1
|
Long X, Cheng S, Lan X, Wei W, Jiang D. Trends in nanobody radiotheranostics. Eur J Nucl Med Mol Imaging 2025; 52:2225-2238. [PMID: 39800806 DOI: 10.1007/s00259-025-07077-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/04/2025] [Indexed: 04/23/2025]
Abstract
As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis. Moreover, we emphasize the indispensable role of molecular imaging as a tool for evaluating and optimizing nanobodies, thereby expanding their therapeutic potential in cancer treatment in the foreseeable future.
Collapse
Affiliation(s)
- Xingru Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200233, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| |
Collapse
|
2
|
Aguirre N, Veach DR, Cercek A, Cheal SM, Larson SM, Nash GM, Cheung NKV. Radioimmunotherapy for peritoneal carcinomatosis: Preclinical proof of concept to clinical translation. Cell Rep Med 2025; 6:102040. [PMID: 40154493 PMCID: PMC12047513 DOI: 10.1016/j.xcrm.2025.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Peritoneal carcinomatosis (PC), characterized by the dissemination of metastatic tumor cells throughout the peritoneal cavity from several gastrointestinal and gynecological malignancies, has significantly compromised patient survival. The standard of care is cytoreductive surgery with or without intraperitoneal chemotherapy. However, surgical resection often leaves behind microscopic or clinically occult disease due to the complex anatomy of the peritoneum, where intraperitoneal chemotherapy and systemic chemotherapy have shown limited success. To improve the therapeutic outcome, targeted therapy using radionuclides such as alpha, beta, and Auger emitters delivered by antibodies is actively being investigated. While preclinical murine models of PC have shown the potential of radioimmunotherapy (RIT) using various radioisotopes across a wide spectrum of antigen targets and tumor diagnoses with acceptable toxicities, successful clinical trials are lacking. Here, we retrospectively summarize preclinical and clinical PC studies, consider their translational potential, and examine paths to development that maximize the clinical benefit of RIT in this context.
Collapse
Affiliation(s)
- Nicole Aguirre
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah M Cheal
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Garrett M Nash
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong V Cheung
- Pediatric Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Zuo D, Wang H, Yu B, Li Q, Gan L, Chen W. Astatine-211 and actinium-225: two promising nuclides in targeted alpha therapy. Acta Biochim Biophys Sin (Shanghai) 2024; 57:327-343. [PMID: 39587859 PMCID: PMC11986457 DOI: 10.3724/abbs.2024206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Nuclear medicine therapy offers a promising approach for tumor treatment, as the energy emitted during radionuclide decay causes irreparable damage to tumor cells. Notably, α-decay exhibits an even more significant destructive potential. By conjugating α-nuclides with antibodies or small-molecule inhibitors, targeted alpha therapy (TAT) can enhance tumor destruction while minimizing toxic side effects, making TAT an increasingly attractive antineoplastic strategy. Astatine-211 ( 211At) and actinium-225 ( 225Ac) have emerged as highly effective agents in TAT due to their exceptional physicochemical properties and biological effects. In this review, we highlight the applications of 211At-/ 225Ac-radiopharmaceuticals, particularly in specific tumor targets, such as prostate-specific membrane antigen (PSMA) in prostate cancers, cluster of differentiation (CD) in hematological malignancies, human epidermal growth factor receptor-2 (HER2) in ovarian cancers, and somatostatin receptor (SSTR) in neuroendocrine tumors. We synthesize the progress from preclinical and clinical trials to provide insights into the promising potential of 211At-/ 225Ac-radiopharmaceuticals for future treatments.
Collapse
Affiliation(s)
- Dashan Zuo
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hui Wang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
| | - Boyi Yu
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
| | - Qiang Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
- University of Chinese Academy of SciencesBeijing100049China
- Lanhai Nuclear Medical Research CenterPutian351153China
| | - Lu Gan
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
- University of Chinese Academy of SciencesBeijing100049China
| | - Weiqiang Chen
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
- University of Chinese Academy of SciencesBeijing100049China
- Lanhai Nuclear Medical Research CenterPutian351153China
| |
Collapse
|
4
|
Imura R, Jang J, Ozeki AN, Takahashi H, Ida H, Wada Y, Kumakura Y, Akimitsu N. Click Chemistry Enables [ 89Zr]Zr-DOTA Radioimmunoconjugation for Theranostic 89Zr-immunoPET. Bioconjug Chem 2024; 35:1744-1754. [PMID: 39151917 PMCID: PMC11583970 DOI: 10.1021/acs.bioconjchem.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
There have been predictions that the use of the macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) in zirconium-89 (89Zr) immuno-positron emission tomography (89Zr-immunoPET) could enhance the in vivo stability of 89Zr radioimmunoconjugates. However, conjugating [89Zr]Zr-DOTA to a monoclonal antibody (mAb) remains a challenge as the heat treatment required for [89Zr]Zr-DOTA chelation can lead to thermal denaturation of the mAb moieties. We developed a method for synthesizing [89Zr]Zr-DOTA-mAb based on a tetrazine (Tz)-conjugated bifunctional DOTA derivative 2,2',2″-(10-(1-(4-(1,2,4,5-tetrazin-3-yl)phenyl)-3,21,26-trioxo-6,9,12,15,18-pentaoxa-29-carboxy-2,22,25-triazanonacosane-29-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DOTAGA-Tz) and the inverse electron-demand Diels-Alder (IEDDA) click chemistry reaction where trans-cyclooctene-modified mAbs are conjugated to [89Zr]Zr-DOTAGA without being exposed to heat. The stability of IEDDA-derived [89Zr]Zr-DOTAGA-trastuzumab was confirmed by in vitro, ex vivo, and in vivo testing and comparative analysis against the conventional deferoxamine (DFO) counterpart [89Zr]Zr-DFO-trastuzumab. The in vivo immunoPET imaging using [89Zr]Zr-DOTAGA-trastuzumab clearly visualized human epidermal growth factor receptor 2-positive malignancies in murine xenograft models. Greater tumor contrast was observed from [89Zr]Zr-DOTAGA-trastuzumab at a 72-h delayed scan compared with [89Zr]Zr-DFO-trastuzumab. These findings suggest that our IEDDA ligation approach can be an effective means of synthesizing [89Zr]Zr-DOTA-mAb and can enhance the theranostic potential of 89Zr-immunoPET in DOTA-mediated radioimmunotherapy.
Collapse
Affiliation(s)
- Ryota Imura
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo 153-8904, Japan
- Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
- JFE Engineering Corporation, Yokohama, Kanagawa 230-8611, Japan
| | - Jaewoong Jang
- Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| | | | - Hiroyuki Takahashi
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Hiroyuki Ida
- JFE Engineering Corporation, Yokohama, Kanagawa 230-8611, Japan
| | - Youichiro Wada
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo 153-8904, Japan
- Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| | - Yoshitaka Kumakura
- Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
- Department of Diagnostic Radiology and Nuclear Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| |
Collapse
|
5
|
Roohani B, Mendez AS, Dangarwala M, Katz S, Marquez-Nostra B. Nuclear Imaging of Bispecific Antibodies on the Rise. J Nucl Med 2024; 65:1512-1517. [PMID: 39266295 PMCID: PMC11448611 DOI: 10.2967/jnumed.123.267215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Bispecific antibodies (bsAbs) are engineered to target 2 different epitopes simultaneously. About 75% of the 16 clinically approved bsAbs have entered the clinic internationally since 2022. Hence, research on biomedical imaging of various radiolabeled bsAb scaffolds may serve to improve patient selection for bsAb therapy. Here, we provide a comprehensive overview of recent advances in radiolabeled bsAbs for imaging via PET or SPECT. We compare direct targeting and pretargeting approaches in preclinical and clinical studies in oncologic research. Furthermore, we show preclinical applications of imaging bsAbs in neurodegenerative diseases. Finally, we offer perspectives on the future directions of imaging bsAbs based on their challenges and opportunities.
Collapse
Affiliation(s)
- Borna Roohani
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut; and
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aldred Shane Mendez
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut; and
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mann Dangarwala
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samantha Katz
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut; and
| | | |
Collapse
|
6
|
Kleynhans J, Ebenhan T, Cleeren F, Sathekge MM. Can current preclinical strategies for radiopharmaceutical development meet the needs of targeted alpha therapy? Eur J Nucl Med Mol Imaging 2024; 51:1965-1980. [PMID: 38676735 PMCID: PMC11139742 DOI: 10.1007/s00259-024-06719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Preclinical studies are essential for effectively evaluating TAT radiopharmaceuticals. Given the current suboptimal supply chain of these radionuclides, animal studies must be refined to produce the most translatable TAT agents with the greatest clinical potential. Vector design is pivotal, emphasizing harmonious physical and biological characteristics among the vector, target, and radionuclide. The scarcity of alpha-emitting radionuclides remains a significant consideration. Actinium-225 and lead-212 appear as the most readily available radionuclides at this stage. Available animal models for researchers encompass xenografts, allografts, and PDX (patient-derived xenograft) models. Emerging strategies for imaging alpha-emitters are also briefly explored. Ultimately, preclinical research must address two critical aspects: (1) offering valuable insights into balancing safety and efficacy, and (2) providing guidance on the optimal dosing of the TAT agent.
Collapse
Affiliation(s)
- Janke Kleynhans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, and Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Mike Machaba Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, 0001, South Africa.
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, 0001, South Africa.
| |
Collapse
|
7
|
Bidkar AP, Zerefa L, Yadav S, VanBrocklin HF, Flavell RR. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024; 14:2969-2992. [PMID: 38773983 PMCID: PMC11103494 DOI: 10.7150/thno.96403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Targeted alpha particle therapy (TAT) has emerged as a promising strategy for the treatment of prostate cancer (PCa). Actinium-225 (225Ac), a potent alpha-emitting radionuclide, may be incorporated into targeting vectors, causing robust and in some cases sustained antitumor responses. The development of radiolabeling techniques involving EDTA, DOTA, DOTPA, and Macropa chelators has laid the groundwork for advancements in this field. At the forefront of clinical trials with 225Ac in PCa are PSMA-targeted TAT agents, notably [225Ac]Ac-PSMA-617, [225Ac]Ac-PSMA-I&T and [225Ac]Ac-J591. Ongoing investigations spotlight [225Ac]Ac-hu11B6, [225Ac]Ac-YS5, and [225Ac]Ac-SibuDAB, targeting hK2, CD46, and PSMA, respectively. Despite these efforts, hurdles in 225Ac production, daughter redistribution, and a lack of suitable imaging techniques hinder the development of TAT. To address these challenges and additional advantages, researchers are exploring alpha-emitting isotopes including 227Th, 223Ra, 211At, 213Bi, 212Pb or 149Tb, providing viable alternatives for TAT.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Surekha Yadav
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA-94107, USA
| |
Collapse
|
8
|
Zeng Z, Li L, Tao J, Liu J, Li H, Qian X, Yang Z, Zhu H. [ 177Lu]Lu-labeled anti-claudin-18.2 antibody demonstrated radioimmunotherapy potential in gastric cancer mouse xenograft models. Eur J Nucl Med Mol Imaging 2024; 51:1221-1232. [PMID: 38062170 DOI: 10.1007/s00259-023-06561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/01/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE Gastric cancer (GC), one of the most prevalent and deadliest tumors worldwide, is often diagnosed at an advanced stage with limited treatment options and poor prognosis. The development of a CLDN18.2-targeted radioimmunotherapy probe is a potential treatment option for GC. METHODS The CLDN18.2 antibody TST001 (provided by Transcenta) was conjugated with DOTA and radiolabeled with the radioactive nuclide 177Lu. The specificity and targeting ability were evaluated by cell uptake, imaging and biodistribution experiments. In BGC823CLDN18.2/AGSCLDN18.2 mouse models, the efficacy of [177Lu]Lu-TST001 against CLDN18.2-expressing tumors was demonstrated, and toxicity was evaluated by H&E staining and blood sample testing. RESULTS [177Lu]Lu-TST001 was labeled with an 99.17%±0.32 radiochemical purity, an 18.50 ± 1.27 MBq/nmol specific activity and a stability of ≥ 94% after 7 days. It exhibited specific and high tumor uptake in CLDN18.2-positive xenografts of GC mouse models. Survival studies in BGC823CLDN18.2 and AGSCLDN18.2 tumor-bearing mouse models indicated that a low dose of 5.55 MBq and a high dose of 11.10 MBq [177Lu]Lu-TST001 significantly inhibited tumor growth compared to the saline control group, with the 11.1 MBq group showing better therapeutic efficacy. Histological staining with hematoxylin and eosin (H&E) and Ki67 immunohistochemistry of residual tissues confirmed tumor tissue destruction and reduced tumor cell proliferation following treatment. H&E showed that there was no significant short-term toxicity observed in the heart, spleen, stomach or other important organs when treated with a high dose of [177Lu]Lu-TST001, and no apparent hematotoxicity or liver toxicity was observed. CONCLUSION In preclinical studies, [177Lu]Lu-TST001 demonstrated significant antitumor efficacy with acceptable toxicity. It exhibits strong potential for clinical translation, providing a new promising treatment option for CLDN18.2-overexpressing tumors, including GC.
Collapse
Affiliation(s)
- Ziqing Zeng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Liqiang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jinping Tao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiayue Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hongjun Li
- Suzhou Transcenta Therapeutics Co., Ltd, Suzhou, Jiangsu, 215127, China
| | - Xueming Qian
- Suzhou Transcenta Therapeutics Co., Ltd, Suzhou, Jiangsu, 215127, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
9
|
Rahman AKMR, Babu MH, Ovi MK, Zilani MM, Eithu IS, Chakraborty A. Actinium-225 in Targeted Alpha Therapy. J Med Phys 2024; 49:137-147. [PMID: 39131433 PMCID: PMC11309130 DOI: 10.4103/jmp.jmp_22_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/20/2024] [Accepted: 04/14/2024] [Indexed: 08/13/2024] Open
Abstract
The utilization of actinium-225 (225Ac) radionuclides in targeted alpha therapy for cancer was initially outlined in 1993. Over the past two decades, substantial research has been conducted, encompassing the establishment of 225Ac production methods, various preclinical investigations, and several clinical studies. Currently, there is a growing number of compounds labeled with 225Ac that are being developed and tested in clinical trials. In response to the increasing demand for this nuclide, production facilities are either being built or have already been established. This article offers a concise summary of the present state of clinical advancements in compounds labeled with 225Ac. It outlines various processes involved in the production and purification of 225Ac to cater to the growing demand for this radionuclide. The article examines the merits and drawbacks of different procedures, delves into preclinical trials, and discusses ongoing clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Amit Chakraborty
- Department of Physics, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
10
|
Hooijman EL, Radchenko V, Ling SW, Konijnenberg M, Brabander T, Koolen SLW, de Blois E. Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm Chem 2024; 9:9. [PMID: 38319526 PMCID: PMC10847084 DOI: 10.1186/s41181-024-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide. MAIN BODY Ac-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis. CONCLUSION This overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application.
Collapse
Affiliation(s)
- Eline L Hooijman
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Bauer D, Carter LM, Atmane MI, De Gregorio R, Michel A, Kaminsky S, Monette S, Li M, Schultz MK, Lewis JS. 212Pb-Pretargeted Theranostics for Pancreatic Cancer. J Nucl Med 2024; 65:109-116. [PMID: 37945380 PMCID: PMC10755526 DOI: 10.2967/jnumed.123.266388] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
Although pancreatic ductal adenocarcinoma (PDAC) is associated with limited treatment options and poor patient outcomes, targeted α-particle therapy (TAT) represents a promising development in the field. TAT shows potential in treating metastatic cancers, including those that have become resistant to conventional treatments. Among the most auspicious radionuclides stands the in vivo α-generator 212Pb. Combined with the imaging-compatible radionuclide 203Pb, this theranostic match is a promising modality rapidly translating into the clinic. Methods: Using the pretargeting approach between a radiolabeled 1,2,4,5-tetrazine (Tz) tracer and a trans-cyclooctene (TCO) modified antibody, imaging and therapy with radiolead were performed on a PDAC tumor xenograft mouse model. For therapy, 3 cohorts received a single administration of 1.1, 2.2, or 3.7 MBq of the pretargeting agent, [212Pb]Pb-DO3A-PEG7-Tz, whereby administered activity levels were guided by dosimetric analysis. Results: The treated mice were holistically evaluated; minimal-to-mild renal tubular necrosis was observed. At the same time, median survival doubled for the highest-dose cohort (10.7 wk) compared with the control cohort (5.1 wk). Conclusion: This foundational study demonstrated the feasibility and safety of pretargeted TAT with 212Pb in PDAC while considering dose limitations and potential adverse effects.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohamed I Atmane
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Rockefeller University, New York, New York
| | - Roberto De Gregorio
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexa Michel
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Spencer Kaminsky
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Rockefeller University, New York, New York
| | - Mengshi Li
- Perspective Therapeutics, Inc., Coralville, Iowa; and
| | | | - Jason S Lewis
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Radiology and Pharmacology Program, Weill Cornell Medical College, New York, New York
| |
Collapse
|
12
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
13
|
Hassan M, Bokhari TH, Lodhi NA, Khosa MK, Usman M. A review of recent advancements in Actinium-225 labeled compounds and biomolecules for therapeutic purposes. Chem Biol Drug Des 2023; 102:1276-1292. [PMID: 37715360 DOI: 10.1111/cbdd.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
In nuclear medicine, cancers that cannot be cured or can only be treated partially by traditional techniques like surgery or chemotherapy are killed by ionizing radiation as a form of therapeutic treatment. Actinium-225 is an alpha-emitting radionuclide that is highly encouraging as a therapeutic approach and more promising for targeted alpha therapy (TAT). Actinium-225 is the best candidate for tumor cells treatment and has physical characteristics such as high (LET) linear energy transfer (150 keV per μm), half-life (t1/2 = 9.92d), and short ranges (400-100 μm) which prevent the damage of normal healthy tissues. The introduction of various new radiopharmaceuticals and radioisotopes has significantly assisted the advancement of nuclear medicine. Ac-225 radiopharmaceuticals continuously demonstrate their potential as targeted alpha therapeutics. 225 Ac-labeled radiopharmaceuticals have confirmed their importance in medical and clinical areas by introducing [225 Ac]Ac-PSMA-617, [225 Ac]Ac-DOTATOC, [225 Ac]Ac-DOTA-substance-P, reported significantly improved response in patients with prostate cancer, neuroendocrine, and glioma, respectively. The development of these radiopharmaceuticals required a suitable buffer, incubation time, optimal pH, and reaction temperature. There is a growing need to standardize quality control (QC) testing techniques such as radiochemical purity (RCP). This review aims to summarize the development of the Ac-225 labeled compounds and biomolecules. The current state of their reported resulting clinical applications is also summarized as well.
Collapse
Affiliation(s)
- Maria Hassan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Nadeem Ahmed Lodhi
- Isotope Production Division, Pakistan institute of Nuclear Science & Technology (PINSTECH), Islamabad, Pakistan
| | | | - Muhammad Usman
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
14
|
Li X, Lan X, Cai W. Pretargeted Radioimmunotherapy of Ovarian Cancer with 225Ac and an Internalizing Antibody. J Nucl Med 2023; 64:1446-1448. [PMID: 37591542 PMCID: PMC10478819 DOI: 10.2967/jnumed.123.266026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Indexed: 08/19/2023] Open
Affiliation(s)
- Xiaoyan Li
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin;
| |
Collapse
|
15
|
Tsuchihashi S, Nakashima K, Tarumizu Y, Ichikawa H, Jinda H, Watanabe H, Ono M. Development of Novel 111In/ 225Ac-Labeled Agent Targeting PSMA for Highly Efficient Cancer Radiotheranostics. J Med Chem 2023. [PMID: 37285471 DOI: 10.1021/acs.jmedchem.3c00346] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a promising target for metastatic castration-resistant prostate cancer. We previously reported the effectiveness of PSMA-DA1 as a PSMA-targeting radiotheranostic agent containing an albumin binder moiety. To further enhance tumor uptake, we newly designed PSMA-NAT-DA1 (PNT-DA1) by the introduction of a lipophilic linker into PSMA-DA1. The PSMA affinity of [111In]In-PNT-DA1 was increased (Kd = 8.20 nM) compared with that of [111In]In-PSMA-DA1 (Kd = 89.4 nM). [111In]In-PNT-DA1 showed markedly high tumor accumulation (131.6% injected dose/g at 48 h post-injection), and [111In]In-PNT-DA1 enabled the visualization of the tumor clearly at 24 h post-injection with SPECT/CT imaging. The administration of [225Ac]Ac-PNT-DA1 (2.5 kBq) led to shrinkage of the tumor without marked toxicity, and the antitumor effects of [225Ac]Ac-PNT-DA1 were superior to those of [225Ac]Ac-PSMA-DA1 and [225Ac]Ac-PSMA-617, which is the current gold standard for PSMA-targeting 225Ac-endoradiotherapy. These results suggest that the combination of [111In]In-PNT-DA1 and [225Ac]Ac-PNT-DA1 comprises a promising method of PSMA-targeting radiotheranostics.
Collapse
Affiliation(s)
- Shohei Tsuchihashi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuta Tarumizu
- Research Center, Nihon Medi-Physics Co., Ltd., 3-1 Sodegaura-shi, Chiba 299-0266, Japan
| | - Hiroaki Ichikawa
- Research Center, Nihon Medi-Physics Co., Ltd., 3-1 Sodegaura-shi, Chiba 299-0266, Japan
| | - Hiroki Jinda
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
17
|
Ertveldt T, Krasniqi A, Ceuppens H, Puttemans J, Dekempeneer Y, De Jonghe K, de Mey W, Lecocq Q, De Vlaeminck Y, Awad RM, Goyvaerts C, De Veirman K, Morgenstern A, Bruchertseifer F, Keyaerts M, Devoogdt N, D'Huyvetter M, Breckpot K. Targeted α-Therapy Using 225Ac Radiolabeled Single-Domain Antibodies Induces Antigen-Specific Immune Responses and Instills Immunomodulation Both Systemically and at the Tumor Microenvironment. J Nucl Med 2023; 64:751-758. [PMID: 37055223 DOI: 10.2967/jnumed.122.264752] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Indexed: 04/15/2023] Open
Abstract
Targeted radionuclide therapy (TRT) using targeting moieties labeled with α-particle-emitting radionuclides (α-TRT) is an intensely investigated treatment approach as the short range of α-particles allows effective treatment of local lesions and micrometastases. However, profound assessment of the immunomodulatory effect of α-TRT is lacking in literature. Methods: Using flow cytometry of tumors, splenocyte restimulation, and multiplex analysis of blood serum, we studied immunologic responses ensuing from TRT with an antihuman CD20 single-domain antibody radiolabeled with 225Ac in a human CD20 and ovalbumin expressing B16-melanoma model. Results: Tumor growth was delayed with α-TRT and increased blood levels of various cytokines such as interferon-γ, C-C motif chemokine ligand 5, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1. Peripheral antitumoral T-cell responses were detected on α-TRT. At the tumor site, α-TRT modulated the cold tumor microenvironment (TME) to a more hospitable and hot habitat for antitumoral immune cells, characterized by a decrease in protumoral alternatively activated macrophages and an increase in antitumoral macrophages and dendritic cells. We also showed that α-TRT increased the percentage of programmed death-ligand 1 (PD-L1)-positive (PD-L1pos) immune cells in the TME. To circumvent this immunosuppressive countermeasure we applied immune checkpoint blockade of the programmed cell death protein 1-PD-L1 axis. Combination of α-TRT with PD-L1 blockade potentiated the therapeutic effect, however, the combination aggravated adverse events. A long-term toxicity study revealed severe kidney damage ensuing from α-TRT. Conclusion: These data suggest that α-TRT alters the TME and induces systemic antitumoral immune responses, which explains why immune checkpoint blockade enhances the therapeutic effect of α-TRT. However, further optimization is warranted to avoid adverse events.
Collapse
Affiliation(s)
- Thomas Ertveldt
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannelore Ceuppens
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Janik Puttemans
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yana Dekempeneer
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin De Jonghe
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wout de Mey
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin Maximilian Awad
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe Institut, Germany; and
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe Institut, Germany; and
| | - Marleen Keyaerts
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Nuclear Medicine, UZ Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium;
| |
Collapse
|
18
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
19
|
Zhang Y, Zhang D, An S, Liu Q, Liang C, Li J, Liu P, Wu C, Huang G, Wei W, Liu J. Development and Characterization of Nanobody-Derived CD47 Theranostic Pairs in Solid Tumors. RESEARCH (WASHINGTON, D.C.) 2023; 6:0077. [PMID: 36939440 PMCID: PMC10017100 DOI: 10.34133/research.0077] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Overexpression of CD47 is frequently observed in various types of human malignancies, inhibiting myeloid-mediated elimination of tumor cells and affecting the prognosis of cancer patients. By mapping biomarker expression, immuno-positron emission tomography has been increasingly used for patient screening and response monitoring. By immunization alpacas with recombinant human CD47, we prepared a CD47-targeting nanobody C2 and developed [68Ga]Ga-NOTA-C2, followed by an exploration of the diagnostic value in CD47-expressing tumor models including gastric-cancer patient-derived xenograft models. By fusing C2 to an albumin binding domain (ABD), we synthesized ABDC2, which had increased in vivo half-life and improved targeting properties. We further labeled ABDC2 with 68Ga/89Zr/177Lu to develop radionuclide theranostic pairs and evaluated the pharmacokinetics and theranostic efficacies of the agents in cell- and patient-derived models. Both C2 and ABDC2 specifically reacted with human CD47 with a high K D value of 23.50 and 84.57 pM, respectively. [68Ga]Ga-NOTA-C2 was developed with high radiochemical purity (99 >%, n = 4) and visualized CD47 expression in the tumors. In comparison to the rapid renal clearance and short half-life of [68Ga]Ga-NOTA-C2, both [68Ga]Ga-NOTA-ABDC2 and [89Zr]Zr-DFO-ABDC2 showed prolonged circulation and increased tumor uptake, with the highest uptake of [89Zr]Zr-DFO-ABDC2 occurring at 72 h post-injection. Moreover, [177Lu]Lu-DOTA-ABDC2 radioimmunotherapy suppressed the tumor growth but was associated with toxicity, warranting further optimization of the treatment schedules. Taken together, we reported a series of nanobody-derived CD47-targeted agents, of which [68Ga]Ga-NOTA-C2 and [89Zr]Zr-DFO-ABDC2 are readily translatable. Optimization and translation of CD47-targeted theranostic pair may provide new prospects for CD47-targeted management of solid tumors.
Collapse
Affiliation(s)
- You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center,
Fudan University, Shanghai 200030, China
| | - Chenyi Liang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Juan Li
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences,
The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute,
Shanghai Jiao Tong University, Shanghai 200030, China
| | - Changfeng Wu
- Department of Biomedical Engineering,
Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
- Address correspondence to: (W.W.); (G.H.); (J.L.)
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
- Address correspondence to: (W.W.); (G.H.); (J.L.)
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
- Address correspondence to: (W.W.); (G.H.); (J.L.)
| |
Collapse
|
20
|
d'Orchymont F, Holland JP. A rotaxane-based platform for tailoring the pharmacokinetics of cancer-targeted radiotracers. Chem Sci 2022; 13:12713-12725. [PMID: 36519052 PMCID: PMC9645377 DOI: 10.1039/d2sc03928a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 08/01/2023] Open
Abstract
Radiolabelled monoclonal antibodies (mAbs) are a cornerstone of molecular diagnostic imaging and targeted radioimmunotherapy in nuclear medicine, but one of the major challenges in the field is to identify ways of reducing the radiation burden to patients. We reasoned that a rotaxane-based platform featuring a non-covalent mechanical bond between the radionuclide complex and the biologically active mAb could offer new ways of controlling the biophysical properties of cancer-specific radiotracers for positron emission tomography (PET). Herein, we present the photoradiosynthesis and characterisation of [89Zr]ZrFe-[4]rotaxane-azepin-onartuzumab ([89Zr]ZrFe-2), a unique rotaxane-antibody conjugate for PET imaging and quantification of the human hepatocyte growth factor receptor (c-MET). Multiple component self-assembly reactions were combined with simultaneous 89Zr-radiolabelling and light-induced bioconjugation methods to give [89Zr]ZrFe-2 in 15 ± 1% (n = 3) decay-corrected radiochemical yield, with >90% radiochemical purity, and molar activities suitable for PET imaging studies (>6.1 MBq mg-1 of protein). Cellular assays confirmed the specificity of [89Zr]ZrFe-2 binding to the c-MET receptor. Temporal PET imaging in athymic nude mice bearing subcutaneous MKN-45 gastric adenocarcinoma xenografts demonstrated specific binding of [89Zr]ZrFe-2 toward c-MET in vivo, where tumour uptake reached 9.8 ± 1.3 %ID g-1 (72 h, n = 5) in a normal group and was reduced by ∼56% in a control (blocking) group. Head-to-head comparison of the biodistribution and excretion profile of [89Zr]ZrFe-2versus two control compounds, alongside characterisation of two potential metabolites, showed that the rotaxane-radiotracer has an improved clearance profile with higher tumour-to-tissue contrast ratios and reduced radiation exposure to critical (dose-limiting) organs including liver, spleen, and kidneys. Collectively, the experimental results suggested that non-covalent mechanical bonds between the radionuclide and mAb can be used to fine-tune the pharmacokinetic profile of supramolecular radiopharmaceuticals in ways that are simply not accessible when using traditional covalent design.
Collapse
Affiliation(s)
- Faustine d'Orchymont
- University of Zurich, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich Switzerland https://www.hollandlab.org https://twitter.com/HollandLab +41-44-63-53990 +41-44-63-53990
| | - Jason P Holland
- University of Zurich, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich Switzerland https://www.hollandlab.org https://twitter.com/HollandLab +41-44-63-53990 +41-44-63-53990
| |
Collapse
|
21
|
Dhiman D, Vatsa R, Sood A. Challenges and opportunities in developing Actinium-225 radiopharmaceuticals. Nucl Med Commun 2022; 43:970-977. [PMID: 35950353 DOI: 10.1097/mnm.0000000000001594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Actinium-225 (225Ac) has emerged as a promising therapeutic radioisotope for targeted alpha therapy. It emits net four alpha particles during its decay to stable daughter bismuth-209, rightly called an in-vivo nano-generator. Compared to the worldwide demand of 225Ac, the amount produced via depleted thorium-229 sources is minimal, making it an expensive radionuclide. However, many research groups are working on optimizing the parameters for the production of 225Ac via different routes, including cyclotrons, reactors and high-energy linear accelerators. The present review article focuses on the various aspects associated with the development of 225Ac radiopharmaceuticals. It includes the challenges and opportunities associated with the production methods, labeling chemistry, in-vivo kinetics and dosimetry of 225Ac radiopharmaceuticals. A brief description is also given about the 225Ac radiopharmaceuticals at preclinical stages, clinical trials and used routinely.
Collapse
Affiliation(s)
- Deeksha Dhiman
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Rakhee Vatsa
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
- Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| |
Collapse
|
22
|
Cheal SM, Chung SK, Vaughn BA, Cheung NKV, Larson SM. Pretargeting: A Path Forward for Radioimmunotherapy. J Nucl Med 2022; 63:1302-1315. [PMID: 36215514 DOI: 10.2967/jnumed.121.262186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Pretargeted radioimmunodiagnosis and radioimmunotherapy aim to efficiently combine antitumor antibodies and medicinal radioisotopes for high-contrast imaging and high-therapeutic-index (TI) tumor targeting, respectively. As opposed to conventional radioimmunoconjugates, pretargeted approaches separate the tumor-targeting step from the payload step, thereby amplifying tumor uptake while reducing normal-tissue exposure. Alongside contrast and TI, critical parameters include antibody immunogenicity and specificity, availability of radioisotopes, and ease of use in the clinic. Each of the steps can be optimized separately; as modular systems, they can find broad applications irrespective of tumor target, tumor type, or radioisotopes. Although this versatility presents enormous opportunity, pretargeting is complex and presents unique challenges for clinical translation and optimal use in patients. The purpose of this article is to provide a brief historical perspective on the origins and development of pretargeting strategies in nuclear medicine, emphasizing 2 protein delivery systems that have been extensively evaluated (i.e., biotin-streptavidin and hapten-bispecific monoclonal antibodies), as well as radiohaptens and radioisotopes. We also highlight recent innovations, including pretargeting with bioorthogonal chemistry and novel protein vectors (such as self-assembling and disassembling proteins and Affibody molecules). We caution the reader that this is by no means a comprehensive review of the past 3 decades of pretargeted radioimmunodiagnosis and pretargeted radioimmunotherapy. But we do aim to highlight major developmental milestones and to identify benchmarks for success with regard to TI and toxicity in preclinical models and clinically. We believe this approach will lead to the identification of key obstacles to clinical success, revive interest in the utility of radiotheranostics applications, and guide development of the next generation of pretargeted theranostics.
Collapse
Affiliation(s)
- Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Sebastian K Chung
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett A Vaughn
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
23
|
Espinosa-Cotton M, Cheung NKV. Bispecific antibodies for the treatment of neuroblastoma. Pharmacol Ther 2022; 237:108241. [PMID: 35830901 PMCID: PMC10351215 DOI: 10.1016/j.pharmthera.2022.108241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Bispecific antibodies (BsAb) are a new generation of antibody-based therapy, conveying artificial specificity to polyclonal T cells or radiohaptens. These drugs have been successfully implemented to cure hematologic malignancies and are under clinical investigation for solid tumors including HRNB. BsAbs designed to engage T cells or increase the therapeutic index of radiotherapy hold the potential to significantly improve the long-term survival of HRNB patients by shrinking bulky tumors and more effectively eliminating micrometastases and preventing relapse. BsAbs can also be used to arm T cells, yielding a product analogous to CAR T cells, possibly with an improved safety profile. A thoughtful and realistic integration of these therapies into the standard of care should benefit more patients worldwide. Here we describe the history of development of BsAbs for HRNB, which dates back almost three decades. We discuss the merits and pitfalls of all relevant BsAbs, including T cell-engagers and agents used for radioimmunotherapy, highlighting the importance of structural design and interdomain spacing for anti-tumor efficacy.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York.
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York
| |
Collapse
|
24
|
Jallinoja VIJ, Carney BD, Bhatt K, Abbriano CH, Schlyer DJ, Yazaki PJ, Houghton JL. Investigation of Copper-64-Based Host-Guest Chemistry Pretargeted Positron Emission Tomography. Mol Pharm 2022; 19:2268-2278. [PMID: 35700402 PMCID: PMC11271262 DOI: 10.1021/acs.molpharmaceut.2c00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pretargeting is a technique that uses macromolecules as targeting agents for nuclear imaging and therapy with the goal of reducing the radiation toxicity to healthy tissues often associated with directly radiolabeled macromolecules. In pretargeting, a macromolecule is radiolabeled in vivo at the target site using a radiolabeled small molecule (radioligand) that interacts with the macromolecule with high specificity. We report an investigation of host-guest chemistry-driven pretargeting using copper-64 radiolabeled ferrocene (Fc; guest) compounds and a cucurbit[7]uril (CB7; host) molecule functionalized carcinoembryonic antigen targeting hT84.66-M5A monoclonal antibody (CB7-M5A). Two novel ferrocene-based radioligands ([64Cu]Cu-NOTA-PEG3-Fc and [64Cu]Cu-NOTA-PEG7-Fc) were prepared, and their in vitro stability, pharmacokinetic in vivo profile in healthy mice, and pretargeting performance in a subcutaneous BxPC3 human pancreatic cancer cell xenograft mouse model were compared. The antibody dosing was optimized using a zirconium-89 radiolabeled M5A antibody ([89Zr]Zr-DFO-M5A) in a BxPC3 xenograft model, and the dosimetry of [89Zr]Zr-DFO-M5A and the pretargeting approach were compared. Finally, the effects of varying lag times up to 9 days between CB7-M5A and radioligand injection were investigated. In vivo pretargeting studies with both ferrocene radioligands resulted in specific tumor uptake (p = 0.0006 and p = 0.003) and also showed that the host-guest-based pretargeting approach excels with extended lag times up to 9 days with good tumor localization, suggesting that host-guest pretargeting may be suitable for use without clearing agents which have complicated clinical application of this technique. To our knowledge, the reported lag time of 9 days is the longest investigated lag time in any reported pretargeting studies.
Collapse
Affiliation(s)
- Vilma I J Jallinoja
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
- Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Brandon D Carney
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kavita Bhatt
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Courtney H Abbriano
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| | - David J Schlyer
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
- Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Paul J Yazaki
- Beckman Institute, City of Hope, Duarte, California 91010, United States
| | - Jacob L Houghton
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
25
|
Chandler CS, Bell MM, Chung SK, Veach DR, Fung EK, Punzalan B, Burnes Vargas D, Patel M, Xu H, Guo HF, Santich BH, Zanzonico PB, Monette S, Nash GM, Cercek A, Jungbluth A, Pandit-Taskar N, Cheung NKV, Larson SM, Cheal SM. Intraperitoneal Pretargeted Radioimmunotherapy for Colorectal Peritoneal Carcinomatosis. Mol Cancer Ther 2022; 21:125-137. [PMID: 34667111 PMCID: PMC9157533 DOI: 10.1158/1535-7163.mct-21-0353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Peritoneal carcinomatosis (PC) is considered incurable, and more effective therapies are needed. Herein we test the hypothesis that GPA33-directed intracompartmental pretargeted radioimmunotherapy (PRIT) can cure colorectal peritoneal carcinomatosis. Nude mice were implanted intraperitoneally with luciferase-transduced GPA33-expressing SW1222 cells for aggressive peritoneal carcinomatosis (e.g., resected tumor mass 0.369 ± 0.246 g; n = 17 on day 29). For GPA33-PRIT, we administered intraperitoneally a high-affinity anti-GPA33/anti-DOTA bispecific antibody (BsAb), followed by clearing agent (intravenous), and lutetium-177 (Lu-177) or yttrium-86 (Y-86) radiolabeled DOTA-radiohapten (intraperitoneal) for beta/gamma-emitter therapy and PET imaging, respectively. The DOTA-radiohaptens were prepared from S-2-(4-aminobenzyl)-1,4,7, 10-tetraazacyclododecane tetraacetic acid chelate (DOTA-Bn). Efficacy and toxicity of single- versus three-cycle therapy were evaluated in mice 26-27 days post-tumor implantation. Single-cycle treatment ([177Lu]LuDOTA-Bn 111 MBq; tumor dose: 4,992 cGy) significantly prolonged median survival (MS) approximately 2-fold to 84.5 days in comparison with controls (P = 0.007). With three-cycle therapy (once weekly, total 333 MBq; tumor dose: 14,975 cGy), 6/8 (75%) survived long-term (MS > 183 days). Furthermore, for these treated long-term survivors, 1 mouse was completely disease free (microscopic "cure") at necropsy; the others showed stabilized disease, which was detectable during PET-CT using [86Y]DOTA-Bn. Treatment controls had MS ranging from 42-52.5 days (P < 0.001) and 19/20 mice succumbed to progressive intraperitoneal disease by 69 days. Multi-cycle GPA33 DOTA-PRIT significantly prolongs survival with reversible myelosuppression and no chronic marrow (929 cGy to blood) or kidney (982 cGy) radiotoxicity, with therapeutic indices of 12 for blood and 12 for kidneys. MTD was not reached.
Collapse
Affiliation(s)
| | - Meghan M Bell
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastian K Chung
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Blesida Punzalan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Mitesh Patel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hong-Fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian H Santich
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sébastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York
| | - Garrett M Nash
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
26
|
Radiobiology of Targeted Alpha Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Sabanathan D, Lund ME, Campbell DH, Walsh BJ, Gurney H. Radioimmunotherapy for solid tumors: spotlight on Glypican-1 as a radioimmunotherapy target. Ther Adv Med Oncol 2021; 13:17588359211022918. [PMID: 34646364 PMCID: PMC8504276 DOI: 10.1177/17588359211022918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Radioimmunotherapy (i.e., the use of radiolabeled tumor targeting antibodies) is an emerging approach for the diagnosis, therapy, and monitoring of solid tumors. Often using paired agents, each targeting the same tumor molecule, but labelled with an imaging or therapeutic isotope, radioimmunotherapy has achieved promising clinical results in relatively radio-resistant solid tumors such as prostate. Several approaches to optimize therapeutic efficacy, such as dose fractionation and personalized dosimetry, have seen clinical success. The clinical use and optimization of a radioimmunotherapy approach is, in part, influenced by the targeted tumor antigen, several of which have been proposed for different solid tumors. Glypican-1 (GPC-1) is a heparan sulfate proteoglycan that is expressed in a variety of solid tumors, but whose expression is restricted in normal adult tissue. Here, we discuss the preclinical and clinical evidence for the potential of GPC-1 as a radioimmunotherapy target. We describe the current treatment paradigm for several solid tumors expressing GPC-1 and suggest the potential clinical utility of a GPC-1 directed radioimmunotherapy for these tumors.
Collapse
Affiliation(s)
- Dhanusha Sabanathan
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | | | - Howard Gurney
- Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, Sydney, NSW 2109, Australia
| |
Collapse
|
28
|
Eychenne R, Chérel M, Haddad F, Guérard F, Gestin JF. Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The "Hopeful Eight". Pharmaceutics 2021; 13:pharmaceutics13060906. [PMID: 34207408 PMCID: PMC8234975 DOI: 10.3390/pharmaceutics13060906] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Among all existing radionuclides, only a few are of interest for therapeutic applications and more specifically for targeted alpha therapy (TAT). From this selection, actinium-225, astatine-211, bismuth-212, bismuth-213, lead-212, radium-223, terbium-149 and thorium-227 are considered as the most suitable. Despite common general features, they all have their own physical characteristics that make them singular and so promising for TAT. These radionuclides were largely studied over the last two decades, leading to a better knowledge of their production process and chemical behavior, allowing for an increasing number of biological evaluations. The aim of this review is to summarize the main properties of these eight chosen radionuclides. An overview from their availability to the resulting clinical studies, by way of chemical design and preclinical studies is discussed.
Collapse
Affiliation(s)
- Romain Eychenne
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint-Herblain, France;
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
- Correspondence: (R.E.); (J.-F.G.)
| | - Michel Chérel
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
| | - Férid Haddad
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint-Herblain, France;
- Laboratoire Subatech, UMR 6457, Université de Nantes, IMT Atlantique, CNRS, Subatech, F-44000 Nantes, France
| | - François Guérard
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
| | - Jean-François Gestin
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
- Correspondence: (R.E.); (J.-F.G.)
| |
Collapse
|
29
|
Dacek MM, Veach DR, Cheal SM, Carter LM, McDevitt MR, Punzalan B, Burnes Vargas D, Kubik TZ, Monette S, Santich BH, Yang G, Ouerfelli O, Kesner AL, Cheung NKV, Scheinberg DA, Larson SM, Krebs S. Engineered Cells as a Test Platform for Radiohaptens in Pretargeted Imaging and Radioimmunotherapy Applications. Bioconjug Chem 2021; 32:649-654. [PMID: 33819023 DOI: 10.1021/acs.bioconjchem.0c00595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pretargeted imaging and radioimmunotherapy approaches are designed to have superior targeting properties over directly targeted antibodies but impose more complex pharmacology, which hinders efforts to optimize the ligands prior to human applications. Human embryonic kidney 293T cells expressing the humanized single-chain variable fragment (scFv) C825 (huC825) with high-affinity for DOTA-haptens (293T-huC825) in a transmembrane-anchored format eliminated the requirement to use other pretargeting reagents and provided a simplified, accelerated assay of radiohapten capture while offering normalized cell surface expression of the molecular target of interest. Using binding assays, ex vivo biodistribution, and in vivo imaging, we demonstrated that radiohaptens based on benzyl-DOTA and a second generation "Proteus" DOTA-platform effectively and specifically engaged membrane-bound huC825, achieving favorable tumor-to-normal tissue uptake ratios in mice. Furthermore, [86Y]Y-DOTA-Bn predicted absorbed dose to critical organs with reasonable accuracy for both [177Lu]Lu-DOTA-Bn and [225Ac]Ac-Pr, which highlights the benefit of a dosimetry-based treatment approach.
Collapse
Affiliation(s)
- Megan M Dacek
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Darren R Veach
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Radiochemistry and Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Sarah M Cheal
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Michael R McDevitt
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Blesida Punzalan
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniela Burnes Vargas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thomas Z Kubik
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Sebastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York 10065, United States
| | - Brian H Santich
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Guangbin Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Adam L Kesner
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Steven M Larson
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
30
|
Herrero Álvarez N, Bauer D, Hernández-Gil J, Lewis JS. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021; 16:2909-2941. [PMID: 33792195 DOI: 10.1002/cmdc.202100135] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Nuclear medicine is defined as the use of radionuclides for diagnostic and therapeutic applications. The imaging modalities positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are based on γ-emissions of specific energies. The therapeutic technologies are based on β- -particle-, α-particle-, and Auger electron emitters. In oncology, PET and SPECT are used to detect cancer lesions, to determine dosimetry, and to monitor therapy effectiveness. In contrast, radiotherapy is designed to irreparably damage tumor cells in order to eradicate or control the disease's progression. Radiometals are being explored for the development of diagnostic and therapeutic radiopharmaceuticals. Strategies that combine both modalities (diagnostic and therapeutic), referred to as theranostics, are promising candidates for clinical applications. This review provides an overview of the basic concepts behind therapeutic and diagnostic radiopharmaceuticals and their significance in contemporary oncology. Select radiometals that significantly impact current and upcoming cancer treatment strategies are grouped as clinically suitable theranostics pairs. The most important physical and chemical properties are discussed. Standard production methods and current radionuclide availability are provided to indicate whether a cost-efficient use in a clinical routine is feasible. Recent preclinical and clinical developments and outline perspectives for the radiometals are highlighted in each section.
Collapse
Affiliation(s)
- Natalia Herrero Álvarez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - David Bauer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Javier Hernández-Gil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Katholieke Universiteit, Herestraat 49, 3000, Leuven, Belgium
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.,Department of Pharmacology, Weill-Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
31
|
Capala J, Kunos CA. A New Generation of "Magic Bullets" for Molecular Targeting of Cancer. Clin Cancer Res 2021; 27:377-379. [PMID: 33144340 DOI: 10.1158/1078-0432.ccr-20-3690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
A two-step molecular targeting approach involving a self-assembling and disassembling (SADA) bispecific antibody platform and DOTA-radioconjugates allows tumor-specific delivery of diagnostic and therapeutic payloads. Low immunogenicity and the modular nature of SADA allow its optimization to safely and repeatedly deliver a variety of payloads to tumors expressing diverse tumor-specific antigens.See related article by Santich et al., p. 532.
Collapse
Affiliation(s)
- Jacek Capala
- Division of Cancer Therapy and Diagnosis, NCI, NIH, Bethesda, Maryland.
| | - Charles A Kunos
- Division of Cancer Therapy and Diagnosis, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
32
|
Santich BH, Cheal SM, Ahmed M, McDevitt MR, Ouerfelli O, Yang G, Veach DR, Fung EK, Patel M, Burnes Vargas D, Malik AA, Guo HF, Zanzonico PB, Monette S, Michel AO, Rudin CM, Larson SM, Cheung NK. A Self-Assembling and Disassembling (SADA) Bispecific Antibody (BsAb) Platform for Curative Two-step Pretargeted Radioimmunotherapy. Clin Cancer Res 2020; 27:532-541. [PMID: 32958698 DOI: 10.1158/1078-0432.ccr-20-2150] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Many cancer treatments suffer from dose-limiting toxicities to vital organs due to poor therapeutic indices. To overcome these challenges we developed a novel multimerization platform that rapidly removes tumor-targeting proteins from the blood to substantially improve therapeutic index. EXPERIMENTAL DESIGN The platform was designed as a fusion of a self-assembling and disassembling (SADA) domain to a tandem single-chain bispecific antibody (BsAb, anti-ganglioside GD2 × anti-DOTA). SADA-BsAbs were assessed with multiple in vivo tumor models using two-step pretargeted radioimmunotherapy (PRIT) to evaluate tumor uptake, dosimetry, and antitumor responses. RESULTS SADA-BsAbs self-assembled into stable tetramers (220 kDa), but could also disassemble into dimers or monomers (55 kDa) that rapidly cleared via renal filtration and substantially reduced immunogenicity in mice. When used with rapidly clearing DOTA-caged PET isotopes, SADA-BsAbs demonstrated accurate tumor localization, dosimetry, and improved imaging contrast by PET/CT. When combined with therapeutic isotopes, two-step SADA-PRIT safely delivered massive doses of alpha-emitting (225Ac, 1.48 MBq/kg) or beta-emitting (177Lu, 6,660 MBq/kg) S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA) payloads to tumors, ablating them without any short-term or long-term toxicities to the bone marrow, kidneys, or liver. CONCLUSIONS The SADA-BsAb platform safely delivered large doses of radioisotopes to tumors and demonstrated no toxicities to the bone marrow, kidneys, or liver. Because of its modularity, SADA-BsAbs can be easily adapted to most tumor antigens, tumor types, or drug delivery approaches to improve therapeutic index and maximize the delivered dose.See related commentary by Capala and Kunos, p. 377.
Collapse
Affiliation(s)
- Brian H Santich
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mahiuddin Ahmed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael R McDevitt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Guangbin Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darren R Veach
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Mitesh Patel
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniela Burnes Vargas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aiza A Malik
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hong-Fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Adam O Michel
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Charles M Rudin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Nai K Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|