1
|
Xu W, Zhu L, Zhang S, Wang X, Gong D, Fan Y. Advances in the roles and molecular mechanisms of exosomal circular RNAs in regulating the pre-metastatic niche of tumors. Discov Oncol 2025; 16:568. [PMID: 40252161 PMCID: PMC12009264 DOI: 10.1007/s12672-025-02374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/11/2025] [Indexed: 04/21/2025] Open
Abstract
Metastasis remains a major cause of morbidity and mortality in patients with malignant tumors. The pre-metastatic niche is a prerequisite for distant metastasis driven by primary tumors. Circular RNAs (circRNAs), a class of single-stranded closed non-coding RNAs, exhibit high stability, evolutionary conservation, and cell-type specificity. Exosomes, as natural carriers of circRNAs, mediate intercellular communication and contribute to the formation of the pre-metastatic niche; however, the mechanisms by which they do so remain incompletely understood. This review summarizes the biological characteristics and functions of exosomal circRNAs and outlines the molecular pathways through which they shape the tumor pre-metastatic microenvironment, with emphasis on immunosuppression, vascular permeability, extracellular matrix remodeling, and lymphangiogenesis. This is the first review to focus on the functional roles and molecular mechanisms of exosomal circRNAs in pre-metastatic niche regulation, providing a basis for the development of therapeutic strategies targeting metastatic progression.
Collapse
Affiliation(s)
- Wei Xu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Luyu Zhu
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, 223812, Jiangsu, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, 223812, Jiangsu, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, 223812, Jiangsu, People's Republic of China.
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Chi R, Liu Y, Wang P, Yang F, Wang X, He X, Di R, Chu M. Estrogen-induced circFAM171A1 regulates sheep myoblast proliferation through the oar-miR-485-5p/MAPK15/MAPK pathway. Cell Mol Life Sci 2025; 82:123. [PMID: 40105989 PMCID: PMC11923336 DOI: 10.1007/s00018-025-05639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Estrogen is an important hormone that affects muscle development in female animals. Previous studies have shown that estrogen can protect muscle cells from apoptosis by inhibiting the MAPK signaling pathway. However, the molecular mechanisms by which estrogen-induced MAPK signaling regulates myoblast growth and development remain unclear. In this study, RNA-seq was performed on ovariectomized small-tailed Han (OR-STH) sheep and sham surgery small-tailed Han (STH) sheep to analyze the effects of estrogen on muscle growth and development in female animals. There were 8721 differentially expressed circRNAs (DECs), 143 differentially expressed miRNAs (DEMs) and 2238 differentially expressed mRNAs (DEGs) in the longissimus dorsi between the OR-STH and STH groups. Bioinformatics analysis revealed that the differentially expressed gene MAPK15 was significantly enriched in the MAPK signaling pathway, which is important for muscle development. Therefore, we constructed the ceRNA network circFAM171A1/oar-miR-485-5p/MAPK15 and explored its effect on muscle growth and development. The results of the molecular mechanism experiments indicated that circFAM171A1 can sponge oar-miR-485-5p to regulate MAPK15. The addition of the exogenous hormone estradiol (E2) to sheep myoblasts could induce circFAM171A1, regulate the expression of oar-miR-485-5p and MAPK15, and promote the proliferation of sheep myoblasts. The results showed that MAPK15 and circFAM171A1 significantly promoted the proliferation of myoblasts and inhibited the apoptosis of myoblasts in sheep, whereas oar-miR-485-5p inhibited the expression of MAPK15 and circFAM171A1, inhibited myoblast proliferation and promoted apoptosis. Furthermore, circFAM171A1 attenuated the inhibitory effect of oar-miR-485-5p on myoblasts. In summary, estrogen induced the expression of circFAM171A1 in sheep myoblasts, and circFAM171A1 can act as a sponge for oar-miR-485-5p to promote the expression of the target gene MAPK15 and ultimately regulate the proliferation of sheep myoblasts. This study provides new insights into the molecular mechanism of estrogen regulation of muscle growth and development in female animals.
Collapse
Affiliation(s)
- Runqing Chi
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, 230031, China
| | - Peng Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fan Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
3
|
Golestanifar A, Khedri H, Noorabadi P, Saberiyan M. Identification of hub genes, non-coding RNAs and pathways in Renal cell carcinoma (RCC): A comprehensive in silico study. Biochem Biophys Rep 2025; 41:101942. [PMID: 39980583 PMCID: PMC11840516 DOI: 10.1016/j.bbrep.2025.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025] Open
Abstract
Backgrounds Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults. RCC begins in the renal tubule epithelial cells, essential for blood filtration and urine production. Methods In this study, we aim to uncover the molecular mechanisms underlying kidney renal clear cell carcinoma (KIRC) by analyzing various non-coding RNAs (ncRNAs) and protein-coding genes involved in the disease. Using high-throughput sequencing datasets from the Gene Expression Omnibus (GEO), we identified differentially expressed mRNAs (DEMs), miRNAs (DEMIs), and circRNAs (DECs) in KIRC samples compared to normal kidney tissues. Our approach combined differential expression analysis, functional enrichment through Gene Ontology (GO) and KEGG pathway mapping, and a Protein-Protein Interaction (PPI) network to identify crucial hub genes in KIRC progression. Results Key findings include the identification of hub genes such as EGFR, FN1, IL6, and ITGAM, which were closely associated with immune responses, cell signaling, and metabolic dysregulation in KIRC. Further analysis indicated that these genes could be potential biomarkers for prognosis and therapeutic targets. We constructed a competitive endogenous RNA (ceRNA) network involving lncRNAs, circRNAs, and miRNAs, suggesting complex regulatory interactions that drive KIRC pathogenesis.Additionally, the study examined drug sensitivity associated with the expression of hub genes, revealing the potential for personalized treatments. Immune cell infiltration patterns showed significant correlations with hub gene expression, highlighting the importance of immune modulation in KIRC. Conclusion This research provides a foundation for developing targeted therapies and diagnostic biomarkers for KIRC while underscoring the need for experimental validation to confirm these bioinformatics insights.
Collapse
Affiliation(s)
- Ahmad Golestanifar
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hengameh Khedri
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Noorabadi
- Department of Internal Medicine, School of Medicine, Urmia University of Medical sciences, Urmia, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
4
|
Yang H, Li M, Zhang B, Zhang J, Shi Y, Ma T, Sun Y. CircGRB14 Inhibits Proliferation and Promotes Apoptosis of Granulosa Cells in Chicken Follicle Selection Through Sponging miR-12264-3p and miR-6660-3p. Int J Mol Sci 2025; 26:2214. [PMID: 40076832 PMCID: PMC11901040 DOI: 10.3390/ijms26052214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The development and selection of ovarian follicles are essential for continuous egg production in chickens. Non-coding RNAs, particularly circular RNAs (circRNAs), play a critical regulatory role in follicle selection, a process heavily involving granulosa cells (GCs). In this study, we analyzed circRNA expression profiles in small yellow follicles (SYFs) and large yellow follicles (LYFs) of Taihang chickens using RNA sequencing. We identified 14,586 circRNAs, with 57 showing differential expression (DE-circRNAs) between SYFs and LYFs. Functional enrichment analysis revealed that these DE-circRNAs are involved in key biological processes, including signal transduction, cell membrane formation, and nuclear enzymatic regulation. We focused on circGRB14, a circRNA derived from the growth factor receptor-bound protein 14 (GRB14) gene, as a potential regulator of follicle selection. Using qPCR, CCK-8 proliferation assays, and Annexin V/PI apoptosis analysis, we demonstrated that circGRB14 inhibits GC proliferation and promotes apoptosis. In contrast, miR-12264-3p and miR-6660-3p, validated as direct targets of circGRB14 via Dual-Luciferase Reporter assays, exhibited opposing effects by promoting GC proliferation and inhibiting apoptosis. These findings highlight the circGRB14-miR-12264-3p/miR-6660-3p axis as a key regulatory mechanism in GC dynamics during follicle selection. This study provides novel insights into the functional interplay between circRNAs and miRNAs in avian follicle development, offering potential targets for improving egg production in poultry.
Collapse
Affiliation(s)
- Huanqi Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Mengxiao Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Beibei Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Jinming Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Yuxiang Shi
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Tenghe Ma
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Li M, Pang X, Xu H, Xiao L. CircSCMH1 Accelerates Sorafenib Resistance in Hepatocellular Carcinoma by Regulating HN1 Expression via miR-485-5p. Mol Biotechnol 2025; 67:304-316. [PMID: 38372878 DOI: 10.1007/s12033-024-01054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024]
Abstract
Sorafenib (SOR) is the first-line chemotherapeutic therapy for hepatocellular carcinoma (HCC) treatment, but SOR resistance is a key factor affecting the therapeutic effect. Emerging studies have suggested that circular RNAs (circRNAs) play an important role in the development of drug resistance in HCC cells. This paper aimed to elucidate the potential role and molecular mechanism of circRNA Scm polycomb group protein homolog 1 (circSCMH1) in SOR-resistant HCC cells. CircSCMH1, microRNA-485-5p (miR-485-5p), and hematological and neurological expressed 1 (HN1) contents were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK8) assay was adopted to detect the SOR sensitivity of cells. Cell proliferation, migration, invasion, and apoptosis were assessed using colony formation, 5-Ethynyl-2'-deoxyuridine (EdU), transwell, and flow cytometry assays. Glucose metabolism was analyzed using commercial kits. HN1, B cell lymphoma-2 (Bcl-2), and Bcl-2-associated X (Bax) protein levels were assessed using western blot. Binding between miR-485-5p and circSCMH1 or HN1 was verified using a dual-luciferase reporter. Xenograft tumor model was used to explore the function of circSCMH1 in vivo. CircSCMH1 expression and HN1 abundances were increased, but the miR-485-5p level was reduced in SOR-resistant HCC tissues and cells. Deficiency of circSCMH1 enhanced SOR sensitivity by suppressing cell proliferation, migration, invasion, and glucose metabolism and inducing cell apoptosis in SOR-resistant HCC cell lines (Huh7/SOR and Hep3B/SOR). Mechanistically, circSCMH1 sponged miR-485-5p to positively regulate HN1 expression. Importantly, circSCMH1 depletion inhibited tumor growth and increased SOR sensitivity in vivo. CircSCMH1 promoted SOR resistance in HCC cells at least partly through upregulating HN1 expression by sponging miR-485-5p. These findings elucidated a new regulatory pathway of chemo-resistance in SOR-resistant HCC cells and provided a possible circRNA-targeted therapy for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Drug Resistance, Neoplasm/genetics
- Sorafenib/pharmacology
- Animals
- Gene Expression Regulation, Neoplastic/drug effects
- RNA, Circular/genetics
- Mice
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Cell Movement/drug effects
- Xenograft Model Antitumor Assays
- Mice, Nude
- Polycomb Repressive Complex 1/genetics
- Polycomb Repressive Complex 1/metabolism
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Meixiang Li
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, No. 3002 Sungang West Road, Futian District, Shenzhen, Guangdong, China
| | - Xionghao Pang
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, No. 3002 Sungang West Road, Futian District, Shenzhen, Guangdong, China
| | - Haixia Xu
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, No. 3002 Sungang West Road, Futian District, Shenzhen, Guangdong, China
| | - Liang Xiao
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, No. 3002 Sungang West Road, Futian District, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Hao C, Han J, Xiang K, Wang Y, Chen X, Yang C, Liang A, Jia L. CircVIRMA enhances cell malignant behavior by governing the miR-452-5p/CREBRF pathway in cervical cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8825-8838. [PMID: 38850300 DOI: 10.1007/s00210-024-03159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024]
Abstract
Our current study aimed to investigate the role and mechanism of circVIRMA in cervical cancer (CC) progression. CircVIRMA, microRNA-452-5p (miR-452-5p) and CREB3 regulatory factor (CREBRF) mRNA levels were examined in CC via quantitative real-time PCR (qRT-PCR). The protein level of CREBRF in CC was checked by Western blot. Cell Counting Kit-8 (CCK-8), colony formation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, cell cycle, flow cytometry and transwell assays were conducted to estimate the effects of circVIRMA on malignant phenotypes of CC tumors. Western blot was used to measure related marker protein levels. The interaction between miR-452-5p and circVIRMA or CREBRF was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Xenograft assay was used to assess the effect of circVIRMA on tumor growth in vivo. Immunohistochemistry (IHC) assay was performed to detect Ki-67 expression in tissues of mice. CircVIRMA and CREBRF levels were upregulated, while miR-452-5p was downregulated in CC tissues and cells. CircVIRMA silencing restrained CC cell proliferation, migration and invasion whereas induced apoptosis in vitro. In addition circVIRMA knockdown markedly attenuated xenograft tumor growth in vivo. circVIRMA was an efficient molecular sponge for miR-452-5p, and negatively regulated miR-452-5p expression. circVIRMA regulated CREBRF expression to modulate CC progression via miR-452-5p. MiR-452-5p downregulation reversed the effects of circVIRMA knockdown on CC progression. MiR-452-5p directly targeted CREBRF, and CREBRF overexpression partly restored the impact of miR-452-5p mimics on CC progression. circVIRMA mediated CC progression via regulating miR-452-5p/CREBRF axis, providing a novel therapeutic target for CC treatment.
Collapse
Affiliation(s)
- Chengluo Hao
- Department of Hematology and Oncology, Third People's Hospital of Zigong, Zigong, Sichuan, China
| | - Jianjun Han
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), No. 192, East Section of Jiannan Road, Youxian District, Mianyang, Sichuan, China
| | - Kechao Xiang
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), No. 192, East Section of Jiannan Road, Youxian District, Mianyang, Sichuan, China
| | - Yun Wang
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), No. 192, East Section of Jiannan Road, Youxian District, Mianyang, Sichuan, China
| | - Xiangrui Chen
- Department of Hematology and Oncology, Third People's Hospital of Zigong, Zigong, Sichuan, China
| | - Chen Yang
- Department of Hematology and Oncology, Third People's Hospital of Zigong, Zigong, Sichuan, China
| | - Ailin Liang
- Department of Obstetrics and Gynecology, Chengdu BOE Hospital, Chengdu, Sichuan, China
| | - Li Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), No. 192, East Section of Jiannan Road, Youxian District, Mianyang, Sichuan, China.
| |
Collapse
|
8
|
Xu Y, Gao Z, Sun X, Li J, Ozaki T, Shi D, Yu M, Zhu Y. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev 2024; 43:1055-1074. [PMID: 38558156 DOI: 10.1007/s10555-024-10182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Collapse
Affiliation(s)
- Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, Liaoning, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
9
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Zhang J, Tang Z, Bao G. WITHDRAWN: miR-424-5p suppresses the proliferation and immigration of oral squamous cell carcinoma via down-regulation of KDR. Aging (Albany NY) 2024; 16:206083. [PMID: 39189951 DOI: 10.18632/aging.206083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 08/28/2024]
Abstract
This paper was originally published in Aging Advance Online Publications on August 26, 2024. In compliance with Aging's withdrawal policy, the paper was withdrawn in its entirety. It will not appear in Aging internal or any external indexes or archives.
Collapse
Affiliation(s)
- Junqing Zhang
- Changde Hospital, Xiangya School of Medicine, Central South University, The First People’s Hospital of Changde City, Changde 420008, Hunan, China
| | - Zhangui Tang
- Changde Hospital, Xiangya School of Medicine, Central South University, The First People’s Hospital of Changde City, Changde 420008, Hunan, China
| | - Guanghui Bao
- Changde Hospital, Xiangya School of Medicine, Central South University, The First People’s Hospital of Changde City, Changde 420008, Hunan, China
| |
Collapse
|
11
|
Xing M, Yao B, Xu J, Lu P, Li Q, Wu D, Chen B, Wei J, Su L, Zhao Q. NatD epigenetically activates FOXA2 expression to promote breast cancer progression by facilitating MMP14 expression. iScience 2024; 27:108840. [PMID: 38303717 PMCID: PMC10830889 DOI: 10.1016/j.isci.2024.108840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
N-α-acetyltransferase D (NatD) mediates N-α-terminal acetylation of histone H4 (Nt-Ac-H4), but its role in breast cancer metastasis remains unknown. Here, we show that depletion of NatD directly represses the expression of FOXA2, and is accompanied by a significant reduction in Nt-Ac-H4 enrichment at the FOXA2 promoter. We show that NatD is commonly upregulated in primary breast cancer tissues, where its expression level correlates with FOXA2 expression, enhanced invasiveness, and poor clinical outcomes. Furthermore, we show that FOXA2 promotes the migration and invasion of breast cancer cells by activating MMP14 expression. MMP14 is also upregulated in breast cancer tissues, where its expression level correlates with FOXA2 expression and poor clinical prognosis. Our study shows that the NatD-FOXA2-MMP14 axis functions as a key signaling pathway to promote the migratory and invasive capabilities of breast cancer cells, suggesting that NatD is a critical epigenetic modulator of cell invasion during breast cancer progression.
Collapse
Affiliation(s)
- Mengying Xing
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Bing Yao
- National Experimental Teaching Center of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jiaxuan Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Peifen Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Qixiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Dongliang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Lei Su
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| |
Collapse
|
12
|
Deng W, Chen R, Xiong S, Nie J, Yang H, Jiang M, Hu B, Liu X, Fu B. CircFSCN1 induces tumor progression and triggers epithelial-mesenchymal transition in bladder cancer through augmentation of MDM2-mediated p53 silencing. Cell Signal 2024; 114:110982. [PMID: 37981069 DOI: 10.1016/j.cellsig.2023.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Compelling evidences indicated that circular RNA (circRNA) was a novel class of non-coding RNA that played critical and distinct roles in various human cancers. Their roles and underlying mechanisms, however, in bladder cancer (BC) remained largely unknown. METHODS A novel circRNA derived from oncogene FSCN1, namely circFSCN1, was selected from a microarray analysis. The phenotypic alterations were assessed with functional experiments in vitro and in vivo. RNA immunoprecipitation, RNA pull-down, luciferase reporter assay, and rescue experiments were sequentially proceeded to clarify the interactions among circFSCN1, miR-145-5p, MDM2, and p53. RESULTS We observed that the expression of circFSCN1 was elevated in BC cell lines and tissues. Next, we validated the fundamental properties of circFSCN1. In the meanwhile, we noticed that elevated circFSCN1 level, pathological T stage, and tumor grade were identified as independent factors associated with cancer-specific survivals of patients with BC,as determined by univariate and multivariable COX regression analyses. Phenotype studies demonstrated the promoting effects of circFSCN1 on the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of BC cells. Mechanistically, we elucidated that circFSCN1, primarily localized in the cytoplasm, upregulated the expression of MDM2, a well-known inhibitor of p53, by directly binding to miR-145-5p. CONCLUSIONS Elevated circFSCN1 induces tumor progression and EMT in BC via enhancing MDM2-mediated silencing of p53 by sponging miR-145-5p. Targeting circFSCN1, a novel identified target, may be conducive in impeding BC progression and providing survival benefits for patients with BC.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yongwai street 17, Nanchang City 330006, China; Jiangxi Institute of Urology, Yongwai street 17, Nanchang City 330006, China
| | - Ru Chen
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yongwai street 17, Nanchang City 330006, China; Jiangxi Institute of Urology, Yongwai street 17, Nanchang City 330006, China; Department of Urology, Fujian Medical University Union Hospital, Fuzhou City 350001, China
| | - Situ Xiong
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yongwai street 17, Nanchang City 330006, China
| | - Jianqiang Nie
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yongwai street 17, Nanchang City 330006, China
| | - Hailang Yang
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yongwai street 17, Nanchang City 330006, China; Jiangxi Institute of Urology, Yongwai street 17, Nanchang City 330006, China
| | - Ming Jiang
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yongwai street 17, Nanchang City 330006, China; Jiangxi Institute of Urology, Yongwai street 17, Nanchang City 330006, China
| | - Bing Hu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yongwai street 17, Nanchang City 330006, China; Jiangxi Institute of Urology, Yongwai street 17, Nanchang City 330006, China
| | - Xiaoqiang Liu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yongwai street 17, Nanchang City 330006, China; Jiangxi Institute of Urology, Yongwai street 17, Nanchang City 330006, China.
| | - Bin Fu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yongwai street 17, Nanchang City 330006, China; Jiangxi Institute of Urology, Yongwai street 17, Nanchang City 330006, China.
| |
Collapse
|
13
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M, Liu L. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15:3. [PMID: 38177102 PMCID: PMC10766988 DOI: 10.1038/s41419-023-06389-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Current treatment strategies for cancer, especially advanced cancer, are limited and unsatisfactory. One of the most substantial advances in cancer therapy, in the last decades, was the discovery of a new layer of immunotherapy approach, immune checkpoint inhibitors (ICIs), which can specifically activate immune cells by targeting immune checkpoints. Immune checkpoints are a type of immunosuppressive molecules expressed on immune cells, which can regulate the degree of immune activation and avoid autoimmune responses. ICIs, such as anti-PD-1/PD-L1 drugs, has shown inspiring efficacy and broad applicability across various cancers. Unfortunately, not all cancer patients benefit remarkably from ICIs, and the overall response rates to ICIs remain relatively low for most cancer types. Moreover, the primary and acquired resistance to ICIs pose serious challenges to the clinical application of cancer immunotherapy. Thus, a deeper understanding of the molecular biological properties and regulatory mechanisms of immune checkpoints is urgently needed to improve clinical options for current therapies. Recently, circular RNAs (circRNAs) have attracted increasing attention, not only due to their involvement in various aspects of cancer hallmarks, but also for their impact on immune checkpoints in shaping the tumor immune microenvironment. In this review, we systematically summarize the current status of immune checkpoints in cancer and the existing regulatory roles of circRNAs on immune checkpoints. Meanwhile, we also aim to settle the issue in an evidence-oriented manner that circRNAs involved in cancer hallmarks regulate the effects and resistance of ICIs by targeting immune checkpoints.
Collapse
Affiliation(s)
- Lingjiao Meng
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Science and Education Department, Shanghai Electric Power Hospital, Shanghai, 20050, China.
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
| |
Collapse
|
14
|
Shen Y, Wu R, Zhuo Z, Deng X, Li W, Liu C. Identification of circATG9A as a novel biomarker for renal cell carcinoma. Cancer Gene Ther 2024; 31:82-93. [PMID: 37945969 DOI: 10.1038/s41417-023-00684-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The incidence and mortality rates of renal cell carcinoma (RCC) have rapidly increased worldwide. To gain new insights into the regulatory role of circular RNAs (circRNAs) in RCC progression, we conducted RNA sequencing on three pairs of ccRCC and adjacent normal tissues. RT-PCR was utilized to analyze RNA expression. We investigated the effects of circATG9A on RCC cells through various assays including CCK-8, Transwell, wound healing, and colony formation assays. Furthermore, we employed FISH, RNA pull-down, luciferase reporter, and RIP assays to elucidate the mechanism by which circATG9A regulates RCC. Ultimately, we identified 118 differentially expressed circRNAs in RCC, including a novel circRNA, circATG9A, which was found to promote RCC progression both in vitro and in vivo. Moreover, mRNA sequencing, western blotting, and rescue experiments indicated that TRPM3 is the target of circATG9A in RCC progression. Bioinformatic analysis, RNA pull-down, FISH, and RIP assays suggested that circATG9A regulates TRPM3 expression by acting as a sponge for miR-497-5p. Finally, Western blotting revealed that circATG9A promotes the epithelial-mesenchymal transition (EMT) process through the Wnt/β-catenin signaling pathway. Our findings demonstrate that circATG9A is a novel circRNA upregulated in RCC that plays a crucial role in the EMT process through the miR-497-5p/TRPM3/Wnt/β-catenin axis. These results suggest that circATG9A could be a promising target for RCC prognosis and therapy.
Collapse
Affiliation(s)
- Ye Shen
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China.
| | - Ruipeng Wu
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Zou Zhuo
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Ximeng Deng
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Weijian Li
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Changkun Liu
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China.
| |
Collapse
|
15
|
Yin JY, Zhou Y, Ding XM, Gong RZ, Zhou Y, Hu HY, Liu Y, Lv XB, Zhang B. UCA1 Inhibits NKG2D-mediated Cytotoxicity of NK Cells to Breast Cancer. Curr Cancer Drug Targets 2024; 24:204-219. [PMID: 37076962 DOI: 10.2174/1568009623666230418134253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Natural killer cells play important roles in tumor immune surveillance, and cancer cells must resist this surveillance in order to progress and metastasise. INTRODUCTION The study aimed to explore the mechanism of how breast cancer cells become resistant to the cytotoxicity of NK cells. METHODS We established NK-resistant breast cancer cells by exposing MDA-MB-231 cells and MCF-7 cells to NK92 cells. Profiles of lncRNA were compared between the NK-resistant and parental cell lines. Primary NK cells were isolated by MACS, and the NK attacking effect was tested by non-radioactive cytotoxicity. The change in lncRNAs was analyzed by Gene-chip. The interaction between lncRNA and miRNA was displayed by Luciferase assay. The regulation of the gene was verified by QRT-PCR and WB. The clinical indicators were detected by ISH, IH, and ELISA, respectively. RESULTS UCA1 was found to be significantly up-regulated in both NK-resistant cell lines, and we confirmed such up-regulation on its own to be sufficient to render parental cell lines resistant to NK92 cells. We found that UCA1 up-regulated ULBP2 via the transcription factor CREB1, while it up-regulated ADAM17 by "sponging" the miR-26b-5p. ADAM17 facilitated the shedding of soluble ULBP2 from the surface of breast cancer cells, rendering them resistant to killing by NK cells. UCA1, ADAM17, and ULBP2 were found to be expressed at higher levels in bone metastases of breast cancer than in primary tumors. CONCLUSION Our data strongly suggest that UCA1 up-regulates ULBP2 expression and shedding, rendering breast cancer cells resistant to killing by NK cells.
Collapse
Affiliation(s)
- Jun-Yi Yin
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, 445 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, China
- Oncology Department of Tongji Hospital of Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Yao Zhou
- Department of Breast Surgery, the Third hospital of Nanchang, No. 2, Xiangshan Road, Xihu District, Nanchang, Jiangxi, 330009, China
| | - Xiao-Ming Ding
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Run-Ze Gong
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yan Zhou
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Hai-Yan Hu
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yuan Liu
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Xiao-Bin Lv
- Central Laboratory of the Third Affiliated Hospital of Nanchang University, No. 128 Xiangshan N Road, Donghu District, Nanchang, Jiangxi, 330008, China
| | - Bing Zhang
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, 445 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
16
|
Li HR, Chen GL, Fang XL, Cai XJ, Xu RL, Li DD, Zhang ZW. Circ_0068481 Affects the Human Pulmonary Artery Smooth Muscle Cells' Progression by miR-361-3p/KLF5 Axis. Am J Hypertens 2024; 37:33-45. [PMID: 37738301 DOI: 10.1093/ajh/hpad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 06/28/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) contributes to the pathogenesis of pulmonary arterial hypertension (PAH). In this work, we defined the precise part of circ_0068481 in PASMC proliferation and migration induced by hypoxia. We hypothesized that circ_0068481 enhanced hypoxia-induced PASMC proliferation, invasion, and migration through the microRNA (miR)-361-3p/Krüppel-like factor 5 (KLF5) pathway. METHODS Human PASMCs (hPASMCs) were exposed to hypoxic (3% O2) conditions. Circ_0068481, miR-361-3p, and KLF5 levels were gauged by qRT-PCR and western blot. Cell viability, proliferation, invasion, and migration were detected by XTT, EdU incorporation, transwell, and wound-healing assays, respectively. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were performed to confirm the direct relationship between miR-361-3p and circ_0068481 or KLF5. RESULTS Circ_0068481 expression was increased in the serum of PAH patients and hypoxia-induced hPASMCs. Downregulation of circ_0068481 attenuated hypoxia-induced promotion in hPASMC proliferation, invasion, and migration. Circ_0068481 directly targeted miR-361-3p, and miR-361-3p downregulation reversed the inhibitory effects of circ_0068481 silencing on hypoxia-induced hPASMC proliferation, invasion, and migration. KLF5 was a direct miR-361-3p target, and miR-361-3p upregulation mitigated hypoxia-induced hPASMC proliferation, invasion, and migration by inhibiting KLF5 expression. Moreover, circ_0068481-induced KLF5 expression by binding to miR-361-3p in hypoxic hPASMCs. CONCLUSIONS Circ_0068481 knockdown ameliorated hypoxia-induced hPASMC proliferation, invasion, and migration at least in part through the miR-361-3p/KLF5 axis.
Collapse
Affiliation(s)
- Hai-Rong Li
- Department of Cardiology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guan-Liang Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Fang
- Department of Cardiology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Xing-Jiu Cai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rong-Li Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dong-Dong Li
- Laboratory department, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Zhi-Wei Zhang
- Department of Cardiology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangzhou, China
| |
Collapse
|
17
|
Cao S, Yin Y, Hu H, Hong S, He W, Lv W, Liu R, Li Y, Yu S, Xiao H. CircGLIS3 inhibits thyroid cancer invasion and metastasis through miR-146b-3p/AIF1L axis. Cell Oncol (Dordr) 2023; 46:1777-1789. [PMID: 37610691 DOI: 10.1007/s13402-023-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE Studies have shown that circRNA is involved in the occurrence and development of human cancers. However, it remains unclear that the contribution of circRNA in thyroid carcinoma and its role in the process of tumorigenesis. METHODS The expression profile of circRNA-miRNA-mRNA in thyroid carcinoma was detected by RNA sequencing and verified by qRT-PCR. The characteristics of circGLIS3 were verified by RNase R and actinomycin assays, subcellular fractionation, and fluorescence in situ hybridization. The functions of circGLIS3 and AIF1L were detected by wound healing, transwell, 3D culture and Western blot. RNA Immunoprecipitation (RIP), RNA pulldown and dual-luciferase reporter assays were used to verify the target genes of circGLIS3 and downstream miRNAs. Functional rescue experiments were performed by transfecting miRNA mimics or siRNA of target genes. Finally, metastatic mouse models were used to investigate circGLIS3 function in vivo. RESULTS In this study, we discovered a novel circRNA (has_circ_0007368, named as circGLIS3) by RNA sequencing. CircGLIS3 was down-regulated in thyroid carcinoma tissues and cells line, and was negatively associated with malignant clinical features of thyroid carcinoma. Functional studies found that circGLIS3 could inhibit the migration and invasion of thyroid carcinoma cells, and was related to the EMT process. Mechanistically, circGLIS3 can upregulate the expression of the AIF1L gene by acting as a miR-146b-3p sponge to inhibit the progression of thyroid carcinoma. CONCLUSION Our study identified circGLIS3 as a novel tumor suppressor in thyroid cancer, indicating the potential of circGLIS3 as a promising diagnostic and prognostic marker for thyroid cancer.
Collapse
Affiliation(s)
- Siting Cao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yali Yin
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Huijuan Hu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weiman He
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Zhou Z, Feng D, Yang Y, Gao P, Wang L, Wu Z. Pan-cancer analysis reveals the prognostic gene CASR suppresses tumor progression and epithelial-mesenchymal transition in renal clear cell carcinoma. Cell Calcium 2023; 116:102803. [PMID: 37804688 DOI: 10.1016/j.ceca.2023.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Calcium-sensing receptor (CASR), primarily found in the parathyroid gland and other tissues, plays a crucial role in sensing and regulating extracellular calcium, which was also aberrantly expressed in human tumors. Nevertheless, a comprehensive analysis of CASR in pan-cancer has yet to be conducted. To gain a better understanding of CASR in pan-cancer, data profiles on CASR cancers were collected from TCGA database. The expression level, clinical significance, prognostic value, and potential mechanisms of CASR in pan-cancer were analyzed via multiple public databases. The functional assays were conducted using human kidney renal clear cell carcinoma (KIRC) cell lines, clinical samples, and nude mice. Our research revealed that the abnormal expression of CASR was found in a variety of tumors. The expression and mutation of CASR were significantly associated with tumor prognosis and stage. Pathway analyses suggested that CASR was involved in the epithelial-mesenchymal transition (EMT) progress. Besides, CASR expression was correlated with immune inhibitory genes and immunotherapy in cancers. Particularly in KIRC, we established that CASR mRNA and protein levels were downregulated in clinical samples and cell lines. Moreover, a Cox regression analysis revealed that CASR was an independent prognostic factor in both TCGA-KIRC samples and clinical samples from our center. In vitro and in vivo experiments revealed that blocking CASR with lentivirus could suppress tumor growth and invasion, and EMT progress in KIRC cells. In summary, our study provides a comprehensive bioinformatic analysis of CASR in pan-cancer, offering deeper insights into its function and the EMT mechanism in KIRC, warranting further investigation.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Dexiang Feng
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215123, PR China
| | - Yuanyuan Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Peng Gao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Institute of Urology, Fudan University, Shanghai 200040, PR China
| | - Lujia Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Institute of Urology, Fudan University, Shanghai 200040, PR China.
| | - Zhong Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Institute of Urology, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
19
|
Ma Q, Zhang Y, Liang H, Zhang F, Liu F, Chen S, Hu Y, Jiang L, Hao Y, Li M, Liu Y. EMP3 as a key downstream target of miR-663a regulation interferes with MAPK/ERK signaling pathway to inhibit gallbladder cancer progression. Cancer Lett 2023; 575:216398. [PMID: 37730106 DOI: 10.1016/j.canlet.2023.216398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract, and its molecular pathogenesis remains unclear. Here we explore the functional roles of epithelial membrane protein 3 (EMP3) in GBC progression, which is aberrantly expressed in various types of cancers. The results showed that the expression level of EMP3 was reduced in human GBC tissues compared with non-malignant tissues. Further, the low expression of EMP3 was associated with the poor prognosis of GBC patients by Kaplan-Meier analysis. The ectopic expression of EMP3 inhibited GBC cell proliferation, migration and invasion in vitro and in vivo. Conversely, the depletion of EMP3 promoted GBC cell growth and metastasis. In addition, we found that EMP3 was a target gene of miR-663a, and the downregulation of EMP3 in GBC was attributed to the overexpression of miR-663a. MiR-663a was also shown to be a tumor-promoting factor mediating GBC development. In this study, we demonstrate that downregulation of EMP3 activates MAPK/ERK signaling, which regulates GBC progression. These data reveal the mechanism by which EMP3 inhibits the progression of GBC, suggesting that the miR-663a/EMP3/MAPK/ERK axis may be a new therapeutic target for GBC treatment.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Thyroid Oncology, Shanghai East Hospital Affiliated to Tongji University, School of Medicine, Shanghai 200120, China
| | - Yijian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Haibin Liang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Fatao Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
| | - Shili Chen
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University, Chongqing 400037,China
| | - Lin Jiang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Yajuan Hao
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China.
| |
Collapse
|
20
|
Han X, Gao Z, Cheng Y, Wu S, Chen J, Zhang W. A Therapeutic DNA Vaccine Targeting HPV16 E7 in Combination with Anti-PD-1/PD-L1 Enhanced Tumor Regression and Cytotoxic Immune Responses. Int J Mol Sci 2023; 24:15469. [PMID: 37895145 PMCID: PMC10607554 DOI: 10.3390/ijms242015469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Persistent infection of high-risk human papillomavirus (HPV) and the expression of E6 and E7 oncoproteins are the main causes of cervical cancer. Several prophylactic HPV vaccines are used in the clinic, but these vaccines have limited efficacy in patients already infected with HPV. Since HPV E7 is vital for tumor-specific immunity, developing a vaccine against HPV E7 is an attractive strategy for cervical cancer treatment. Here, we constructed an HPV16 E7 mutant that loses the ability to bind pRb while still eliciting a robust immune response. In order to build a therapeutic DNA vaccine, the E7 mutant was packaged in an adenovirus vector (Ad-E7) for efficient expression and enhanced immunogenicity of the vaccine. Our results showed that the Ad-E7 vaccine effectively inhibited tumor growth and increased the proportion of interferon-gamma (IFN-γ)-secreting CD8+ T cells in the spleen, and tumor-infiltrating lymphocytes in a mouse cervical cancer model was achieved by injecting with HPV16-E6/E7-expressing TC-1 cells subcutaneously. Combining the Ad-E7 vaccine with the PD-1/PD-L1 antibody blockade significantly improved the control of TC-1 tumors. Combination therapy elicited stronger cytotoxic T lymphocyte (CTL) responses, and IFN-γ secretion downregulated the proportion of Tregs and MDSCs significantly. The expressions of cancer-promoting factors, such as TNF-α, were also significantly down-regulated in the case of combination therapy. In addition, combination therapy inhibited the number of capillaries in tumor tissues and increased the thickness of the tumor capsule. Thus, Ad-E7 vaccination, in combination with an immune checkpoint blockade, may benefit patients with HPV16-associated cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Weifang Zhang
- Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (X.H.); (Z.G.); (Y.C.); (S.W.); (J.C.)
| |
Collapse
|
21
|
Tanaka N, Sakamoto T. MT1-MMP as a Key Regulator of Metastasis. Cells 2023; 12:2187. [PMID: 37681919 PMCID: PMC10486781 DOI: 10.3390/cells12172187] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Membrane type1-matrix metalloproteinase (MT1-MMP) is a member of metalloproteinases that is tethered to the transmembrane. Its major function in cancer progression is to directly degrade the extracellular matrix components, which are mainly type I-III collagen or indirectly type IV collagen through the activation of MMP-2 with a cooperative function of the tissue inhibitor of metalloproteinase-2 (TIMP-2). MT1-MMP is expressed as an inactive form (zymogen) within the endoplasmic reticulum (ER) and receives truncation processing via furin for its activation. Upon the appropriate trafficking of MT1-MMP from the ER, the Golgi apparatus to the cell surface membrane, MT1-MMP exhibits proteolytic activities to the surrounding molecules such as extracellular matrix components and cell surface molecules. MT1-MMP also retains a non-proteolytic ability to activate hypoxia-inducible factor 1 alpha (HIF-1A) via factors inhibiting the HIF-1 (FIH-1)-Mint3-HIF-1 axis, resulting in the upregulation of glucose metabolism and oxygen-independent ATP production. Through various functions of MT1-MMP, cancer cells gain motility on migration/invasion, thus causing metastasis. Despite the long-time efforts spent on the development of MT1-MMP interventions, none have been accomplished yet due to the side effects caused by off-target effects. Recently, MT1-MMP-specific small molecule inhibitors or an antibody have been reported and these inhibitors could potentially be novel agents for cancer treatment.
Collapse
Affiliation(s)
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan;
| |
Collapse
|
22
|
Cen J, Liang Y, Feng Z, Chen X, Chen J, Wang Y, Zhu J, Xu Q, Shu G, Zheng W, Liang H, Wang Z, Deng Q, Cao J, Luo J, Jin X, Huang Y. Hsa_circ_0057105 modulates a balance of epithelial-mesenchymal transition and ferroptosis vulnerability in renal cell carcinoma. Clin Transl Med 2023; 13:e1339. [PMID: 37496319 PMCID: PMC10372385 DOI: 10.1002/ctm2.1339] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The incidence of renal cell carcinoma (RCC) has increased in recent years. Metastatic RCC is common and remains a major cause of mortality. A regulatory role for circular RNAs (circRNAs) in the occurrence and progression of RCC has been identified, but their function, molecular mechanisms, and potential clinical applications remain poorly understood. METHODS High-throughput RNA sequencing was used to explore the differential expression of circRNAs and their related pathways in RCC patients. Transwell and CCK-8 assays were used to assess the function of hsa_circ_0057105 in RCC cells. The clinical relevance of hsa_circ_0057105 was evaluated in a cohort of RCC patients. The hsa_circ_0057105 regulatory axis was defined using RNA pull-down, luciferase reporter assays, and fluorescence in situ hybridization assays, and the in vivo effect of hsa_circ_0057105 was validated using animal experiments. RESULTS Single-sample gene set enrichment analysis and correlation analysis of RNA-seq data showed that hsa_circ_0057105 was potentially oncogenic and may serve to regulate epithelial-mesenchymal transition (EMT) activation in RCC. Hsa_circ_0057105 expression was associated with advanced TNM stages and was an independent prognostic factor for poor RCC patient survival. Phenotypic studies show that hsa_circ_0057105 can enhance the migration and invasion abilities of RCC cells. Further, hsa_circ_0057105 was shown to inhibit the expression of miR-577, a miRNA that regulated the expression of both COL1A1, which induced EMT activation, and VDAC2, which modulated ferroptosis sensitivity. The dual regulatory roles of hsa_circ_0057105 on EMT and ferroptosis sensitivity were verified using rescue experiments. Animal studies confirmed that hsa_circ_0057105 increased the metastatic ability and ferroptosis sensitivity of RCC cells in vivo. CONCLUSIONS In RCC, hsa_circ_0057105 regulates COL1A1 and VDAC2 expression through its sponge effect on miR-577, acting like a 'double-edged sword'. These findings provide new insight into the relationship between EMT and ferroptosis in RCC and provide potential biomarkers for RCC surveillance and treatment.
Collapse
Affiliation(s)
- Junjie Cen
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yanping Liang
- Department of Laboratory MedicineThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Zihao Feng
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xu Chen
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Jinlong Chen
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yinghan Wang
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Jiangquan Zhu
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Quanhui Xu
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Guannan Shu
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Wenbin Zheng
- Department of EmergencyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Hui Liang
- Department of UrologyAffiliated Longhua People's HospitalSouthern Medical UniversityShenzhenPeople's Republic of China
| | - Zhu Wang
- Department of UrologyAffiliated Longhua People's HospitalSouthern Medical UniversityShenzhenPeople's Republic of China
| | - Qiong Deng
- Department of UrologyAffiliated Longhua People's HospitalSouthern Medical UniversityShenzhenPeople's Republic of China
| | - Jiazheng Cao
- Department of UrologyJiangmen Central HospitalJiangmenPeople's Republic of China
| | - Junhang Luo
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xiaohan Jin
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yong Huang
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of EmergencyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
23
|
Wang Y, Liu S, Cui H, Chang Y. Downregulation of TCL6 protected human trophoblast cells from LPS-induced inflammation and ferroptosis. Funct Integr Genomics 2023; 23:226. [PMID: 37420113 DOI: 10.1007/s10142-023-01148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Dysregulation of noncoding RNAs has been reported to have a close correlation with preeclampsia(PE)development. TCL6 was upregulated in patients with PE. In this study, we examined the impacts of TCL6 on modulating HTR-8/SVneo cells induced by LPS. LPS (100 and 200 ng/ml) was applied to induce inflammation in trophoblast cells HTR-8/SVneo. Cell viability, apoptosis, and transwell experiments were conducted. The ELISA methods were used for pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. MDA, GSH, and GPX kits were employed. Transfection was performed for expression regulation of TCL6, miR-485-5p, and TFRC in cells. Bioinformatic online tools were used to predict the targeting sites. Luciferase and RNA immunoprecipitation-qPCR were done to verify the interactions of TCL6, miR-485-5p, and TFRC. RNA expression levels were measured using RT-qPCR, and protein expression of TFRC and GPX4 was detected using a western blot. The free Fe (II) contents were measured. LPS decreased viability, invasion, and migration but enhanced apoptosis, ferroptosis, and inflammation. TCL6 expression was enhanced by LPS induction. The knockdown of TCL6 increased HTR-8/SVneo cell viability and invasion but inhibited cell apoptosis, inflammation, and ferroptosis while inhibition of miR-485-5p could reverse this through TFRC regulation. Moreover, miR-485-5p was sponged by TCL6 and bound to TFRC. TCL6 protected trophoblast cells from LPS-induced injury through the TFRC pathway.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Central Obstetrics and Gynecology Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Shasha Liu
- Tianjin Central Obstetrics and Gynecology Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Hongyan Cui
- Tianjin Central Obstetrics and Gynecology Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China.
| | - Ying Chang
- Tianjin Central Obstetrics and Gynecology Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China.
| |
Collapse
|
24
|
Wu J, Guo Y, Zuo ZF, Zhu ZW, Han L. MMP14 is a diagnostic gene of intrahepatic cholangiocarcinoma associated with immune cell infiltration. World J Gastroenterol 2023; 29:2961-2978. [PMID: 37274806 PMCID: PMC10237093 DOI: 10.3748/wjg.v29.i19.2961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor of the hepatobiliary system with concealed onset, strong invasiveness and poor prognosis.
AIM To explore the disease characteristic genes that may be helpful in the diagnosis of ICC and affect immune cell infiltration.
METHODS We downloaded two ICC-related human gene expression profiles from GEO database as the training group (GSE26566 and GSE32958 datasets) for difference analysis, and performed enrichment analysis on differential genes. The least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF), three machine learning algorithms, were used to screen the characteristic genes. Double verification was carried out on GSE107943 and The Cancer Genome Atlas, two verification groups. Receiver operating characteristic curve and area under the curve (AUC) were used to evaluate the diagnostic efficacy of genes for ICC. CIBERSORT and ssGSEA algorithms were used to evaluate the effect of characteristic genes on immune infiltration pattern. Human Protein Atlas (HPA) was used to analyze the protein expression level of the target gene.
RESULTS A total of 1091 differential genes were obtained in the training group. Enrichment analysis showed that the above genes were mainly enriched in small molecular catabolism, complement and coagulation cascade, bile secretion and other functions and pathways. Twenty-five characteristic genes were screened by LASSO regression, 19 by SVM-RFE algorithm, and 30 by RF algorithm. Three algorithms were used in combination to determine the characteristic gene of ICC: MMP14. The verification group confirmed that the genes had a high diagnostic accuracy (AUC values of the training group and the verification group were 0.960, 0.999, and 0.977, respectively). Comprehensive analysis of immune infiltration showed that MMP14 could affect the infiltration of monocytes, activated memory CD4 T cells, resting memory CD4 T cells, and other immune cells, and was closely related to the expression of CD200, cytotoxic T-lymphocyte-associated antigen 4, CD14, CD44, and other immune checkpoints. The results of immunohistochemistry in HPA database showed was indeed overexpressed in ICC.
CONCLUSION MMP14 can be used as a disease characteristic gene of ICC, and may regulate the distribution of immune-infiltrating cells in the ICC tumor microenvironment, which provides a new method for the determination of ICC diagnostic markers and screening of therapeutic targets.
Collapse
Affiliation(s)
- Jun Wu
- China Medical University, The General Hospital of Northern Theater Command Training Base for Graduate, Shenyang 110016, Liaoning Province, China
| | - Yang Guo
- Department of Hepatobiliary Surgery, The General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Zhi-Fan Zuo
- Gynecological Radiotherapy Ward, Liaoning Provincial Cancer Hospital, Shenyang 110801, Liaoning province, China
| | - Zi-Wei Zhu
- China Medical University, The General Hospital of Northern Theater Command Training Base for Graduate, Shenyang 110016, Liaoning Province, China
| | - Lei Han
- Department of Hepatobiliary Surgery, The General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| |
Collapse
|
25
|
Ge D, Chen J, Zhao Z, Sui B, Liang F, Wang H. Characterizing the function-related specific assembly pattern of matrix metalloproteinase-14 by dSTORM imaging. Talanta 2023; 260:124523. [PMID: 37105082 DOI: 10.1016/j.talanta.2023.124523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
As transmembrane proteolytic enzyme, matrix metalloproteinase-14 (MMP14) regulates cell migration and cancer metastasis, but how it works at the single molecule level is unclear. Molecular localization is closely related to its function, and revealing its spatial assemble details is thus helpful to understand bio-function. Here, we apply aptamer probe and dSTORM to characterize MMP14 distribution. With demonstrating labeling properties of the probe, we investigate the specific distributed pattern of MMP14 on various cell membranes with different migratory capacities, and find that MMP14 mostly aggregate in clustering state, which becomes more significant with enhancing its hydrolysis efficiency on high-migratory cells. Lots of MMP14 are revealed to be co-localized with its substrate PTK7, and this colocalization decreases with weakening cell migration, suggesting that MMP14 may coordinate cell migration by altering its spatial relationship with substrate proteins. This work will promote a deep understanding of the roles of MMP14 in cell migration and cancer metastasis.
Collapse
Affiliation(s)
- Dian Ge
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Junling Chen
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China.
| | - Zhiyong Zhao
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Binglin Sui
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Feng Liang
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin, 130022, China.
| |
Collapse
|
26
|
Zhang ZH, Wang Y, Zhang Y, Zheng SF, Feng T, Tian X, Abudurexiti M, Wang ZD, Zhu WK, Su JQ, Zhang HL, Shi GH, Wang ZL, Cao DL, Ye DW. The function and mechanisms of action of circular RNAs in Urologic Cancer. Mol Cancer 2023; 22:61. [PMID: 36966306 PMCID: PMC10039696 DOI: 10.1186/s12943-023-01766-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Kidney, bladder, and prostate cancer are the three major tumor types of the urologic system that seriously threaten human health. Circular RNAs (CircRNAs), special non-coding RNAs with a stabile structure and a unique back-splicing loop-forming ability, have received recent scientific attention. CircRNAs are widely distributed within the body, with important biologic functions such as sponges for microRNAs, as RNA binding proteins, and as templates for regulation of transcription and protein translation. The abnormal expression of circRNAs in vivo is significantly associated with the development of urologic tumors. CircRNAs have now emerged as potential biomarkers for the diagnosis and prognosis of urologic tumors, as well as targets for the development of new therapies. Although we have gained a better understanding of circRNA, there are still many questions to be answered. In this review, we summarize the properties of circRNAs and detail their function, focusing on the effects of circRNA on proliferation, metastasis, apoptosis, metabolism, and drug resistance in kidney, bladder, and prostate cancers.
Collapse
Affiliation(s)
- Zi-Hao Zhang
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Yue Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ya Zhang
- Department of Nephrology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Sheng-Feng Zheng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Tao Feng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Xi Tian
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Mierxiati Abudurexiti
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Zhen-Da Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Wen-Kai Zhu
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Jia-Qi Su
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Hai-Liang Zhang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Guo-Hai Shi
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Zi-Liang Wang
- Institute of Cancer Research, Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Da-Long Cao
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ding-Wei Ye
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China.
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
27
|
Exosomal circ-ADRM1 promotes lung adenocarcinoma progression and induces macrophage M2 polarization through regulating MMP14 mRNA and protein. Anticancer Drugs 2023; 34:333-343. [PMID: 36454975 DOI: 10.1097/cad.0000000000001430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is one of the frequent subtypes of lung cancer, featuring high rates of incidence and mortality. Matrix metalloproteinase 14 (MMP14) is known as a regulator in multiple cancers, whereas its upstream molecular mechanism remains to be investigated. This study aims to reveal the upstream molecular mechanism of MMP14 in LUSC progression. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were conducted to examine the levels of MMP14 mRNA and protein in LUAD cells, respectively. Cell counting kit-8 (CCK-8), transwell assay and wound healing assay were implemented to unveil LUAD cell proliferation, migration and invasion after indicated transfections. Flow cytometry analysis was applied to evaluate macrophage polarization. Mechanism experiments such as western blot, co-immunoprecipitation (Co-IP), RNA pulldown assay, luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were used to explore relevant molecular mechanisms. RESULTS MMP14 facilitated LUAD cell proliferation, invasion and migration. MMP14 is the target gene of miR-1287-5p. Circ-ADRM1 upregulates MMP14 expression through sponging miR-1287-5p. Circ-ADRM1 recruits USP12 to impede the ubiquitination of MMP14 protein, thereby enhancing the stability of MMP14 protein. LUAD-derived exosomes induced macrophage M2 polarization by delivering circ-ADRM1. CONCLUSIONS Circ-ADRM1 promotes LUAD cell proliferation, invasion and migration through upregulating MMP14. Additionally, circ-ADRM1 induces macrophage M2 polarization in an exosome-dependent manner.
Collapse
|
28
|
Peña-Paladines JJ, Wong CH, Chen Y. Circularized RNA as novel therapeutics in cancer. Int J Biochem Cell Biol 2023; 156:106364. [PMID: 36639095 DOI: 10.1016/j.biocel.2023.106364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Circular RNAs (CircRNAs) regulate gene expression by functioning as microRNA sponges, regulating protein stability, and gilding proteins for gene transcription and translation. Also, limited circRNAs harbour protein-coding ability through cap-independent pathways. These molecular mechanisms of circRNAs contribute to their importance in several cellular processes. Particularly, the dysregulation of circRNAs also plays a critical role in disease development. Targeting disease-causing circRNAs by restoring their normal expression by gain-of-function or loss-of-function approach and regulating their molecular activities could be potential direction for the development of anti-cancer therapies. Furthermore, due to unique covalently closed circular structure, the superior stability of circRNAs also grants them as novel therapeutic tools replacing the therapeutic small interfering RNAs and messenger RNAs. Here, we will review the functional and molecular mechanisms of circRNAs in pathogenesis, the current methods for targeting the dysregulated circRNAs, and the potential of using synthetic circRNAs in disease treatment and prevention.
Collapse
Affiliation(s)
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, China.
| |
Collapse
|
29
|
Li M, Li L, Zheng J, Li Z, Li S, Wang K, Chen X. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer 2023; 22:37. [PMID: 36810071 PMCID: PMC9942319 DOI: 10.1186/s12943-023-01745-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023] Open
Abstract
Renal cell carcinoma (RCC) is a major pathological type of kidney cancer and is one of the most common malignancies worldwide. The unremarkable symptoms of early stages, proneness to postoperative metastasis or recurrence, and low sensitivity to radiotherapy and chemotherapy pose a challenge for the diagnosis and treatment of RCC. Liquid biopsy is an emerging test that measures patient biomarkers, including circulating tumor cells, cell-free DNA/cell-free tumor DNA, cell-free RNA, exosomes, and tumor-derived metabolites and proteins. Owing to its non-invasiveness, liquid biopsy enables continuous and real-time collection of patient information for diagnosis, prognostic assessment, treatment monitoring, and response evaluation. Therefore, the selection of appropriate biomarkers for liquid biopsy is crucial for identifying high-risk patients, developing personalized therapeutic plans, and practicing precision medicine. In recent years, owing to the rapid development and iteration of extraction and analysis technologies, liquid biopsy has emerged as a low cost, high efficiency, and high accuracy clinical detection method. Here, we comprehensively review liquid biopsy components and their clinical applications over the past 5 years. Additionally, we discuss its limitations and predict its future prospects.
Collapse
Affiliation(s)
- Mingyang Li
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Lei Li
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Jianyi Zheng
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Zeyu Li
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
30
|
Ma S, Ge Y, Xiong Z, Wang Y, Li L, Chao Z, Li B, Zhang J, Ma S, Xiao J, Liu B, Wang Z. A novel gene signature related to oxidative stress predicts the prognosis in clear cell renal cell carcinoma. PeerJ 2023; 11:e14784. [PMID: 36785707 PMCID: PMC9921988 DOI: 10.7717/peerj.14784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 02/10/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is considered to be related to the worse prognosis, which might in part be attributed to the early recurrence and metastasis, compared with other type of kidney cancer. Oxidative stress refers to an imbalance between production of oxidants and antioxidant defense. Accumulative studies have indicated that oxidative stress genes contribute to the tumor invasion, metastasis and drug sensitivity. However, the biological functions of oxidative stress genes in ccRCC remain largely unknown. In this study, we identified 1,399 oxidative stress genes from GeneCards with a relevance score ≥7. Data for analysis were accessed from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database, and were utilized as training set and validation set respectively. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox were employed to construct a prognostic signature in ccRCC. Finally, a prognostic signature including four different oxidative stress genes was constructed from 1,399 genes, and its predictive performance was verified through Kaplan-Meier survival analysis and the receiver operating characteristic (ROC) curve. Interestingly, we found that there was significant correlation between the expression of oxidative stress genes and the immune infiltration and the sensitivity of tumor cells to chemotherapeutics. Moreover, the highest hazard ratio gene urocortin (UCN) was chosen for further study; some necessary vitro experiments proved that the UCN could promote the ability of ccRCC proliferation and migration and contribute to the degree of oxidative stress. In conclusion, it was promising to predict the prognosis of ccRCC through the four oxidative stress genes signature. UCN played oncogenic roles in ccRCC by influencing proliferation and oxidative stress pathway, which was expected to be the novel therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zezhong Xiong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siquan Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Xiao
- Department of Thyroid and Breast Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
31
|
Hsa_circ_0000851 promotes PDK1/p-AKT-mediated cell proliferation and migration by regulating miR-1183 in triple-negative breast cancer. Cell Signal 2023; 101:110494. [PMID: 36241055 DOI: 10.1016/j.cellsig.2022.110494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Breast cancer (BC) is the most common cause of cancer-related mortality in women worldwide. Circular RNAs (circRNAs), a type of non-coding RNA, have garnered interest because of their unique looped structure. In recent years, circRNAs have been shown to be involved in various diseases, including carcinogenesis, and to serve as biomarkers for early risk assessment and survival prediction of different tumour types. This study aimed to identify a novel circRNA, hsa_circ_0000851, generated from the sixth intron of the oncogene TCF4, reported to be involved in BC pathogenesis. Our study showed that hsa_circ_0000851 was mainly located in the cytoplasm of BC cells and upregulated in BC cell lines and tissue samples. Higher hsa_circ_0000851 expression levels resulted in increased proliferation of BC cells both in vitro and in vivo, while treatment of BC cells with hsa_circ_0000851 siRNA decreased their proliferation. We found that hsa_circ_0000851 bound directly to miR-1183, accelerating the expression of its target gene PDK1, which facilities BC cell proliferation and migration through PDK1/p-AKT.
Collapse
|
32
|
Sun DD, Wu X, Lin SC, Duan SY. Anti-apoptosis and anti-inflammation activity of circ_0097010 downregulation in lipopolysaccharide-stimulated periodontal ligament cells by miR-769-5p/Krüppel like factor 6 axis. J Dent Sci 2023; 18:310-321. [PMID: 36643256 PMCID: PMC9831795 DOI: 10.1016/j.jds.2022.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Periodontitis is a prevalent infectious inflammatory disease. Growing evidence has revealed important roles for circular RNAs (circRNAs) and circRNA sponge activity in periodontitis. Here, we elucidated the precise part of circ_0097010 in periodontitis pathogenesis. Materials and methods Human periodontal ligament cells (hPDLCs) were exposed to lipopolysaccharide (LPS). Cell viability, proliferation and apoptosis were evaluated by CCK-8 assay, EdU incorporation assay and flow cytometry, respectively. Circ_0097010, microRNA (miR)-769-5p and Krüppel like factor 6 (KLF6) were quantified by qRT-PCR and Western blot. Interleukin 6 (IL-6) level, tumor necrosis factor-α (TNF-α) secretion, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were detected by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were used to confirm the direct relationship between miR-769-5p and circ_0097010 or KLF6. Results Our data showed that LPS repressed cell proliferation and induced cell apoptosis and inflammation in hPDLCs. Circ_0097010 was upregulated in periodontitis samples and LPS-exposed hPDLCs. Downregulation of circ_0097010 exerted anti-apoptosis and anti-inflammation functions in LPS-exposed hPDLCs. Mechanistically, circ_0097010 acted as a miR-769-5p sponge, and reduced abundance of miR-769-5p reversed the anti-apoptosis and anti-inflammation effects of circ_0097010 suppression. KLF6 was a direct miR-769-5p target, and miR-769-5p-mediated inhibition of KLF6 possessed anti-apoptosis and anti-inflammation functions in LPS-induced hPDLCs. Moreover, circ_0097010 controlled KLF6 expression by miR-769-5p. Conclusion These data identify circ_0097010 as a key regulator of LPS-induced inflammation and apoptosis in hPDLCs and highlight a novel mechanism of circ_0097010 regulation through miR-769-5p/KLF6 axis.
Collapse
Affiliation(s)
| | | | | | - Shao-Yu Duan
- Corresponding author. Department of Stomatology, Electric Power Teaching Hospital, Capital Medical University, No.1, Taipingqiao Xili, Fengtai District, Beijing 100073, China.
| |
Collapse
|
33
|
Circ_0058608 contributes to the progression and taxol resistance of non-small cell lung cancer by sponging miR-1299 to upregulate GBP1. Anticancer Drugs 2023; 34:103-114. [PMID: 36539364 DOI: 10.1097/cad.0000000000001346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) act as key regulators in human cancers and chemoresistance. Here, we aimed to explore the role and mechanism of circ_0058608 in nonsmall cell lung cancer (NSCLC) and taxol resistance. The expression of circ_0058608, microRNA-1299 (miR-1299) and guanylate binding protein 1 (GBP1) mRNA was determined by quantitative real-time PCR. In-vitro and in-vivo assays were conducted using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), colony formation, transwell assays, flow cytometry and animal xenograft experiments. The interaction between miR-1299 and circ_0058608 or GBP1 was confirmed by the dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Circ_0058608 was overexpressed in NSCLC tissues/cells and taxol-resistant NSCLC tissues/cells. Circ_0058608 knockdown inhibited NSCLC cell proliferation and metastasis and also suppressed tumor growth in vivo. Moreover, circ_0058608 knockdown increased taxol sensitivity by increasing taxol-induced apoptosis in taxol-resistant NSCLC cells. Moreover, circ_0058608 silencing enhanced taxol-induced tumor growth of NSCLC in vivo. MiR-1299 was a target of circ_0058608, and the effects of circ_0058608 knockdown on NSCLC cell progression and taxol resistance were reversed by miR-1299 inhibition. Additionally, miR-1299 could interact with GBP1, and miR-1299 suppressed NSCLC cell progression and taxol resistance by targeting GBP1. Furthermore, circ_0058608 could regulate GBP1 expression by sponging miR-1299. Circ_0058608 promoted the progression and taxol resistance of NSCLC by regulating the miR-1299/GBP1 axis.
Collapse
|
34
|
Qin S, Wang Y, Wang P, Lv Q. Molecular mechanism of circRNAs in drug resistance in renal cell carcinoma. Cancer Cell Int 2022; 22:369. [PMID: 36424596 PMCID: PMC9686082 DOI: 10.1186/s12935-022-02790-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignant tumors with a poor response to radiotherapy and chemotherapy. The advent of molecular targeted drugs has initiated great breakthroughs in the treatment of RCC. However, drug resistance to targeted drugs has become an urgent problem. Various studies across the decades have confirmed the involvement of circular RNAs (circRNAs) in multiple pathophysiological processes and its abnormal expression in many malignant tumors. This review speculated that circRNAs can provide a new solution to drug resistance in RCC and perhaps be used as essential markers for the early diagnosis and prognosis of RCC. Through the analysis and discussion of relevant recent research, this review explored the relationship of circRNAs to and their regulatory mechanisms in drug resistance in RCC. The results indicate an association between the expression of circRNAs and the development of RCC, as well as the involvement of circRNAs in drug resistance in RCC.
Collapse
Affiliation(s)
- Shuang Qin
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| | - Yuting Wang
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| | - Peijun Wang
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| | - Qi Lv
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| |
Collapse
|
35
|
Zhang Z, Lin S, Yin J, Yu W, Xu C. CircRNF220 plays a pathogenic role to facilitate cell progression of AML in vitro via sponging miR-330-5p to induce upregulation of SOX4. Histol Histopathol 2022; 37:1019-1030. [PMID: 35611720 DOI: 10.14670/hh-18-472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a specific family of non-coding RNAs (ncRNAs) with important function in disease progression. This research is performed to study circRNA Ring Finger Protein 220 (circRNF220) in acute myeloid leukemia (AML). METHODS CircRNF220, microRNA-330-5p (miR-330-5p) and sex-determining region Y-related high-mobility group box 4 (SOX4) were measured via quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4, 5-dimethylthiazol-2-y1)-2, 5- diphenyl tetrazolium bromide (MTT) and EdU assays were used to assess cell proliferation. Cell cycle and apoptosis were detected using flow cytometry. Cell invasion was determined by transwell assay. Glycolytic metabolism was assessed by glucose consumption and lactate production. The target interaction was implemented via dual-luciferase reporter and RNA pull-down assays. SOX4 protein detection was conducted by western blot. RESULTS Expression detection identified that circRNF220 was overexpressed in AML. In vitro experiments showed that silence of circRNF220 promoted cell apoptosis but impeded proliferation, cell cycle progression, invasion and glycolytic metabolism in AML cells. Target analysis indicated that circRNF220 directly targeted miR-330-5p, and the effects of si-circRNF220 were abrogated by miR-330-5p inhibitor. Moreover, circRNF220 targeted miR-330-5p to increase the expression of SOX4 and SOX4 promoted cell progression of AML. CONCLUSION All these findings revealed that circRNF220 contributed to AML cell development in vitro via upregulating SOX4 expression by targeting miR-330-5p.
Collapse
Affiliation(s)
- Zewen Zhang
- Division of Hematology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Shujun Lin
- Division of Nephrology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Jun Yin
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wenjun Yu
- Division of Hematology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chengwei Xu
- Blood Purification Room, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
36
|
Pei L, Dong C, Wang Y, Lv X, Jia G, Zhang A. Circular RNA circSDHC (hsa_circ_0015004) regulates tumor growth and angiogenesis via regulating centrosomal protein 55 expression in renal cell carcinoma. Histol Histopathol 2022; 37:971-983. [PMID: 35506422 DOI: 10.14670/hh-18-467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is the main aggressive subtype of kidney cancer. Circular RNAs have been shown to exert critical roles in RCC. However, little is known about the regulatory mechanism of hsa_circ_0015004 (circSDHC) in RCC. METHODS 35 patients with RCC were recruited in the research. Expression changes of circSDHC were determined by real-time quantitative polymerase chain reaction (RT-qPCR). The effects of circSDHC inhibition on cell proliferation, apoptosis, angiogenesis, migration, and invasion were analyzed. The regulation mechanism of circSDHC was surveyed by bioinformatics analysis. The effect of circSDHC on tumorigenesis was validated by xenograft assay. RESULTS We observed an observable elevation in circSDHC expression in RCC tissues and cell lines. Functionally, circSDHC silencing decreased xenograft tumor growth and induced RCC cell apoptosis, repressed RCC cell proliferation, angiogenesis, migration, and invasion in vitro. Mechanically, circSDHC modulated centrosomal protein 55 (CEP55) expression by functioning as a miR-130a-3p sponge. Also, miR-130a-3p silencing offset circSDHC knockdown-mediated impacts on malignant phenotypes and angiogenesis of RCC cells. Furthermore, exogenetic expression of CEP55 counteracted miR-130a-3p overexpression-mediated effects on malignant phenotypes and angiogenesis of RCC cells. CONCLUSION Silencing of circSDHC restrained cell malignant phenotypes and angiogenesis via reducing CEP55 expression by releasing miR-130a-3p in RCC, providing a new mechanism for understanding the progression of RCC.
Collapse
Affiliation(s)
- Long Pei
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Chunhui Dong
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Yanchao Wang
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Xianqiang Lv
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Gaopei Jia
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Aili Zhang
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China.
| |
Collapse
|
37
|
Rashedi S, Mardani M, Rafati A, Khavandi MM, Mohammadi F, Javanshir S, Sarallah R, Dolatshahi M, Sabahi M, Azadnajafabad S, Tavolinejad H, Rezaei N. Circular RNAs as prognostic and diagnostic biomarkers in renal cell carcinoma. J Clin Lab Anal 2022; 36:e24670. [PMID: 35989533 PMCID: PMC9550963 DOI: 10.1002/jcla.24670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play pivotal roles in proliferation, apoptosis, migration, and invasion of renal cell carcinoma (RCC) cells. This study is aimed to systematically summarize the current evidence regarding the clinical implications of circRNAs in RCC patients. METHODS A systematic search in PubMed, Embase, and Web of Science was performed until January 1, 2022. The correlation between the expression of circRNAs and clinicopathological, prognostic, and diagnostic features of RCC was evaluated using the meta-analysis. RESULTS Ultimately, 41 studies with 3485 RCC patients were included in this study: 26 studies for clinicopathological features, 31 studies for prognosis, and eight studies for diagnosis. Altered expression of circRNAs was significantly associated with clinicopathological characteristics of RCC, including tumor size, tumor stage, lymph node metastasis, distant metastasis, and TNM stage. The tumor promoter circRNAs were associated with reduced overall survival (OS) (Hazard Ratio (HR) = 1.98, 95% confidence interval [CI] 1.68-2.34) and disease/progression/recurrence-free survival (DFS/PFS/RFS) (HR = 2.34, 95% CI 1.85-2.97). Contrarily, the tumor suppressor circRNAs were linked with better OS (HR = 0.49, 95% CI 0.40-0.60) and DFS/PFS/RFS (HR = 0.40, 95% CI 0.28-0.59). The pooled sensitivity and specificity of circRNAs for RCC diagnosis in tissue samples were both 0.84. These results in fluid samples (serum and urine) were 0.78 and 0.69, respectively. CONCLUSION CircRNAs can serve as promising diagnostic and prognostic biomarkers for RCC.
Collapse
Affiliation(s)
- Sina Rashedi
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Tehran Heart CenterCardiovascular Diseases Research Institute, Tehran University of Medical SciencesTehranIran
| | - Mahta Mardani
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Ali Rafati
- Rajai Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | | | | | - Salar Javanshir
- School of Medicine, Tehran Medical Sciences BranchIslamic Azad UniversityTehranIran
| | - Rojin Sarallah
- School of Medicine, Tehran Medical Sciences BranchIslamic Azad UniversityTehranIran
| | - Mahsa Dolatshahi
- NeuroImaging Network (NIN)Universal Scientific Education and Research Network (USERN), Tehran University of Medical SciencesTehranIran
| | - Mohammadmahdi Sabahi
- Neurosurgery Research Group (NRG), Student Research CommitteeHamadan University of Medical SciencesHamadanIran
| | - Sina Azadnajafabad
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Department of SurgeryTehran University of Medical SciencesTehranIran
| | - Hamed Tavolinejad
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Tehran Heart CenterCardiovascular Diseases Research Institute, Tehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
38
|
Liao D, Lin Q, Xiao H, Zhang F, Han Q. Circular RNAs as Prognostic Biomarkers in Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Front Genet 2022; 13:878700. [PMID: 35754794 PMCID: PMC9213809 DOI: 10.3389/fgene.2022.878700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Recently, several studies have shown that circRNAs play critical roles in renal cell carcinoma (RCC) oncogenesis and development. However, whether the level of circRNA expression in RCC is correlated with prognosis remains unclear. Hence, we conducted a meta-analysis to explore the association between circRNA expression levels and the prognosis of RCC patients. Methods: We systematically searched Ovid, Embase, PubMed, and Web of Science from January 1950 to June 2021 for the literature published in English. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we conducted a meta-analysis of 21 selected studies to confirm the association between the circRNA expression level and prognosis of RCC. Results: This meta-analysis included 20 articles and 1,559 RCC patients. The results showed that the high expression of oncogenic circRNAs (OS: HR = 2.04, 95% CI: 1.63–2.56, p = 0.20; PFS: HR = 2.82, 95% CI: 0.82–9.72, p = 0.03) and low expression of tumor-suppressor circRNAs (OS: HR: 1.92, 95% CI: 1.61–2.30, p < 0.05; PFS: HR: 2.40, 95% CI: 1.76–3.28, p = 0.36) were closely related to poor survival outcomes. Conclusion: The meta-analysis verifies that circRNAs can be potential prognostic biomarkers of RCC.
Collapse
Affiliation(s)
- Dan Liao
- Department of Nephrology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Qiu Lin
- Department of Nephrology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huan Xiao
- Department of Radiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Fenglian Zhang
- Department of Nephrology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Qin Han
- School of Public Health, Chengdu Medical College, Chengdu, China
| |
Collapse
|
39
|
Sun ZP, Tan ZG, Peng C. Long noncoding RNA LINC01419 promotes hepatocellular carcinoma malignancy by mediating miR-485-5p/LSM4 axis. Kaohsiung J Med Sci 2022; 38:826-838. [PMID: 35748489 DOI: 10.1002/kjm2.12566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/29/2022] Open
Abstract
To investigate the effect of long noncoding RNA (LINC01419)/miR-485-5p/LSM4 on the malignant behavior of hepatocellular carcinoma (HCC) cells. The expressions of LINC01419, miR-485-5p, and LSM4 were determined in HCC at the cellular and clinical levels, and cell biological behavior was evaluated. The relationships between LINC01419, miR-485-5p, and LSM4 were predicted and verified. Additionally, the subcellular localization of LINC01419 in HCC cells was analyzed. Finally, an animal experiment was conducted to confirm the effect of LINC01419 silencing on tumor growth. in HCC tissues and cells, LINC01419 and LSM4 were increasingly expressed, but miR-485-5p was decreasingly expressed. LINC01419 negatively regulated miR-485-5p- and miR-485-5p-targeted LSM4. LINC01419 was localized in the cytoplasm of HCC cells. Downregulation of miR-485-5p or upregulation of LSM4 reversed the inhibition of HCC cell malignant behavior by LINC01419 interference. LINC01419 sponges miR-485-5p to upregulate LSM4 expression, thereby facilitating the biological behavior of HCC cells.
Collapse
Affiliation(s)
- Zeng-Peng Sun
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, People's Republic of China
| | - Zhi-Guo Tan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, People's Republic of China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, People's Republic of China
| |
Collapse
|
40
|
Osca-Verdegal R, Beltrán-García J, Górriz JL, Martínez Jabaloyas JM, Pallardó FV, García-Giménez JL. Use of Circular RNAs in Diagnosis, Prognosis and Therapeutics of Renal Cell Carcinoma. Front Cell Dev Biol 2022; 10:879814. [PMID: 35813211 PMCID: PMC9257016 DOI: 10.3389/fcell.2022.879814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma is the most common type of kidney cancer, representing 90% of kidney cancer diagnoses, and the deadliest urological cancer. While the incidence and mortality rates by renal cell carcinoma are higher in men compared to women, in both sexes the clinical characteristics are the same, and usually unspecific, thereby hindering and delaying the diagnostic process and increasing the metastatic potential. Regarding treatment, surgical resection remains the main therapeutic strategy. However, even after radical nephrectomy, metastasis may still occur in some patients, with most metastatic renal cell carcinomas being resistant to chemotherapy and radiotherapy. Therefore, the identification of new biomarkers to help clinicians in the early detection, and treatment of renal cell carcinoma is essential. In this review, we describe circRNAs related to renal cell carcinoma processes reported to date and propose the use of some in therapeutic strategies for renal cell carcinoma treatment.
Collapse
Affiliation(s)
- Rebeca Osca-Verdegal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis Górriz
- Department of Nephrology, University Clinic Hospital, INCLIVA, University of Valencia, Valencia, Spain
| | | | - Federico V. Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
- *Correspondence: José Luis García-Giménez,
| |
Collapse
|
41
|
The Role of MicroRNA in the Regulation of Tumor Epithelial–Mesenchymal Transition. Cells 2022; 11:cells11131981. [PMID: 35805066 PMCID: PMC9265548 DOI: 10.3390/cells11131981] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Consistently, the high metastasis of cancer cells is the bottleneck in the process of tumor treatment. In this process of metastasis, a pivotal role is executed by epithelial–mesenchymal transition (EMT). The epithelial-to-mesenchymal transformation was first proposed to occur during embryonic development. Later, its important role in explaining embryonic developmental processes was widely reported. Recently, EMT and its intermediate state were also identified as crucial drivers in tumor progression with the gradual deepening of research. To gain insights into the potential mechanism, increasing attention has been focused on the EMT-related transcription factors. Correspondingly, miRNAs target transcription factors to control the EMT process of tumor cells in different types of cancers, while there are still many exciting and challenging questions about the phenomenon of microRNA regulation of cancer EMT. We describe the relevant mechanisms of miRNAs regulating EMT, and trace the regulatory roles and functions of major EMT-related transcription factors, including Snail, Twist, zinc finger E-box-binding homeobox (ZEB), and other families. In addition, on the basis of the complex regulatory network, we hope that the exploration of the regulatory relationship of non-transcription factors will provide a better understanding of EMT and cancer metastasis. The identification of the mechanism leading to the activation of EMT programs during diverse disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Here, we summarize the recent progress in this direction, with a promising path for further insight into this fast-moving field.
Collapse
|
42
|
Liu J, Gao A, Liu Y, Sun Y, Zhang D, Lin X, Hu C, Zhu Y, Du Y, Han H, Li Y, Xu S, Liu T, Zhang C, Zhu J, Dong R, Zhou Y, Zhao Y. MicroRNA Expression Profiles of Epicardial Adipose Tissue-Derived Exosomes in Patients with Coronary Atherosclerosis. Rev Cardiovasc Med 2022; 23:206. [PMID: 39077165 PMCID: PMC11273655 DOI: 10.31083/j.rcm2306206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND AND AIMS Epicardial adipose tissue, exosomes, and miRNAs have important activities in atherosclerosis. The purpose of this study was to establish miRNA expression profiles of epicardial adipose tissue-derived exosomes in patients with coronary atherosclerosis. METHODS Biopsies of epicardial adipose tissue were obtained from patients with and without coronary artery disease (CAD, n = 12 and NCAD, n = 12) during elective open-heart surgeries. Tissue was incubated with DMEM-F12 for 24 hours. Exosomes were isolated, then nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting were performed to confirm the existence of exosomes. Total RNA in exosomes was subjected to high-throughput sequencing to identify differentially expressed miRNAs. MicroRNA target gene prediction was performed, and target genes were analyzed by Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and mirPath to identify function. Reverse transcription quantitative PCR was performed to confirm the differentially expressed miRNAs. RESULTS Fifty-three unique miRNAs were identified (adjusted p < 0.05, fold of change > 2), among which 32 miRNAs were upregulated and 21 miRNAs were downregulated in coronary artery disease patients. Reverse transcription quantitative PCR validated the results for seven miRNAs including miR-141-3p, miR-183-5p, miR-200a-5p, miR-205-5p, miR-429, miR-382-5p and miR-485-3p, with the last two downregulated. GO and KEGG analysis by mirPath indicated that these differentially expressed miRNAs were enriched in cell survival, apoptosis, proliferation, and differentiation. CONCLUSIONS Coronary artery disease patients showed differential epicardial adipose tissue exosomal miRNA expression compared with patients without coronary artery disease. The results provide clues for further studies of mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Jinxing Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| | - Ang Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| | - Yan Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| | - Yan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| | - Dai Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| | - Xuze Lin
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Chengping Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| | - Yong Zhu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| | - Yu Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| | - Hongya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| | - Yang Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Shijun Xu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Taoshuai Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Chenhan Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Junming Zhu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Ran Dong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
43
|
Huang H, Chen T, Li F, Jin D, Li C, Yang Y, Liu X, Wang D, Di J. The functions, oncogenic roles, and clinical significance of circular RNAs in renal cell carcinoma. Med Oncol 2022; 39:72. [PMID: 35568747 DOI: 10.1007/s12032-022-01669-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is the most common form of malignancy affecting the kidneys. Circular RNAs (circRNAs) are non-coding RNAs that are derived from exonic or intronic sequences through a selective shearing process. There is growing evidence that these circRNAs can influence a range of biological pathways by serving as protein decoys, microRNA sponges, regulators of transcriptional activity, or templates for protein translation. The dysregulation of circRNA expression patterns is a hallmark of RCC and other cancer types, and there is strong evidence that these RNA species can play central roles in the onset and progression of RCC tumors. In the present review, we summarized recent findings on the functional roles and clinical impacts of circRNAs in RCC. Further, we discussed their potential utility as diagnostic biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hui Huang
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Tao Chen
- Department of Osteology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Fei Li
- Department of Osteology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Dan Jin
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Chuan Li
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Yongbo Yang
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Xuyang Liu
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Dongmiao Wang
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
44
|
Li W, Li G, Cao L. Circular RNA Eps15-homology domain-containing protein 2 induce resistance of renal cell carcinoma to sunitinib via microRNA-4731-5p/ABCF2 axis. Bioengineered 2022; 13:9729-9740. [PMID: 35412955 PMCID: PMC9161974 DOI: 10.1080/21655979.2022.2059960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Circular RNAs (circRNAs) are linked with the occurrence and progression of renal cell carcinoma (RCC). However, circRNAs’ mechanism in developing resistance to RCC has not been clarified. This research assessed the role and mechanism of circular RNA circ Eps15-homology domain-containing protein 2 (EHD2) in the resistance of sunitinib (SU) to RCC. ACHN, 786-O, 769P, and HEK-293 T cells and RCC tissue samples were used for the investigations. The circEHD2 expression in RCC cells and tissues was determined through RT-qPCR. Association of circEHD2 with RCC histological grade of RCC was done through Chi-square. MiR-4731-5p, ABCF2, and circEHD2 were transfected into RCC cell lines. A dual-luciferase reporter assay was used to determine the interaction between miR-4731-5p, circEHD2, and ABCF2. MTT assay was used to analyze cell viability, while apoptosis was studied using flow cytometry. Colony-formation and transwell experiments were used to assess migration and invasion. The ATP Binding Cassette Subfamily F Member 2 (ABCF2) expression was analyzed through western blot. The results showed increased circEHD2 in SU-resistant RCC tissues and cell lines and implicated in RCC histological grade and SU resistance. Knock-down of circEHD2 down-regulated the resistance of RCC to SU in vitro and vivo; circEHD2 bound to miR-4731-5p to mediate ABCF2 in RCC; ABCF2 rescued the inhibitory effect of circEHD2 knock-down on SU resistance of RCC. In conclusion, circEHD2 enhances RCC resistance to SU via acting as a miR-4731-5p sponge to mediate ABCF2. MiR-4731-5p can target circEHD2 and ABCF2, thus providing a novel and effective therapeutic against renal cell carcinoma.
Collapse
Affiliation(s)
- Wen Li
- Department of Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - GaiXia Li
- Department of Electrocardiography Room, Qingdao Women's and Children's Hospital, Qingdao City, Shandong Province, China
| | - LuQuan Cao
- Department of Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital Prenatal Diagnosis Center, Jinan City, Shandong Province, China
| |
Collapse
|
45
|
Zhang Y, Zhang X, Xu Y, Fang S, Ji Y, Lu L, Xu W, Qian H, Liang ZF. Circular RNA and Its Roles in the Occurrence, Development, Diagnosis of Cancer. Front Oncol 2022; 12:845703. [PMID: 35463362 PMCID: PMC9021756 DOI: 10.3389/fonc.2022.845703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding single-stranded covalently closed circular RNA, mainly produced by reverse splicing of exons of precursor mRNAs (pre-mRNAs). The characteristics of high abundance, strong specificity, and good stability of circRNAs have been discovered. A large number of studies have reported its various functions and mechanisms in biological events, such as the occurrence and development of cancer. In this review, we focus on the classification, characterization, biogenesis, functions of circRNAs, and the latest advances in cancer research. The development of circRNAs as biomarkers in cancer diagnosis and treatment also provides new ideas for studying circRNAs research.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhao Feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
46
|
Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 2022; 19:188-206. [PMID: 34912049 DOI: 10.1038/s41571-021-00585-y] [Citation(s) in RCA: 637] [Impact Index Per Article: 212.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Over the past decade, circular RNAs (circRNAs) have emerged as a large class of primarily non-coding RNA molecules, many of which have key roles in cancer development and progression through diverse mechanisms of action. CircRNAs often have tissue-restricted and cancer-specific expression patterns, and accumulating data suggest that these molecules are of potential clinical relevance and utility. In particular, circRNAs have strong potential as diagnostic, prognostic and predictive biomarkers, which is underscored by their detectability in liquid biopsy samples such as in plasma, saliva and urine. However, technical issues in the detection and assessment of circRNAs as well as biological knowledge gaps need to be addressed to move this relatively young field of research forward and bring circRNAs to the forefront of clinical practice. Herein, we review the current knowledge regarding circRNA biogenesis, regulation and functions in cancer as well as their clinical potential as biomarkers, therapeutic agents and drug targets.
Collapse
Affiliation(s)
| | | | - Henrik Hager
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark.,Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus C, Denmark. .,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
47
|
Zhou Y, Li C, Wang Z, Tan S, Liu Y, Zhang H, Li X. CircRNAs as Novel Biomarkers and Therapeutic Targets in Renal Cell Carcinoma. Front Mol Biosci 2022; 9:833079. [PMID: 35223991 PMCID: PMC8874010 DOI: 10.3389/fmolb.2022.833079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of long non-coding RNA with covalently closed loops that are naturally resistant to exoribonuclease. With the rapid development of high-throughput sequencing technologies and bioinformatics, increasing data suggest that circRNAs are abnormally expressed in renal cell carcinoma (RCC) and act as important regulators of RCC carcinogenesis and progression. CircRNAs play important biological roles in modulating cell proliferation, migration, invasion, apoptosis, and gemcitabine chemoresistance in RCC. Most of the circRNAs studied in RCC have been reported to be significantly associated with many clinicopathologic characteristics and survival parameters of RCC. The stability and specificity of circRNAs enable them potential molecular markers for RCC diagnosis and prognosis. Moreover, circRNAs have emerged as targets for developing new therapies, because they can regulate various signaling pathways associated with RCC initiation and progression. In this review, we briefly summarize the biogenesis, degradation, and biological functions of circRNAs as well as the potential clinical applications of these molecules for RCC diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Yuxia Zhou
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Cheng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenping Wang
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuangfeng Tan
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yiqi Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuefeng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuefeng Li,
| |
Collapse
|
48
|
Ma H, Shen L, Yang H, Gong H, Du X. Circular RNA circPSAP functions as an efficient miR-331-3p sponge to regulate proliferation, apoptosis and bortezomib sensitivity of human multiple myeloma cells by upregulating HDAC4. J Pharmacol Sci 2022; 149:27-36. [DOI: 10.1016/j.jphs.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
|
49
|
Wang W, Xie S, Yuan D, He D, Fang L, Ge F. Systematic Review With Meta-Analysis: Diagnostic, Prognostic and Clinicopathological Significance of CircRNA Expression in Renal Cancer. Front Oncol 2022; 11:773236. [PMID: 35155185 PMCID: PMC8832283 DOI: 10.3389/fonc.2021.773236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Background Renal cancer (RC) is one of the most common malignant tumors of the urinary system, and molecular targets for the specific diagnosis and treatment of RC have been widely explored. The purpose of this study was to systematically analyze circular RNAs (circRNAs), which may serve as novel tumor markers in terms of the diagnosis, prognosis and clinicopathological characteristics of RC. Methods PubMed and Web of Science were systematically searched for literature as up to July 30, 2021. All included studies were evaluated by the evaluation system, and the results were satisfactory. Hazard ratios (HRs) and odds ratios (ORs) were used to assess the association of circRNAs with diagnostic and clinicopathological indicators. The sensitivity (SEN), specificity (SPE), positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and area under the summary receiver operating characteristic curve (AUC) were combined to evaluate the diagnostic performance of circRNAs in RC. Results We included 22 studies that met the criteria, including 18 that were prognostic, 4 that were diagnostic, and 12 that were clinicopathologically relevant. In terms of prognosis, we found that upregulated circRNAs were positively associated with poor overall survival in patients with RC (HR=1.63, 95% CI=1.43–1.85). In terms of diagnosis, the combined SEN, SPE and AUC of circRNAs in the diagnosis of RC were 0.82, 0.84 and 0.89 (0.86–0.91), respectively. In terms of clinicopathological features, upregulated circRNAs were associated with the Fuhrman grade (OR=0.641, 95% CI=0.471–0.873), T stage (OR=0.236, 95% CI=0.141–0.396), TNM stage (OR=0.225, 95% CI=0.158–0.321) and lymphatic metastasis (OR=0.329, 95% CI=0.193–0.560). Conclusion Our meta-analysis confirms that circRNAs may be candidate biomarkers for the diagnosis, prognosis, and clinicopathological indicators of RC.
Collapse
Affiliation(s)
- Wujun Wang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengfang Xie
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Dongping Yuan
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan He
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Liming Fang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
- *Correspondence: Liming Fang, ; Fengfeng Ge,
| | - Fengfeng Ge
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
- *Correspondence: Liming Fang, ; Fengfeng Ge,
| |
Collapse
|
50
|
Chen J, Wu S, Wang J, Sha Y, Ji Y. Hsa_circ_0074269-mediated Upregulation of TUFT1 Through miR-485-5p Increases Cisplatin Resistance in Cervical Cancer. Reprod Sci 2022; 29:2236-2250. [PMID: 35075616 DOI: 10.1007/s43032-022-00855-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/09/2022] [Indexed: 12/27/2022]
Abstract
Most cervical cancer patients are prone to developing acquired cisplatin (DDP) resistance. Hsa_circ_0074269 (circ_0074269) plays a promoting role in cervical cancer, but whether circ_0074269 mediates cervical cancer resistance to DDP is unclear. Expression of circ_0074269 was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The half-maximal inhibitory concentration (IC50) value, viability, proliferation, colony formation, migration, and apoptosis of DDP-resistant cervical cancer cells were determined. The molecular mechanisms associated with circ_0074269 were predicted by bioinformatics analysis and confirmed by dual-luciferase reporter and RIP assays. Xenograft assay was conducted to validate the effect of circ_0074269 on DDP resistance in vivo. Exosomes were isolated by ultracentrifugation. Circ_0074269 was overexpressed in DDP-resistant cervical cancer samples and cells. Silencing of circ_0074269 elevated DDP sensitivity, repressed DDP-resistant cervical cancer cell proliferation, and induced DDP-resistant cervical cancer cell apoptosis in vivo and in vitro and curbed DDP-resistant cervical cancer cell migration in vitro. And circ_0074269 could regulate DDP resistance via regulating TUFT1 expression via sponging miR-485-5p. More strikingly, circ_0074269 was also overexpressed in exosomes from DDP-resistant cervical cancer cells, and circ_0074269 could be delivered via exosomes. Circ_0074269 facilitated DDP resistance via elevating TUFT1 expression via sponging miR-485-5p, proving novel evidence to offer circ_0074269 as a target for cervical cancer treatment.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Jingjiang People's Hospital, Taizhou City, 214500, Jiangsu, China
| | - Sheng Wu
- Department of Pathology, Jingjiang People's Hospital, Taizhou City, 214500, Jiangsu, China
| | - Jue Wang
- Department of Pathology, Jingjiang People's Hospital, Taizhou City, 214500, Jiangsu, China
| | - Yu Sha
- Department of Pathology, Jingjiang People's Hospital, Taizhou City, 214500, Jiangsu, China
| | - Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, No.9-5, Kejixincun, Jingjiang, Taizhou City, 214500, Jiangsu Province, China.
| |
Collapse
|