1
|
Tripathy DB, Pradhan S, Gupta A, Agarwal P. Nanoparticles induced neurotoxicity. Nanotoxicology 2025:1-28. [PMID: 40237487 DOI: 10.1080/17435390.2025.2488310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
The early development of nanotechnology has spurred major interest on the toxicity of nanoparticles (NPs) due to their ability to penetrate the biological barriers such as the BBB. This review aims at addressing how silver (AgNPs), titanium dioxide (TiO2NPs), zinc oxide (ZnONPs), iron oxide (Fe3O4NPs), carbon NPs, Copper (Cu-NPs), silicon oxide (SiO2 NPs) nanoparticles and quantum dots cause neurotoxicity. Some of the major signaling that occur are the signaling related to oxidative stress, neuroinflammation, mitochondrial dysfunction and cell equilibrium, hence results in neuronal damage and neurodegeneration. It is critical to describe that there are multiple ways by how NPs may be toxic based on their size and surface, dosage, and the recipient's age and health condition. A review on in vitro and in vivo analysis provides information about the toxic potentials of NPs and preventive measures including modification of NP surface and antioxidant treatment. The results underline the necessity of comprehensive safety assessments to allow the further utilization of nanoparticles across the economy.
Collapse
Affiliation(s)
- Divya Bajpai Tripathy
- Department of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida, India
| | - Subhalaxmi Pradhan
- Department of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida, India
| | - Anjali Gupta
- Department of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida, India
| | - Pooja Agarwal
- Department of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida, India
| |
Collapse
|
2
|
Jiang M, Zhang X, Cui Z, Li M, Qiang H, Ji K, Li M, Yuan XX, Wen B, Xue Q, Gao J, Lu Z, Wu Y. Nanomaterial-Based Autophagy Modulation: Multiple Weapons to Inflame Immune Systems and the Tumor Microenvironment. Biomater Res 2025; 29:0111. [PMID: 40231206 PMCID: PMC11994884 DOI: 10.34133/bmr.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 04/16/2025] Open
Abstract
Autophagy, a fundamental cellular process, is a sensitive indicator of environmental shifts and is crucial for the clearance of cellular debris, the remodeling of cellular architecture, and the facilitation of cell growth and development. The interplay between stromal, tumor, and immune cells within the tumor microenvironment is intricately linked to autophagy. Therefore, the modulation of autophagy in these cell types is essential for developing effective cancer treatment strategies. This review describes the design and optimization of nanomaterials that modulate autophagy in tumor-associated and immune cells. This review elucidates the primary mechanisms by which nanomaterials induce autophagy and discusses their application in cancer therapy, underscoring the potential of these materials to eradicate cancer cells, bolster the immune response, and elicit robust, enduring antitumor immunity, thereby advancing the frontiers of oncological treatment.
Collapse
Affiliation(s)
- Min Jiang
- Department of Gastrointestinal Surgery,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- College of Life Science,
Mudanjiang Medical University, Mudanjiang 157011, China
| | - Xinyi Zhang
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zhilei Cui
- Department of Respiratory Medicine,
XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Meng Li
- Department of Dermatology, Shanghai Children’s Medical Center,
Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Huifen Qiang
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Keqin Ji
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Meigui Li
- School of Pharmacy,
Henan University, Kaifeng 475004, China
| | - Xinyang Xuan Yuan
- Department of Dermatology,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Beibei Wen
- School of Pharmacy,
Henan University, Kaifeng 475004, China
| | - Qian Xue
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yan Wu
- College of Life Science,
Mudanjiang Medical University, Mudanjiang 157011, China
| |
Collapse
|
3
|
Campos MT, Pires LS, Magalhães FD, Oliveira MJ, Pinto AM. Self-assembled inorganic nanomaterials for biomedical applications. NANOSCALE 2025; 17:5526-5570. [PMID: 39905908 DOI: 10.1039/d4nr04537h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Controlled self-assembly of inorganic nanoparticles has the potential to generate complex nanostructures with distinctive properties. The advancement of more precise techniques empowers researchers in constructing and assembling diverse building blocks, marking a pivotal evolution in nanotechnology and biomedicine. This progress enables the creation of customizable biomaterials with unique characteristics and functions. This comprehensive review takes an innovative approach to explore the current state-of-the-art self-assembly methods and the key interactions driving the self-assembly processes and provides a range of examples of biomedical and therapeutic applications involving inorganic or hybrid nanoparticles and structures. Self-assembly methods applied to bionanomaterials are presented, ranging from commonly used methods in cancer phototherapy and drug delivery to emerging techniques in bioimaging and tissue engineering. The most promising in vitro and in vivo experimental results achieved thus far are presented. Additionally, the review engages in a discourse on safety and biocompatibility concerns related to inorganic self-assembled nanomaterials. Finally, opinions on future challenges and prospects anticipated in this evolving field are provided.
Collapse
Affiliation(s)
- Miguel T Campos
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Laura S Pires
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Fernão D Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Artur M Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| |
Collapse
|
4
|
Chen H, Hu P, Wang Y, Liu H, Zheng J, Huang Z, Zhang X, Liu Y, Zhou T. From quorum sensing inhibition to antimicrobial defense: The dual role of eugenol-gold nanoparticles against carbapenem-resistant Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2025; 247:114415. [PMID: 39622152 DOI: 10.1016/j.colsurfb.2024.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
To address the pressing challenge of antibiotic resistance, particularly the robust defense mechanisms of Pseudomonas aeruginosa (P. aeruginosa) against conventional antibiotics, this study employs nanotechnology to enhance antimicrobial efficacy while ensuring good biocompatibility with the host. In this study, gold nanoparticles were chemically decorated with eugenol, a phenol-rich natural compound, using a one-pot synthesis method. The successful synthesis and functionalization of eugenol-decorated gold nanoparticles (Eugenol_Au NPs) were validated by comprehensive physicochemical analyses, demonstrating their stability and biocompatibility. These nanoparticles exhibited potent antimicrobial activity against both planktonic and biofilm-embedded carbapenem-resistant P. aeruginosa strains. Eugenol_Au NPs disrupted the bacterial quorum sensing system and stimulated intracellular reactive oxygen species production, which enhance their antibacterial effects. This dual mechanism of action has promising clinical implications for the treatment of infections associated with antibiotic-resistant P. aeruginosa. In vivo assessments in a murine peritoneal infection model showed that Eugenol_Au NPs significantly reduced bacterial loads and mitigated inflammatory responses, thereby improving survival rates. The study highlights the potential of Eugenol_Au NPs as an alternative strategy for refractory infections caused by carbapenem-resistant P. aeruginosa, and underscores the feasibility and promise of further clinical research and development of new therapeutic approaches targeting this resistant pathogen.
Collapse
Affiliation(s)
- Huale Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panjie Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yaran Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Junyuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Xue P, Wang J, Fu Y, He H, Gan Q, Liu C. Material-Mediated Immunotherapy to Regulate Bone Aging and Promote Bone Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409886. [PMID: 39981851 DOI: 10.1002/smll.202409886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Indexed: 02/22/2025]
Abstract
As the global population ages, an increasing number of elderly people are experiencing weakened bone regenerative capabilities, resulting in slower bone repair processes and associated risks of various complications. This review outlines the research progress on biomaterials that promote bone repair through immunotherapy. This review examines how manufacturing technologies such as 3D printing, electrospinning, and microfluidic technology contribute to enhancing the therapeutic effects of these biomaterials. Following this, it provides detailed introductions to various anti-osteoporosis drug delivery systems, such as injectable hydrogels, nanoparticles, and engineered exosomes, as well as bone tissue engineering materials and coatings used in immunomodulation. Moreover, it critically analyzes the current limitations of biomaterial-mediated bone immunotherapy and explores future research directions for material-mediated bone immunotherapy. This review aims to inspire new approaches and broaden perspectives in addressing the challenges of bone repair and aging by exploring innovative biomaterial-mediated immunotherapy strategies.
Collapse
Affiliation(s)
- Pengfei Xue
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
6
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
7
|
Hamdi F, Roushani M, Hoseini S. Novel biosensor for sarcosine detection in prostate cancer: Combining molecular imprinted polymer and aptamer strategies. Microchem J 2025; 208:112429. [DOI: 10.1016/j.microc.2024.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Koh JYC, Chen L, Gong L, Tan SJ, Hou HW, Tay CY. Lost in Rotation: How TiO 2 and ZnO Nanoparticles Disrupt Coordinated Epithelial Cell Rotation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312007. [PMID: 38708799 DOI: 10.1002/smll.202312007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Coordinated cell movement is a cardinal feature in tissue organization that highlights the importance of cells working together as a collective unit. Disruptions to this synchronization can have far-reaching pathological consequences, ranging from developmental disorders to tissue repair impairment. Herein, it is shown that metal oxide nanoparticles (NPs), even at low and non-toxic doses (1 and 10 µg mL-1), can perturb the coordinated epithelial cell rotation (CECR) in micropatterned human epithelial cell clusters via distinct nanoparticle-specific mechanisms. Zinc oxide (ZnO) NPs are found to induce significant levels of intracellular reactive oxygen species (ROS) to promote mitogenic activity. Generation of a new localized force field through changes in the cytoskeleton organization and an increase in cell density leads to the arrest of CECR. Conversely, epithelial cell clusters exposed to titanium dioxide (TiO2) NPs maintain their CECR directionality but display suppressed rotational speed in an autophagy-dependent manner. Thus, these findings reveal that nanoparticles can actively hijack the nano-adaptive responses of epithelial cells to disrupt the fundamental mechanics of cooperation and communication in a collective setting.
Collapse
Affiliation(s)
- Jie Yan Cheryl Koh
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Liuying Chen
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shao Jie Tan
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Chor Yong Tay
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| |
Collapse
|
9
|
Ning X, Zhu X, Wang Y, Yang J. Recent advances in carbon monoxide-releasing nanomaterials. Bioact Mater 2024; 37:30-50. [PMID: 38515608 PMCID: PMC10955104 DOI: 10.1016/j.bioactmat.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
As an endogenous signaling molecule, carbon monoxide (CO) has emerged as an increasingly promising option regarding as gas therapy due to its positive pharmacological effects in various diseases. Owing to the gaseous nature and potential toxicity, it is particularly important to modulate the CO release dosages and targeted locations to elucidate the biological mechanisms of CO and facilitate its clinical applications. Based on these, diverse CO-releasing molecules (CORMs) have been developed for controlled release of CO in biological systems. However, practical applications of these CORMs are limited by several disadvantages including low stability, poor solubility, weak releasing controllability, random diffusion, and potential toxicity. In light of rapid developments and diverse advantages of nanomedicine, abundant nanomaterials releasing CO in controlled ways have been developed for therapeutic purposes across various diseases. Due to their nanoscale sizes, diversified compositions and modified surfaces, vast CO-releasing nanomaterials (CORNMs) have been constructed and exhibited controlled CO release in specific locations under various stimuli with better pharmacokinetics and pharmacodynamics. In this review, we present the recent progress in CORNMs according to their compositions. Following a concise introduction to CO therapy, CORMs and CORNMs, the representative research progress of CORNMs constructed from organic nanostructures, hybrid nanomaterials, inorganic nanomaterials, and nanocomposites is elaborated. The basic properties of these CORNMs, such as active components, CO releasing mechanisms, detection methods, and therapeutic applications, are discussed in detail and listed in a table. Finally, we explore and discuss the prospects and challenges associated with utilizing nanomaterials for biological CO release.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinghui Yang
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
10
|
Wen Y, Weng P, Li Y, Yang L, Li C, Chen Q, He Y, Zhang W, Hu H, Yuan Z, Yu C. Triglyceride-Targeted Molecularly Imprinted Polymers Activate Lipophagy via Cargo Exchange for Nonalcoholic Fatty Liver Disease Treatment. ACS APPLIED POLYMER MATERIALS 2024; 6:7265-7277. [DOI: 10.1021/acsapm.4c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yilin Wen
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ping Weng
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yueyue Li
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Liming Yang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chengju Li
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qingyang Chen
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yanni He
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Wanping Zhang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Hu
- Pharmaceutical and Nanomedicine Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhiyi Yuan
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chao Yu
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Jiang K, Wu J, Wang Q, Chen X, Zhang Y, Gu X, Tang K. Nanoparticles targeting the adenosine pathway for cancer immunotherapy. J Mater Chem B 2024; 12:5787-5811. [PMID: 38845588 DOI: 10.1039/d4tb00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cancer immunotherapy, as an emerging approach to cancer treatment, has tremendous potential for application. Compared to traditional methods such as surgery, chemotherapy, and radiation therapy, it has the ability to restore the patient's immune system, leading to long-term immune memory with less damage to normal tissues. However, immunotherapy has its limitations, including limited therapeutic efficacy, restricted patient populations, and inconsistent treatment responses. Finding effective immunotherapeutic approaches has become a key focus of its clinical application. The adenosine pathway is a recently discovered tumor immune regulatory signaling pathway. It can influence the metabolism and growth of tumor cells by acting through key enzymes in the adenosine pathway, thereby affecting the development of tumors. Therefore, inhibiting the adenosine pathway is an effective cancer immunotherapy. Common adenosine pathway inhibitors include small molecules and antibody proteins, and extensive preclinical trials have demonstrated their effectiveness in inhibiting tumor growth. The short half-life, low bioavailability, and single administration route of adenosine pathway inhibitors limit their clinical application. With the advent of nanotechnology, nano-delivery of adenosine pathway inhibitors has addressed these issues. Compared to traditional drugs, nano-drugs extend the drug's circulation time and improve its distribution within the body. They also offer targeting capabilities and have low toxic side effects, making them very promising for future applications. In this review, we discuss the mechanism of the adenosine pathway in tumor immune suppression, the clinical applications of adenosine pathway inhibitors, and nano-delivery based on adenosine pathway inhibitors. In the final part of this article, we also briefly discuss the technical issues and challenges currently present in nano-delivery of adenosine pathway inhibitors, with the hope of advancing the progress of adenosine inhibitor nano-drugs in clinical treatment.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| | - Qing Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| |
Collapse
|
12
|
Mhammedsharif RM, Jalil PJ, Piro N, Salih Mohammed A, Aspoukeh PK. Myco-generated and analysis of magnetite (Fe3O4) nanoparticles using Aspergillus elegans extract: A comparative evaluation with a traditional chemical approach. Heliyon 2024; 10:e31352. [PMID: 38828346 PMCID: PMC11140620 DOI: 10.1016/j.heliyon.2024.e31352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
In the past few years, nanotechnology has emerged as one of the most interesting and cutting-edge research areas across all disciplines. Nanotechnology allows progress in all science fields to make novel materials and industry-different devices. Generally, nanoparticle synthesis methods are chemical, physical, and biological. The chemical and physical techniques use potentially harmful compounds, and the expense of these processes renders them unsuitable for nanoparticle synthesis. In light of this, it needs development strategies that are sustainable, economical, and eco-friendly viable. Through, biosynthesis, nanoparticles can overcome these disadvantages. One of the biological strategies is the myco-synthesis method, which connects the fields of mycology and nanotechnology. In this study, magnetite (Fe3O4) NPs have been synthesized using a myco-synthesis method by selecting Aspergillus elegans as a fungal species. Two extracts were used, growth medium and an aqueous extract. A comparative analysis between nanoparticles synthesized through myco-synthesis and those produced using conventional chemical methods has been conducted to substantiate the significance of the biological approach. The results of this study unequivocally establish that myco-synthesized nanoparticles exhibit superior and enhanced characteristics compared to those synthesized through chemical means, as ascertained through a comprehensive array of characterization techniques employed throughout the investigation. This contrast is observable in terms of the aggregation state, the existence of capping and stabilizing agents enveloping the nanoparticles, their magnetic and thermal attributes, and the enduring stability of these nanoparticles. These results highlight the significant promise of employing phytochemicals extracted from Aspergillus elegans as a highly suitable option for the biofabrication of Fe3O4 nanoparticles.
Collapse
Affiliation(s)
| | - Parwin Jalal Jalil
- Scientific Research Centre, Soran University, Soran, Kurdistan Region, Iraq
| | - Nzar Piro
- Civil Engineering Department, Faculty of Engineering, Soran University, Soran, Kurdistan Region, Iraq
| | - Ahmed Salih Mohammed
- Civil Engineering Department, College of Engineering, University of Sulaimani, Kurdistan Region, Iraq
| | - Peyman K. Aspoukeh
- Scientific Research Centre, Soran University, Soran, Kurdistan Region, Iraq
| |
Collapse
|
13
|
Liu Y, Wang Y, Zhang J, Peng Q, Wang X, Xiao X, Shi K. Nanotherapeutics targeting autophagy regulation for improved cancer therapy. Acta Pharm Sin B 2024; 14:2447-2474. [PMID: 38828133 PMCID: PMC11143539 DOI: 10.1016/j.apsb.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
The clinical efficacy of current cancer therapies falls short, and there is a pressing demand to integrate new targets with conventional therapies. Autophagy, a highly conserved self-degradation process, has received considerable attention as an emerging therapeutic target for cancer. With the rapid development of nanomedicine, nanomaterials have been widely utilized in cancer therapy due to their unrivaled delivery performance. Hence, considering the potential benefits of integrating autophagy and nanotechnology in cancer therapy, we outline the latest advances in autophagy-based nanotherapeutics. Based on a brief background related to autophagy and nanotherapeutics and their impact on tumor progression, the feasibility of autophagy-based nanotherapeutics for cancer treatment is demonstrated. Further, emerging nanotherapeutics developed to modulate autophagy are reviewed from the perspective of cell signaling pathways, including modulation of the mammalian target of rapamycin (mTOR) pathway, autophagy-related (ATG) and its complex expression, reactive oxygen species (ROS) and mitophagy, interference with autophagosome-lysosome fusion, and inhibition of hypoxia-mediated autophagy. In addition, combination therapies in which nano-autophagy modulation is combined with chemotherapy, phototherapy, and immunotherapy are also described. Finally, the prospects and challenges of autophagy-based nanotherapeutics for efficient cancer treatment are envisioned.
Collapse
Affiliation(s)
- Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jincheng Zhang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qikai Peng
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xingdong Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xiyue Xiao
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
15
|
Hamdi F, Roushani M, Nasibipour M, Hoseini SJ. Aptasensor based on high surface area covalent organic framework for simple and ultrasensitive detection of sarcosine in the diagnosis of prostate cancer. Anal Chim Acta 2024; 1291:342235. [PMID: 38280784 DOI: 10.1016/j.aca.2024.342235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
In this study, an electrochemical aptasensor was developed for the specific detection of sarcosine using a covalent organic framework (COF). The imine-based two-dimensional COF was synthesized through a solvothermal process using terephthaldehyde and melamine. This resulted in the formation of a structure that is highly porous and has a unique surface area of 908 m2/g. The produced biosensor demonstrated a significant linear relationship between charge transfer resistance (Rct) and various concentrations of sarcosine in blood serum samples. The aptasensor had two linear ranges, spanning from 0.5 fM to 700 fM and 10 pM to 0.12 nM, respectively, with a detection limit of 0.15 fM. The incorporation of high surface area COFs in the aptasensor design offers a promising combination of sensitivity, stability, and specificity. This combination creates a valuable device for diagnosing and monitoring of prostate cancer and potentially other diseases.
Collapse
Affiliation(s)
- Fatemeh Hamdi
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 6939177111, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 6939177111, Iran.
| | - Mina Nasibipour
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran
| | - S Jafar Hoseini
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| |
Collapse
|
16
|
Wu Y, Li L, Ning Z, Li C, Yin Y, Chen K, Li L, Xu F, Gao J. Autophagy-modulating biomaterials: multifunctional weapons to promote tissue regeneration. Cell Commun Signal 2024; 22:124. [PMID: 38360732 PMCID: PMC10868121 DOI: 10.1186/s12964-023-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 02/17/2024] Open
Abstract
Autophagy is a self-renewal mechanism that maintains homeostasis and can promote tissue regeneration by regulating inflammation, reducing oxidative stress and promoting cell differentiation. The interaction between biomaterials and tissue cells significantly affects biomaterial-tissue integration and tissue regeneration. In recent years, it has been found that biomaterials can affect various processes related to tissue regeneration by regulating autophagy. The utilization of biomaterials in a controlled environment has become a prominent approach for enhancing the tissue regeneration capabilities. This involves the regulation of autophagy in diverse cell types implicated in tissue regeneration, encompassing the modulation of inflammatory responses, oxidative stress, cell differentiation, proliferation, migration, apoptosis, and extracellular matrix formation. In addition, biomaterials possess the potential to serve as carriers for drug delivery, enabling the regulation of autophagy by either activating or inhibiting its processes. This review summarizes the relationship between autophagy and tissue regeneration and discusses the role of biomaterial-based autophagy in tissue regeneration. In addition, recent advanced technologies used to design autophagy-modulating biomaterials are summarized, and rational design of biomaterials for providing controlled autophagy regulation via modification of the chemistry and surface of biomaterials and incorporation of cells and molecules is discussed. A better understanding of biomaterial-based autophagy and tissue regeneration, as well as the underlying molecular mechanisms, may lead to new possibilities for promoting tissue regeneration. Video Abstract.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Luxin Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zuojun Ning
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Changrong Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yongkui Yin
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Kaiyuan Chen
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Lu Li
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Fei Xu
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Zhang X, Zhang M, Cui H, Zhang T, Wu L, Xu C, Yin C, Gao J. Autophagy-modulating biomembrane nanostructures: A robust anticancer weapon by modulating the inner and outer cancer environment. J Control Release 2024; 366:85-103. [PMID: 38142964 DOI: 10.1016/j.jconrel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Recently, biomembrane nanostructures, such as liposomes, cell membrane-coated nanostructures, and exosomes, have demonstrated promising anticancer therapeutic effects. These nanostructures possess remarkable biocompatibility, multifunctionality, and low toxicity. However, their therapeutic efficacy is impeded by chemoresistance and radiotherapy resistance, which are closely associated with autophagy. Modulating autophagy could enhance the therapeutic sensitivity and effectiveness of these biomembrane nanostructures by influencing the immune system and the cancer microenvironment. For instance, autophagy can regulate the immunogenic cell death of cancer cells, antigen presentation of dendritic cells, and macrophage polarization, thereby activating the inflammatory response in the cancer microenvironment. Furthermore, combining autophagy-regulating drugs or genes with biomembrane nanostructures can exploit the targeting and long-term circulation properties of these nanostructures, leading to increased drug accumulation in cancer cells. This review explores the role of autophagy in carcinogenesis, cancer progression, metastasis, cancer immune responses, and resistance to treatment. Additionally, it highlights recent research advancements in the synergistic anticancer effects achieved through autophagy regulation by biomembrane nanostructures. The review also discusses the prospects and challenges associated with the future clinical translation of these innovative treatment strategies. In summary, these findings provide valuable insights into autophagy, autophagy-modulating biomembrane-based nanostructures, and the underlying molecular mechanisms, thereby facilitating the development of promising cancer therapeutics.
Collapse
Affiliation(s)
- Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai 200003, China; Tongji Hospital,School of Medicine, Tongji University, Shanghai 200092, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Can Xu
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
18
|
Pan L, Peng H, Lee B, Zhao J, Shen X, Yan X, Hua Y, Kim J, Kim D, Lin M, Zhang S, Li X, Yi X, Yao F, Qin Z, Du J, Chi Y, Nam JM, Hyeon T, Liu J. Cascade Catalytic Nanoparticles Selectively Alkalize Cancerous Lysosomes to Suppress Cancer Progression and Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305394. [PMID: 37643367 DOI: 10.1002/adma.202305394] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Lysosomes are critical in modulating the progression and metastasis for various cancers. There is currently an unmet need for lysosomal alkalizers that can selectively and safely alter the pH and inhibit the function of cancer lysosomes. Here an effective, selective, and safe lysosomal alkalizer is reported that can inhibit autophagy and suppress tumors in mice. The lysosomal alkalizer consists of an iron oxide core that generates hydroxyl radicals (•OH) in the presence of excessive H+ and hydrogen peroxide inside cancer lysosomes and cerium oxide satellites that capture and convert •OH into hydroxide ions. Alkalized lysosomes, which display impaired enzyme activity and autophagy, lead to cancer cell apoptosis. It is shown that the alkalizer effectively inhibits both local and systemic tumor growth and metastasis in mice. This work demonstrates that the intrinsic properties of nanoparticles can be harnessed to build effective lysosomal alkalizers that are both selective and safe.
Collapse
Affiliation(s)
- Limin Pan
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haibao Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Bowon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiaxu Zhao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiulian Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ximei Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yipeng Hua
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jeonghyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Mouhong Lin
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shengjian Zhang
- Department of Radiology, Cancer Hospital/Institute and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaohui Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xueying Yi
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feibai Yao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yudan Chi
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jianan Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Faber T, McConville JT, Lamprecht A. Focused ion beam-scanning electron microscopy provides novel insights of drug delivery phenomena. J Control Release 2024; 366:312-327. [PMID: 38161031 DOI: 10.1016/j.jconrel.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Scanning electron microscopy (SEM) has long been a standard tool for morphological analyses, providing sub micrometer resolution of pharmaceutical formulations. However, analysis of internal morphologies of such formulations can often be biased due to the introduction of artifacts that originate from sample preparation. A recent advancement in SEM, is the focused ion beam scanning electron microscopy (FIB-SEM). This technique uses a focused ion beam (FIB) to remove material with nanometer precision, to provide virtually sample-independent access to sub-surface structures. The FIB can be combined with SEM imaging capabilities within the same instrumentation. As a powerful analytical tool, electron microscopy and FIB-milling are performed sequentially to produce high-resolution 3D models of structural peculiarities of diverse drug delivery systems or their behavior in a biological environment, i.e. intracellular or -tissue distribution. This review paper briefly describes the technical background of the method, outlines a wide array of potential uses within the drug delivery field, and focuses on intracellular transport where high-resolution images are an essential tool for mechanistical insights.
Collapse
Affiliation(s)
- Thilo Faber
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Jason T McConville
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Université de Franche-Comté, INSERM UMR1098 Right, Besançon, France.
| |
Collapse
|
20
|
Zhou X, Jin W, Zhang R, Mao X, Jia J, Zhou H. Perturbation of autophagy pathways in murine alveolar macrophage by 2D TMDCs is chalcogen-dependent. J Environ Sci (China) 2024; 135:97-107. [PMID: 37778845 DOI: 10.1016/j.jes.2022.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 10/03/2023]
Abstract
Increasing risks of incidental and occupational exposures to two-dimensional transition metal dichalcogenides (2D TMDCs) due to their broad application in various areas raised their public health concerns. While the composition-dependent cytotoxicity of 2D TMDCs has been well-recognized, how the outer chalcogenide atoms and inner transition metal atoms differentially contribute to their perturbation on cell homeostasis at non-lethal doses remains to be identified. In the present work, we compared the autophagy induction and related mechanisms in response to WS2, NbS2, WSe2 and NbSe2 nanosheets exposures in MH-S murine alveolar macrophages. All these 2D TMDCs had comparable physicochemical properties, overall cytotoxicity and capability in triggering autophagy in MH-S cells, but showed outer chalcogen-dependent subcellular localization and activation of autophagy pathways. Specifically, WS2 and NbS2 nanosheets adhered on the cell surface and internalized in the lysosomes, and triggered mTOR-dependent activation of autophagy. Meanwhile, WSe2 and NbSe2 nanosheets had extensive distribution in cytoplasm of MH-S cells and induced autophagy in an mTOR-independent manner. Furthermore, the 2D TMDCs-induced perturbation on autophagy aggravated the cytotoxicity of respirable benzo[a]pyrene. These findings provide a deeper insight into the potential health risk of environmental 2D TMDCs from the perspective of homeostasis perturbation.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Weitao Jin
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Rui Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xuan Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
21
|
Liu H, Huang Z, Chen H, Zhang Y, Yu P, Hu P, Zhang X, Cao J, Zhou T. A potential strategy against clinical carbapenem-resistant Enterobacteriaceae: antimicrobial activity study of sweetener-decorated gold nanoparticles in vitro and in vivo. J Nanobiotechnology 2023; 21:409. [PMID: 37932843 PMCID: PMC10626710 DOI: 10.1186/s12951-023-02149-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) present substantial challenges to clinical intervention, necessitating the formulation of novel antimicrobial strategies to counteract them. Nanomaterials offer a distinctive avenue for eradicating bacteria by employing mechanisms divergent from traditional antibiotic resistance pathways and exhibiting reduced susceptibility to drug resistance development. Non-caloric artificial sweeteners, commonly utilized in the food sector, such as saccharin, sucralose, acesulfame, and aspartame, possess structures amenable to nanomaterial formation. In this investigation, we synthesized gold nanoparticles decorated with non-caloric artificial sweeteners and evaluated their antimicrobial efficacy against clinical CRE strains. RESULTS Among these, gold nanoparticles decorated with aspartame (ASP_Au NPs) exhibited the most potent antimicrobial effect, displaying minimum inhibitory concentrations ranging from 4 to 16 µg/mL. As a result, ASP_Au NPs were chosen for further experimentation. Elucidation of the antimicrobial mechanism unveiled that ASP_Au NPs substantially elevated bacterial reactive oxygen species (ROS) levels, which dissipated upon ROS scavenger treatment, indicating ROS accumulation within bacteria as the fundamental antimicrobial modality. Furthermore, findings from membrane permeability assessments suggested that ASP_Au NPs may represent a secondary antimicrobial modality via enhancing inner membrane permeability. In addition, experiments involving crystal violet and confocal live/dead staining demonstrated effective suppression of bacterial biofilm formation by ASP_Au NPs. Moreover, ASP_Au NPs demonstrated notable efficacy in the treatment of Galleria mellonella bacterial infection and acute abdominal infection in mice, concurrently mitigating the organism's inflammatory response. Crucially, evaluation of in vivo safety and biocompatibility established that ASP_Au NPs exhibited negligible toxicity at bactericidal concentrations. CONCLUSIONS Our results demonstrated that ASP_Au NPs exhibit promise as innovative antimicrobial agents against clinical CRE.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Huanchang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Pingting Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jianming Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
22
|
Wang J, Zhang M, Huang X, Yue H. Multiproperty Polyethylenimine-Caged Platinum Nanoclusters Promote Apoptosis of Osteosarcoma Cells via Regulating the BAX-Bcl-2/Caspase-3/PARP Axis. Mol Pharm 2023; 20:5607-5615. [PMID: 37831437 DOI: 10.1021/acs.molpharmaceut.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Osteosarcoma, a prevalent primary bone cancer in children, exhibits a poor prognosis due to the high prevalence of drug resistance. The objective of this study was to investigate the potential of fluorescent ultrafine polyethylenimine-coated caged platinum nanoclusters (PEI-Pt NCs) as an antitumor agent in osteosarcoma. The primary focus of this study involved the utilization of osteosarcoma cells (U2-OS and MG-63) and normal control cells (hBMSC) as the primary subjects of investigation. The capacity of PEI-Pt NCs to enter osteosarcoma cells was observed through the implementation of confocal microscopy. The impact of PEI-Pt NCs on migration and proliferation was assessed through the utilization of various methodologies, including the CCK8 assay, Ki-67 immunofluorescence, clone formation assay, transwell assay, and wound healing assay. Furthermore, the influence of PEI-Pt NCs on apoptosis and its underlying mechanism was explored through the implementation of flow cytometry and Western blotting techniques. The PEI-Pt NCs demonstrated the capability to enter osteosarcoma cells, including the nucleus, while also exhibiting fluorescent labeling properties. Furthermore, the PEI-Pt NCs effectively impeded the migration and proliferation of osteosarcoma cells. Additionally, the PEI-Pt NCs facilitated apoptosis by modulating the BAX-Bcl-2/Caspase 3/PARP axis. The novel nanomaterial PEI-Pt NCs possess diverse advantageous capabilities, including the ability to impede cell proliferation and migration, as well as the capacity to modulate the BAX-Bcl-2/Caspase 3/PARP axis, thereby promoting cell apoptosis. Consequently, this nanomaterial exhibits promising potential in addressing the issue of inadequate platinum-based treatment for osteosarcoma.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100000, China
| | - Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Xin Huang
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhengzhou 450007, China
| | - Haodi Yue
- Department of Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou 450003, China
| |
Collapse
|
23
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
24
|
Zhao Q, Donskyi IS, Xiong Z, Liu D, Page TM, Zhang S, Deng S, Xu Y, Zeng J, Wu F, Zhang X. Recent Advances in the Biological Responses to Nano-black Phosphorus: Understanding the Importance of Intrinsic Properties and Cell Types. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11373-11388. [PMID: 37470763 DOI: 10.1021/acs.est.3c02688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.
Collapse
Affiliation(s)
- Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taylor M Page
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Xu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
25
|
Huang Z, Liu H, Zhang X, Tang M, Lin Y, Feng L, Ye J, Zhou T, Chen L. Ceftazidime-Decorated Gold Nanoparticles: a Promising Strategy against Clinical Ceftazidime-Avibactam-Resistant Enterobacteriaceae with Different Resistance Mechanisms. Antimicrob Agents Chemother 2023; 67:e0026223. [PMID: 37358468 PMCID: PMC10353462 DOI: 10.1128/aac.00262-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Nanoparticle-based antibiotic delivery systems are essential in combating antibiotic-resistant bacterial infections arising from acquired resistance and/or biofilm formation. Here, we report that the ceftazidime-decorated gold nanoparticles (CAZ_Au NPs) can effectively kill clinical ceftazidime-avibactam-resistant Enterobacteriaceae with various resistance mechanisms. Further study of underlying antibacterial mechanisms suggests that CAZ_Au NPs can damage the bacterial cell membrane and increase the level of intracellular reactive oxygen species. Moreover, CAZ_Au NPs show great potential in inhibiting biofilm formation and eradicating mature biofilms via crystal violet and scanning electron microscope assays. In addition, CAZ_Au NPs demonstrate excellent performance in improving the survival rate in the mouse model of abdominal infection. In addition, CAZ_Au NPs show no significant toxicity at bactericidal concentrations in the cell viability assay. Thus, this strategy provides a simple way to drastically improve the potency of ceftazidime as an antibiotic and its use in further biomedical applications.
Collapse
Affiliation(s)
- Zeyu Huang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haifeng Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuzhan Lin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luozhu Feng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
26
|
Yuan J, Mo Y, Zhang Y, Zhang Y, Zhang Q. Nickel nanoparticles induce autophagy and apoptosis via HIF-1α/mTOR signaling in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121670. [PMID: 37080518 PMCID: PMC10231338 DOI: 10.1016/j.envpol.2023.121670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
With the rapid development of nanotechnology, the potential adverse health effects of nanoparticles have been caught more attention and become global concerns. However, the underlying mechanisms in metal nanoparticle-induced toxic effects are still largely obscure. In this study, we investigated whether exposure to nickel nanoparticles (Nano-Ni) and titanium dioxide nanoparticles (Nano-TiO2) would alter autophagy and apoptosis levels in normal human bronchial epithelial BEAS-2B cells and the underlying mechanisms involved in this process. Our results showed that the expressions of autophagy- and apoptosis-associated proteins were dysregulated in cells exposed to Nano-Ni. However, exposure to the same doses of Nano-TiO2 had no significant effects on these proteins. In addition, exposure to Nano-Ni, but not Nano-TiO2, led to nuclear accumulation of HIF-1α and decreased phosphorylation of mTOR in BEAS-2B cells. Inhibition of HIF-1α by CAY10585 abolished Nano-Ni-induced decreased phosphorylation of mTOR, while activation of mTOR by MHY1485 did not affect Nano-Ni-induced nuclear accumulation of HIF-1α. Furthermore, both HIF-1α inhibition and mTOR activation abolished Nano-Ni-induced autophagy but enhanced Nano-Ni-induced apoptosis. Blockage of autophagic flux by Bafilomycin A1 exacerbated Nano-Ni-induced apoptosis, while activation of autophagy by Rapamycin effectively rescued Nano-Ni-induced apoptosis. In conclusion, our results demonstrated that Nano-Ni exposure caused increased levels of autophagy and apoptosis via the HIF-1α/mTOR signaling axis. Nano-Ni-induced autophagy has a protective role against Nano-Ni-induced apoptosis. These findings provide us with further insight into Nano-Ni-induced toxicity.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
27
|
Zhang T, Lu J, Yao Y, Pang Y, Ding X, Tang M. MPA-capped CdTequantum dots induces endoplasmic reticulum stress-mediated autophagy and apoptosis through generation of reactive oxygen species in human liver normal cell and liver tumor cell. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121397. [PMID: 36933817 DOI: 10.1016/j.envpol.2023.121397] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The rapid developments in nanotechnology have brought increased attention to the safety of Quantum Dots (QDs). Exploring their mechanisms of toxicity and characterizing their toxic effects in different cell lines will help us better understand and apply QDs appropriately. This study aims to elucidate the importance of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress-induced autophagy for CdTe QDs toxicity, that is, the importance of the nanoparticles in mediating cellular uptake and consequent intracellular stress effects inside the cell. The results of the study showed that cancer cells and normal cells have different cell outcomes as a result of intracellular stress effects. In normal human liver cells (L02), CdTe QDs leads to ROS generation and prolong ER stress. The subsequent autophagosome accumulation eventually triggers apoptosis by activating proapoptotic signaling pathways and the expression of proapoptotic Bax. In contrast, in human liver cancer cells (HepG2 cells), expression of UPR restrains proapoptotic signaling and downregulates Bax, and activated protective cellular autophagy, as a result of protecting these liver cancer cells from CdTe QDs-induced apoptosis. In summary, we assess the safety of CdTe QDs and recounted the molecular mechanism underlying its nanotoxicity in normal and cancerous cells. Notwithstanding, additional detailed studies on the deleterious effects of these nanoparticles in the organisms of interest are required to ensure low-risk application.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Jie Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Qingpu District Center for Disease Control, Shanghai, 201700, China
| | - Ying Yao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaomeng Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| |
Collapse
|
28
|
Wu J, Huang X, Xiao Z, Wang Q, Mu L, Yang S, Miao S, Chen J, Deng X, Deng C, Li H. Nano-Pt induced mitochondria-dependent apoptosis and cytoprotective autophagy in human NSCLC cells. Colloids Surf B Biointerfaces 2023; 227:113344. [PMID: 37257302 DOI: 10.1016/j.colsurfb.2023.113344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Given that currently used classical chemotherapeutic drugs lack the ideal therapeutic effect and produce severe side effects, platinum nanomaterials (Pt-NMs) have gradually gained attention, and their antitumor effect has been initially explored. However, the specific mechanisms underlying the action of Pt-NMs in non-small cell lung cancer (NSCLC) cells remain unclear. Moreover, the interaction between Pt-NMs and autophagy in inducing apoptosis of NSCLC cells remains unexplored. In this study, we explored the anti-NSCLC effect of amine-caged Pt nanoclusters (Nano-Pt) using cell cycle, migration, proliferation, apoptosis, and autophagy assays. We found that Nano-Pt significantly inhibited cell viability, reduced migration ability, caused DNA damage, induced S phase (period of DNA synthesis in the cell cycle) arrest, and promoted apoptosis in NSCLC cells. Nano-Pt also reduced mitochondrial membrane potential (MMP), increased permeability transition, and promoted apoptosis by upregulating Bax and PARP expression. Nano-Pt-induced apoptosis was accompanied by protective autophagy, which could be enhanced by autophagy inhibitors. Our findings on the biological behavior and the interaction between autophagy and apoptosis can provide the clear anti-NSCLC molecular mechanism of Nano-Pt, which have a promising potential for the development of novel Pt-based antitumor chemotherapy drugs with excellent curative efficacy and fewer side effects.
Collapse
Affiliation(s)
- Jie Wu
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450055, China
| | - Xin Huang
- Department of Light Chemical Engineering, College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Zhongqing Xiao
- Department of Respiratory and Critical Care Medicine, The 7th People's Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450055, China
| | - Liufan Mu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450055, China
| | - Shanshan Yang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450055, China
| | - Shaoyi Miao
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450055, China
| | - Jing Chen
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450055, China
| | - Xinjie Deng
- Department of Light Chemical Engineering, College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Chaoyang Deng
- Department of Light Chemical Engineering, College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Hongyun Li
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450055, China.
| |
Collapse
|
29
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
30
|
Lin L, Zheng Y, Wang C, Li P, Xu D, Zhao W. Concentration-Dependent Cellular Uptake of Graphene Oxide Quantum Dots Promotes the Odontoblastic Differentiation of Dental Pulp Cells via the AMPK/mTOR Pathway. ACS OMEGA 2023; 8:5393-5405. [PMID: 36816699 PMCID: PMC9933470 DOI: 10.1021/acsomega.2c06508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
As zero-dimension nanoparticles, graphene oxide quantum dots (GOQDs) have broad potential for regulating cell proliferation and differentiation. However, such regulation of dental pulp cells (DPSCs) with different concentrations of GOQDs is insufficiently investigated, especially on the molecular mechanism. The purpose of this study was to explore the effect and molecular mechanism of GOQDs on the odontoblastic differentiation of DPSCs and to provide a theoretical basis for the repair of pulp vitality by pulp capping. CCK-8, immunofluorescence staining, alkaline phosphatase activity assay and staining, alizarin red staining, qRT-PCR, and western blotting were used to detect the proliferation and odontoblastic differentiation of DPSC coculturing with different concentrations of GOQDs. The results indicate that the cellular uptake of low concentration of GOQDs (0.1, 1, and 10 μg/mL) could promote the proliferation and odontoblastic differentiation of DPCSs. Compared with other concentration groups, 1 μg/mL GOQDs show better ability in such promotion. In addition, with the activation of the AMPK signaling pathway, the mTOR signaling pathway was inhibited in DPSCs after coculturing with GOQDs, which indicates that low concentrations of GOQDs could regulate the odontoblastic differentiation of DPSCs by the AMPK/mTOR signaling pathway.
Collapse
|
31
|
Beyzay F, Zavaran Hosseini A, Hazrati A, Karimi M, Soudi S. Autophagy induced macrophages by α-alumina(α-AL2O3) conjugated cysteine peptidase, enhances the cytotoxic activity of CD8 + T lymphocytes against Leishmania major. BIOIMPACTS : BI 2023; 13:393-403. [PMID: 37736336 PMCID: PMC10509742 DOI: 10.34172/bi.2023.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 09/23/2023]
Abstract
Introduction Induction of a protective immune response against Leishmania major requires the activation of both TH1 and CD8+ T lymphocytes. Because L. major is an intra-phagosomal parasite, its antigens do not have access to MHC-I. The present study aimed to evaluate the effect of cysteine peptidase A (CPA)/cysteine peptidase B (CPB) conjugated to α-AL2O3 on autophagy induction in L. major infected macrophages and subsequent activation of cytotoxic CD8+ T lymphocytes. Methods Recombinant CPA and CPB of L. major were produced in expression vectors and purified. Aldehyde functionalized α-AL2O3 were conjugated to hydrazine-modified CPA/CPB by a chemical bond was confirmed by Fourier-transform infrared spectroscopy (FTIR). The High efficient internalization of α-AL2O3 conjugated CPA/CPB to macrophages was confirmed using a fluorescence microscope and flowcytometry. Induction of the acidic autophagosome and LC3 conversion in macrophages was determined by acridine orange (AO) staining and western blot. Autophagy-activated macrophages were used for CD8+ T cell priming. Cytotoxic activity of the primed CD8+ T cell against L. major infected macrophages was measured using apoptosis assay. Results α-AL2O3 conjugated CPA/CPB enhances macrophages antigen uptake and increases acidic vacuole formation and LC-3I to LC-3II conversion. Co-culture of autophagy-activated macrophages with CD8+ T cells augmented CD8+ T cells priming and proliferation more than in other study groups. These primed CD8+ T cells induce significant apoptotic death of L. major infected macrophages compared with non-primed CD8+ T cells. Conclusion α-AL2O3 nanoparticles enhance the cross-presentation of L. major antigens to CD8+ T cells by inducing autophagy. This finding supports the positive role of autophagy and encourages the use of α-AL2O3 in vaccine design.
Collapse
Affiliation(s)
- Fatemeh Beyzay
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Karimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
32
|
Zhang J, Li L, Yu J, Zhang F, Shi J, LI M, Liu J, Li H, Gao J, Wu Y. Autophagy-Modulated Biomaterial: A Robust Weapon for Modulating the Wound Environment to Promote Skin Wound Healing. Int J Nanomedicine 2023; 18:2567-2588. [PMID: 37213350 PMCID: PMC10198186 DOI: 10.2147/ijn.s398107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/28/2023] [Indexed: 05/23/2023] Open
Abstract
Autophagy, a self-renewal mechanism, can help to maintain the stability of the intracellular environment of organisms. Autophagy can also regulate several cellular functions and is strongly related to the onset and progression of several diseases. Wound healing is a biological process that is coregulated by different types of cells. However, it is troublesome owing to prolonged treatment duration and poor recovery. In recent years, biomaterials have been reported to influence the skin wound healing process by finely regulating autophagy. Biomaterials that regulate autophagy in various cells involved in skin wound healing to regulate the differentiation, proliferation and migration of cells, inflammatory responses, oxidative stress and formation of the extracellular matrix (ECM) have emerged as a key method for improving the tissue regeneration ability of biomaterials. During the inflammatory phase, autophagy enhances the clearance of pathogens from the wound site and leads to macrophage polarization from the M1 to the M2 phenotype, thus preventing enhanced inflammation that can lead to further tissue damage. Autophagy plays important roles in facilitating the formation of extracellular matrix (ECM) during the proliferative phase, removing excess intracellular ROS, and promoting the proliferation and differentiation of endothelial cells, fibroblasts, and keratinocytes. This review summarizes the close association between autophagy and skin wound healing and discusses the role of biomaterial-based autophagy in tissue regeneration. The applications of recent biomaterials designed to target autophagy are highlighted, including polymeric materials, cellular materials, metal nanomaterials, and carbon-based materials. A better understanding of biomaterial-regulated autophagy and skin regeneration and the underlying molecular mechanisms may open new possibilities for promoting skin regeneration. Moreover, this can lay the foundation for the development of more effective therapeutic approaches and novel biomaterials for clinical applications.
Collapse
Affiliation(s)
- Jin Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jing Yu
- Department of Endocrinology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Fan Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jiayi Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Meiyun LI
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jianyong Liu
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Haitao Li
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Jie Gao, Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China, Tel/Fax +86 21-31166666, Email
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
- Correspondence: Yan Wu, College of Life Science, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157001, People’s Republic of China, Tel/Fax +86-453-6984647, Email
| |
Collapse
|
33
|
Bai C, Yao Y, Wang Z, Huang X, Wei T, Zou L, Liu N, Zhang T, Tang M. CdTe quantum dots trigger oxidative stress and endoplasmic reticulum stress-induced apoptosis and autophagy in rat Schwann cell line RSC96. J Appl Toxicol 2022; 42:1962-1977. [PMID: 35857417 DOI: 10.1002/jat.4367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022]
Abstract
In the current study, the cytotoxicity and mechanisms of cadmium telluride quantum dots (CdTe QDs) on RSC96 cells were evaluated by exposing different doses of CdTe QDs for 24 h. Two types of cell death, including apoptosis and autophagy, as well as two important organelles, mitochondria and endoplasmic reticulum, were focused after CdTe QDs exposure. The results showed that CdTe QDs induced apoptosis in RSC96 cells in a concentration-dependent manner; promoted the accumulation of intracellular reactive oxygen species; decreased the mitochondrial membrane potential; caused the release of cytochrome c; and also increased the expression of Bcl-2 associated X protein, caspase-3, and cytochrome c proteins and decreased the expression of Bcl-2 protein. Further results also confirmed that CdTe QDs could be internalized by RSC96 cells, and the exposure and internalization of CdTe QDs could induce excessive endoplasmic reticulum stress in the cells, and the expression levels of binding immunoglobulin protein, C/EBP homologous protein, and caspase12 proteins were increased in a concentration-dependent manner. Moreover, autophagy-related proteins LC3II, Beclin1, and P62 all increased after CdTe QDs exposure, suggesting that CdTe QDs exposure both promoted autophagosome formation and inhibited autophagosome degradation, and that CdTe QDs affected the autophagic flow in RSC96 cells. In conclusion, CdTe QDs are able to cause apoptosis and autophagy in RSC96 cells through mitochondrial and endoplasmic reticulum stress pathways, and the possible neurotoxicity of CdTe QDs should be further investigated.
Collapse
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
34
|
Development and characterization of DEC-205 receptor targeted Potentilla anserina L polysaccharide PLGA nanoparticles as an antigen delivery system to enhance in vitro and in vivo immune responses in mice. Int J Biol Macromol 2022; 224:998-1011. [DOI: 10.1016/j.ijbiomac.2022.10.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
35
|
Zhang L, Zhao J, Hu X, Wang C, Jia Y, Zhu C, Xie S, Lee J, Li F, Ling D. A Peritumorally Injected Immunomodulating Adjuvant Elicits Robust and Safe Metalloimmunotherapy against Solid Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206915. [PMID: 35986645 DOI: 10.1002/adma.202206915] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Clinical immunotherapy of solid tumors elicits durable responses only in a minority of patients, largely due to the highly immunosuppressive tumor microenvironment (TME). Although rational combinations of vaccine adjuvants with inflammatory cytokines or immune agonists that relieve immunosuppression represent an appealing therapeutic strategy against solid tumors, there are unavoidable nonspecific toxicities due to the pleiotropy of cytokines and undesired activation of off-target cells. Herein, a Zn2+ doped layered double hydroxide (Zn-LDH) based immunomodulating adjuvant, which not only relieves immunosuppression but also elicits robust antitumor immunity, is reported. Peritumorally injected Zn-LDH sustainably neutralizes acidic TME and releases abundant Zn2+ , promoting a pro-inflammatory network composed of M1-tumor-associated macrophages, cytotoxic T cells, and natural-killer cells. Moreover, the Zn-LDH internalized by tumor cells effectively disrupts endo-/lysosomes to block autophagy and induces mitochondrial damage, and the released Zn2+ activates the cGas-STING signaling pathway to induce immunogenic cell death, which further promotes the release of tumor-associated antigens to induce antigen-specific cytotoxic T lymphocytes. Unprecedentedly, merely injection of Zn-LDH adjuvant, without using any cytotoxic inflammatory cytokines or immune agonists, significantly inhibits the growth, recurrence, and metastasis of solid tumors in mice. This study provides a rational bottom-up design of potent adjuvant for cancer metalloimmunotherapy against solid tumors.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jing Zhao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xi Hu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Oncogenes and Related Genes, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Chenhan Wang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yingbo Jia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chaojie Zhu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Oncogenes and Related Genes, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| |
Collapse
|
36
|
Ju J, Wu Y, He W, Zhan L, Yin X, Zhang J, Zhang Y, Qiu L, Muhammad P, Reis RL, Li C. Nanocarriers for Active Ingredients of Chinese Medicine (AIFCM) Used in Gastrointestinal Cancer Therapy. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Active ingredients of Chinese medicine (AIFCM) are pharmacological substances taken from traditional Chinese medicine that show promise in treating gastrointestinal cancer. Compared with traditional chemotherapeutic drugs, AIFCM have advantages such as multi-target and multi-level treatment
of gastrointestinal cancer. Nanocarriers have the following advantages, better bioavailability, passive or active targeting of tumor sites and responsive release of drugs. The use of nanocarriers for delivery of AIFCM in treatment of gastrointestinal cancer, can overcome the disadvantages
of some AIFCM, such as insolubility and low bioavailability. In this review, we first outline the background on gastrointestinal cancer, main curative factors and conventional therapeutic approaches. Then, the mechanisms for AIFCM in gastrointestinal cancer therapy are presented in the following
four aspects: gene regulation, immune modulation, cellular pathway transduction, and alteration of intestinal flora. Thirdly, preparation of various nanocarriers and results when combining AIFCM in gastrointestinal cancer are presented. Fourth, application of novel targeted nanocarriers and
responsive nanocarriers in gastrointestinal tumors is further introduced. Finally, the application of AIFCM in the treatment of gastrointestinal cancer is summarized and prospected, hoping to shed some light on the nanocarrier-bound AIFCM in the treatment of gastrointestinal cancer.
Collapse
Affiliation(s)
- Jiale Ju
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yinghua Wu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wen He
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Lin Zhan
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xuelian Yin
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junfeng Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuxi Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Li Qiu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Pir Muhammad
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue, Engineering and Regenerative Medicine, Guimarães,
4805-017, Portugal
| | - Chenchen Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
37
|
Zhou M, Zhang T, Zhang X, Zhang M, Gao S, Zhang T, Li S, Cai X, Li J, Lin Y. Effect of Tetrahedral Framework Nucleic Acids on Neurological Recovery via Ameliorating Apoptosis and Regulating the Activation and Polarization of Astrocytes in Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37478-37492. [PMID: 35951372 DOI: 10.1021/acsami.2c10364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Astrocytes, as the most plentiful subtypes of glial cells, play an essential biphasic function in ischemic stroke (IS). However, although having beneficial effects on stroke via promoting nerve restoration and limiting lesion extension, astrocytes can unavoidably cause exacerbated brain damage due to their participation in the inflammatory response. Therefore, seeking an effective and safe drug/strategy for protecting and regulating astrocytes in stroke is urgent. Here, we employ tetrahedral framework nucleic acid (tFNA) nanomaterials for astrocytes in stroke, considering their excellent biological properties and outstanding biosafety. In vitro, tFNA can inhibit calcium overload and ROS regeneration triggered by oxygen-glucose deprivation/reoxygenation (OGD/R), which provides a protective effect against astrocytic apoptosis. Furthermore, morphological changes such as hyperplasia and hypertrophy of reactive astrocytes are restrained, and the astrocytic polarization from the proinflammatory A1 phenotype to the neuroprotective A2 phenotype is facilitated by tFNA, which further alleviates cerebral infarct volume and facilitates the recovery of neurological function in transient middle cerebral artery occlusion (tMCAo) rat models. Moreover, the TLRs/NF-κB signaling pathway is downregulated by tFNA, which may be the potential mechanism of tFNA for protecting astrocytes in stroke. Collectively, we demonstrate that tFNA can effectively mediate astrocytic apoptosis, activation, and polarization to alleviate brain injury, which represents a potential intervention strategy for IS.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Jun Li
- Orthopedic Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
38
|
Zhou Z, Gao Z, Chen W, Wang X, Chen Z, Zheng Z, Chen Q, Tan M, Liu D, Zhang Y, Hou Z. Nitric oxide-mediated regulation of mitochondrial protective autophagy for enhanced chemodynamic therapy based on mesoporous Mo-doped Cu 9S 5 nanozymes. Acta Biomater 2022; 151:600-612. [PMID: 35953045 DOI: 10.1016/j.actbio.2022.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
The depletion of reactive oxygen species (ROS) by glutathione (GSH) and oxidative stress induced protective autophagy severely impaired the therapeutic effect of chemodynamic therapy (CDT). Therefore, how to construct a CDT treatment nanosystem with high yield and full utilization of ROS in tumor site is the main issue of CDT. Herein, a multifunctional cascade bioreactor based on mesoporous Mo-doped Cu9S5 (m-MCS) nanozymes loaded with L-Arginine (LA), abbreviated as m-MCS@LA, is constructed for realizing enhanced CDT promoted by ultrasound (US) triggered gas therapy. The m-MCS based on the catalytic performance of multivalent metal ions, which were served as nanozymes, exhibit enhanced Fenton-like and glutathione (GSH) peroxidase-like activities in comparison to Cu9S5 nanoparticles without Mo-doping. Once placed in tumor microenvironment (TME), the existence of redox couples (Cu+/Cu2+ and Mo4+/Mo6+) in m-MCS enabled it to react with hydrogen peroxide (H2O2) to generate ·OH for achieving CDT effect via Fenton-like reaction. Meanwhile, m-MCS could consume overexpressed GSH in tumor microenvironment (TME) to alleviate antioxidant capability for enhancing CDT effect. Moreover, m-MCS with mesoporous structure could be employed as the carrier to load natural nitric oxide (NO) donor LA. US as the excitation source with high tissue penetration can trigger m-MCS@LA to produce NO. As the gas transmitter with physiological functions, NO could play dual roles to kill cancer cells through gas therapy directly, and enhance CDT effect by inhibiting protective autophagy simultaneously. As a result, this US-triggered and NO-mediated synergetic cancer chemodynamic/gas therapy based on m-MCS@LA NPs can effectively eliminate primary tumor and achieved tumor-specific treatment, which provide a possible strategy for developing more effective CDT in future practical applications. STATEMENT OF SIGNIFICANCE: The depletion of reactive oxygen species (ROS) by glutathione (GSH) and oxidative stress induced protective autophagy severely impaired the therapeutic effect of chemodynamic therapy (CDT). Herein, a multifunctional cascade bioreactor based on mesoporous Mo-doped Cu9S5 (m-MCS) nanozymes loaded with L-Arginine (m-MCS@LA) is constructed for realizing enhanced CDT promoted by ultrasound (US) triggered gas therapy. The m-MCS with double redox couples presents the enhanced enzyme-like activities to perform cascade reactions for reducing GSH and generating ROS. LA loaded by m-MCS can produce NO triggered by US to inhibit the mitochondria protective autophagy for reactivating mitochondria involved apoptosis pathway. The US-triggered and NO-mediated CDT based on m-MCS@LA can effectively eliminate primary tumor through the high yield and full utilization of ROS.
Collapse
Affiliation(s)
- Zhaoru Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhimin Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Wei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Xiaozhao Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Zhankun Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhaocong Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Qianyi Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Meiling Tan
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Donglian Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China.
| | - Yaru Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China.
| | - Zhiyao Hou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China.
| |
Collapse
|
39
|
Huang Q, Li J, Liao Y, Wei L, Chen H. Effect of Propofol Nanoemulsion on Brain Perilymph Metabolism Through Transforming Growth Factor β1/Extracellular Signal Regulated Kinase 5 (TGF- β1/ERK5) Signaling Pathway. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Propofol takes part in the metabolism of perilymph in the brain. Propofol nanoemulsion can enhance the efficacy of drugs. This study explored how propofol modified by nanoemulsion inhibited the TGF-β1/ERK5 signaling pathway, thus affecting the brain. The role of perilymph
metabolism, and its mechanism of action were also clarified. 40 SD rats of clean grade were separated into 4 groups, namely; control group, propofol, propofol nanoemulsion and TGF-β1/ERK5 inhibitor group. We observed the particle size and potential of propofol nanoemulsion, concentration
of several groups of immune factors, inflammatory factors, TGF-β1, and ERK5 protein expression. Results from the laser particle size analyzer showed that the average particle size for the propofol nanoemulsion was 87.14 nm. The zeta potential was 0.391 mV, which was close to electrical
neutrality. ELISA results showed that the concentrations of IgG, IgA, and lgM in the propofol group, propofol nanoemulsion group, and TGF-β1/ERK5 inhibitor group were evidently lower and the IgG, IgA, IgM concentration for the propofol nanoemulsion group. Moreover, the concentration
was lower than that of other groups. ELISA test results showed that the concentrations of IL-12, IL-10, TNF-α, and IL-2 in the propofol group, propofol nanoemulsion group, and TGF-β1/ERK5 inhibitor group were obviously lower. The concentrations of IL-12, IL-10, TNF-α
and IL-2 in the propofol nanoemulsion group were lower than those in the other groups (p < 0.05). These results exhibited that, the expression levels of TGF-β1 and ERK5 in the propofol group, propofol nanoemulsion group, and TGF-β1/ERK5 inhibitor group were
evidently lower. TGF-β1 and ERK5 expression levels in the propofol nanoemulsion group was lower than in the other groups (p<0.05). Propofol nanoemulsion regulates the TGF-β1/ERK5 signaling pathway, inhibits its expression, reducing inflammation, increasing
immune response, and promoting perilymph metabolism in the brain.
Collapse
Affiliation(s)
- Qinfeng Huang
- Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University (Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical), Fuzhou 350000, Fujian Province, China
| | - Jiaqi Li
- Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University (Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical), Fuzhou 350000, Fujian Province, China
| | - Ye Liao
- Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University (Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical), Fuzhou 350000, Fujian Province, China
| | - LiQin Wei
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Hui Chen
- Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University (Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical), Fuzhou 350000, Fujian Province, China
| |
Collapse
|
40
|
Wang T, Xiao G, Lu Q, Zhou Y, Wang S, Liang X, Song Y, Xu M, Zhu Y, Li N. Synergistic Lysosomal Impairment and ER Stress Activation for Boosted Autophagy Dysfunction Based on Te Double-Headed Nano-Bullets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201585. [PMID: 35644863 DOI: 10.1002/smll.202201585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Indexed: 06/15/2023]
Abstract
To overcome the autophagy compromised mechanism of protective cellular processes by "eating"/"digesting" damaged organelles or potentially toxic materials with autolysosomes in tumor cells, lysosomal impairment can be utilized as a traditional autophagy dysfunction route for tumor therapy; however, this conventional one-way autophagy dysfunction approach is always limited by the therapeutic efficacy. Herein, an innovative pharmacological strategy that can excessively provoke autophagy via endoplasmic reticulum (ER) stress is implemented along with lysosomal impairment to enhance autophagy dysfunction. In this work, the prepared tellurium double-headed nanobullets (TeDNBs) with controllable morphology are modified with human serum albumin (HSA) which facilitates internalization by tumor cells. On the one hand, ER stress can be stimulated by upregulating the phosphorylation eukaryotic translation initiation factor 2 (P-eIF2α) owing to the production of tellurite (TeO32- ) in the specifical hydrogen peroxide-rich tumor environment; thus, autophagy overstimulation occurs. On the other hand, OME can deacidify and impair lysosomes by downregulating lysosomal-associated membrane protein 1 (LAMP1), therefore blocking autolysosome formation. Both in vitro and in vivo results demonstrate that the synthesized TeDNBs-HSA/OME (TeDNBs-HO) exhibit excellent therapeutic efficacy by autophagy dysfunction through ER stress induction and lysosomal damnification. Thus, TeDNBs-HO is verified to be a promising theranostic nanoagent for effective tumor therapy.
Collapse
Affiliation(s)
- Tingting Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, P. R. China
| | - Qianglan Lu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoyang Liang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yilin Song
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Min Xu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, P. R. China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
41
|
Wei W, Yan Z, Liu X, Qin Z, Tao X, Zhu X, Song E, Chen C, Ke PC, Leong DT, Song Y. Brain Accumulation and Toxicity Profiles of Silica Nanoparticles: The Influence of Size and Exposure Route. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8319-8325. [PMID: 35576522 DOI: 10.1021/acs.est.1c07562] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles (NPs) can make their way to the brain and cause in situ damage, which is a concern for nanomaterial application and airborne particulate matter exposure. Our recent study indicated that respiratory exposure to silica nanoparticles (SiO2 NPs) caused unexpected cardiovascular toxic effects. However, the toxicities of SiO2 NPs in other organs have warranted further investigation. To confirm the accumulation of SiO2 NPs in the brain, we introduced SiO2 NPs with different diameters into mice via intranasal instillation (INI) and intravenous injection (IVI) in parallel. We found that SiO2 NPs may target the brain through both olfactory and systemic routes, but the size of SiO2 NPs and delivery routes both significantly affected their brain accumulation. Surprisingly, while equivalent SiO2 NPs were found in the brain regions, brain lesions were distinctly much higher in INI than in the IVI group. Mechanistically, we showed that SiO2 NPs introduced via INI induced brain apoptosis and autophagy, while the SiO2 NPs introduced via IVI only induced autophagy in the brain.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Ziyi Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China
| | - Zongming Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Pu Chun Ke
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou 510700, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China
| |
Collapse
|
42
|
Li L, Dong R, Liu T, Yang Y, Chang H, Meng X, Deng Y, Wang Q, Zhao Y, Song G, Hu Y. Nano-titanium dioxide exposure and autophagy: a systematic review and meta-analysis. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Ruoyun Dong
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Tao Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, PR China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yiman Zhao
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yunhua Hu
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| |
Collapse
|
43
|
Pang Y, Yao Y, Yang M, Wu D, Ma Y, Zhang Y, Zhang T. TFEB-lysosome pathway activation is associated with different cell death responses to carbon quantum dots in Kupffer cells and hepatocytes. Part Fibre Toxicol 2022; 19:31. [PMID: 35477523 PMCID: PMC9047349 DOI: 10.1186/s12989-022-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Carbon dot has been widely used in biomedical field as a kind of nanomaterial with low toxicity and high biocompatibility. CDs has demonstrated its unique advantages in assisted drug delivery, target diagnosis and targeted therapy with its small size and spontaneous fluorescence. However, the potential biosafety of CDs cannot be evaluated. Therefore, we focused on the study of liver, the target organ involved in CDs metabolism, to evaluate the risk of CDs in vitro. Methods and results Liver macrophage KUP5 cells and normal liver cells AML12 cells were incubated in CDs at the same concentration for 24 h to compare the different effects under the same exposure conditions. The study found that both liver cell models showed ATP metabolism disorder, membrane damage, autophagosome formation and lysosome damage, but the difference was that, KUP5 cells exhibited more serious damage than AML12 cells, suggesting that immunogenic cell type is particularly sensitive to CDs. The underlying mechanism of CDs-induced death of the two hepatocyte types were also assessed. In KUP5 cells, death was caused by inhibition of autophagic flux caused by autophagosome accumulation, this process that was reversed when autophagosome accumulation was prevented by 3-MA. AML12 cells had no such response, suggesting that the accumulation of autophagosomes caused by CDs may be specific to macrophages. Conclusion Activation of the TFEB-lysosome pathway is important in regulating autophagy and apoptosis. The dual regulation of ERK and mTOR phosphorylation upstream of TFEB influences the death outcome of AML12 cells. These findings provide a new understanding of how CDs impact different liver cells and contribute to a more complete toxicological safety evaluation of CDs.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.,Yangzhou Center for Disease Prevention and Control, Yangzhou, 225200, Jiangsu, China
| | - Mengran Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
44
|
Study on the Mechanism of Action of Paclitaxel-Loaded Polylactic-co-glycolic Acid Nanoparticles in Non-Small-Cell Lung Carcinoma Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8524951. [PMID: 35432585 PMCID: PMC9007685 DOI: 10.1155/2022/8524951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
Objective. To study effective carriers that can enhance the antitumor effect of paclitaxel (PTX). Methods. PTX-loaded polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) (PTX-PLGA NPs), constructed using the emulsification solvent evaporation method, were characterized by scanning electron microscopy and dynamic light scattering. Non-small-cell lung carcinoma (NSCLC) cells were divided into the dimethyl sulfoxide (DMSO) group, PLGA NPs group, PTX group, and PTX-PLGA NPs group. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell apoptosis was determined by flow cytometry, and cell migration and invasion were assessed using Transwell assay. Results. PTX-PLGA NPs were smooth in the surface and spherical in shape, with a particle size of
nm. Both PTX and PTX-PLGA NPs could effectively inhibit the activity of A549 and H1650 cells. At 12 and 24 h, PTX-PLGA NPs presented weaker inhibition on the activity of NSCLC cells than PTX, but at 48 and 72 h, PTX-PLGA NPs presented stronger inhibition. Compared with PTX, PTX-PLGA NPs were more effective in enhancing apoptosis and inhibiting migration and invasion of NSCLC cells. Conclusion. With good sustained release and the ability to promote cellular uptake, PTX-PLGA NPs can strongly inhibit the malignant activities of NSCLC cells, which can be used as a promising drug carrier.
Collapse
|
45
|
Zhu XW, Dong FM, Liu J, Li MS. Resveratrol Nanoparticles Suppresses Migration and Invasion of Renal Cell Carcinoma Cells by Inhibiting Matrix Metalloproteinase 2 Expression and Extracellular Signal-Regulated Kinase Pathway. J Biomed Nanotechnol 2022; 18:1001-1008. [PMID: 35854457 DOI: 10.1166/jbn.2022.3310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to examine the impact of Resveratrol nanoparticles on migration/invasion capacity of renal cell carcinoma (RCC) cells and its mechanism. Human RCC cells were exposed to dimethyl sulfoxide or gradient concentrations of Resveratrol nanoparticles respectively, and U0126 were also added in some experiments. We examined renal cell viability by MTT assay, and wound healing test and Transwell assays were used detect invasion and migration capability of RCC cells. We used Western blotting assay to analyze the protein levels in extracellular signal-regulated kinase (ERK) signaling. We also detected the enzymatic capacity of matrix metalloproteinase 2 (MMP-2) in cells by gelatin enzymatic profiling. Resveratrol nanoparticles treatment significantly suppressed cell viability to migrate and invade RCC cells in a dose-dependent manner. Also, notably were reduced MMP-2 activity and expression, and elevated TIMP-2 level were observed in RCC cells exposed with Resveratrol nanoparticles. Further, Resveratrol nanoparticles treatment significantly decreased only the expression of p-ERK1/2, but not p-p38 and p-JNK. Moreover, U0126, which is the ERK inhibitor, exerted similar role as Resveratrol nanoparticles did. Of note was that, combined use of U0126 and Resveratrol nanoparticles displayed a more intense suppression of MMP-2 activity and expression, and also the viability to migrate and invade the RCC cells, compared with Resveratrol nanoparticles treatment alone. The Resveratrol nanoparticles inhibited RCC cells migration and invasion by regulating MMP2 expression and ERK pathways.
Collapse
Affiliation(s)
- Xing-Wang Zhu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| | - Feng-Ming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| | - Jia Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| | - Ming-Shan Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| |
Collapse
|
46
|
Li W, Li F, Zhang Y, Ren H, Bao X, Wang Z, Wang Y. X-Linked Inhibitor of Apoptosis Protein (XIAP)-Loaded Magnetic Mesoporous Silica Nanoparticles Incorporated with miR-233 to Improve Radio Sensitization of Cervical Cancer Cells and Promote Apoptosis. J Biomed Nanotechnol 2022; 18:747-753. [PMID: 35715921 DOI: 10.1166/jbn.2022.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated the impact of magnetic mesoporous silica nanoparticles (MMSN)-encapsulated X-linked inhibitor of apoptosis protein (XIAP) and miR-233 on tumor microenvironment in cervical cancer, to provide targeted treatment and strategy, to improve radio sensitization of cancer cells. Cervical cancer cells were treated with normal saline (control group), XIAP-loaded metallic mesoporous silica nanoparticles (MMSNs), and miR-233-targeted material (XIAP group, XIAP+miR-233 group). Proliferation, apoptosis and colony forming ability of cancer cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method, flow cytometry and colony formation experiments. In vivo experiments were established to observe the impact of XIAP-loaded MMSNs and miR-233 on tumor growth. Administration of XIAP-loaded MMSNs suppressed tumor growth of cervical cancer, and presence of miR-233 targeted material further decreased tumor volume, increasing radio sensitization of cancer cells. In vitro experiments confirmed that, combined treatment of XIAP and miR-233 suppressed cancer cell proliferation and invasion when inducing apoptosis. XIAP MMSNs characterized by large unit surface area, high dispersion and adhesion, and prolonged circulation time, improving drug delivery and treatment selectivity of chemotherapeutic drugs. This study suggests that XIAP MMSNs with miR-233 material suppress cervical cancer cell progression and tumor growth when augmenting radiosensitization of cancer cells, providing evidence for targeted therapy for the disease.
Collapse
Affiliation(s)
- Wen Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Fang Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Yang Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Hongtao Ren
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Xing Bao
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Zhongwei Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Yali Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| |
Collapse
|
47
|
Lee YL, Shih YS, Chen ZY, Cheng FY, Lu JY, Wu YH, Wang YJ. Toxic Effects and Mechanisms of Silver and Zinc Oxide Nanoparticles on Zebrafish Embryos in Aquatic Ecosystems. NANOMATERIALS 2022; 12:nano12040717. [PMID: 35215043 PMCID: PMC8880218 DOI: 10.3390/nano12040717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023]
Abstract
The global application of engineered nanomaterials and nanoparticles (ENPs) in commercial products, industry, and medical fields has raised some concerns about their safety. These nanoparticles may gain access into rivers and marine environments through industrial or household wastewater discharge and thereby affect the ecosystem. In this study, we investigated the effects of silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) on zebrafish embryos in aquatic environments. We aimed to characterize the AgNP and ZnONP aggregates in natural waters, such as lakes, reservoirs, and rivers, and to determine whether they are toxic to developing zebrafish embryos. Different toxic effects and mechanisms were investigated by measuring the survival rate, hatching rate, body length, reactive oxidative stress (ROS) level, apoptosis, and autophagy. Spiking AgNPs or ZnONPs into natural water samples led to significant acute toxicity to zebrafish embryos, whereas the level of acute toxicity was relatively low when compared to Milli-Q (MQ) water, indicating the interaction and transformation of AgNPs or ZnONPs with complex components in a water environment that led to reduced toxicity. ZnONPs, but not AgNPs, triggered a significant delay of embryo hatching. Zebrafish embryos exposed to filtered natural water spiked with AgNPs or ZnONPs exhibited increased ROS levels, apoptosis, and lysosomal activity, an indicator of autophagy. Since autophagy is considered as an early indicator of ENP interactions with cells and has been recognized as an important mechanism of ENP-induced toxicity, developing a transgenic zebrafish system to detect ENP-induced autophagy may be an ideal strategy for predicting possible ecotoxicity that can be applied in the future for the risk assessment of ENPs.
Collapse
Affiliation(s)
- Yen-Ling Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
- Department of Oncology, Tainan Hospital, Ministry of Health and Welfare, Tainan 70101, Taiwan
| | - Yung-Sheng Shih
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Zi-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Jing-Yu Lu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Yuan-Hua Wu
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Correspondence: (Y.-H.W.); (Y.-J.W.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.)
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Y.-H.W.); (Y.-J.W.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.)
| |
Collapse
|
48
|
Wang Y, Chen J, Tian J, Wang G, Luo W, Huang Z, Huang Y, Li N, Guo M, Fan X. Tryptophan-sorbitol based carbon quantum dots for theranostics against hepatocellular carcinoma. J Nanobiotechnology 2022; 20:78. [PMID: 35164792 PMCID: PMC8842979 DOI: 10.1186/s12951-022-01275-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Despite novel advances in screening, targeting and immunotherapies, early diagnosis and satisfactory treatments against hepatocellular carcinoma (HCC) remain formidable challenges. Given the unique advantages, carbon quantum dots (CQDs) become a smart theranostic nanomaterial for cancer diagnosis and therapy.
Results
In this work, a type of bio-friendly CQDs, trichrome-tryptophan-sorbitol CQDs (TC-WS-CQDs), is synthesized from natural biocompatible tryptophan via the one-pot hydrothermal method. Compared with normal hepatocytes, a much stronger green fluorescence is detected in HCC cells, indicating the ability of TC-WS-CQDs to target HCC cells. Furthermore, green-emitting TC-WS-CQDs generate large amounts of reactive oxygen species (ROS), leading to autophagy of HCC cells. Additionally, the green-emitting TC-WS-CQDs perform significant tumor inhibition by inducing autophagy via p53-AMPK pathway in vitro and in vivo studies with almost no systemic toxicity.
Conclusions
The results may highlight a promising anticancer nanotheranostic strategy with integration of diagnosis, targeting, and therapy.
Graphical Abstract
Collapse
|
49
|
Zhu Y, Wang Y, Lu Z. Injection of Stromal Cell-Derived Factor-1 (SDF-1) Nanoparticles After Traumatic Brain Injury Stimulates Recruitment of Neural Stem Cells. J Biomed Nanotechnol 2022; 18:498-503. [PMID: 35484757 DOI: 10.1166/jbn.2022.3243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) usually results from direct mechanical damage to the brain, which leads to degeneration and death of the central nervous system (CNS). The migration of neural stem/progenitor cells (NSCs) to brain is essential to various physiological and pathological processes of the CNS. Therefore, NSCs are considered as a promising alternative option for neurological diseases. SDF-1α is one of known chemokines whose receptor CXCR4 is detected in the CNS. We explored the efficacy of nanoparticles loaded with SDF-1 on TBI and analyzed its potential mechanism. After synthesis of SDF-1-loaded microspheres (MS) and -nanoparticles and establishment of animal model of TBI, 50 modeled mice were randomly injected with MS bovine serum albumin (BSA), MS SDF1, or SDF1-loaded nanoparticles and 10 TBI animals were taken as control group. After that, we observed the lesions and examined the characteristics of the nanoparticles and MS. Transwell assay and immunofluorescence were conducted to determine the migration and invasion upon treatments. Nanoparticles and MS encapsulated most of SDF-1, but MS released 100% SDF-1 and the nanoparticles alone released minority (25%) within 2 weeks. As only SDF-1 nanoparticles could induce NSCs to migrate to the injured area, this approach could enhance healing of the lesion with more NSCs around the lesion. Collectively, this study used particles to deliver SDF-1 to the central nervous system with nanoparticles having a longer-lasting release. Injection of nanoparticleloaded SDF-1 would retain the biological activity of SDF-1 and improve neuroblast migration, thereby improving the TBI condition. These findings show great prospect for nanoparticles application in brain injury.
Collapse
Affiliation(s)
- Yitong Zhu
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Yaqiong Wang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Zhaofeng Lu
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
50
|
Yang S, Guo L, Wang D, Yang Y, Wang J. Research on Mechanism of miR-106a Nanoparticles Carrying Dexmedetomidine in Regulating Recovery and Metabolism of Nerve Cells in Hypoxia-Reoxygenation Injury. J Biomed Nanotechnol 2022; 18:343-351. [PMID: 35484744 DOI: 10.1166/jbn.2022.3244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the mechanism of miR-106a nanoparticles carrying dexmedetomidine (DEX) in regulating the recovery and metabolism of nerve cells in hypoxia-reoxygenation injury. Hippocampus neuron model in hypoxia-reoxygenation injury was prepared in vitro. Study groups were randomly divided into control set, ischemic reperfusion (IR) set, dexmedetomidine (DEX) set, miR-106a-nanoparticles (NPs) set and set of dexmedetomidine (DEX) and miR-106a-NPs. We studied miR-106a expression, proliferative and apoptotic activity, secretion of IL-6 and tumor necrosis factor (TNF)-α, quantity of Phosphocreatine (PCr), adenosine triphosphate (ATP) and total adenine nucleotide, and also content of reactive oxygen species (ROS) and superoxide dismutases (SOD). Expressions of of Bax, Bcl-2 and NF-κB were also detected. Results showed that the expression of miR-106a in hippocampus neuron was reduced, while proliferation was reduced and apoptotic activity was increased. The secretions of IL-6 and TNF-α were increased, while the quantities of Phosphocreatine (PCr), adenosine triphosphate (ATP) and total adenine nucleotide were reduced. Bax expression was also increased and Bcl-2 expression was reduced. Moreover, ROS content was increased and SOD activity was reduced, while the NF-κB presentation was increased. The above-mentioned changes could be reversed in IR set, DEX set and miR-106a-NPs set. The action was more notable in the DEX and miR-106a-NPs sets. Finally, the proliferation in hippocampus neuron in hypoxia-reoxygenation injury could be prompted and apoptosis could be restrained by DEX and miR-106a-NPs. The secretion of inflammatory factors could be restrained through restraining the inflammatory pathway and oxidative stress. The energy metabolism could therefore be improved effectively and recovery of nerve cells in HBI could be improved.
Collapse
Affiliation(s)
- Shu Yang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Lei Guo
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Duozi Wang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Yanwei Yang
- Department of Traditional Chinese Medicine, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Jianhong Wang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| |
Collapse
|