paranjpe MD, Belonwu S, Wang JK, Oskotsky T, Gupta A, Taubes A, Zalocusky KA, Paranjpe I, Glicksberg BS, Huang Y, Sirota M. Sex-Specific Cross Tissue Meta-Analysis Identifies Immune Dysregulation in Women With Alzheimer's Disease. Front Aging Neurosci 2021; 13:735611. [PMID: 34658838 PMCID: PMC8515049 DOI: 10.3389/fnagi.2021.735611] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the United States. In spite of evidence of females having a greater lifetime risk of developing Alzheimer's Disease (AD) and greater apolipoprotein E4-related (APOE ε4) AD risk compared to males, molecular signatures underlying these differences remain elusive. Methods: We took a meta-analysis approach to study gene expression in the brains of 1,084 AD patients and age-matched controls and whole blood from 645 AD patients and age-matched controls in seven independent datasets. Sex-specific gene expression patterns were investigated through use of gene-based, pathway-based and network-based approaches. The ability of a sex-specific AD gene expression signature to distinguish Alzheimer's disease from healthy controls was assessed using a linear support vector machine model. Cell type deconvolution from whole blood gene expression data was performed to identify differentially regulated cells in males and females with AD. Results: Strikingly gene-expression, network-based analysis and cell type deconvolution approaches revealed a consistent immune signature in the brain and blood of female AD patients that was absent in males. In females, network-based analysis revealed a coordinated program of gene expression involving several zinc finger nuclease genes related to Herpes simplex viral infection whose expression was modulated by the presence of the APOE ε4 allele. Interestingly, this gene expression program was missing in the brains of male AD patients. Cell type deconvolution identified an increase in neutrophils and naïve B cells and a decrease in M2 macrophages, memory B cells, and CD8+ T cells in AD samples compared to controls in females. Interestingly, among males with AD, no significant differences in immune cell proportions compared to controls were observed. Machine learning-based classification of AD using gene expression from whole blood in addition to clinical features produced an improvement in classification accuracy upon stratifying by sex, achieving an AUROC of 0.91 for females and 0.80 for males. Conclusion: These results help identify sex and APOE ε4 genotype-specific transcriptomic signatures of AD and underscore the importance of considering sex in the development of biomarkers and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Manish D Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
| | - Stella Belonwu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Jason K Wang
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
| | - Tomiko Oskotsky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Aarzu Gupta
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Alice Taubes
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,The Gladstone Institute of Neurological Disease, San Francisco, CA, United States
| | - Kelly A Zalocusky
- The Gladstone Institute of Neurological Disease, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin S Glicksberg
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yadong Huang
- The Gladstone Institute of Neurological Disease, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
29
|
Zhou Y, Flores S, Mansor S, Hornbeck RC, Tu Z, Perlmutter JS, Ances B, Morris JC, Gropler RJ, Benzinger TLS. Spatially constrained kinetic modeling with dual reference tissues improves 18F-flortaucipir PET in studies of Alzheimer disease. Eur J Nucl Med Mol Imaging 2021; 48:3172-3186. [PMID: 33599811 PMCID: PMC8371062 DOI: 10.1007/s00259-020-05134-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Recent studies have shown that standard compartmental models using plasma input or the cerebellum reference tissue input are generally not reliable for quantifying tau burden in dynamic 18F-flortaucipir PET studies of Alzheimer disease. So far, the optimal reference region for estimating 18F-flortaucipir delivery and specific tau binding has yet to be determined. The objective of the study is to improve 18F-flortaucipir brain tau PET quantification using a spatially constrained kinetic model with dual reference tissues. METHODS Participants were classified as either cognitively normal (CN) or cognitively impaired (CI) based on clinical assessment. T1-weighted structural MRI and 105-min dynamic 18F-flortaucipir PET scans were acquired for each participant. Using both a simplified reference tissue model (SRTM2) and Logan plot with either cerebellum gray matter or centrum semiovale (CS) white matter as the reference tissue, we estimated distribution volume ratios (DVRs) and the relative transport rate constant R1 for region of interest-based (ROI) and voxelwise-based analyses. Conventional linear regression (LR) and LR with spatially constrained (LRSC) parametric imaging algorithms were then evaluated. Noise-induced bias in the parametric images was compared to estimates from ROI time activity curve-based kinetic modeling. We finally evaluated standardized uptake value ratios at early phase (SUVREP, 0.7-2.9 min) and late phase (SUVRLP, 80-105 min) to approximate R1 and DVR, respectively. RESULTS The percent coefficients of variation of R1 and DVR estimates from SRTM2 with spatially constrained modeling were comparable to those from the Logan plot and SUVRs. The SRTM2 using CS reference tissue with LRSC reduced noise-induced underestimation in the LR generated DVR images to negligible levels (< 1%). Inconsistent overestimation of DVR in the SUVRLP only occurred using the cerebellum reference tissue-based measurements. The CS reference tissue-based DVR and SUVRLP, and cerebellum-based SUVREP and R1 provided higher Cohen's effect size d to detect increased tau deposition and reduced relative tracer transport rate in CI individuals. CONCLUSION Using a spatially constrained kinetic model with dual reference tissues significantly improved quantification of relative perfusion and tau binding. Cerebellum and CS are the suggested reference tissues to estimate R1 and DVR, respectively, for dynamic 18F-flortaucipir PET studies. Cerebellum-based SUVREP and CS-based SUVRLP may be used to simplify 18F-flortaucipir PET study.
Collapse
Affiliation(s)
- Yun Zhou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA.
| | - Shaney Flores
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
| | - Syahir Mansor
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
| | - Russ C Hornbeck
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
| | - Zhude Tu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
| | - Joel S Perlmutter
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
- Departments of Neurology and Neuroscience, Programs of Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
| | - Beau Ances
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - John C Morris
- Departments of Neurology and Neuroscience, Programs of Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
- Departments of Neurology and Neuroscience, Programs of Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
30
|
Paranjpe MD, Wang JK, Zhou Y. Sex, ApoE4 and Alzheimer's disease: rethinking drug discovery in the era of precision medicine. Neural Regen Res 2021; 16:1764-1765. [PMID: 33510067 PMCID: PMC8328780 DOI: 10.4103/1673-5374.306070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Manish D. Paranjpe
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Jason K Wang
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Yun Zhou
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
31
|
Chen XR, Shao Y, Sadowski MJ. Segmented Linear Mixed Model Analysis Reveals Association of the APOEɛ4 Allele with Faster Rate of Alzheimer's Disease Dementia Progression. J Alzheimers Dis 2021; 82:921-937. [PMID: 34120907 PMCID: PMC8461709 DOI: 10.3233/jad-210434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: APOEɛ4 allele carriers present with an increased risk for late-onset Alzheimer’s disease (AD), show cognitive symptoms at an earlier age, and are more likely to transition from mild cognitive impairment (MCI) to dementia but despite this, it remains unclear whether or not the ɛ4 allele controls the rate of disease progression. Objective: To determine the effects of the ɛ4 allele on rates of cognitive decline and brain atrophy during MCI and dementia stages of AD. Methods: A segmented linear mixed model was chosen for longitudinal modeling of cognitive and brain volumetric data of 73 ɛ3/ɛ3, 99 ɛ3/ɛ4, and 39 ɛ4/ɛ4 Alzheimer’s Disease Neuroimaging Initiative participants who transitioned during the study from MCI to AD dementia. Results: ɛ4 carriers showed faster decline on MMSE, ADAS-11, CDR-SB, and MoCA scales, with the last two measures showing significant ɛ4 allele-dose effects after dementia transition but not during MCI. The ɛ4 effect was more prevalent in younger participants and in females. ɛ4 carriers also demonstrated faster rates of atrophy of the whole brain, the hippocampus, the entorhinal cortex, the middle temporal gyrus, and expansion of the ventricles after transitioning to dementia but not during MCI. Conclusion: Possession of the ɛ4 allele is associated with a faster progression of dementia due to AD. Our observations support the notion that APOE genotype not only controls AD risk but also differentially regulates mechanisms of neurodegeneration underlying disease advancement. Furthermore, our findings carry significance for AD clinical trial design.
Collapse
Affiliation(s)
- X Richard Chen
- University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA.,Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Martin J Sadowski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.,Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | | |
Collapse
|
32
|
Memel M, Staffaroni AM, Cobigo Y, Casaletto KB, Fonseca C, Bettcher BM, Yassa MA, Elahi FM, Wolf A, Rosen HJ, Kramer JH. APOE moderates the effect of hippocampal blood flow on memory pattern separation in clinically normal older adults. Hippocampus 2021; 31:845-857. [PMID: 33835624 PMCID: PMC8295213 DOI: 10.1002/hipo.23327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 03/07/2021] [Indexed: 11/10/2022]
Abstract
Pattern separation, the ability to differentiate new information from previously experienced similar information, is highly sensitive to hippocampal structure and function and declines with age. Functional MRI studies have demonstrated hippocampal hyperactivation in older adults compared to young, with greater task-related activation associated with worse pattern separation performance. The current study was designed to determine whether pattern separation was sensitive to differences in task-free hippocampal cerebral blood flow (CBF) in 130 functionally intact older adults. Given prior evidence that apolipoprotein E e4 (APOE e4) status moderates the relationship between CBF and episodic memory, we predicted a stronger negative relationship between hippocampal CBF and pattern separation in APOE e4 carriers. An interaction between APOE group and right hippocampal CBF was present, such that greater right hippocampal CBF was related to better lure discrimination in noncarriers, whereas the effect reversed directionality in e4 carriers. These findings suggest that neurovascular changes in the medial temporal lobe may underlie memory deficits in cognitively normal older adults who are APOE e4 carriers.
Collapse
Affiliation(s)
- Molly Memel
- San Francisco VA Medical Center, San Francisco, California
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Kaitlin B. Casaletto
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Corrina Fonseca
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Brianne M. Bettcher
- Department of Neurology, University of Colorado Anschutz Medical Campus, CU Alzheimer’s and Cognition Center, Aurora, Colorado
| | - Michael A. Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, California
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
33
|
Niu J, Iqbal K, Liu F, Hu W. Rats Display Sexual Dimorphism in Phosphorylation of Brain Tau with Age. J Alzheimers Dis 2021; 82:855-869. [PMID: 34092647 DOI: 10.3233/jad-210341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Women have a two-fold higher risk than men to Alzheimer's disease (AD) at midlife. Larger brain tau burden was consistently shown in older women than age-matched men. The biological basis for this gender disparity remains elusive. OBJECTIVE We sought to know whether tau expression and phosphorylation physiologically differ between males and females. METHODS We used western blots and immunohistochemistry to compare the levels of total tau and phosphorylated tau in the hippocampus and entorhinal cortex (EC) between sexes in Wistar rats at 40 days, and 8 and 20 months of age. RESULTS We detected no statistically significant difference in total tau, 3R-tau, and 4R-tau between sexes. However, female rats exhibited lower levels of tau unphosphorylated at the Tau-1 site at 40 days of age. At 8 months of age, females showed higher levels of tau phosphorylated at Ser190, Ser387, and Ser395 (Ser199, Ser396, and Ser404 of human tau, respectively) than males in EC. At 20 months of age, both brain regions of female rats consistently showed higher levels than males of tau phosphorylated at Ser253, Ser387, PHF-1 (Ser387/395), and Ser413 sites, which correspond to Ser262, Ser396, Ser396/404, and Ser422 of human tau, respectively. CONCLUSION Rats of both sexes have comparable levels of total tau, 3R-tau, and 4R-tau, whereas females exhibit higher levels of tau phosphorylated at multiple sites that are implicated in AD tau pathology, indicating a sexual dimorphism of tau phosphorylation that may potentially underlie the disparity in brain tau burden and risk for AD between sexes.
Collapse
Affiliation(s)
- Jiahui Niu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wen Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
34
|
Wolters EE, Dodich A, Boccardi M, Corre J, Drzezga A, Hansson O, Nordberg A, Frisoni GB, Garibotto V, Ossenkoppele R. Clinical validity of increased cortical uptake of [ 18F]flortaucipir on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase biomarker development framework. Eur J Nucl Med Mol Imaging 2021; 48:2097-2109. [PMID: 33547556 PMCID: PMC8175307 DOI: 10.1007/s00259-020-05118-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE In 2017, the Geneva Alzheimer's disease (AD) Biomarker Roadmap initiative adapted the framework of the systematic validation of oncological diagnostic biomarkers to AD biomarkers, with the aim to accelerate their development and implementation in clinical practice. With this work, we assess the maturity of [18F]flortaucipir PET and define its research priorities. METHODS The level of maturity of [18F]flortaucipir was assessed based on the AD Biomarker Roadmap. The framework assesses analytical validity (phases 1-2), clinical validity (phases 3-4), and clinical utility (phase 5). RESULTS The main aims of phases 1 (rationale for use) and 2 (discriminative ability) have been achieved. [18F]Flortaucipir binds with high affinity to paired helical filaments of tau and has favorable kinetic properties and excellent discriminative accuracy for AD. The majority of secondary aims of phase 2 were fully achieved. Multiple studies showed high correlations between ante-mortem [18F]flortaucipir PET and post-mortem tau (as assessed by histopathology), and also the effects of covariates on tracer binding are well studied. The aims of phase 3 (early detection ability) were only partially or preliminarily achieved, and the aims of phases 4 and 5 were not achieved. CONCLUSION Current literature provides partial evidence for clinical utility of [18F]flortaucipir PET. The aims for phases 1 and 2 were mostly achieved. Phase 3 studies are currently ongoing. Future studies including representative MCI populations and a focus on healthcare outcomes are required to establish full maturity of phases 4 and 5.
Collapse
Affiliation(s)
- E E Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Centre for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - M Boccardi
- Late Translational Dementia Studies Group, German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Rostock, Germany
| | - J Corre
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- CURIC, Centre Universitaire Romand d'Implants Cochléaires, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - A Drzezga
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Research Center Jülich, Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - O Hansson
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - G B Frisoni
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
- Memory Clinic, University Hospital, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
| | - R Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Duarte-Guterman P, Albert AY, Barha CK, Galea LAM. Sex influences the effects of APOE genotype and Alzheimer's diagnosis on neuropathology and memory. Psychoneuroendocrinology 2021; 129:105248. [PMID: 33962245 DOI: 10.1016/j.psyneuen.2021.105248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by severe cognitive decline and pathological changes in the brain (brain atrophy, hyperphosphorylation of tau, and deposition of amyloid-beta protein). Females have greater neuropathology (AD biomarkers and brain atrophy rates) and cognitive decline than males, however these effects can depend on diagnosis (amnestic mild cognitive impairment (aMCI) or AD) and APOE genotype (presence of ε4 alleles). Using the ADNI database (N = 630 females, N = 830 males), we analyzed the effect of sex, APOE genotype (non-carriers or carriers of APOEε4 alleles), and diagnosis (cognitively normal (CN), early aMCI (EMCI), late aMCI (LMCI), probable AD) on cognition (memory and executive function), hippocampal volume, and AD biomarkers (CSF levels of amyloid beta, tau, and ptau). Regardless of APOE genotype, memory scores were higher in CN, EMCI, and LMCI females compared to males but this sex difference was absent in probable AD, which may suggest a delay in the onset of cognitive decline or diagnosis and/or a faster trajectory of cognitive decline in females. We found that, regardless of diagnosis, CSF tau-pathology was disproportionately elevated in female carriers of APOEε4 alleles compared to males. In contrast, male carriers of APOEε4 alleles had reduced levels of CSF amyloid beta compared to females, irrespective of diagnosis. We also detected sex differences in hippocampal volume but the direction was dependent on the method of correction. Altogether results suggest that across diagnosis females show greater memory decline compared to males and APOE genotype affects AD neuropathology differently in males and females which may influence sex differences in incidence and progression of aMCI and AD.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Arianne Y Albert
- Women's Health Research Institute of British Columbia, Vancouver, BC, Canada
| | - Cindy K Barha
- Djavad Mowafaghian Centre for Brain Health and Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Salvadó G, Grothe MJ, Groot C, Moscoso A, Schöll M, Gispert JD, Ossenkoppele R. Differential associations of APOE-ε2 and APOE-ε4 alleles with PET-measured amyloid-β and tau deposition in older individuals without dementia. Eur J Nucl Med Mol Imaging 2021; 48:2212-2224. [PMID: 33521872 PMCID: PMC8175302 DOI: 10.1007/s00259-021-05192-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/03/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE To examine associations between the APOE-ε2 and APOE-ε4 alleles and core Alzheimer's disease (AD) pathological hallmarks as measured by amyloid-β (Aβ) and tau PET in older individuals without dementia. METHODS We analyzed data from 462 ADNI participants without dementia who underwent Aβ ([18F]florbetapir or [18F]florbetaben) and tau ([18F]flortaucipir) PET, structural MRI, and cognitive testing. Employing APOE-ε3 homozygotes as the reference group, associations between APOE-ε2 and APOE-ε4 carriership with global Aβ PET and regional tau PET measures (entorhinal cortex (ERC), inferior temporal cortex, and Braak-V/VI neocortical composite regions) were investigated using linear regression models. In a subset of 156 participants, we also investigated associations between APOE genotype and regional tau accumulation over time using linear mixed models. Finally, we assessed whether Aβ mediated the cross-sectional and longitudinal associations between APOE genotype and tau. RESULTS Compared to APOE-ε3 homozygotes, APOE-ε2 carriers had lower global Aβ burden (βstd [95% confidence interval (CI)]: - 0.31 [- 0.45, - 0.16], p = 0.034) but did not differ on regional tau burden or tau accumulation over time. APOE-ε4 participants showed higher Aβ (βstd [95%CI]: 0.64 [0.42, 0.82], p < 0.001) and tau burden (βstd range: 0.27-0.51, all p < 0.006). In mediation analyses, APOE-ε4 only retained an Aβ-independent effect on tau in the ERC. APOE-ε4 showed a trend towards increased tau accumulation over time in Braak-V/VI compared to APOE-ε3 homozygotes (βstd [95%CI]: 0.10 [- 0.02, 0.18], p = 0.11), and this association was fully mediated by baseline Aβ. CONCLUSION Our data suggest that the established protective effect of the APOE-ε2 allele against developing clinical AD is primarily linked to resistance against Aβ deposition rather than tau pathology.
Collapse
Affiliation(s)
- Gemma Salvadó
- Alzheimer Prevention Program, Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30 08005, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Michel J Grothe
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n 41013, Seville, Spain.
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Juan Domingo Gispert
- Alzheimer Prevention Program, Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30 08005, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Wang YTT, Pascoal TA, Therriault J, Kang MS, Benedet AL, Savard M, Tissot C, Lussier FZ, Arias JF, Mathotaarachchi S, Rajah MN, Gauthier S, Rosa-Neto P. Interactive rather than independent effect of APOE and sex potentiates tau deposition in women. Brain Commun 2021; 3:fcab126. [PMID: 34189460 PMCID: PMC8226193 DOI: 10.1093/braincomms/fcab126] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 11/14/2022] Open
Abstract
The apolipoprotein E gene (APOE) is the most important genetic risk factor for sporadic Alzheimer disease, with the ε4 allele being associated with increased cerebral amyloid-β and tau pathologies. Although APOE has been suggested to have a stronger effect in women as compared to men, there is a lack of comprehensive assessment on how the interactive effect of APOE and sex modulates regional vulnerability to tau accumulation. We previously have shown the regional vulnerability to the interactive effect of tau and APOE, yet the sex difference was not specifically addressed. In this study, we leveraged PET imaging data from the Translational Biomarkers in Aging and Dementia cohort at McGill University Research Centre for Studies in Aging to elucidate the APOE-by-sex interactive effect on tau burden. We hypothesized sex-dependent regional vulnerability to tau deposition. PET radiopharmaceuticals [18F]AZD4694 and [18F]MK6240 were used to assess amyloid-β and tau level respectively in 277 subjects from the Translational Biomarkers in Aging and Dementia cohort. We found that the interaction between APOE and sex, rather than their independent main effects, was associated with abnormal tau accumulation in medial temporal regions. Specifically, we found that female APOEε4 carriers showed significantly higher tau burden in early tau deposition regions including the hippocampus, entorhinal and parahippocampal cortices, after accounting for age, educational attainment, clinical diagnosis and neocortical amyloid load. We replicated these findings in 221 subjects from the Alzheimer's Disease Neuroimaging Initiative cohort, in which a different tau-PET radioligand, [18F]flortaucipir, was used to assess tau burden. In conclusion, this study provides evidence from two cohort studies that interactive rather than independent effect of APOE and sex potentiates early tau deposition in women. Our results have important implications for clinical trials and practice, which should take into consideration both APOEε4 carriage status and sex for identifying individuals with the highest probability of developing tau accumulation and clinical progression.
Collapse
Affiliation(s)
- Yi-Ting T Wang
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
- Douglas Research Centre, Montréal, QC, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
- Douglas Research Centre, Montréal, QC, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
- Douglas Research Centre, Montréal, QC, Canada
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
- Douglas Research Centre, Montréal, QC, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
- Douglas Research Centre, Montréal, QC, Canada
| | - Jaime Fernandez Arias
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
- Douglas Research Centre, Montréal, QC, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
| | - Maria Natasha Rajah
- Douglas Research Centre, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
- Douglas Research Centre, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada
- Douglas Research Centre, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | | |
Collapse
|
38
|
Multimodal neuroimaging of sex differences in cognitively impaired patients on the Alzheimer's continuum: greater tau-PET retention in females. Neurobiol Aging 2021; 105:86-98. [PMID: 34049062 DOI: 10.1016/j.neurobiolaging.2021.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022]
Abstract
We assessed sex differences in amyloid- and tau-PET retention in 119 amyloid positive patients with mild cognitive impairment or Alzheimer's disease (AD) dementia. Patients underwent 3T-MRI, 11C-PIB amyloid-PET and 18F-Flortaucipir tau-PET. Linear ordinary least squares regression models tested sex differences in Flortaucipir-PET SUVR in a summary temporal region of interest as well as global PIB-PET. No sex differences were observed in demographics, Clinical Dementia Rating Sum of Boxes (CDR-SoB), Mini-Mental State Exam (MMSE), raw episodic memory scores, or cortical thickness. Females had higher global PIB SUVR (ηp²=.043, p=.025) and temporal Flortaucipir SUVR (ηp²=.070, p=.004), adjusting for age and CDR-SoB. Sex differences in temporal Flortaucipir-PET remained significant when controlling additionally for PIB SUVR and APOE4 status (ηp²=.055, p=.013), or when using partial volume-corrected data. No sex differences were present in areas of known Flortaucipir off-target binding. Overall, females demonstrated greater AD regional tau-PET burden than males despite clinical comparability. Further characterization of sex differences will provide insight into AD pathogenesis and support development of personalized therapeutic strategies.
Collapse
|
39
|
Yan S, Zheng C, Paranjpe MD, Li Y, Li W, Wang X, Benzinger TLS, Lu J, Zhou Y. Sex modifies APOE ε4 dose effect on brain tau deposition in cognitively impaired individuals. Brain 2021; 144:3201-3211. [PMID: 33876815 PMCID: PMC8634082 DOI: 10.1093/brain/awab160] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies in cognitively unimpaired elderly individuals suggest that the APOE ε4 allele exerts a dosage-dependent effect on brain tau deposition. The aim of this study was to investigate sex differences in APOE ε4 gene dosage effects on brain tau deposition in cognitively impaired individuals using quantitative 18F-flortaucipir PET. Preprocessed 18F-flortaucipir tau PET images, T1-weighted structural MRI, demographic information, global cortical amyloid-β burden measured by 18F-florbetapir PET, CSF total tau and phosphorylated tau measurements were obtained from the Alzheimer’s Disease Neuroimaging Initiative database. Two hundred and sixty-eight cognitively impaired individuals with 146 APOE ε4 non-carriers and 122 carriers (85 heterozygotes and 37 homozygotes) were included in the study. An iterative reblurred Van Cittert iteration partial volume correction method was applied to all downloaded PET images. Magnetic resonance images were used for PET spatial normalization. Twelve regional standardized uptake value ratios relative to the cerebellum were computed in standard space. APOE ε4 dosage × sex interaction effect on 18F-flortaucipir standardized uptake value ratios was assessed using generalized linear models and sex-stratified analysis. We observed a significant APOE ε4 dosage × sex interaction effect on tau deposition in the lateral temporal, posterior cingulate, medial temporal, inferior temporal, entorhinal cortex, amygdala, parahippocampal gyrus regions after adjusting for age and education level (P < 0.05). The medial temporal, entorhinal cortex, amygdala and parahippocampal gyrus regions retained a significant APOE ε4 dosage × sex interaction effect on tau deposition after adjusting for global cortical amyloid-β (P < 0.05). In sex-stratified analysis, there was no significant difference in tau deposition between female homozygotes and heterozygotes (P > 0.05). In contrast, male homozygotes standardized uptake value ratios were significantly greater than heterozygotes or non-carriers throughout all 12 regions of interest (P < 0.05). Female heterozygotes exhibited significantly increased tau deposition compared to male heterozygotes in the orbitofrontal, posterior cingulate, lateral temporal, inferior temporal, entorhinal cortex, amygdala and parahippocampal gyrus (P < 0.05). Results from voxel-wise analysis were similar to the ones obtained from regions of interest analysis. Our findings indicate that an APOE ε4 dosage effect on brain region-specific tau deposition exists in males, but not females. These results have important clinical implications towards developing sex and genotype-guided therapeutics in Alzheimer’s disease and uncovers a potential explanation underlying differential APOE ε4-associated Alzheimer’s risk in males and females.
Collapse
Affiliation(s)
- Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Chaojie Zheng
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.,Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Manish D Paranjpe
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Yanxiao Li
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China.,School of Computer Science, the University of Sydney, NSW 2006, Australia
| | - Weihua Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiuying Wang
- School of Computer Science, the University of Sydney, NSW 2006, Australia
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.,Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yun Zhou
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.,Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | | |
Collapse
|
40
|
Buckley RF. Recent Advances in Imaging of Preclinical, Sporadic, and Autosomal Dominant Alzheimer's Disease. Neurotherapeutics 2021; 18:709-727. [PMID: 33782864 PMCID: PMC8423933 DOI: 10.1007/s13311-021-01026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Observing Alzheimer's disease (AD) pathological changes in vivo with neuroimaging provides invaluable opportunities to understand and predict the course of disease. Neuroimaging AD biomarkers also allow for real-time tracking of disease-modifying treatment in clinical trials. With recent neuroimaging advances, along with the burgeoning availability of longitudinal neuroimaging data and big-data harmonization approaches, a more comprehensive evaluation of the disease has shed light on the topographical staging and temporal sequencing of the disease. Multimodal imaging approaches have also promoted the development of data-driven models of AD-associated pathological propagation of tau proteinopathies. Studies of autosomal dominant, early sporadic, and late sporadic courses of the disease have shed unique insights into the AD pathological cascade, particularly with regard to genetic vulnerabilities and the identification of potential drug targets. Further, neuroimaging markers of b-amyloid, tau, and neurodegeneration have provided a powerful tool for validation of novel fluid cerebrospinal and plasma markers. This review highlights some of the latest advances in the field of human neuroimaging in AD across these topics, particularly with respect to positron emission tomography and structural and functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital & Brigham and Women's, Harvard Medical School, Boston, MA, USA.
- Melbourne School of Psychological Sciences and Florey Institutes, University of Melbourne, Melbourne, VIC, Australia.
- Department of Neurology, Massachusetts General Hospital, 149 13th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
41
|
Smith R, Strandberg O, Mattsson-Carlgren N, Leuzy A, Palmqvist S, Pontecorvo MJ, Devous MD, Ossenkoppele R, Hansson O. The accumulation rate of tau aggregates is higher in females and younger amyloid-positive subjects. Brain 2021; 143:3805-3815. [PMID: 33439987 PMCID: PMC7805812 DOI: 10.1093/brain/awaa327] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
The development of tau-PET allows paired helical filament tau pathology to be visualized in vivo. Increased knowledge about conditions affecting the rate of tau accumulation could guide the development of therapies halting the progression of Alzheimer’s disease. However, the factors modifying the rate of tau accumulation over time in Alzheimer’s disease are still largely unknown. Large-scale longitudinal cohort studies, adjusting for baseline tau load, are needed to establish such risk factors. In the present longitudinal study, 419 participants from four cohorts in the USA (Avid 05e, n = 157; Expedition-3, n = 82; ADNI, n = 123) and Sweden (BioFINDER, n = 57) were scanned repeatedly with tau-PET. The study participants were cognitively unimpaired (n = 153), or patients with mild cognitive impairment (n = 139) or Alzheimer’s disease dementia (n = 127). Participants underwent two to four tau-PET (18F-flortaucipir) scans with a mean (± standard deviation) of 537 (±163) days between the first and last scan. The change in tau-PET signal was estimated in temporal meta- and neocortical regions of interest. Subject specific tau-PET slopes were predicted simultaneously by age, sex, amyloid status (determined by amyloid-β PET), APOE ε4 genotype, study cohort, diagnosis and baseline tau load. We found that accelerated increase in tau-PET signal was observed in amyloid-β-positive mild cognitive impairment (3.0 ± 5.3%) and Alzheimer’s disease dementia (2.9 ± 5.7%), respectively, when compared to either amyloid-β-negative cognitively unimpaired (0.4 ± 2.7%), amyloid-β-negative mild cognitive impairment (−0.4 ± 2.3%) or amyloid-β-positive cognitively unimpaired (1.2 ± 2.8%). Tau-PET uptake was accelerated in females (temporal region of interest: t = 2.86, P = 0.005; neocortical region of interest: t = 2.90, P = 0.004), younger individuals (temporal region of interest: t = −2.49, P = 0.013), and individuals with higher baseline tau-PET signal (temporal region of interest: t = 3.83, P < 0.001; neocortical region of interest: t = 5.01, P < 0.001). Tau-PET slopes decreased with age in amyloid-β-positive subjects, but were stable by age in amyloid-β-negative subjects (age × amyloid-β status interaction: t = −2.39, P = 0.018). There were no effects of study cohort or APOE ε4 positivity. In a similar analysis on longitudinal amyloid-β-PET (in ADNI subjects only, n = 639), we found significant associations between the rate of amyloid-β accumulation and APOE ε4 positivity, older age and baseline amyloid-β positivity, but no effect of sex. In conclusion, in this longitudinal PET study comprising four cohorts, we found that the tau accumulation rate is greater in females and younger amyloid-β-positive individuals, while amyloid-β accumulation is greater in APOE ε4 carriers and older individuals. These findings are important considerations for the design of clinical trials, and might improve our understanding of factors associated with faster tau aggregation and spread.
Collapse
Affiliation(s)
- Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Lund, Sweden
| | | | | | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Amsterdam University Medical Center, Alzheimercenter, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
42
|
Lamonja-Vicente N, Dacosta-Aguayo R, López-Olóriz J, Prades-Senovilla L, Roig-Coll F, Castells-Sánchez A, Soriano-Raya JJ, Clemente I, Miralbell J, Barrios M, López-Cancio E, Cáceres C, Arenillas JF, Millán M, Torán P, Pera G, Fores R, Alzamora MT, Mataró M, Via M. Sex-Specific Protective Effects of APOE ε2 on Cognitive Performance. J Gerontol A Biol Sci Med Sci 2021; 76:41-49. [PMID: 32992326 DOI: 10.1093/gerona/glaa247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein E (APOE) has an important role in the multiple trajectories of cognitive aging. However, environmental variables and other genes mediate the impact of APOE on cognition. Our main objective was to analyze the effect of APOE genotype on cognition and its interactions and relationships with sex, age, lipid profile, C-reactive protein, and Brain-derived neurotrophic factor (BDNF) genotype in a sample of 648 healthy participants over 50 years of age with a comprehensive neuropsychological assessment. Our results showed that APOE ε2 carriers performed better in the Verbal Memory (p = .002) and Fluency Domains (p = .001). When we studied the effect of sex, we observed that the beneficial effect of APOE ε2 on the normalized values of these cognitive domains occurred only in females (β = 0.735; 95% confidence interval, 0.396-1.074; p = 3.167·10-5 and β = 0.568; 95% confidence interval, 0.276-0.861; p = 1.853·10-4, respectively). Similarly, the sex-specific effects of APOE ε2 were further observed on lipidic and inflammation biomarkers. In the whole sample, APOE ε2 carriers showed significantly lower levels of total cholesterol, low-density lipoprotein cholesterol, and C-reactive protein. These differences were found only among females. Furthermore, total cholesterol and low-density lipoprotein cholesterol mediated the protective effect of APOE ε2 on cognition in the whole sample and total cholesterol in females, providing candidate physiological mechanisms for the observed genetic effects. Our results show that the neuroprotective role of APOE ε2 in cognition varies with sex and that the lipidic profile partially mediates this protection. Age-related cognitive and functional decline is a continuous biological process with different cognitive trajectories (1). Complex interactions between heritability, environmental influence, and cognitive functions in aging have been highlighted (2). In particular, genetic differences explain around 15%-25% of the variance in life expectancy (3). Therefore, the identification of susceptibility genes and their biological effects on cognitive aging is required to establish interindividual differences in this process and promote early personalized interventions to delay cognitive decline and minimize the financial burden of aging in the health care system.
Collapse
Affiliation(s)
- Noemí Lamonja-Vicente
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Rosalia Dacosta-Aguayo
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jorge López-Olóriz
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Unidad de Trastornos del Aprendizaje (UTA), Fundación Josep Finestres (FJF), Barcelona, Spain
| | - Laia Prades-Senovilla
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesca Roig-Coll
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Alba Castells-Sánchez
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Juan José Soriano-Raya
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Inmaculada Clemente
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Júlia Miralbell
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Maite Barrios
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona, Spain
| | - Elena López-Cancio
- Departamento de Neurología, Unidad de Ictus Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Cynthia Cáceres
- Department of Neuroscience, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Juan Francisco Arenillas
- Department of Neurology, Hospital Clínico Universitario, Valladolid, Spain.,Neurovascular Research Laboratory, Instituto de Biología y Genética Molecular, Universidad de Valladolid-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mónica Millán
- Department of Neuroscience, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Pere Torán
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Guillem Pera
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Rosa Fores
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Maria Teresa Alzamora
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Maria Mataró
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Marc Via
- Department of Clinical Psychology and Psychobiology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
43
|
Lai F, Mhatre PG, Yang Y, Wang M, Schupf N, Rosas HD. Sex differences in risk of Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12084. [PMID: 32995462 PMCID: PMC7507514 DOI: 10.1002/dad2.12084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adults with Down syndrome (DS) older than 40 have Alzheimer's disease (AD) neuropathology and high risk for dementia, but little is known about the relationship of sex to AD risk in this population. METHODS Using nonparametric methods and Cox proportional hazards models we analyzed differences in incidence of dementia, by sex, presence of an apolipoprotein E (APOE) ε4 or ε2 allele, and dementia duration and decline in 246 adults over 40 with DS. RESULTS There was no significant sex difference in risk of AD or rate of cognitive decline. APOE ε4 allele significantly increased risk of AD irrespective of sex. No significant interactions were found between sex and APOE status on AD risk. Among those who died, dementia duration was significantly longer in women. DISCUSSION This study showed no effect of sex nor interaction between sex and APOE for risk of AD in adults with DS; however, women had longer dementia duration.
Collapse
Affiliation(s)
- Florence Lai
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMcLean HospitalBelmontMassachusettsUSA
| | - Pooja G. Mhatre
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Yuchen Yang
- Department of BiostatisticsBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mei‐Cheng Wang
- Department of BiostatisticsBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and G.H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
- Departments of Neurology and PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - H. Diana Rosas
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMcLean HospitalBelmontMassachusettsUSA
- Department of RadiologyAthinoula A. Martinos Center for Biomedical ImagingCharlestownMassachusettsUSA
| |
Collapse
|
44
|
Yan S, Zheng C, Paranjpe MD, Li J, Benzinger TL, Lu J, Zhou Y. Association of sex and APOE ε4 with brain tau deposition and atrophy in older adults with Alzheimer's disease. Theranostics 2020; 10:10563-10572. [PMID: 32929366 PMCID: PMC7482805 DOI: 10.7150/thno.48522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/04/2020] [Indexed: 11/05/2022] Open
Abstract
The objective of this study was to assess the association of sex and the apolipoprotein E (APOE) ε4 allele with brain tau deposition and atrophy in older adults with Alzheimer's disease (AD) using quantitative 18F-AV-1451 positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Preprocessed 18F-AV-1451 tau PET, raw T1-weighted structural MR images, demographic information, cerebrospinal fluid (CSF) total tau (t-tau) and phosphorylated tau (p-tau) measurements from 57 elderly individuals with AD were downloaded from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. An iteratively reblurred Van Cittert partial volume correction (PVC) method was applied to all preprocessed PET images. MRI images were used for PET spatial normalization and gray matter volume calculation. 18F-AV-1451 PET standardized uptake value ratio (SUVR) was calculated relative to the cerebellum gray matter. The effect of sex and APOE ε4 status on SUVR and gray matter volume were assessed at both region of interest (ROI) and voxelwise levels. Results: Female APOE ε4 carriers (FACs) had significant higher 18F-AV-1451 SUVRs in the lateral temporal, parietal, posterior cingulate, medial temporal, inferior temporal, entorhinal cortex, amygdala and parahippocampal gyrus regions, and exhibited smaller gray matter volumes in the posterior cingulate, medial temporal, inferior temporal and amygdala regions, as compared to the non-FACs (NFACs) comprised of female APOE ε4 non-carriers, male APOE ε4 carriers and male APOE ε4 non-carriers. Voxelwise analysis revealed forebrain and limbic clusters with greater 18F-AV-1451 SUVRs and lower gray matter volume between FACs compared to the NFACs. Negative correlations between ROI 18F-AV-1451 SUVRs and gray matter volumes were significant after adjusting for age and years of education. Conclusions: Among elderly individuals with AD, sex modified the effects of the APOE ε4 allele on region-specific tau deposition and gray matter volume. FACs had elevated brain region-specific tau PET SUVR and decreased gray matter volume in comparison to NFACs. The study provides a basis for the use of precision medicine in the diagnosis of AD and evaluation of therapeutics using 18F-AV-1451 PET and structural MRI.
Collapse
Affiliation(s)
- Shaozhen Yan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Chaojie Zheng
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Manish D Paranjpe
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Jian Li
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington in St. Louis University School of Medicine, St. Louis, MO, USA
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yun Zhou
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
45
|
Sundermann EE, Panizzon MS, Chen X, Andrews M, Galasko D, Banks SJ. Sex differences in Alzheimer's-related Tau biomarkers and a mediating effect of testosterone. Biol Sex Differ 2020; 11:33. [PMID: 32560743 PMCID: PMC7304096 DOI: 10.1186/s13293-020-00310-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Women show greater pathological Tau biomarkers than men along the Alzheimer's disease (AD) continuum, particularly among apolipoprotein ε-E4 (APOE4) carriers; however, the reason for this sex difference in unknown. Sex differences often indicate an underlying role of sex hormones. We examined whether testosterone levels might influence this sex difference and the modifying role of APOE4 status. Analyses included 172 participants (25 cognitively normal, 97 mild cognitive impairment, 50 AD participants) from the Alzheimer's Disease Neuroimaging Initiative (34% female, 54% APOE4 carriers, aged 55-90). We examined the separate and interactive effects of plasma testosterone levels and APOE4 on cerebrospinal fluid phosphorylated-tau181 (p-Tau) levels in the overall sample and the sex difference in p-Tau levels before and after adjusting for testosterone. A significant APOE4-by-testosterone interaction revealed that lower testosterone levels related to higher p-Tau levels among APOE4 carriers regardless of sex. As expected, women had higher p-Tau levels than men among APOE4 carriers only, yet this difference was eliminated upon adjustment for testosterone. Results suggest that testosterone is protective against p-Tau particularly among APOE4 carriers. The lower testosterone levels that typically characterize women may predispose them to pathological Tau, particularly among female APOE4 carriers.
Collapse
Affiliation(s)
- Erin E. Sundermann
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Xu Chen
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Murray Andrews
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Sarah J. Banks
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| |
Collapse
|
46
|
Kritikos M, Clouston SAP, Diminich ED, Deri Y, Yang X, Carr M, Gandy S, Sano M, Bromet EJ, Luft BJ. Pathway Analysis for Plasma β-Amyloid, Tau and Neurofilament Light (ATN) in World Trade Center Responders at Midlife. Neurol Ther 2020; 9:159-171. [PMID: 32350803 PMCID: PMC7229074 DOI: 10.1007/s40120-020-00189-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION World Trade Center (WTC) responders who aided in the search and rescue efforts are now at midlife, and evidence has demonstrated that many are experiencing early-onset cognitive impairment and are at risk of developing dementia, such as Alzheimer's disease (AD). According to the recent NIA-AA framework, AD is characterized by a neuropathological cascade commencing with β-amyloid deposition (A), followed by tauopathy (T) and neurodegeneration (N). However, the ATN model has not been replicated utilizing recently validated plasma-based biomarkers, and the role of the Aβ40 subtype in A is not well understood. This study examined plasma-based neuropathological markers of Aβ42 and Aβ40 for A, total tau for T, and NfL for N in a cohort of World Trade Center responders at midlife in order to determine the role for the two β-amyloid subtypes in the ATN model. METHODS Ultrasensitive Simoa technology was utilized to measure neuropathology in plasma collected from a consecutive clinical sample (n =398). Generalized structural equation modeling was utilized for modeling linkages between pathological markers. Model fit was utilized to determine proposed directions of association. RESULTS Our findings support the ATN neuropathological cascade model of AD and further identify an associative role for Aβ40 in A as playing a central role linking T to N. A strong correlation was found between CI and age, and it was found that women may be at increased risk of elevated T levels, with plasma NfL levels higher in responders with CI. Notably, our model reported associations between: Aβ42, CI and N; Aβ40, T and N; T and CI; Aβ42 and Aβ40. CONCLUSIONS The current ATN model of AD does not specify the subtype of β-amyloid to be considered, which may be overlooking the differential roles that these two subtypes serve in the pathogenesis of AD.
Collapse
Affiliation(s)
- Minos Kritikos
- Department of Family, Population and Preventive Medicine, Program in Public Health, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA.
| | - Sean A P Clouston
- Department of Family, Population and Preventive Medicine, Program in Public Health, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Erica D Diminich
- Department of Family, Population and Preventive Medicine, Program in Public Health, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Yael Deri
- Department of Medicine, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Xiaohua Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Melissa Carr
- World Trade Center Health and Wellness Program, Department of Medicine, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NYC, New York, NY, USA
- James J Peters VAMC, Bronx, NY, USA
| | - Mary Sano
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NYC, New York, NY, USA
- James J Peters VAMC, Bronx, NY, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Benjamin J Luft
- World Trade Center Health and Wellness Program, Department of Medicine, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
47
|
Vogel JW, Iturria-Medina Y, Strandberg OT, Smith R, Levitis E, Evans AC, Hansson O. Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease. Nat Commun 2020; 11:2612. [PMID: 32457389 PMCID: PMC7251068 DOI: 10.1038/s41467-020-15701-2] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tau is a hallmark pathology of Alzheimer's disease, and animal models have suggested that tau spreads from cell to cell through neuronal connections, facilitated by β-amyloid (Aβ). We test this hypothesis in humans using an epidemic spreading model (ESM) to simulate tau spread, and compare these simulations to observed patterns measured using tau-PET in 312 individuals along Alzheimer's disease continuum. Up to 70% of the variance in the overall spatial pattern of tau can be explained by our model. Surprisingly, the ESM predicts the spatial patterns of tau irrespective of whether brain Aβ is present, but regions with greater Aβ burden show greater tau than predicted by connectivity patterns, suggesting a role of Aβ in accelerating tau spread. Altogether, our results provide evidence in humans that tau spreads through neuronal communication pathways even in normal aging, and that this process is accelerated by the presence of brain Aβ.
Collapse
Affiliation(s)
- Jacob W Vogel
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| | | | | | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Elizabeth Levitis
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
48
|
Lin H, Sun Y, Li M, Zhan Y, Lin L, Ding Z, Han Y. Sex modulates the apolipoprotein E ε4 effect on white matter and cortical functional connectivity in individuals with amnestic mild cognitive impairment. Eur J Neurol 2020; 27:1415-1421. [PMID: 32304148 DOI: 10.1111/ene.14226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies from the Alzheimer's Disease Neuroimaging Initiative show that, in the USA, 75% of patients with Alzheimer's disease are female. To date, there have rarely been any attempts to analyze data by sex or gender, which limits the potential for discovering the effects of sex or gender on disease. Little evidence is available regarding the effect of gender and apolipoprotein E (APOE) ε4 on white matter (WM) connection from the functional perspective due to the lack of appropriate techniques for detecting blood-oxygen-level-dependent signals in WM. METHODS We took advantage of a new framework known as functional tensor imaging to investigate the effect of sex and APOEε4 on WM cortical functional connectivity throughout the brain. RESULTS In a group of female patients with amnestic mild cognitive impairment, we found a significantly reduced functional connectivity in the left posterior limb of the internal capsule, left superior fronto-occipital fasciculus, bilateral temporopolar area and right somatosensory association cortex in APOEε4 carriers in contrast to non-carriers. We also found a significant APOEε4 by sex interaction effect on the right somatosensory association cortex, left temporopolar area and left superior temporal gyrus. The clinical Montreal Cognitive Assessment score was significantly negatively associated with the right somatosensory association cortex with APOEε4 by sex interaction in males. CONCLUSIONS These results indicate that increased APOE-related risk in women may be associated with decreased activity in both gray matter and WM in patients with amnestic mild cognitive impairment compared with men. The finding suggests accounting for sex differences in neuroimaging biomarkers, diagnostics and treatment strategy.
Collapse
Affiliation(s)
- H Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Y Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - M Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Y Zhan
- School of Mechanical, Electrical and Information Engineering, Shandong University, Jinan, China
| | - L Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Z Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Y Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
49
|
Beta-amyloid (Aβ) uptake by PET imaging in older HIV+ and HIV- individuals. J Neurovirol 2020; 26:382-390. [PMID: 32270469 DOI: 10.1007/s13365-020-00836-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
The causes of cognitive impairment among older HIV+ individuals may overlap with causes among elderly HIV seronegative (HIV-) individuals. The objective of this study was to determine if beta-amyloid (Aβ) deposition measured by [18F] AV-45 (florbetapir) positron emission tomography (PET) is increased in older HIV+ individuals compared to HIV- individuals. Forty-eight HIV+ and 25 HIV- individuals underwent [18F] AV-45 PET imaging. [18F] AV-45 binding to Aβ was measured by standardized uptake value ratios (SUVR) relative to the cerebellum in 16 cortical and subcortical regions of interest. Global and regional cortical SUVRs were compared by (1) serostatus, (2) HAND stage, and (3) age decade, comparing individuals in their 50s and > 60s. There were no differences in median global cortical SUVR stratified by HIV serostatus or HAND stage. The proportion of HIV+ participants in their 50s with elevated global amyloid uptake (SUVR > 1.40) was significantly higher than the proportion in HIV- participants (67% versus 25%, p = 0.04), and selected regional SUVR values were also higher (p < 0.05) in HIV+ compared to HIV- participants in their 50s. However, these group differences were not seen in participants in their 60s. In conclusion, PET imaging found no differences in overall global Aβ deposition stratified by HIV serostatus or HAND stage. Although there was some evidence of increased Aβ deposition in HIV+ individuals in their 50s compared to HIV- individuals which might indicate premature aging, the most parsimonious explanation for this is the relatively small sample size in this cross-sectional cohort study.
Collapse
|
50
|
Multiparametric imaging hippocampal neurodegeneration and functional connectivity with simultaneous PET/MRI in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:2440-2452. [PMID: 32157432 PMCID: PMC7396401 DOI: 10.1007/s00259-020-04752-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Purpose The objective of this study is to investigate the hippocampal neurodegeneration and its associated aberrant functions in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) patients using simultaneous PET/MRI. Methods Forty-two cognitively normal controls (NC), 38 MCI, and 22 AD patients were enrolled in this study. All subjects underwent 18F-FDG PET/functional MRI (fMRI) and high-resolution T1-weighted MRI scans on a hybrid GE Signa PET/MRI scanner. Neurodegeneration in hippocampus and its subregions was quantified by regional gray matter volume and 18F-FDG standardized uptake value ratio (SUVR) relative to cerebellum. An iterative reblurred Van Cittert iteration method was used for voxelwise partial volume correction on 18F-FDG PET images. Regional gray matter volume was estimated from voxel-based morphometric analysis with MRI. fMRI data were analyzed after slice time correction and head motion correction using statistical parametric mapping (SPM12) with DPARSF toolbox. The regions of interest including hippocampus, cornu ammonis (CA1), CA2/3/dentate gyrus (DG), and subiculum were defined in the standard MNI space. Results Patient groups had reduced SUVR, gray matter volume, and functional connectivity compared to NC in CA1, CA2/3/DG, and subiculum (AD < MCI < NC). There was a linear correlation between the left CA2/3DG gray matter volume and 18F-FDG SUVR in AD patients (P < 0.001, r = 0.737). Significant correlation was also found between left CA2/3/DG-superior medial frontal gyrus functional connectivity and left CA2/3/DG hypometabolism in patients with AD. The functional connectivity of right CA1-precuneus in patients with MCI and right subiculum-superior frontal gyrus in patients with AD was positively correlated with mini mental status examination scores (P < 0.05). Conclusion Our findings demonstrate that the associations existed at subregional hippocampal level between the functional connectivity measured by fMRI and neurodegeneration measured by structural MRI and 18F-FDG PET. Our results may provide a basis for precision neuroimaging of hippocampus in AD.
Collapse
|