1
|
Yan Y, Zhang T, He X, Du T, Dai G, Xu X, Chen Z, Wu J, Zhou H, Peng Y, Li Y, Liu C, Liao X, Dong Y, Ou JS, Huang ZP. A cardiac fibroblast-enriched micropeptide regulates inflammation in ischemia/reperfusion injury. JCI Insight 2025; 10:e187848. [PMID: 40111415 DOI: 10.1172/jci.insight.187848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/19/2025] [Indexed: 03/22/2025] Open
Abstract
Inflammation is a critical pathological process in myocardial infarction. Although immunosuppressive therapies can mitigate inflammatory responses and improve outcomes in myocardial infarction, they also increase the risk of infections. Identifying novel regulators of local cardiac inflammation could provide safer therapeutic targets for myocardial ischemia/reperfusion injury. In this study, we identified a previously uncharacterized micropeptide, which we named Inflammation Associated MicroPeptide (IAMP). IAMP is predominantly expressed in cardiac fibroblasts, and its expression is closely associated with cardiac inflammation. Downregulation of IAMP promotes, whereas its overexpression prevents, the transformation of cardiac fibroblasts into a more inflammatory phenotype under stressed/stimulated conditions, as evidenced by changes in the expression and secretion of proinflammatory cytokines. Consequently, loss of IAMP function leads to uncontrolled inflammation and worsens cardiac injury following ischemia/reperfusion surgery. Mechanistically, IAMP promotes the degradation of HIF-1α by interacting with its stabilizing partner HSP90 and, thus, suppresses the transcription of proinflammatory genes downstream of HIF-1α. This study underscores the significance of fibroblast-mediated inflammation in cardiac ischemia/reperfusion injury and highlights the therapeutic potential of targeting micropeptides for myocardial infarction.
Collapse
Affiliation(s)
- Youchen Yan
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Tingting Zhang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Xin He
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Tailai Du
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Gang Dai
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Xingfeng Xu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Zhuohui Chen
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Jialing Wu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Huimin Zhou
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yazhi Peng
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Chen Liu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Xinxue Liao
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Jing-Song Ou
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
2
|
Byatt TC, Razaghi E, Tüzüner S, Simões FC. Immune-mediated cardiac development and regeneration. Semin Cell Dev Biol 2025; 171:103613. [PMID: 40315634 DOI: 10.1016/j.semcdb.2025.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 05/04/2025]
Abstract
The complex interplay between the immune and cardiovascular systems during development, homeostasis and regeneration represents a rapidly evolving field in cardiac biology. Single cell technologies, spatial mapping and computational analysis have revolutionised our understanding of the diversity and functional specialisation of immune cells within the heart. From the earliest stages of cardiogenesis, where primitive macrophages guide heart tube formation, to the complex choreography of inflammation and its resolution during regeneration, immune cells emerge as central orchestrators of cardiac fate. Translating these fundamental insights into clinical applications represents a major challenge and opportunity for the field. In this Review, we decode the immunological blueprint of heart development and regeneration to transform cardiovascular disease treatment and unlock the regenerative capacity of the human heart.
Collapse
Affiliation(s)
- Timothy C Byatt
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ehsan Razaghi
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Selin Tüzüner
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Filipa C Simões
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Zhang J, Feng S, Geng Y, Wang X, Wang Z, Liu Y. Anti-inflammatory phenotypes of immune cells after myocardial infarction and prospects of therapeutic strategy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04167-y. [PMID: 40278891 DOI: 10.1007/s00210-025-04167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
Often causing negative cardiac remodeling and heart failure, a major threat to human life and health, myocardial infarction (MI) is a cardiovascular disease with a high morbidity and fatality rate worldwide. Maintaining ordinary heart function depends significantly on the immune system. Necrotic cardiomyocyte signals promote specific immunity and activate general immunity as the disease progresses in MI. Complex immune cells play a key role in all stages of MI progression by removing necrotic cardiomyocytes and tissue and promoting the healing of damaged tissue cells. Immune cells can help to regrow injured heart muscle as well as enable both inflammation and cardiomyocyte death. Immune cells are essential elements that help the immune system carry out its protective function. There are two types of immunity: nonspecific immunity and specific immunity. Developed throughout the long-term evolution of species, nonspecific immunity (including macrophages, myeloid-derived suppressor cells MDSC, natural killer cells NK, neutrophils, and dendritic cells DC) offers immediate and conservative host defense that might destroy healthy tissues because of its nonspecific nature. Precisely acquired immunity, specific immunity helps humoral and cellular immunity mediated through B and T cells correspondingly. These findings offer crucial information needed for the creation of effective immunomodulatory treatment, as discussed in this article.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, Shandong, China
| | - Shuai Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Yannan Geng
- Pharmaceutical Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, Shandong, China
| | - Xiaoli Wang
- Pharmaceutical Department, Liaocheng People's Hospital, Liaocheng, 252002, Shandong, China
| | - Zhen Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, Shandong, China.
| | - Yang Liu
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, Shandong, China.
| |
Collapse
|
4
|
Gao J, Yu L, Qi H, Qi J, Zheng Z. The Application of scRNA-Seq in Heart Development and Regeneration. Genesis 2025; 63:e70013. [PMID: 40300044 DOI: 10.1002/dvg.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 05/01/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a rapidly developing and useful technique for elucidating biological mechanisms and characterizing individual cells. Tens of millions of patients worldwide suffer from heart injuries and other types of heart disease. Neonatal mammalian hearts and certain adult vertebrate species, such as zebrafish, can fully regenerate after myocardial injury. However, the adult mammalian heart is unable to regenerate the damaged myocardium. scRNA-seq provides many new insights into pathological and normal hearts and facilitates our understanding of cellular responses to cardiac injury and repair at different stages, which may provide critical clues for effective therapies for adult heart regeneration. In this review, we summarize the application of scRNA-seq in heart development and regeneration and describe how important molecular mechanisms can be harnessed to promote heart regeneration.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lindong Yu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Haoran Qi
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Qi
- Laboratory Department, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, China
| | - Zhaodi Zheng
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Rao W, Li D, Zhang Q, Liu T, Gu Z, Huang L, Dai J, Wang J, Hou X. Complex regulation of cardiac fibrosis: insights from immune cells and signaling pathways. J Transl Med 2025; 23:242. [PMID: 40022104 PMCID: PMC11869728 DOI: 10.1186/s12967-025-06260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/16/2025] [Indexed: 03/03/2025] Open
Abstract
Cardiac fibrosis is a physiological process that involves the formation of scar tissue in the heart in response to injury or damage. This process is initially a protective measure characterized by enhanced fibroblasts, which are responsible for producing extracellular matrix proteins that provide structural support to the heart. However, when fibrosis becomes excessive, it can lead to adverse outcomes, including increasing tissue stiffness and impaired cardiac function, which can ultimately result in heart failure with a poor prognosis. While fibroblasts are the primary cells involved in cardiac fibrosis, immune cells have also been found to play a vital role in its progression. Recent research has shown that immune cells exert multifaceted effects besides regulation of inflammatory response. Advanced research techniques such as single-cell sequencing and multiomics have provided insights into the specific subsets of immune cells involved in fibrosis and the complex regulation of the process. Targeted immunotherapy against fibrosis is gaining traction as a potential treatment option, but it is still unclear how immune cells achieve this regulation and whether distinct subsets are involved in different roles. To better understand the role of immune cells in cardiac fibrosis, it is essential to examine the classical signaling pathways that are closely related to fibrosis formation. We have also focused on the unique properties of diverse immune cells in cardiac fibrosis and their specific intercommunications. Therefore, this review will delve into the plasticity and heterogeneity of immune cells and their specific roles in cardiac fibrosis, which propose insights to facilitate the development of anti-fibrosis therapeutic strategies.
Collapse
Affiliation(s)
- Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghang Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Yan W, Li Y, Wang G, Huang Y, Xie P. Clinical application and immune infiltration landscape of stemness-related genes in heart failure. ESC Heart Fail 2025; 12:250-270. [PMID: 39275894 PMCID: PMC11769652 DOI: 10.1002/ehf2.15055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Heart failure (HF) is the leading cause of morbidity and mortality worldwide. Stemness refers to the self-renewal and differentiation ability of cells. However, little is known about the heart's stemness properties. Thus, the current study aims to identify putative stemness-related biomarkers to construct a viable prediction model of HF and characterize the immune infiltration features of HF. METHODS HF datasets from the Gene Expression Omnibus (GEO) database were adopted as the training and validation cohorts while stemness-related genes were obtained from GeneCards and previously published papers. Feature selection was performed using two machine learning algorithms. Nomogram models were then constructed to predict HF risk based on the selected key genes. Moreover, the biological functions of the key genes were evaluated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) pathway analyses, and gene set variation analysis (GSVA) and enrichment analysis (GSEA) were performed between the high- and low-risk groups. The immune infiltration landscape in HF was investigated, and the interaction network of key genes was analysed to predict potential targets and molecular mechanisms. RESULTS Seven key genes, namely SMOC2, LUM, FNDC1, SCUBE2, CD163, BLM and S1PR3, were included in the proposed nomogram. This nomogram showed good predictive performance for HF diagnosis in the training and validation sets. GO and KEGG analyses revealed that the key genes were primarily associated with ageing, inflammatory processes and DNA oxidation. GSEA and GSVA identified various inflammatory and immune signalling pathways that were enriched between the high- and low-risk groups. The infiltration of 15 immune cell subsets suggests that adaptive immunity has an important role in HF. CONCLUSIONS Our study identified a clinically significant stemness-related signature for predicting HF risk, with the potential to improve early disease diagnosis, optimize risk stratification and provide new strategies for treating patients with HF.
Collapse
Affiliation(s)
- Wenting Yan
- Gansu University of Traditional Chinese MedicineLanzhouChina
| | - Yanling Li
- Department of CardiologyGansu Provincial HospitalLanzhouChina
| | - Gang Wang
- First Clinical Medical College of Lanzhou UniversityLanzhouChina
| | - Yuan Huang
- Gansu University of Traditional Chinese MedicineLanzhouChina
| | - Ping Xie
- Department of CardiologyGansu Provincial HospitalLanzhouChina
| |
Collapse
|
7
|
Liu X, Yue J, Zhou C, Duan Y, Chen X, Liu J, Zhuang S, Luo Y, Wu J, Zhang Y, Zhang L. Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway. Theranostics 2025; 15:1524-1551. [PMID: 39816679 PMCID: PMC11729560 DOI: 10.7150/thno.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Aims: Lower vertebrates and some neonatal mammals are known to possess the ability to regenerate cardiomyocyte and fully recover after heart injuries within a limited period. Understanding the molecular mechanisms of heart regeneration and exploring new ways to enhance cardiac regeneration hold significant promise for therapeutic intervention of heart failure. Sphingosine 1-phospahte receptor 1 (S1PR1) is highly expressed in cardiomyocytes and plays a crucial role in heart development and pathological cardiac remodeling. However, the effect of cardiomyocyte-expressing S1PR1 on heart regeneration has not yet been elucidated. This study aims to investigate the role of cardiomyocyte S1PR1 in cardiac regeneration following heart injuries. Methods and Results: We generated cardiomyocyte (CM)-specific S1pr1 knock-out mice and demonstrated that CM-specific S1pr1 loss-of-function severely reduced cardiomyocyte proliferation and inhibited heart regeneration following apex resection in neonatal mice. Conversely, AAV9-mediated CM-specific S1pr1 gain-of-function significantly enhanced cardiac regeneration. We identified that S1PR1 activated the AKT/mTORC1/CYCLIN D1 and BCL2 signaling pathways to promote cardiomyocyte proliferation and inhibit apoptosis. Moreover, CM-targeted gene delivery system via AAV9 to overexpress S1PR1 significantly increased cardiomyocyte proliferation and improved cardiac functions following myocardial infarction in adult mice, suggesting a potential method to enhance cardiac regeneration and improve cardiac function in the injured heart. Conclusions: This study demonstrates that CM-S1PR1 plays an essential role in cardiomyocyte proliferation and heart regeneration. This research provides a potential strategy by CM-targeted S1PR1 overexpression as a new therapeutic intervention for heart failure.
Collapse
Affiliation(s)
- Xiuxiang Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jinnan Yue
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Caixia Zhou
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yunhao Duan
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xiaoli Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jie Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yu Luo
- Department of Cardiology, Zigong Fourth People's Hospital, Sichuan, 643099, China
| | - Jinjin Wu
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhen Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Lin Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Wang S, Ao L, Lin H, Wei H, Wu Z, Lu S, Liang F, Shen R, Zhang H, Miao T, Shen X, Lin J, Zhong G. Single-cell transcriptomic analysis of the senescent microenvironment in bone metastasis. Cell Prolif 2025; 58:e13743. [PMID: 39231761 PMCID: PMC11693537 DOI: 10.1111/cpr.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Bone metastasis (BM) is a mortality-related event of late-stage cancer, with non-small cell lung cancer (NSCLC) being a common origin for BM. However, the detailed molecular profiling of the metastatic bone ecosystem is not fully understood, hindering the development of effective therapies for advanced patients. In this study, we examined the cellular heterogeneity between primary tumours and BM from tissues and peripheral blood by single-cell transcriptomic analysis, which was verified using multiplex immunofluorescence staining and public datasets. Our results demonstrate a senescent microenvironment in BM tissues of NSCLC. BM has a significantly higher infiltration of malignant cells with senescent characteristics relative to primary tumours, accompanied by aggravated metastatic properties. The endothelial-mesenchymal transition involved with SOX18 activation is related to the cellular senescence of vascular endothelial cells from BM. CD4Tstr cells, with pronounced stress and senescence states, are preferentially infiltrated in BM, indicating stress-related dysfunction contributing to the immunocompromised environment during tumour metastasis to bone. Moreover, we identify the SPP1 pathway-induced cellular crosstalk among T cells, vascular ECs and malignant cells in BM, which activates SOX18 and deteriorates patient survival. Our findings highlight the roles of cellular senescence in modulating the microenvironment of BM and implicate anti-senescence therapy for advanced NSCLC patients.
Collapse
Affiliation(s)
- Shenglin Wang
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
- Institute of Precision MedicineFujian Medical UniversityFuzhouChina
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University)Ministry of EducationFuzhouChina
| | - Huangfeng Lin
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Hongxiang Wei
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhaoyang Wu
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Shuting Lu
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
| | - Fude Liang
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Rongkai Shen
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Huarong Zhang
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
| | - Tongjie Miao
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
| | - Xiaopei Shen
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
- Institute of Precision MedicineFujian Medical UniversityFuzhouChina
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University)Ministry of EducationFuzhouChina
| | - Jianhua Lin
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Guangxian Zhong
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
9
|
Hou Y, Gao W, Lui KO. A hidden role of Th17 cells in doxorubicin-induced cardiac ferroptosis. Cardiovasc Res 2024; 120:1989-1991. [PMID: 39429018 DOI: 10.1093/cvr/cvae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024] Open
Affiliation(s)
- Yangfeng Hou
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| | - Wentao Gao
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| |
Collapse
|
10
|
Zheng K, Hao Y, Xia C, Cheng S, Yu J, Chen Z, Li Y, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Zhao J, Li R, Zong J, Zhang H, Lai L, Huang P, Zhou C, Xia J, Zhang X, Wu J. Effects and mechanisms of the myocardial microenvironment on cardiomyocyte proliferation and regeneration. Front Cell Dev Biol 2024; 12:1429020. [PMID: 39050889 PMCID: PMC11266095 DOI: 10.3389/fcell.2024.1429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The adult mammalian cardiomyocyte has a limited capacity for self-renewal, which leads to the irreversible heart dysfunction and poses a significant threat to myocardial infarction patients. In the past decades, research efforts have been predominantly concentrated on the cardiomyocyte proliferation and heart regeneration. However, the heart is a complex organ that comprises not only cardiomyocytes but also numerous noncardiomyocyte cells, all playing integral roles in maintaining cardiac function. In addition, cardiomyocytes are exposed to a dynamically changing physical environment that includes oxygen saturation and mechanical forces. Recently, a growing number of studies on myocardial microenvironment in cardiomyocyte proliferation and heart regeneration is ongoing. In this review, we provide an overview of recent advances in myocardial microenvironment, which plays an important role in cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
- Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoxian Cheng
- Jingshan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Liu J, Liu F, Liang T, Zhou Y, Su X, Li X, Zeng J, Qu P, Wang Y, Chen F, Lei Q, Li G, Cheng P. The roles of Th cells in myocardial infarction. Cell Death Discov 2024; 10:287. [PMID: 38879568 PMCID: PMC11180143 DOI: 10.1038/s41420-024-02064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Myocardial infarction, commonly known as a heart attack, is a serious condition caused by the abrupt stoppage of blood flow to a part of the heart, leading to tissue damage. A significant aspect of this condition is reperfusion injury, which occurs when blood flow is restored but exacerbates the damage. This review first addresses the role of the innate immune system, including neutrophils and macrophages, in the cascade of events leading to myocardial infarction and reperfusion injury. It then shifts focus to the critical involvement of CD4+ T helper cells in these processes. These cells, pivotal in regulating the immune response and tissue recovery, include various subpopulations such as Th1, Th2, Th9, Th17, and Th22, each playing a unique role in the pathophysiology of myocardial infarction and reperfusion injury. These subpopulations contribute to the injury process through diverse mechanisms, with cytokines such as IFN-γ and IL-4 influencing the balance between tissue repair and injury exacerbation. Understanding the interplay between the innate immune system and CD4+ T helper cells, along with their cytokines, is crucial for developing targeted therapies to mitigate myocardial infarction and reperfusion injury, ultimately improving outcomes for cardiac patients.
Collapse
Affiliation(s)
- Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaohan Su
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Li
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Zeng
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peng Qu
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yali Wang
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
12
|
Zhu C, Yuan T, Krishnan J. Targeting cardiomyocyte cell cycle regulation in heart failure. Basic Res Cardiol 2024; 119:349-369. [PMID: 38683371 PMCID: PMC11142990 DOI: 10.1007/s00395-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While various medications and surgical interventions have been used to improve cardiac function, they are not able to address the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regulation and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established and novel therapeutic strategies targeting this area for treatment purposes.
Collapse
Affiliation(s)
- Chaonan Zhu
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany
| | - Ting Yuan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| | - Jaya Krishnan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Baccouche BM, Elde S, Wang H, Woo YJ. Structural, angiogenic, and immune responses influencing myocardial regeneration: a glimpse into the crucible. NPJ Regen Med 2024; 9:18. [PMID: 38688935 PMCID: PMC11061134 DOI: 10.1038/s41536-024-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Complete cardiac regeneration remains an elusive therapeutic goal. Although much attention has been focused on cardiomyocyte proliferation, especially in neonatal mammals, recent investigations have unearthed mechanisms by which non-cardiomyocytes, such as endothelial cells, fibroblasts, macrophages, and other immune cells, play critical roles in modulating the regenerative capacity of the injured heart. The degree to which each of these cell types influence cardiac regeneration, however, remains incompletely understood. This review highlights the roles of these non-cardiomyocytes and their respective contributions to cardiac regeneration, with emphasis on natural heart regeneration after cardiac injury during the neonatal period.
Collapse
Affiliation(s)
- Basil M Baccouche
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Stefan Elde
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Hanjay Wang
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Y Joseph Woo
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA.
| |
Collapse
|
14
|
Qin J, Huang GN, Moslehi J. PD-1-PD-L1 immunomodulatory pathway regulates cardiac regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:410-411. [PMID: 39196218 DOI: 10.1038/s44161-024-00461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Juan Qin
- Section of Cardio-Oncology & Immunology, Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Cardiovascular Research Institute (CVRI), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute (CVRI), University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Javid Moslehi
- Section of Cardio-Oncology & Immunology, Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA.
- Cardiovascular Research Institute (CVRI), University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
15
|
Vargas Aguilar S, Cui M, Tan W, Sanchez-Ortiz E, Bassel-Duby R, Liu N, Olson EN. The PD-1-PD-L1 pathway maintains an immunosuppressive environment essential for neonatal heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:389-402. [PMID: 38737787 PMCID: PMC11086661 DOI: 10.1038/s44161-024-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/05/2024] [Indexed: 05/14/2024]
Abstract
The adult mouse heart responds to injury by scarring with consequent loss of contractile function, whereas the neonatal heart possesses the ability to regenerate. Activation of the immune system is among the first events upon tissue injury. It has been shown that immune response kinetics differ between regeneration and pathological remodeling, yet the underlying mechanisms of the distinct immune reactions during tissue healing remain unclear. Here we show that the immunomodulatory PD-1-PD-L1 pathway is highly active in regenerative neonatal hearts but rapidly silenced later in life. Deletion of the PD-1 receptor or inactivation of its ligand PD-L1 prevented regeneration of neonatal hearts after injury. Disruption of the pathway during neonatal cardiac injury led to increased inflammation and aberrant T cell activation, which ultimately impaired cardiac regeneration. Our findings reveal an immunomodulatory and cardioprotective role for the PD-1-PD-L1 pathway in heart regeneration and offer potential avenues for the control of adult tissue regeneration.
Collapse
Affiliation(s)
- Stephanie Vargas Aguilar
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally: Stephanie Vargas Aguilar, Miao Cui
| | - Miao Cui
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cardiology, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Stephanie Vargas Aguilar, Miao Cui
| | - Wei Tan
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Khan SU, Huang Y, Ali H, Ali I, Ahmad S, Khan SU, Hussain T, Ullah M, Lu K. Single-cell RNA Sequencing (scRNA-seq): Advances and Challenges for Cardiovascular Diseases (CVDs). Curr Probl Cardiol 2024; 49:102202. [PMID: 37967800 DOI: 10.1016/j.cpcardiol.2023.102202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Implementing Single-cell RNA sequencing (scRNA-seq) has significantly enhanced our comprehension of cardiovascular diseases (CVDs), providing new opportunities to strengthen the prevention of CVDs progression. Cardiovascular diseases continue to be the primary cause of death worldwide. Improving treatment strategies and patient risk assessment requires a deeper understanding of the fundamental mechanisms underlying these disorders. The advanced and widespread use of Single-cell RNA sequencing enables a comprehensive investigation of the complex cellular makeup of the heart, surpassing essential descriptive aspects. This enhances our understanding of disease causes and directs functional research. The significant advancement in understanding cellular phenotypes has enhanced the study of fundamental cardiovascular science. scRNA-seq enables the identification of discrete cellular subgroups, unveiling previously unknown cell types in the heart and vascular systems that may have relevance to different disease pathologies. Moreover, scRNA-seq has revealed significant heterogeneity in phenotypes among distinct cell subtypes. Finally, we will examine current and upcoming scRNA-seq studies about various aspects of the cardiovascular system, assessing their potential impact on our understanding of the cardiovascular system and offering insight into how these technologies may revolutionise the diagnosis and treatment of cardiac conditions.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Yuqing Huang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad-44000
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Muneeb Ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
17
|
Liu X, Shao Y, Han L, Zhu Y, Tu J, Ma J, Zhang R, Yang Z, Chen J. Microbiota affects mitochondria and immune cell infiltrations via alternative polyadenylation during postnatal heart development. Front Cell Dev Biol 2024; 11:1310409. [PMID: 38283994 PMCID: PMC10820713 DOI: 10.3389/fcell.2023.1310409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
There is a growing body of evidence supporting the significant impact of microbiota on heart development. Alternative polyadenylation (APA) is a crucial mechanism for gene expression regulation and has been implicated in postnatal heart development. Nonetheless, whether microbiota can influence postnatal heart development through the regulation of APA remains unclear. Therefore, we conducted APA sequencing on heart tissues collected from specific pathogen-free (SPF) mice and germ-free (GF) mice at three different developmental stages: within the first 24 h after birth (P1), 7-day-old SPF mice, and 7-day-old GF mice. This approach allowed us to obtain a comprehensive genome-wide profile of APA sites in the heart tissue samples. In this study, we made a significant observation that GF mice exhibited noticeably longer 3' untranslated region (3' UTR) lengths. Furthermore, we confirmed significant alterations in the 3' UTR lengths of mitochondria-related genes, namely Rala, Timm13, and Uqcc3. Interestingly, the GF condition resulted in a marked decrease in mitochondrial cristae density and a reduction in the level of Tomm20 in postnatal hearts. Moreover, we discovered a connection between Rala and Src, which further implicated their association with other differentially expressed genes (DEGs). Notably, most of the DEGs were significantly downregulated in GF mice, with the exceptions being Thbs1 and Egr1. Importantly, the GF condition demonstrated a correlation with a lower infiltration of immune cells, whereby the levels of resting NK cells, Th17 cells, immature dendritic cells, and plasma cells in GF mice were comparable to those observed in P1 mice. Furthermore, we established significant correlations between these immune cells and Rala as well as the related DEGs. Our findings clearly indicated that microbiota plays a vital role in postnatal heart development by affecting APA switching, mitochondria and immune cell infiltrations.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linjiang Han
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Yuanting Zhu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiazichao Tu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Jianrui Ma
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Ruyue Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Zhen Yang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| |
Collapse
|
18
|
Yang KY, Liao J, Ma Z, Tse HF, Lu L, Graca L, Lui KO. Single-cell transcriptomics of Treg reveals hallmarks and trajectories of immunological aging. J Leukoc Biol 2024; 115:19-35. [PMID: 37675661 DOI: 10.1093/jleuko/qiad104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Age-related immunosenescence is characterized by progressive dysfunction of adaptive immune response and increased autoimmunity. Nevertheless, the impact of aging on CD4+ regulatory T cells that are master regulators of the immune system remains largely unclear. Here, we report cellular and molecular hallmarks of regulatory T cells derived from murine lymphoid and adipose tissues at 3, 18, and 24 mo of age, respectively, by analyzing their heterogeneity that displays dynamic changes in transcriptomic effector signatures at a single-cell resolution. Although the proportion of regulatory T cells among total Cd4+ T cells, as well as their expression levels of Foxp3, did not show any global change with time, we have identified 6 transcriptomically distinct clusters of regulatory T cells with cross-tissue conserved hallmarks of aging, including increased numbers of proinflammatory regulatory T cells, reduced precursor cells, increased immature and mature T follicular regulatory cells potentially supported by a metabolic switch from oxidative phosphorylation to glycolysis, a gradual loss of CD150hi regulatory T cells that support hematopoiesis, and increased adipose tissue-specific regulatory T cells that are associated with metabolic disease. To dissect the impact of immunosenescence on humoral immunity, we propose some potential mechanisms underlying T follicular regulatory cell-mediated dysfunction by interactome analysis on T follicular regulatory cells, T follicular helper cells, and B cells during aging. Lastly, spatiotemporal analysis further revealed trajectories of regulatory T-cell aging that demonstrate the most significant changes in marrow and adipose tissues that might contribute to the development of age-related immunosenescence and type 2 diabetes. Taken together, our findings could provide a better understanding of age-associated regulatory T-cell heterogeneity in lymphoid and adipose tissues, as well as regulatory T-cell hallmarks during progressive adaptation to aging that could be therapeutically targeted for rejuvenating the aging immune system in the future.
Collapse
Affiliation(s)
- Kevin Y Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Jinyue Liao
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Zhangjing Ma
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Hung Fat Tse
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Liwei Lu
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10 2nd Yuexin Road, Nanshan District, Shenzhen, China
| |
Collapse
|
19
|
Wei N, Lee C, Duan L, Galdos FX, Samad T, Raissadati A, Goodyer WR, Wu SM. Cardiac Development at a Single-Cell Resolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:253-268. [PMID: 38884716 DOI: 10.1007/978-3-031-44087-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mammalian cardiac development is a complex, multistage process. Though traditional lineage tracing studies have characterized the broad trajectories of cardiac progenitors, the advent and rapid optimization of single-cell RNA sequencing methods have yielded an ever-expanding toolkit for characterizing heterogeneous cell populations in the developing heart. Importantly, they have allowed for a robust profiling of the spatiotemporal transcriptomic landscape of the human and mouse heart, revealing the diversity of cardiac cells-myocyte and non-myocyte-over the course of development. These studies have yielded insights into novel cardiac progenitor populations, chamber-specific developmental signatures, the gene regulatory networks governing cardiac development, and, thus, the etiologies of congenital heart diseases. Furthermore, single-cell RNA sequencing has allowed for the exquisite characterization of distinct cardiac populations such as the hard-to-capture cardiac conduction system and the intracardiac immune population. Therefore, single-cell profiling has also resulted in new insights into the regulation of cardiac regeneration and injury repair. Single-cell multiomics approaches combining transcriptomics, genomics, and epigenomics may uncover an even more comprehensive atlas of human cardiac biology. Single-cell analyses of the developing and adult mammalian heart offer an unprecedented look into the fundamental mechanisms of cardiac development and the complex diseases that may arise from it.
Collapse
Affiliation(s)
- Nicholas Wei
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Carissa Lee
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Lauren Duan
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | - Tahmina Samad
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | | | - Sean M Wu
- Stanford University, Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
20
|
Li R, Zhu Z, Zhang B, Jiang T, Zhu C, Mei P, Jin Y, Wang R, Li Y, Guo W, Liu C, Xia L, Fang B. Manganese Enhances the Osteogenic Effect of Silicon-Hydroxyapatite Nanowires by Targeting T Lymphocyte Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305890. [PMID: 38039434 PMCID: PMC10811488 DOI: 10.1002/advs.202305890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Indexed: 12/03/2023]
Abstract
Biomaterials encounter considerable challenges in extensive bone defect regeneration. The amelioration of outcomes may be attainable through the orchestrated modulation of both innate and adaptive immunity. Silicon-hydroxyapatite, for instance, which solely focuses on regulating innate immunity, is inadequate for long-term bone regeneration. Herein, extra manganese (Mn)-doping is utilized for enhancing the osteogenic ability by mediating adaptive immunity. Intriguingly, Mn-doping engenders heightened recruitment of CD4+ T cells to the bone defect site, concurrently manifesting escalated T helper (Th) 2 polarization and an abatement in Th1 cell polarization. This consequential immune milieu yields a collaborative elevation of interleukin 4, secreted by Th2 cells, coupled with attenuated interferon gamma, secreted by Th1 cells. This orchestrated interplay distinctly fosters the osteogenesis of bone marrow stromal cells and effectuates consequential regeneration of the mandibular bone defect. The modulatory mechanism of Th1/Th2 balance lies primarily in the indispensable role of manganese superoxide dismutase (MnSOD) and the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). In conclusion, this study highlights the transformative potential of Mn-doping in amplifying the osteogenic efficacy of silicon-hydroxyapatite nanowires by regulating T cell-mediated adaptive immunity via the MnSOD/AMPK pathway, thereby creating an anti-inflammatory milieu favorable for bone regeneration.
Collapse
Affiliation(s)
- Ruomei Li
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Zhiyu Zhu
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Bolin Zhang
- Department of StomatologyXinHua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Jiao Tong University1665 Kongjiang RoadShanghai200092China
| | - Ting Jiang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Cheng Zhu
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Peng Mei
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Yu Jin
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Ruiqing Wang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Yixin Li
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Weiming Guo
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Chengxiao Liu
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Lunguo Xia
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Bing Fang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| |
Collapse
|
21
|
Demircan T, Süzek BE. The Dynamic Landscapes of Circular RNAs in Axolotl, a Regenerative Medicine Model, with Implications for Early Phase of Limb Regeneration. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:526-535. [PMID: 37943672 DOI: 10.1089/omi.2023.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Circular RNAs (circRNAs) are of relevance to regenerative medicine and play crucial roles in post-transcriptional and translational regulation of biological processes. circRNAs are a class of RNA molecules that are formed through a unique splicing process, resulting in a covalently closed-loop structure. Recent advancements in RNA sequencing technologies and specialized computational tools have facilitated the identification and functional characterization of circRNAs. These molecules are known to exhibit stability, developmental regulation, and specific expression patterns in different tissues and cell types across various organisms. However, our understanding of circRNA expression and putative function in model organisms for regeneration is limited. In this context, this study reports, for the first time, on the repertoire of circRNAs in axolotl, a widely used model organism for regeneration. We generated RNA-seq data from intact limb, wound, and blastema tissues of axolotl during limb regeneration. The analysis revealed the presence of 35,956 putative axolotl circRNAs, among which 5331 unique circRNAs exhibited orthology with human circRNAs. In silico data analysis underlined the potential roles of axolotl circRNAs in cell cycle, cell death, and cell senescence-related pathways during limb regeneration, suggesting the participation of circRNAs in regulation of diverse functions pertinent to regenerative medicine. These new observations help advance our understanding of the dynamic landscape of axolotl circRNAs, and by extension, inform future regenerative medicine research and innovation that harness this model organism.
Collapse
Affiliation(s)
- Turan Demircan
- Medical Biology Department, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Barış Ethem Süzek
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
22
|
Chen W, Li C, Chen Y, Bin J, Chen Y. Cardiac cellular diversity and functionality in cardiac repair by single-cell transcriptomics. Front Cardiovasc Med 2023; 10:1237208. [PMID: 37920179 PMCID: PMC10619858 DOI: 10.3389/fcvm.2023.1237208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Cardiac repair after myocardial infarction (MI) is orchestrated by multiple intrinsic mechanisms in the heart. Identifying cardiac cell heterogeneity and its effect on processes that mediate the ischemic myocardium repair may be key to developing novel therapeutics for preventing heart failure. With the rapid advancement of single-cell transcriptomics, recent studies have uncovered novel cardiac cell populations, dynamics of cell type composition, and molecular signatures of MI-associated cells at the single-cell level. In this review, we summarized the main findings during cardiac repair by applying single-cell transcriptomics, including endogenous myocardial regeneration, myocardial fibrosis, angiogenesis, and the immune microenvironment. Finally, we also discussed the integrative analysis of spatial multi-omics transcriptomics and single-cell transcriptomics. This review provided a basis for future studies to further advance the mechanism and development of therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Wei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
23
|
Zhuo D, Lei I, Li W, Liu L, Li L, Ni J, Liu Z, Fan G. The origin, progress, and application of cell-based cardiac regeneration therapy. J Cell Physiol 2023; 238:1732-1755. [PMID: 37334836 DOI: 10.1002/jcp.31060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
Cardiovascular disease (CVD) has become a severe threat to human health, with morbidity and mortality increasing yearly and gradually becoming younger. When the disease progresses to the middle and late stages, the loss of a large number of cardiomyocytes is irreparable to the body itself, and clinical drug therapy and mechanical support therapy cannot reverse the development of the disease. To explore the source of regenerated myocardium in model animals with the ability of heart regeneration through lineage tracing and other methods, and develop a new alternative therapy for CVDs, namely cell therapy. It directly compensates for cardiomyocyte proliferation through adult stem cell differentiation or cell reprogramming, which indirectly promotes cardiomyocyte proliferation through non-cardiomyocyte paracrine, to play a role in heart repair and regeneration. This review comprehensively summarizes the origin of newly generated cardiomyocytes, the research progress of cardiac regeneration based on cell therapy, the opportunity and development of cardiac regeneration in the context of bioengineering, and the clinical application of cell therapy in ischemic diseases.
Collapse
Affiliation(s)
- Danping Zhuo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Ni
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihao Liu
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
25
|
Rühle J, Ginzel M, Dietz S, Schwarz J, Lajqi T, Beer-Hammer S, Poets CF, Gille C, Köstlin-Gille N. Depletion of Ly6G-Expressing Neutrophilic Cells Leads to Altered Peripheral T-Cell Homeostasis and Thymic Development in Neonatal Mice. Int J Mol Sci 2023; 24:7763. [PMID: 37175470 PMCID: PMC10178674 DOI: 10.3390/ijms24097763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Newborns and especially preterm infants are much more susceptible to infections than adults. Due to immature adaptive immunity, especially innate immune cells play an important role in a newborn's infection defense. Neonatal neutrophils exhibit profound differences in their functionality compared to neutrophils of adults. In particular, neonates possess a relevant population of suppressive neutrophils, which not only inhibit but also specifically modulate the function of T-cells. In this study, we investigated whether neonatal neutrophils are already involved in T-cell development in the thymus. For this purpose, we used a newly developed model of antibody-mediated immune cell depletion in which we administered a depleting antibody to pregnant and then lactating dams. Using this method, we were able to sufficiently deplete Ly6G-positive neutrophils in offspring. We demonstrated that the depletion of neutrophils in newborn mice resulted in altered peripheral T-cell homeostasis with a decreased CD4+/CD8+ T-cell ratio and decreased expression of CD62L. Neutrophil depletion even affected T-cell development in the thymus, with increased double positive thymocytes and a decreased CD4+/CD8+ single positive thymocyte ratio. Altogether, we demonstrated a previously unknown mechanism mediating neutrophils' immunomodulatory effects in newborns.
Collapse
Affiliation(s)
- Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
| | - Marco Ginzel
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, A-5020 Salzburg, Austria;
| | - Stefanie Dietz
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| | - Julian Schwarz
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomic and ICePhA, University of Tübingen, D-72074 Tübingen, Germany;
| | - Christian F. Poets
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| | - Natascha Köstlin-Gille
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| |
Collapse
|
26
|
Long X, Yuan X, Du J. Single-cell and spatial transcriptomics: Advances in heart development and disease applications. Comput Struct Biotechnol J 2023; 21:2717-2731. [PMID: 37181659 PMCID: PMC10173363 DOI: 10.1016/j.csbj.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Current transcriptomics technologies, including bulk RNA-seq, single-cell RNA sequencing (scRNA-seq), single-nucleus RNA-sequencing (snRNA-seq), and spatial transcriptomics (ST), provide novel insights into the spatial and temporal dynamics of gene expression during cardiac development and disease processes. Cardiac development is a highly sophisticated process involving the regulation of numerous key genes and signaling pathways at specific anatomical sites and developmental stages. Exploring the cell biological mechanisms involved in cardiogenesis also contributes to congenital heart disease research. Meanwhile, the severity of distinct heart diseases, such as coronary heart disease, valvular disease, cardiomyopathy, and heart failure, is associated with cellular transcriptional heterogeneity and phenotypic alteration. Integrating transcriptomic technologies in the clinical diagnosis and treatment of heart diseases will aid in advancing precision medicine. In this review, we summarize applications of scRNA-seq and ST in the cardiac field, including organogenesis and clinical diseases, and provide insights into the promise of single-cell and spatial transcriptomics in translational research and precision medicine.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
27
|
Mehdipour M, Park S, Huang GN. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy. J Mol Cell Cardiol 2023; 177:9-20. [PMID: 36801396 PMCID: PMC10699255 DOI: 10.1016/j.yjmcc.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. Cardiomyocytes are irreversibly lost due to cardiac ischemia secondary to disease. This leads to increased cardiac fibrosis, poor contractility, cardiac hypertrophy, and subsequent life-threatening heart failure. Adult mammalian hearts exhibit notoriously low regenerative potential, further compounding the calamities described above. Neonatal mammalian hearts, on the other hand, display robust regenerative capacities. Lower vertebrates such as zebrafish and salamanders retain the ability to replenish lost cardiomyocytes throughout life. It is critical to understand the varying mechanisms that are responsible for these differences in cardiac regeneration across phylogeny and ontogeny. Adult mammalian cardiomyocyte cell cycle arrest and polyploidization have been proposed as major barriers to heart regeneration. Here we review current models about why adult mammalian cardiac regenerative potential is lost including changes in environmental oxygen levels, acquisition of endothermy, complex immune system development, and possible cancer risk tradeoffs. We also discuss recent progress and highlight conflicting reports pertaining to extrinsic and intrinsic signaling pathways that control cardiomyocyte proliferation and polyploidization in growth and regeneration. Uncovering the physiological brakes of cardiac regeneration could illuminate novel molecular targets and offer promising therapeutic strategies to treat heart failure.
Collapse
Affiliation(s)
- Melod Mehdipour
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sangsoon Park
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
28
|
Rolland L, Jopling C. The multifaceted nature of endogenous cardiac regeneration. Front Cardiovasc Med 2023; 10:1138485. [PMID: 36998973 PMCID: PMC10043193 DOI: 10.3389/fcvm.2023.1138485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/15/2023] Open
Abstract
Since the first evidence of cardiac regeneration was observed, almost 50 years ago, more studies have highlighted the endogenous regenerative abilities of several models following cardiac injury. In particular, analysis of cardiac regeneration in zebrafish and neonatal mice has uncovered numerous mechanisms involved in the regenerative process. It is now apparent that cardiac regeneration is not simply achieved by inducing cardiomyocytes to proliferate but requires a multifaceted response involving numerous different cell types, signaling pathways and mechanisms which must all work in harmony in order for regeneration to occur. In this review we will endeavor to highlight a variety of processes that have been identifed as being essential for cardiac regeneration.
Collapse
|
29
|
Li R, Xiang C, Li Y, Nie Y. Targeting immunoregulation for cardiac regeneration. J Mol Cell Cardiol 2023; 177:1-8. [PMID: 36801268 DOI: 10.1016/j.yjmcc.2023.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Inducing endogenous cardiomyocyte proliferation and heart regeneration is a promising strategy to treat ischemic heart failure. The immune response has recently been considered critical in cardiac regeneration. Thus, targeting the immune response is a potent strategy to improve cardiac regeneration and repair after myocardial infarction. Here we reviewed the characteristics of the relationship between the postinjury immune response and heart regenerative capacity and summarized the latest studies focusing on inflammation and heart regeneration to identify potent targets of the immune response and strategies in the immune response to promote cardiac regeneration.
Collapse
Affiliation(s)
- Ruopu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chenying Xiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yixun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou 450046, China.
| |
Collapse
|
30
|
Murine neonatal cardiac B cells promote cardiomyocyte proliferation and heart regeneration. NPJ Regen Med 2023; 8:7. [PMID: 36774363 PMCID: PMC9922252 DOI: 10.1038/s41536-023-00282-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/25/2023] [Indexed: 02/13/2023] Open
Abstract
The irreversible loss of cardiomyocytes in the adult heart following cardiac injury leads to adverse cardiac remodeling and ventricular dysfunction. However, the role of B cells in cardiomyocyte proliferation and heart regeneration has not been clarified. Here, we found that the neonatal mice with B cell depletion showed markedly reduced cardiomyocyte proliferation, leading to cardiac dysfunction, fibrosis scar formation, and the complete failure of heart regeneration after apical resection. B cell depletion also significantly impaired heart regeneration and cardiac function in neonatal mice following myocardial infarction (MI). However, B cell depletion in adult mice suppressed tissue inflammation, inhibited myocardial fibrosis, and improved cardiac function after MI. Interestingly, B cell depletion partially restricted cardiomyocyte proliferation in adult mice post-MI. Single-cell RNA sequencing showed that cardiac B cells possessed a more powerful ability to inhibit inflammatory responses and enhance angiogenesis in the postnatal day 1 (P1) mice compared with P7 and adult mice. Besides, the proportion of cardioprotective B cell clusters with high expression levels of S100a6 (S100 calcium-binding protein A6) and S100a4 (S100 calcium-binding protein A4) was greatly decreased in adult heart tissues compared with neonatal mice after cardiac damage. Thus, our study discovers that cardiac B cells in neonatal mice are required for cardiomyocyte proliferation and heart regeneration, while adult B cells promote inflammation and impair cardiac function after myocardial injury.
Collapse
|
31
|
Feng Q, Li Q, Zhou H, Sun L, Lin C, Jin Y, Wang D, Guo G. The role of major immune cells in myocardial infarction. Front Immunol 2023; 13:1084460. [PMID: 36741418 PMCID: PMC9892933 DOI: 10.3389/fimmu.2022.1084460] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Myocardial infarction (MI) is a cardiovascular disease (CVD) with high morbidity and mortality worldwide, often leading to adverse cardiac remodeling and heart failure, which is a serious threat to human life and health. The immune system makes an important contribution to the maintenance of normal cardiac function. In the disease process of MI, necrotic cardiomyocytes release signals that activate nonspecific immunity and trigger the action of specific immunity. Complex immune cells play an important role in all stages of MI progression by removing necrotic cardiomyocytes and tissue and promoting the healing of damaged tissue cells. With the development of biomaterials, cardiac patches have become an emerging method of repairing MI, and the development of engineered cardiac patches through the construction of multiple animal models of MI can help treat MI. This review introduces immune cells involved in the development of MI, summarizes the commonly used animal models of MI and the newly developed cardiac patch, so as to provide scientific reference for the accurate diagnosis and effective treatment of MI.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China,*Correspondence: Gongliang Guo,
| | - Gongliang Guo
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Gongliang Guo,
| |
Collapse
|
32
|
Wang X, Zhou H, Liu Q, Cheng P, Zhao T, Yang T, Zhao Y, Sha W, Zhao Y, Qu H. Targeting regulatory T cells for cardiovascular diseases. Front Immunol 2023; 14:1126761. [PMID: 36911741 PMCID: PMC9995594 DOI: 10.3389/fimmu.2023.1126761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. The CVDs are accompanied by inflammatory progression, resulting in innate and adaptive immune responses. Regulatory T cells (Tregs) have an immunosuppressive function and are one of the subsets of CD4+T cells that play a crucial role in inflammatory diseases. Whether using Tregs as a biomarker for CVDs or targeting Tregs to exert cardioprotective functions by regulating immune balance, suppressing inflammation, suppressing cardiac and vascular remodeling, mediating immune tolerance, and promoting cardiac regeneration in the treatment of CVDs has become an emerging research focus. However, Tregs have plasticity, and this plastic Tregs lose immunosuppressive function and produce toxic effects on target organs in some diseases. This review aims to provide an overview of Tregs' role and related mechanisms in CVDs, and reports on the research of plasticity Tregs in CVDs, to lay a foundation for further studies targeting Tregs in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingyao Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Ke Y, Jian-yuan H, Ping Z, Yue W, Na X, Jian Y, Kai-xuan L, Yi-fan S, Han-bin L, Rong L. The progressive application of single-cell RNA sequencing technology in cardiovascular diseases. Biomed Pharmacother 2022; 154:113604. [DOI: 10.1016/j.biopha.2022.113604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022] Open
|
34
|
Dolejsi T, Delgobo M, Schuetz T, Tortola L, Heinze KG, Hofmann U, Frantz S, Bauer A, Ruschitzka F, Penninger JM, Campos Ramos G, Haubner BJ. Adult T-cells impair neonatal cardiac regeneration. Eur Heart J 2022; 43:2698-2709. [PMID: 35417553 PMCID: PMC9300388 DOI: 10.1093/eurheartj/ehac153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022] Open
Abstract
AIMS Newborn mice and humans display transient cardiac regenerative potential that rapidly declines postnatally. Patients who survive a myocardial infarction (MI) often develop chronic heart failure due to the heart's poor regeneration capacity. We hypothesized that the cardiac 'regenerative-to-scarring' transition might be driven by the perinatal shifts observed in the circulating T-cell compartment. METHODS AND RESULTS Post-MI immune responses were characterized in 1- (P1) vs. 7-day-old (P7) mice subjected to left anterior descending artery ligation. Myocardial infarction induced robust early inflammatory responses (36 h post-MI) in both age groups, but neonatal hearts exhibited rapid resolution of inflammation and full functional recovery. The perinatal loss of myocardial regenerative capacity was paralleled by a baseline increase in αβ-T cell (CD4+ and CD8+) numbers. Strikingly, P1-infarcted mice reconstituted with adult T-cells shifted to an adult-like healing phenotype, marked by irreversible cardiac functional impairment and increased fibrosis. Infarcted neonatal mice harbouring adult T-cells also had more monocyte-derived macrophage recruitment, as typically seen in adults. At the transcriptome level, infarcted P1 hearts that received isolated adult T-cells showed enriched gene sets linked to fibrosis, inflammation, and interferon-gamma (IFN-γ) signalling. In contrast, newborn mice that received isolated Ifng-/- adult T-cells prior to MI displayed a regenerative phenotype that resembled that of its age-matched untreated controls. CONCLUSION Physiological T-cell development or adoptive transfer of adult IFN-γ-producing T-cells into neonates contributed to impaired cardiac regeneration and promoted irreversible structural and functional cardiac damage. These findings reveal a trade-off between myocardial regenerative potential and the development of T-cell competence.
Collapse
Affiliation(s)
- Theresa Dolejsi
- Department of Internal Medicine III (Cardiology and Angiology), Medical University of Innsrbuck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Murilo Delgobo
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, D-97078 Würzburg, Germany
| | - Thomas Schuetz
- Department of Internal Medicine III (Cardiology and Angiology), Medical University of Innsrbuck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Luigi Tortola
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Katrin G Heinze
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, D-97078 Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, D-97078 Würzburg, Germany
| | - Axel Bauer
- Department of Internal Medicine III (Cardiology and Angiology), Medical University of Innsrbuck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Gustavo Campos Ramos
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, D-97078 Würzburg, Germany
| | - Bernhard J Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Medical University of Innsrbuck, Anichstraße 35, 6020 Innsbruck, Austria
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland
| |
Collapse
|
35
|
Peterson EA, Sun J, Wang J. Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative Systems. J Cardiovasc Dev Dis 2022; 9:63. [PMID: 35200716 PMCID: PMC8877434 DOI: 10.3390/jcdd9020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Innate and adaptive leukocytes rapidly mobilize to ischemic tissues after myocardial infarction in response to damage signals released from necrotic cells. Leukocytes play important roles in cardiac repair and regeneration such as inflammation initiation and resolution; the removal of dead cells and debris; the deposition of the extracellular matrix and granulation tissue; supporting angiogenesis and cardiomyocyte proliferation; and fibrotic scar generation and resolution. By organizing and comparing the present knowledge of leukocyte recruitment and function after cardiac injury in non-regenerative to regenerative systems, we propose that the leukocyte response to cardiac injury differs in non-regenerative adult mammals such as humans and mice in comparison to cardiac regenerative models such as neonatal mice and adult zebrafish. Specifically, extensive neutrophil, macrophage, and T-cell persistence contributes to a lengthy inflammatory period in non-regenerative systems for adverse cardiac remodeling and heart failure development, whereas their quick removal supports inflammation resolution in regenerative systems for new contractile tissue formation and coronary revascularization. Surprisingly, other leukocytes have not been examined in regenerative model systems. With this review, we aim to encourage the development of improved immune cell markers and tools in cardiac regenerative models for the identification of new immune targets in non-regenerative systems to develop new therapies.
Collapse
Affiliation(s)
| | | | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.A.P.); (J.S.)
| |
Collapse
|
36
|
Ma Z, Li X, Fan RLY, Yang KY, Ng CSH, Lau RWH, Wong RHL, Ng KK, Wang CC, Ye P, Fu Z, Chin AWH, Lai MYA, Huang Y, Tian XY, Poon LLM, Lui KO. A human pluripotent stem cell-based model of SARS-CoV-2 infection reveals an ACE2-independent inflammatory activation of vascular endothelial cells through TLR4. Stem Cell Reports 2022; 17:538-555. [PMID: 35180397 PMCID: PMC8851885 DOI: 10.1016/j.stemcr.2022.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the direct causative mechanism of SARS-CoV-2-induced endotheliitis remains unclear. Here, we report that human ECs barely express surface ACE2, and ECs express less intracellular ACE2 than non-ECs of the lungs. We ectopically expressed ACE2 in hESC-ECs to model SARS-CoV-2 infection. ACE2-deficient ECs are resistant to the infection but are more activated than ACE2-expressing ones. The virus directly induces endothelial activation by increasing monocyte adhesion, NO production, and enhanced phosphorylation of p38 mitogen-associated protein kinase (MAPK), NF-κB, and eNOS in ACE2-expressing and -deficient ECs. ACE2-deficient ECs respond to SARS-CoV-2 through TLR4 as treatment with its antagonist inhibits p38 MAPK/NF-κB/ interleukin-1β (IL-1β) activation after viral exposure. Genome-wide, single-cell RNA-seq analyses further confirm activation of the TLR4/MAPK14/RELA/IL-1β axis in circulating ECs of mild and severe COVID-19 patients. Circulating ECs could serve as biomarkers for indicating patients with endotheliitis. Together, our findings support a direct role for SARS-CoV-2 in mediating endothelial inflammation in an ACE2-dependent or -independent manner. The majority of adult and fetal ECs rarely express surface ACE2 ACE2 is dispensable for SARS-CoV-2-mediated endothelial activation SARS-CoV-2 directly induces endothelial inflammation through TLR4 activation ScRNA-seq reveals TLR4 pathway activation in circulating ECs of COVID-19 patients
Collapse
Affiliation(s)
- Zhangjing Ma
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rebecca L Y Fan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Calvin S H Ng
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rainbow W H Lau
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Randolph H L Wong
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin K Ng
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Peng Ye
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zelong Fu
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - M Y Alison Lai
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
37
|
|
38
|
Gong R, Wang X, Li H, Liu S, Jiang Z, Zhao Y, Yu Y, Han Z, Yu Y, Dong C, Li S, Xu B, Zhang W, Wang N, Li X, Gao X, Yang F, Bamba D, Ma W, Liu Y, Cai B. Loss of m 6A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res 2021; 174:105845. [PMID: 34428587 DOI: 10.1016/j.phrs.2021.105845] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
AIMS N6-Methyladenosine (m6A), one of the important epigenitic modifications, is very commom in messenger RNAs (mRNAs) of eukaryotes, and has been involved in various diseases. However, the role of m6A modification in heart regeneration after injury remains unclear. The study was conducted to investigate whether targeting methyltransferase-like 3 (METTL3) could replenish the loss of cardiomyocytes (CMs) and improve cardiac function after myocardial infarction (MI). METHODS AND RESULTS METTL3 knockout mouse line was generated. A series of functional experiments were carried out and the molecular mechanism was further explored. We identified that METTL3, a methyltransferase of m6A methylation, is upregulated in mouse hearts after birth, which is the opposite of the changes in CMs proliferation. Furthermore, both METTL3 heterozygous knockout mice and administration of METTL3 shRNA adenovirus in mice exhibited CMs cell cycle re-entered, infract size decreased and cardiac function improved after MI. Mechanically, the silencing of METTL3 promoted CMs proliferation by reducing primary miR-143 (pri-miR-143) m6A modificaiton, thereby inhibiting the pri-miR-143 into mature miR-143-3p. Moreover, we found that miR-143-3p has targeting effects on Yap and Ctnnd1 so as to regulate CMs proliferation. CONCLUSION METTL3 deficiency contributes to heart regeneration after MI via METTL3-pri-miR-143-(miR-143)-Yap/Ctnnd1 axis. This study provides new insights into the significance of RNA m6A modification in heart regeneration.
Collapse
Affiliation(s)
- Rui Gong
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Xiuxiu Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Hanjing Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Shenzhen Liu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Zuke Jiang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Yiming Zhao
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Yang Yu
- Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin 150086, China
| | - Zhenbo Han
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Ying Yu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Chaorun Dong
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Shuainan Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Binbin Xu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Wenwen Zhang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Ning Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Xingda Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Xinlu Gao
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Fan Yang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Djibril Bamba
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Wenya Ma
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Yu Liu
- Department of Clinical Laboratory, The Fourth Hospital, Harbin Medical University, Harbin 150001, China.
| | - Benzhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China; Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
39
|
Zheng K, Niu W, Lei B, Boccaccini AR. Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater 2021; 133:168-186. [PMID: 34418539 DOI: 10.1016/j.actbio.2021.08.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
The regulatory functions of the immune response in tissue healing, repair, and regeneration have been evidenced in the last decade. Immune cells play central roles in immune responses toward inducing favorable tissue regenerative processes. Modulating and controlling the immune cell responses (particularly macrophages) is an emerging approach to enhance tissue regeneration. Bioactive glasses (BGs) are multifunctional materials exhibiting osteogenic, angiogenic, and antibacterial properties, being increasingly investigated for various tissue regeneration scenarios, including bone regeneration and wound healing. On the other hand, the immunomodulatory effects of BGs in relation to regenerating tissues have started to be understood, and key knowledge is emerging. This is the first review article summarizing the immunomodulatory effects of BGs for tissue repair and regeneration. The immune response to BGs is firstly introduced, discussing potential mechanisms regarding the immunomodulation effects induced by BGs. Moreover, the interactions between the immune cells involved in the immunomodulation process and BGs (dissolution products) are summarized in detail. Particularly, a well-regulated and timely switch of macrophage phenotype from pro-inflammatory to anti-inflammatory is crucial to constructive tissue regeneration through modulating osteogenesis, osteoclastogenesis, and angiogenesis. The influence of BG characteristics on macrophage responses is discussed. We highlight the strategies employed to harness macrophage responses for enhanced tissue regeneration, including the incorporation of active ions, surface functionalization, and controlled release of immunomodulatory molecules. Finally, we conclude with our perspectives on future research challenges and directions in the emerging field of immunomodulatory BGs for tissue regeneration. STATEMENT OF SIGNIFICANCE: Immunomodulatory effects of bioactive glasses (BGs) in relation to bone regeneration and wound healing have started to be understood. We summarize those studies which have focused on immunomodulatory BGs for tissue regeneration. We first introduce the potential mechanisms of the immunomodulation effects induced by BGs. Interactions between the cells involved in immunomodulation processes and BGs (and their dissolution products, biologically active ions) are elaborated. We highlight the strategies employed to modulate macrophage responses for enhancing tissue regeneration, including incorporation of active ions, surface functionalization, and controlled release of immunomodulatory agents. This is the first review article summarizing and outlining the immunomodulatory effects of BGs for tissue regeneration. We anticipate that increasing research efforts will start to emerge in the area of immunomodulatory BGs.
Collapse
Affiliation(s)
- Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 710000 Xi'an, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 710000 Xi'an, China.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
40
|
Bizou M, Itier R, Majdoubi M, Abbadi D, Pichery E, Dutaur M, Marsal D, Calise D, Garmy-Susini B, Douin-Echinard V, Roncalli J, Parini A, Pizzinat N. Cardiac macrophage subsets differentially regulate lymphatic network remodeling during pressure overload. Sci Rep 2021; 11:16801. [PMID: 34413352 PMCID: PMC8376913 DOI: 10.1038/s41598-021-95723-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022] Open
Abstract
The lymphatic network of mammalian heart is an important regulator of interstitial fluid compartment and immune cell trafficking. We observed a remodeling of the cardiac lymphatic vessels and a reduced lymphatic efficiency during heart hypertrophy and failure induced by transverse aortic constriction. The lymphatic endothelial cell number of the failing hearts was positively correlated with cardiac function and with a subset of cardiac macrophages. This macrophage population distinguished by LYVE-1 (Lymphatic vessel endothelial hyaluronic acid receptor-1) and by resident macrophage gene expression signature, appeared not replenished by CCR2 mediated monocyte infiltration during pressure overload. Isolation of macrophage subpopulations showed that the LYVE-1 positive subset sustained in vitro and in vivo lymphangiogenesis through the expression of pro-lymphangiogenic factors. In contrast, the LYVE-1 negative macrophage subset strongly expressed MMP12 and decreased the endothelial LYVE-1 receptors in lymphatic endothelial cells, a feature of cardiac lymphatic remodeling in failing hearts. The treatment of mice with a CCR2 antagonist during pressure overload modified the proportion of macrophage subsets within the pathological heart and preserved lymphatic network from remodeling. This study reports unknown and differential functions of macrophage subpopulations in the regulation of cardiac lymphatic during pathological hypertrophy and may constitute a key mechanism underlying the progression of heart failure.
Collapse
Affiliation(s)
- Mathilde Bizou
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Romain Itier
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- Department of Cardiology, INSERM U1048-I2MC, CARDIOMET, University Hospital of Toulouse, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Mina Majdoubi
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Dounia Abbadi
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Estelle Pichery
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Marianne Dutaur
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Dimitri Marsal
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | | | - Barbara Garmy-Susini
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Victorine Douin-Echinard
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Jérome Roncalli
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- Department of Cardiology, INSERM U1048-I2MC, CARDIOMET, University Hospital of Toulouse, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Angelo Parini
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Nathalie Pizzinat
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France.
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France.
| |
Collapse
|
41
|
Sun S, Hu Y, Xiao Y, Wang S, Jiang C, Liu J, Zhang H, Hong H, Li F, Ye L. Postnatal Right Ventricular Developmental Track Changed by Volume Overload. J Am Heart Assoc 2021; 10:e020854. [PMID: 34387124 PMCID: PMC8475045 DOI: 10.1161/jaha.121.020854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/01/2021] [Indexed: 01/23/2023]
Abstract
Background Current right ventricular (RV) volume overload (VO) is established in adult mice. There are no neonatal mouse VO models and how VO affects postnatal RV development is largely unknown. Methods and Results Neonatal VO was induced by the fistula between abdominal aorta and inferior vena cava on postnatal day 7 and confirmed by abdominal ultrasound, echocardiography, and hematoxylin and eosin staining. The RNA-sequencing results showed that the top 5 most enriched gene ontology terms in normal RV development were energy derivation by oxidation of organic compounds, generation of precursor metabolites and energy, cellular respiration, striated muscle tissue development, and muscle organ development. Under the influence of VO, the top 5 most enriched gene ontology terms were angiogenesis, regulation of cytoskeleton organization, regulation of vasculature development, regulation of mitotic cell cycle, and regulation of the actin filament-based process. The top 3 enriched signaling pathways for the normal RV development were PPAR signaling pathway, citrate cycle (Tricarboxylic acid cycle), and fatty acid degradation. VO changed the signaling pathways to focal adhesion, the PI3K-Akt signaling pathway, and pathways in cancer. The RNA sequencing results were confirmed by the examination of the markers of metabolic and cardiac muscle maturation and the markers of cell cycle and angiogenesis. Conclusions A neonatal mouse VO model was successfully established, and the main processes of postnatal RV development were metabolic and cardiac muscle maturation, and VO changed that to angiogenesis and cell cycle regulation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Aorta, Abdominal/physiopathology
- Aorta, Abdominal/surgery
- Arteriovenous Shunt, Surgical
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Male
- Mice, Inbred C57BL
- RNA-Seq
- Time Factors
- Transcriptome
- Vena Cava, Inferior/physiopathology
- Vena Cava, Inferior/surgery
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right/genetics
- Mice
Collapse
Affiliation(s)
- Sijuan Sun
- Department of Pediatric Intensive Care UnitShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yuqing Hu
- Department of Cardiology, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yingying Xiao
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shoubao Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Chuan Jiang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jinfen Liu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Hao Zhang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute for Pediatric Congenital Heart DiseaseShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Haifa Hong
- Shanghai Institute for Pediatric Congenital Heart DiseaseShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Pediatric Translational MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute for Pediatric Congenital Heart DiseaseShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
42
|
Khyeam S, Lee S, Huang GN. Genetic, Epigenetic, and Post-Transcriptional Basis of Divergent Tissue Regenerative Capacities Among Vertebrates. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10042. [PMID: 34423307 PMCID: PMC8372189 DOI: 10.1002/ggn2.10042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022]
Abstract
Regeneration is widespread across the animal kingdom but varies vastly across phylogeny and even ontogeny. Adult mammalian regeneration in most organs and appendages is limited, while vertebrates such as zebrafish and salamanders are able to regenerate various organs and body parts. Here, we focus on the regeneration of appendages, spinal cord, and heart - organs and body parts that are highly regenerative among fish and amphibian species but limited in adult mammals. We then describe potential genetic, epigenetic, and post-transcriptional similarities among these different forms of regeneration across vertebrates and discuss several theories for diminished regenerative capacity throughout evolution.
Collapse
Affiliation(s)
- Sheamin Khyeam
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Sukjun Lee
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Guo N. Huang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
43
|
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez-Cabrero D, Ruiz-Villalba A. Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Front Cell Dev Biol 2021; 9:645276. [PMID: 34055776 PMCID: PMC8149764 DOI: 10.3389/fcell.2021.645276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
During the last decade, extensive efforts have been made to comprehend cardiac cell genetic and functional diversity. Such knowledge allows for the definition of the cardiac cellular interactome as a reasonable strategy to increase our understanding of the normal and pathologic heart. Previous experimental approaches including cell lineage tracing, flow cytometry, and bulk RNA-Seq have often tackled the analysis of cardiac cell diversity as based on the assumption that cell types can be identified by the expression of a single gene. More recently, however, the emergence of single-cell RNA-Seq technology has led us to explore the diversity of individual cells, enabling the cardiovascular research community to redefine cardiac cell subpopulations and identify relevant ones, and even novel cell types, through their cell-specific transcriptomic signatures in an unbiased manner. These findings are changing our understanding of cell composition and in consequence the identification of potential therapeutic targets for different cardiac diseases. In this review, we provide an overview of the continuously changing cardiac cellular landscape, traveling from the pre-single-cell RNA-Seq times to the single cell-RNA-Seq revolution, and discuss the utilities and limitations of this technology.
Collapse
Affiliation(s)
- Ernesto Marín-Sedeño
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Xabier Martínez de Morentin
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - David Gómez-Cabrero
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
- Centre of Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
44
|
Elde S, Wang H, Woo YJ. Navigating the Crossroads of Cell Therapy and Natural Heart Regeneration. Front Cell Dev Biol 2021; 9:674180. [PMID: 34046410 PMCID: PMC8148343 DOI: 10.3389/fcell.2021.674180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide despite significant advances in our understanding of the disease and its treatment. Consequently, the therapeutic potential of cell therapy and induction of natural myocardial regeneration have stimulated a recent surge of research and clinical trials aimed at addressing this challenge. Recent developments in the field have shed new light on the intricate relationship between inflammation and natural regeneration, an intersection that warrants further investigation.
Collapse
Affiliation(s)
- Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
45
|
Salnikov L, Baramiya MG. From Autonomy to Integration, From Integration to Dynamically Balanced Integrated Co-existence: Non-aging as the Third Stage of Development. FRONTIERS IN AGING 2021; 2:655315. [PMID: 35822034 PMCID: PMC9261420 DOI: 10.3389/fragi.2021.655315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 01/03/2023]
Abstract
Reversible senescence at the cellular level emerged together with tissue specialization in Metazoans. However, this reversibility (ability to permanently rejuvenate) through recapitulation of early stages of development, was originally a part of ontogenesis, since the pressure of integrativeness was not dominant. The complication of specialization in phylogenesis narrowed this "freedom of maneuver", gradually "truncating" remorphogenesis to local epimorphosis and further up to the complete disappearance of remorphogenesis from the ontogenesis repertoire. This evolutionary trend transformed cellular senescence into organismal aging and any recapitulation of autonomy into carcinogenesis. The crown of specialization, Homo sapiens, completed this post-unicellular stage of development, while in the genome all the potential for the next stage of development, which can be called the stage of balanced coexistence of autonomous and integrative dominants within a single whole. Here, completing the substantiation of the new section of developmental biology, we propose to call it Developmental Biogerontology.
Collapse
Affiliation(s)
- Lev Salnikov
- SibEnzyme US LLC, West Roxbury, MA, United States
| | | |
Collapse
|
46
|
Kim Y, Nurakhayev S, Nurkesh A, Zharkinbekov Z, Saparov A. Macrophage Polarization in Cardiac Tissue Repair Following Myocardial Infarction. Int J Mol Sci 2021; 22:2715. [PMID: 33800220 PMCID: PMC7962533 DOI: 10.3390/ijms22052715] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity around the globe, creating a substantial socio-economic burden as a result. Myocardial infarction is a significant contributor to the detrimental impact of cardiovascular disease. The death of cardiomyocytes following myocardial infarction causes an immune response which leads to further destruction of tissue, and subsequently, results in the formation of non-contractile scar tissue. Macrophages have been recognized as important regulators and participants of inflammation and fibrosis following myocardial infarction. Macrophages are generally classified into two distinct groups, namely, classically activated, or M1 macrophages, and alternatively activated, or M2 macrophages. The phenotypic profile of cardiac macrophages, however, is much more diverse and should not be reduced to these two subsets. In this review, we describe the phenotypes and functions of macrophages which are present in the healthy, as well as the infarcted heart, and analyze them with respect to M1 and M2 polarization states. Furthermore, we discuss therapeutic strategies which utilize macrophage polarization towards an anti-inflammatory or reparative phenotype for the treatment of myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.K.); (S.N.); (A.N.); (Z.Z.)
| |
Collapse
|
47
|
Cutie S, Huang GN. Vertebrate cardiac regeneration: evolutionary and developmental perspectives. CELL REGENERATION 2021; 10:6. [PMID: 33644818 PMCID: PMC7917145 DOI: 10.1186/s13619-020-00068-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Cardiac regeneration is an ancestral trait in vertebrates that is lost both as more recent vertebrate lineages evolved to adapt to new environments and selective pressures, and as members of certain species developmentally progress towards their adult forms. While higher vertebrates like humans and rodents resolve cardiac injury with permanent fibrosis and loss of cardiac output as adults, neonates of these same species can fully regenerate heart structure and function after injury - as can adult lower vertebrates like many teleost fish and urodele amphibians. Recent research has elucidated several broad factors hypothesized to contribute to this loss of cardiac regenerative potential both evolutionarily and developmentally: an oxygen-rich environment, vertebrate thermogenesis, a complex adaptive immune system, and cancer risk trade-offs. In this review, we discuss the evidence for these hypotheses as well as the cellular participators and molecular regulators by which they act to govern heart regeneration in vertebrates.
Collapse
Affiliation(s)
- Stephen Cutie
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
48
|
Golan M, Krivitsky A, Mausner-Fainberg K, Benhamou M, Vigiser I, Regev K, Kolb H, Karni A. Increased Expression of Ephrins on Immune Cells of Patients with Relapsing Remitting Multiple Sclerosis Affects Oligodendrocyte Differentiation. Int J Mol Sci 2021; 22:ijms22042182. [PMID: 33671716 PMCID: PMC7927032 DOI: 10.3390/ijms22042182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/02/2022] Open
Abstract
The effect of the inflammatory response on regenerative processes in the brain is complex. This complexity is even greater when the cause of the tissue damage is an autoimmune response. Multiple sclerosis (MS) is an immune-mediated disease in which demyelination foci are formed in the central nervous system. The degree of repair through oligodendrocyte regeneration and remyelination is insufficient. Ephrins are membrane-bound ligands activating tyrosine kinase signaling proteins that are known to have an inhibitory effect on oligodendrocyte regeneration. In this study, we examined the expression of ephrins on immune cells of 43 patients with relapsing-remitting (RR) MS compared to 27 matched healthy controls (HC). We found an increased expression of ephrin-A2, -A3 and -B3, especially on T cell subpopulations. We also showed overexpression of ephrins on immune cells of patients with RR-MS that increases the forward signaling pathway and that expression of ephrins on immune cells has an inhibitory effect on the differentiation of oligodendrocyte precursor cells (OPCs) in vitro. Our study findings support the concept that the immune activity of T cells in patients with RR-MS has an inhibitory effect on the differentiation capacity of OPCs through the expression and forward signaling of ephrins.
Collapse
Affiliation(s)
- Maya Golan
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Avivit Krivitsky
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karin Mausner-Fainberg
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Moshe Benhamou
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ifat Vigiser
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Keren Regev
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Hadar Kolb
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Arnon Karni
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
49
|
Ex uno, plures-From One Tissue to Many Cells: A Review of Single-Cell Transcriptomics in Cardiovascular Biology. Int J Mol Sci 2021; 22:ijms22042071. [PMID: 33669808 PMCID: PMC7922347 DOI: 10.3390/ijms22042071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Recent technological advances have revolutionized the study of tissue biology and garnered a greater appreciation for tissue complexity. In order to understand cardiac development, heart tissue homeostasis, and the effects of stress and injury on the cardiovascular system, it is essential to characterize the heart at high cellular resolution. Single-cell profiling provides a more precise definition of tissue composition, cell differentiation trajectories, and intercellular communication, compared to classical bulk approaches. Here, we aim to review how recent single-cell multi-omic studies have changed our understanding of cell dynamics during cardiac development, and in the healthy and diseased adult myocardium.
Collapse
|
50
|
Cardiac cell type-specific responses to injury and contributions to heart regeneration. CELL REGENERATION 2021; 10:4. [PMID: 33527149 PMCID: PMC7851195 DOI: 10.1186/s13619-020-00065-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Heart disease is the leading cause of mortality worldwide. Due to the limited proliferation rate of mature cardiomyocytes, adult mammalian hearts are unable to regenerate damaged cardiac muscle following injury. Instead, injured area is replaced by fibrotic scar tissue, which may lead to irreversible cardiac remodeling and organ failure. In contrast, adult zebrafish and neonatal mammalian possess the capacity for heart regeneration and have been widely used as experimental models. Recent studies have shown that multiple types of cells within the heart can respond to injury with the activation of distinct signaling pathways. Determining the specific contributions of each cell type is essential for our understanding of the regeneration network organization throughout the heart. In this review, we provide an overview of the distinct functions and coordinated cell behaviors of several major cell types including cardiomyocytes, endocardial cells, epicardial cells, fibroblasts, and immune cells. The topic focuses on their specific responses and cellular plasticity after injury, and potential therapeutic applications.
Collapse
|