1
|
Liu P, Zhang Q, Liu F. Biological roles and clinical applications of EpCAM in HCC. Discov Oncol 2025; 16:319. [PMID: 40087210 PMCID: PMC11909382 DOI: 10.1007/s12672-025-02095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is an important biomarker in tumors. In hepatocellular carcinoma (HCC), EpCAM + cells exhibit high invasiveness, tumorigenic ability, therapeutic resistance, and self-renewal ability, often identified as liver cancer stem cells (CSCs). Detecting EpCAM + cells in tumor lesions and circulation is valuable for predicting patient prognosis and monitoring therapeutic outcomes, emphasizing its clinical significance. Given its broad expression in HCC, especially in CSCs and circulating tumor cells (CTCs), EpCAM-targeting agents have garnered substantial research interest. However, the role of EpCAM in HCC progression and its regulatory mechanisms remains poorly understood. Furthermore, clinical applications of EpCAM, such as liquid biopsy and targeted therapies, are still controversial. This review summarizes the biological properties of EpCAM + HCC cells, explores the regulatory mechanisms governing EpCAM expression, and discusses its clinical significance of using EpCAM as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Peng Liu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qun Zhang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Solhi R, Pourhamzeh M, Zarrabi A, Hassan M, Mirzaei H, Vosough M. Novel biomarkers for monitoring and management of hepatocellular carcinoma. Cancer Cell Int 2024; 24:428. [PMID: 39719624 DOI: 10.1186/s12935-024-03600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Due to current challenges in the early detection, less than 40% of individuals diagnosed with hepatocellular carcinoma (HCC) are viable candidates for surgical intervention. Therefore, validating and launching of a novel precise diagnostic approach is essential for early diagnosis. Based on developing evidence using circulating tumor cells and their derivatives, circulating miRNAs, and extracellular vesicles (EVs), liquid biopsy may offer a reliable platform for the HCC's early diagnosis. Each liquid biopsy analyte may provide significant areas for diagnosis, prognostic assessment, and treatment monitoring of HCC patients depending on its kind, sensitivity, and specificity. The current review addresses potential clinical applications, current research, and future developments for liquid biopsy in HCC management.
Collapse
Affiliation(s)
- Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Pan C, Wang X, Yang C, Fu K, Wang F, Fu L. The culture and application of circulating tumor cell-derived organoids. Trends Cell Biol 2024:S0962-8924(24)00210-1. [PMID: 39523200 DOI: 10.1016/j.tcb.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Circulating tumor cells (CTCs), which have the heterogeneity and histological properties of the primary tumor and metastases, are shed from the primary tumor and/or metastatic lesions into the vasculature and initiate metastases at remote sites. In the clinic, CTCs are used extensively in liquid biopsies for early screening, diagnosis, treatment, and prognosis. Current research focuses on using CTC-derived models to study tumor heterogeneity and metastasis, with 3D organoids emerging as a promising tool in cancer research and precision oncology. However, isolating and enriching CTCs from blood remains challenging due to their scarcity, exacerbated by the lack of an optimized culture medium for CTC-derived organoids (CTCDOs). In this review, we summarize the origin, isolation, enrichment, culture, validation, and clinical application of CTCs and CTCDOs.
Collapse
Affiliation(s)
- Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
4
|
Reduzzi C, Nicolo' E, Singhal S, Venetis K, Ortega-Franco A, de Miguel-Perez D, Dipasquale A, Gouda MA, Saldanha EF, Kasi PM, Jantus-Lewintre E, Fusco N, Malapelle U, Gandara DR, Rolfo C, Serrano MJ, Cristofanilli M. Unveiling the impact of circulating tumor cells: Two decades of discovery and clinical advancements in solid tumors. Crit Rev Oncol Hematol 2024; 203:104483. [PMID: 39159706 DOI: 10.1016/j.critrevonc.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Circulating tumor cells (CTCs) enumeration and molecular profiling hold promise in revolutionizing the management of solid tumors. Their understanding has evolved significantly over the past two decades, encompassing pivotal biological discoveries and clinical studies across various malignancies. While for some tumor types, such as breast, prostate, and colorectal cancer, CTCs are ready to enter clinical practice, for others, additional research is required. CTCs serve as versatile biomarkers, offering insights into tumor biology, metastatic progression, and treatment response. This review summarizes the latest advancements in CTC research and highlights future directions of investigation. Special attention is given to concurrent evaluations of CTCs and other circulating biomarkers, particularly circulating tumor DNA. Multi-analyte assessment holds the potential to unlock the full clinical capabilities of liquid biopsy. In conclusion, CTCs represent a transformative biomarker in precision oncology, offering extraordinary opportunities to translate scientific discoveries into tangible improvements in patient care.
Collapse
Affiliation(s)
- Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Eleonora Nicolo'
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Surbhi Singhal
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Konstantinos Venetis
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Ana Ortega-Franco
- Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erick F Saldanha
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, ON, Canada
| | - Pashtoon M Kasi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| | - Eloisa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, Unidad Mixta TRIAL (Fundación para la Investigación del Hospital General Universitario de Valencia y Centro de Investigación Príncipe Felipe) and CIBERONC, Valencia, Spain
| | - Nicola Fusco
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20121, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli 80131, Italy
| | - David R Gandara
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Maria Jose Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain; Pathological Anatomy Unit, Molecular Pathology Laboratory,Virgen de las Nieves. University Hospital, Av. Dr. Olóriz 16, Granada 18012, Spain
| | - Massimo Cristofanilli
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| |
Collapse
|
5
|
Liu M, Wen Y. Point-of-care testing for early-stage liver cancer diagnosis and personalized medicine: Biomarkers, current technologies and perspectives. Heliyon 2024; 10:e38444. [PMID: 39397977 PMCID: PMC11470528 DOI: 10.1016/j.heliyon.2024.e38444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Liver cancer is a highly prevalent and lethal form of cancer worldwide. In the absence of early diagnosis, treatment options for this disease are severely restricted. Recent advancements in genomics and bioinformatics have facilitated the discovery of a multitude of novel biomarkers that accurately depict an individual's disease diagnosis, progression, and treatment response. Leveraging these breakthroughs, personalized medicine employs an individual's biomarker profile to enable early detection of liver cancer and inform decisions regarding treatment selection, dosage determination, and prognosis assessment. The current lack of readily applicable, timely, and economically viable tools for biomarker analysis has hindered the incorporation of personalized medicine into regular clinical procedures. Over the past decade, significant advancements have been achieved in the field of molecular point-of-care testing (POCT) and amplification techniques, leading to substantial improvements in the diagnosis of liver cancer and the implementation of precision medicine. Instrument-free PCR technology or plasma PCR technology can shorten the complex procedure of in vitro detection of nucleic acid-based biomarkers. Also, compared to traditional ELISA, various nanomaterials modified with monoclonal antibodies to target proteins for recognition, capture, and detection have improved the efficiency of protein-based biomarker detection. These advances have reduced the time and cost of clinical detection of early-stage hepatocellular carcinoma and improved the efficiency of timely diagnosis and survival of suspected patients while reducing unnecessary testing costs and procedures. This review aims to provide a comprehensive overview of the current and emerging biomarkers employed in the early detection of liver cancer, as well as the advancements in point-of-care molecular testing technology and platforms. The primary objective is to assess their potential in facilitating the implementation of personalized medicine. This review ultimately revealed that the diagnosis of early-stage hepatocellular carcinoma not only requires sensitive biomarkers, but its various modifications and changes during the progression of cirrhosis to early-stage hepatocellular carcinoma will be a greater focus of our attention in the future. The rapid development of POCT has facilitated the opportunity to readily detect liver cancer in the general population in the future, and the integration of multi-pathway multiplexing and intelligent algorithms has improved the sensitivity and accuracy of early liver cancer biomarker detection. It is expected that the integration of point-of-care technology will be instrumental in the widespread adoption of personalized medicine in the foreseeable future.
Collapse
Affiliation(s)
- Mengxiang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanrong Wen
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
6
|
Liang J, Kim N, Yang JD. Hepatocellular carcinoma risk prediction and early detection in patients with metabolic dysfunction associated steatotic liver disease. Transl Gastroenterol Hepatol 2024; 9:67. [PMID: 39503040 PMCID: PMC11535805 DOI: 10.21037/tgh-24-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/01/2024] [Indexed: 11/08/2024] Open
Abstract
The rising prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form, metabolic dysfunction-associated steatohepatitis (MASH), is closely linked with a heightened risk of hepatocellular carcinoma (HCC), the fourth leading cause of cancer-related deaths worldwide. Despite the elevated risk of HCC in patients with MASLD, the existing surveillance guidelines are inadequate, particularly for those without cirrhosis. This review evaluates current HCC surveillance practices in patients with MASLD and their shortcomings. It also highlights the critical need for enhanced HCC risk stratification and diagnostic accuracy through new techniques. In this review article, we performed a comprehensive literature review of studies focusing on HCC risk factors in MASLD/MASH patients from 2000 to 2023. We discussed that demographics, comorbidities, liver fibrosis, and genetic markers play critical roles in HCC risk stratification. Additionally, non-invasive tests (NITs) for fibrosis may improve the accuracy for HCC risk stratification and diagnosis. More recently, innovative approaches, such as machine learning techniques and liquid biopsy utilizing extracellular vesicles, cell-free DNA, and circulating tumor cells show promise in redefining early HCC detection. Thus, integrating these various risk factors could optimize early detection of HCC for the growing MASLD/MASH patient population. However, further research is needed to confirm their effectiveness and practical implementation in clinical settings.
Collapse
Affiliation(s)
- Jeff Liang
- Department of Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Naomy Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
7
|
Zhang C, Wang X, Xu J, Xu L, Sun Y, Lu C, Liao S, Liu H, Zhang XB, Song G. Ultrathin Gd-Oxide Nanosheet as Ultrasensitive Companion Diagnostic Tool for MR Imaging and Therapy of Submillimeter Microhepatocellular Carcinoma. NANO LETTERS 2024; 24:11002-11011. [PMID: 39166738 DOI: 10.1021/acs.nanolett.4c03078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Early stage hepatocellular carcinoma (HCC) presents a formidable challenge in clinical settings due to its asymptomatic progression and the limitations of current imaging techniques in detecting micro-HCC lesions. Addressing this critical issue, we introduce a novel ultrathin gadolinium-oxide (Gd-oxide) nanosheet-based platform with heightened sensitivity for high-field MRI and as a therapeutic agent for HCC. Synthesized via a digestive ripening process, these Gd-oxide nanosheets exhibit an exceptional acid-responsive profile. The integration of the ultrathin Gd-oxide with an acid-responsive polymer creates an ultrasensitive high-field MRI probe, enabling the visualization of submillimeter-sized tumors with superior sensitivity. Our research underscores the ultrasensitive probe's efficacy in the treatment of orthotopic HCC. Notably, the ultrasensitive probe functions dually as a companion diagnostic tool, facilitating simultaneous imaging and therapy with real-time treatment monitoring capabilities. In conclusion, this study showcases an innovative companion diagnostic tool that holds promise for the early detection and effective treatment of micro-HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xia Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Juntao Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yue Sun
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shiyi Liao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huiyi Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
9
|
Tao XY, Li QQ, Zeng Y. Clinical application of liquid biopsy in colorectal cancer: detection, prediction, and treatment monitoring. Mol Cancer 2024; 23:145. [PMID: 39014366 PMCID: PMC11250976 DOI: 10.1186/s12943-024-02063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies affecting the gastrointestinal tract and is ranked third among cancers with the highest incidence and second-highest mortality rate worldwide. CRC exhibits a slow progression providing a wide treatment window. The currently employed CRC screening methods have shown great potential to prevent CRC and reduce CRC-related morbidity and mortality. The diagnosis of CRC is achieved by colonoscopy and tissue biopsy, with studies showing that liquid biopsy is more effective in detecting and diagnosing early CRC patients. Increasing number of studies have shown that the tumor components shed into circulating blood can be detected in liquid form, and can be applied in the clinical management of CRC. Analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-associated platelets (TEPs) in the blood can be used for early screening and diagnosis of CRC, aid tumor staging, treatment response monitoring, and prediction of CRC recurrence and metastasis in a minimally invasive manner. This chapter provides an updated review of CTCs, ctDNA, and TEPs as novel biomarkers for CRC, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- Xiang-Yuan Tao
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Qian-Qian Li
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- School of Pharmacy, University of South China, Hengyang, China.
| |
Collapse
|
10
|
Sun W, You X, Zhao X, Zhang X, Yang C, Zhang F, Yu J, Yang K, Wang J, Xu F, Chang Y, Qu B, Zhao X, He Y, Wang Q, Chen J, Qing G. Precise Capture and Dynamic Release of Circulating Liver Cancer Cells with Dual-Histidine-Based Cell Imprinted Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402379. [PMID: 38655900 DOI: 10.1002/adma.202402379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its noninvasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here, an ultrastrong ligand, l-histidine-l-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs, is designed. Furthermore, HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness ($6.68 per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis.
Collapse
Affiliation(s)
- Wenjing Sun
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xin You
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaoyu Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Chunhui Yang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Fusheng Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Jiaqi Yu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Kaiguang Yang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jixia Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Fangfang Xu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Yongxin Chang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Boxin Qu
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Xinmiao Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Yuxuan He
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
11
|
Wang X, Du Y, Jing W, Cao C, Wu X, Yang K, Zhu L. Fluorescent identification of immunomagnetically captured CTCs using triplex-aptamer-targeted dendritic SiO 2@Fe 3O 4 nanocomposite. Mikrochim Acta 2024; 191:424. [PMID: 38922365 DOI: 10.1007/s00604-024-06504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
The enumeration of circulating tumor cells (CTCs) in peripheral blood plays a crucial role in the early diagnosis, recurrence monitoring, and prognosis assessment of cancer patients. There is a compelling need to develop an efficient technique for the capture and identification of these rare CTCs. However, the exclusive reliance on a single criterion, such as the epithelial cell adhesion molecule (EpCAM) antibody or aptamer, for the specific recognition of epithelial CTCs is not universally suitable for clinical applications, as it usually falls short in identifying EpCAM-negative CTCs. To address this limitation, we propose a straightforward and cost-effective method involving triplex fluorescently labelled aptamers (FAM-EpCAM, Cy5-PTK7, and Texas Red-CSV) to modify Fe3O4-loaded dendritic SiO2 nanocomposite (dmSiO2@Fe3O4/Apt). This multi-recognition-based strategy not only enhanced the efficiency in capturing heterogeneous CTCs, but also facilitated the rapid and accurate identification of CTCs. The capture efficiency of heterogenous CTCs reached up to 93.33%, with a detection limit as low as 5 cells/mL. Notably, the developed dmSiO2@Fe3O4/Apt nanoprobe enabled the swift identification of captured cells in just 30 min, relying solely on the fluorescently modified aptamers, which reduced the identification time by approximately 90% compared with the conventional immunocytochemistry (ICC) technique. Finally, these nanoprobe characteristics were validated using blood samples from patients with various types of cancers.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China
| | - Yu Du
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China
| | - Weijun Jing
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, P. R. China
| | - Changchun Cao
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China
| | - Xiaoli Wu
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China
| | - Kangqun Yang
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China
| | - Liang Zhu
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China.
| |
Collapse
|
12
|
Pei F, Tao Z, Lu Q, Fang T, Peng S. Octamer-binding transcription factor 4-positive circulating tumor cell predicts worse treatment response and survival in advanced cholangiocarcinoma patients who receive immune checkpoint inhibitors treatment. World J Surg Oncol 2024; 22:110. [PMID: 38664770 PMCID: PMC11044354 DOI: 10.1186/s12957-024-03369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Octamer-binding transcription factor 4-positive circulating tumor cell (OCT4+CTC) exhibits high stemness and invasive potential, which may influence the efficacy of immune checkpoint inhibitors (ICI). This study aimed to assess the prognostic role of OCT4+CTC in advanced cholangiocarcinoma (CCA) patients who received ICI treatment. METHODS In total, 40 advanced CCA patients who received ICI treatment were included, and CTC and OCT4 counts were detected via a Canpatrol system and an RNA in situ hybridization method before ICI treatment. Patients were subsequently divided into none CTC, OCT4-CTC, and OCT4+CTC groups. Patients were followed up for a median of 10.4 months. RESULTS The percentages of patients in none CTC, OCT4-CTC, and OCT4+CTC groups were 25.0%, 30.0%, and 45.0%, respectively. The proportion of patients with lymph node metastasis was highest in OCT4+CTC group, followed by none CTC group, and lowest in OCT4-CTC group (P = 0.025). The objective response rate (ORR) was lowest in OCT4+CTC group, moderate in OCT4-CTC group, and highest in none CTC group (P = 0.009), while disease control rate was not different among three groups (P = 0.293). In addition, progression-free survival (PFS) (P < 0.001) and overall survival (OS) (P = 0.001) were shorter in the OCT4+CTC group than in none CTC & OCT4-CTC group. Moreover, OCT4+CTC (versus none CTC) was independently linked with poorer PFS [hazard ratio (HR) = 6.752, P = 0.001] and OS (HR = 6.674, P = 0.003) in advanced CCA patients. CONCLUSION OCT4+CTC relates to lymph node metastasis and shows a good predictive value for poor treatment response and survival in advanced CCA patients who receive ICI treatment.
Collapse
Affiliation(s)
- Fei Pei
- Department of Hepatobiliary Pancreatic Surgery, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435200, Hubei, China
| | - Zhen Tao
- Department of Hepatobiliary Pancreatic Surgery, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435200, Hubei, China.
| | - Qi Lu
- Department of Hepatobiliary Pancreatic Surgery, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435200, Hubei, China
| | - Tao Fang
- Department of Hepatobiliary Pancreatic Surgery, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435200, Hubei, China
| | - Shasha Peng
- Department of Hepatobiliary Pancreatic Surgery, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435200, Hubei, China
| |
Collapse
|
13
|
Huangfu Y, Guo J, Zhao Y, Cao X, Han L. Linking EMT Status of Circulating Tumor Cells to Clinical Outcomes in Lung Cancer. Cancer Manag Res 2024; 16:325-336. [PMID: 38654718 PMCID: PMC11036334 DOI: 10.2147/cmar.s449777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
Background Lung cancer (LC) remains a leading cause of cancer-related mortality worldwide, with its prognosis influenced by complex biological factors. Objective This study delves into the clinical relevance of circulating tumor cells (CTCs) and their Epithelial-Mesenchymal Transition (EMT) status in LC patients. Methods We enrolled 30 newly diagnosed LC patients and utilized the CanPatrol technique for the separation and categorization of CTCs from peripheral blood samples. Immunofluorescent staining identified epithelial (CK8/18/19, EpCAM), mesenchymal (Vimentin, Twist), and leukocyte (CD45) markers in these cells. Fluorescence microscopy analyzed the slides, and RECIST 1.1 criteria assessed treatment response. Spearman's method was used to correlate CTCs' EMT states with their count and clinical characteristics. Results Our findings reveal three distinct CTC groups: epithelial (E-CTCs), hybrid epithelial/mesenchymal (E/M-CTCs), and mesenchymal (M-CTCs). Significant statistical differences were observed in stages III-IV vs I-II, tumor sizes T3-T4 vs T1-T2, and in the presence or absence of distant metastasis and lymph node involvement. Notably, the count of E/M-CTCs was positively correlated with TNM staging, tumor size, lymph node, and distant metastasis. Changes in M-CTC count pre- and post-treatment closely mirrored disease progression and control, showing considerable consistency with RECIST criteria. Conclusion In conclusion, the EMT status of CTCs, especially E/M-CTCs, holds predictive value for LC staging, tumor size, and metastasis. Dynamic monitoring of M-CTCs can accurately reflect disease progression.
Collapse
Affiliation(s)
- Yun Huangfu
- Henan Medical College, Zhengzhou, Henan Province, People’s Republic of China
| | - Jianxin Guo
- Henan Medical College, Zhengzhou, Henan Province, People’s Republic of China
| | - Yang Zhao
- Henan Medical College, Zhengzhou, Henan Province, People’s Republic of China
| | - Xuexia Cao
- Henan Medical College, Zhengzhou, Henan Province, People’s Republic of China
| | - Lei Han
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| |
Collapse
|
14
|
Liao Q, Zhang R, Ou Z, Ye Y, Zeng Q, Wang Y, Wang A, Chen T, Chai C, Guo B. TROP2 is highly expressed in triple-negative breast cancer CTCs and is a potential marker for epithelial mesenchymal CTCs. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200762. [PMID: 38596285 PMCID: PMC10869581 DOI: 10.1016/j.omton.2024.200762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/05/2023] [Accepted: 01/05/2024] [Indexed: 04/11/2024]
Abstract
Circulating tumor cells (CTCs) are the seeds of distant metastases of malignant tumors and are associated with malignancy and risk of metastasis. However, tumor cells undergo epithelial-mesenchymal transition (EMT) during metastasis, leading to the emergence of different types of CTCs. Real-time dynamic molecular and functional typing of CTCs is necessary to precisely guide personalized treatment. Most CTC detection systems are based on epithelial markers that may fail to detect EMT CTCs. Therefore, it is clinically important to identify new markers of different CTC types. In this study, bioinformatics analysis and experimental assays showed that trophoblast cell surface antigen 2 (TROP2), a target molecule for advanced palliative treatment of triple-negative breast cancer (TNBC), was highly expressed in TNBC tissues and tumor cells. Furthermore, TROP2 can promote the migration and invasion of TNBC cells by upregulating EMT markers. The specificity and potential of TROP2 as an EMT-associated marker of TNBC CTCs were evaluated by flow cytometry, immunofluorescence, spiking experiments, and a well-established CTC assay. The results indicated that TROP2 is a potential novel CTC marker associated with EMT, providing a basis for more efficacious markers that encompass CTC heterogeneity in patients with TNBC.
Collapse
Affiliation(s)
- Qingyu Liao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ruiming Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zuli Ou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yan Ye
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qian Zeng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yange Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Anqi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bianqin Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing 40030, China
| |
Collapse
|
15
|
Guo B, Zheng Q, Jiang Y, Zhan Y, Huang W, Chen Z. Long non-coding RNAFOXD1-AS1 modulated CTCs epithelial-mesenchymal transition and immune escape in hepatocellular carcinoma in vitro by sponging miR-615-3p. Cancer Rep (Hoboken) 2024; 7:e2050. [PMID: 38517478 PMCID: PMC10959247 DOI: 10.1002/cnr2.2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is widely recognized as a globally prevalent malignancy. Immunotherapy is a promising therapy for HCC patients. Increasing evidence suggests that lncRNAs are involved in HCC progression and immunotherapy. AIM The study reveals the mechanistic role of long non-coding RNA (lncRNA) FOXD1-AS1 in regulating migration, invasion, circulating tumor cells (CTCs), epithelial-mesenchymal transition (EMT), and immune escape in HCC in vitro. METHODS This study employed real-time PCR (RT-qPCR) to measure FOXD1-AS1, miR-615-3p, and programmed death-ligand 1 (PD-L1). The interactions of FOXD1-AS1, miR-615-3p, and PD-L1 were validated via dual-luciferase reporter gene and ribonucleoprotein immunoprecipitation (RIP) assay. In vivo experimentation involves BALB/c mice and BALB/c nude mice to investigate the impact of HCC metastasis. RESULTS The upregulation of lncRNA FOXD1-AS1 in malignant tissues significantly correlates with poor prognosis. The investigation was implemented on the impact of lncRNA FOXD1-AS1 on the migratory, invasive, and EMT of HCC cells. It has been observed that the lncRNA FOXD1-AS1 significantly influences the generation and metastasis of MCTC in vivo analysis. In mechanistic analysis, lncRNA FOXD1-AS1 enhanced immune escape in HCC via upregulation of PD-L1, which acted as a ceRNA by sequestering miR-615-3p. Additionally, lncRNA FOXD1-AS1 was found to modulate the EMT of CTCs through the activation of the PI3K/AKT pathway. CONCLUSION This study presents compelling evidence supporting the role of lncRNA FOXD1-AS1 as a miRNA sponge that sequesters miR-655-3p and protects PD-L1 from suppression.
Collapse
Affiliation(s)
- Bao‐ling Guo
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| | - Qiu‐xiang Zheng
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| | - Yun‐shan Jiang
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| | - Ying Zhan
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| | - Wen‐jin Huang
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| | - Zhi‐yong Chen
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| |
Collapse
|
16
|
Shi R, Wang J, Zeng X, Luo H, Yang X, Guo Y, Yi L, Deng H, Yang P. Effect of anatomical liver resection on early postoperative recurrence in patients with hepatocellular carcinoma assessed based on a nomogram: a single-center study in China. Front Oncol 2024; 14:1365286. [PMID: 38476367 PMCID: PMC10929612 DOI: 10.3389/fonc.2024.1365286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction We aimed to investigate risk factors for early postoperative recurrence in patients with hepatocellular carcinoma (HCC) and determine the effect of surgical methods on early recurrence to facilitate predicting the risk of early postoperative recurrence in such patients and the selection of appropriate treatment methods. Methods We retrospectively analyzed clinical data concerning 428 patients with HCC who had undergone radical surgery at Mianyang Central Hospital between January 2015 and August 2022. Relevant routine preoperative auxiliary examinations and regular postoperative telephone or outpatient follow-ups were performed to identify early postoperative recurrence. Risk factors were screened, and predictive models were constructed, including patients' preoperative ancillary tests, intra- and postoperative complications, and pathology tests in relation to early recurrence. The risk of recurrence was estimated for each patient based on a prediction model, and patients were categorized into low- and high-risk recurrence groups. The effect of anatomical liver resection (AR) on early postoperative recurrence in patients with HCC in the two groups was assessed using survival analysis. Results In total, 353 study patients were included. Multifactorial logistic regression analysis findings suggested that tumor diameter (≥5/<5 cm, odds ratio [OR] 2.357, 95% confidence interval [CI] 1.368-4.059; P = 0.002), alpha fetoprotein (≥400/<400 ng/L, OR 2.525, 95% CI 1.334-4.780; P = 0.004), tumor number (≥2/<2, OR 2.213, 95% CI 1.147-4.270; P = 0.018), microvascular invasion (positive/negative, OR 3.230, 95% CI 1.880-5.551; P < 0.001), vascular invasion (positive/negative, OR 4.472, 95% CI 1.395-14.332; P = 0.012), and alkaline phosphatase level (>125/≤125 U/L, OR 2.202, 95% CI 1.162-4.173; P = 0.016) were risk factors for early recurrence following radical HCC surgery. Model validation and evaluation showed that the area under the curve was 0.813. Hosmer-Lemeshow test results (X 2 = 1.225, P = 0.996 > 0.05), results from bootstrap self-replicated sampling of 1,000 samples, and decision curve analysis showed that the model also discriminated well, with potentially good clinical utility. Using this model, patients were stratified into low- and high-risk recurrence groups. One-year disease-free survival was compared between the two groups with different surgical approaches. Both groups benefited from AR in terms of prevention of early postoperative recurrence, with AR benefits being more pronounced and intraoperative bleeding less likely in the high-risk recurrence group. Discussion With appropriate surgical techniques and with tumors being realistically amenable to R0 resection, AR is a potentially useful surgical procedure for preventing early recurrence after radical surgery in patients with HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pei Yang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
17
|
Cui K, Li Z, Zhong J, Shi X, Zhao L, Li H, Ma Y. Achieving complete remission in metastatic hepatocellular carcinoma with sintilimab plus sorafenib therapy followed by hepatic resection: a case report. Front Oncol 2024; 14:1355798. [PMID: 38380371 PMCID: PMC10878169 DOI: 10.3389/fonc.2024.1355798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The synergistic effectiveness of combining immune checkpoint inhibitors with targeted therapies has shown promise in improving the conversion rate for unresectable hepatocellular carcinoma (HCC) patients to a potentially resectable status. However, the efficacy of this approach in the context of HCC with extrahepatic metastasis remains to be conclusively determined. CASE PRESENTATION We report a rare case of advanced HCC with extrahepatic metastasis who achieved long-term survival by a combination of systemic therapy (sintilimab and sorafenib) followed by laparoscopic hepatectomy. A 63-year-old man presented at our hospital with discomfort on the right side of his waist. An enlarged right hepatic lobe mass was subsequently revealed by CT scan. The patient's medical history, including a prior infection with hepatitis B virus, cirrhosis of the liver and an alpha-fetoprotein (AFP) level measuring 41.28 ng/ml substantiated the clinical diagnosis of HCC. On October 30th, 2019, the patient received 200 mg sintilimab intravenously (q3w) plus 200-400 mg BID sorafenib orally, along with antiviral therapy. After six cycles, his disease achieved partial response (PR). On April 26th, 2021, He underwent a laparoscopic hepatectomy. The patient achieved a sustained period of no evidence of disease for 2.5 years and with drug-free survival for 2 years after the resection. His current overall survival is estimated at approximately 4 years. CONCLUSIONS This case highlights the potential of combining sintilimab and sorafenib in transforming HCC with extrahepatic metastasis into a condition amenable to surgical resection, suggesting that this treatment approach, followed by surgery, may lead to complete remission.
Collapse
Affiliation(s)
- Kai Cui
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhongchao Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingtao Zhong
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuetao Shi
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Zhao
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hao Li
- Shandong Pharmaceutical Research Institute, Shandong First Medical University, Jinan, China
| | - Ying Ma
- Shandong Pharmaceutical Research Institute, Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Umar Garzali I, Carr BI, İnce V, Işık B, Nur Akatlı A, Yılmaz S. Microvascular Invasion in Hepatocellular Carcinoma: Some Puzzling Facets. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:143-149. [PMID: 38454246 PMCID: PMC10895888 DOI: 10.5152/tjg.2024.22769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/27/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma is the main type of primary liver cancer. Macroscopic vascular invasion is usually identified during imaging, whereas microvascular invasion is usually determined by histopathological evaluation. We aim to identify the association between microvascular invasion and other markers of tumor aggressiveness and to identify the role of microvascular invasion in the prognosis of patients who were treated by liver transplantation for hepatocellular carcinoma. MATERIALS AND METHODS This is a single-center retrospective analysis of prospectively collected data. Patients who received liver transplantation for hepatocellular carcinoma were included in the study. Data were collected regarding sociodemographic variables, criteria of selection for liver transplantation, pretransplant alpha-fetoprotein, presence or absence of microvascular invasion, presence or absence of recurrence, overall survival, and disease-free survival. Data were analyzed using Statistical Package for the Social Sciences. RESULTS Sociodemographic laboratory values and radiologic tumor characteristics were found to be similar in patients with or without microvascular invasion. Our study revealed that microvascular invasion is associated with increased recurrence, decreased diseasedfree survival, and decreased overall survival, only for patients with hepatocellular carcinoma beyond Milan criteria at the time of liver transplantation. CONCLUSION For patients beyond Milan criteria, but not within Milan criteria, microvascular invasion plays a significant role in predicting recurrence and shorter survival after liver transplantation.
Collapse
Affiliation(s)
- Ibrahim Umar Garzali
- Liver Transplant Institute, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Brian I. Carr
- Liver Transplant Institute, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Volkan İnce
- Liver Transplant Institute, İnönü University Faculty of Medicine, Malatya, Turkey
- Department of Surgery, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Burak Işık
- Liver Transplant Institute, İnönü University Faculty of Medicine, Malatya, Turkey
- Department of Surgery, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Ayşe Nur Akatlı
- Department of Pathology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Sezai Yılmaz
- Liver Transplant Institute, İnönü University Faculty of Medicine, Malatya, Turkey
- Department of Surgery, İnönü University Faculty of Medicine, Malatya, Turkey
| |
Collapse
|
19
|
Lu YX, Zhao JP, Yuan GD, Hu MG, Sun CD, Chen KL, Chen Y, Zeng YY, Yang ZY, Zhang WG. Prevalence, patterns, risk factors and outcomes of peritoneal metastases after laparoscopic hepatectomy for hepatocellular carcinoma: a multicenter study from China. Hepatobiliary Surg Nutr 2024; 13:3-15. [PMID: 38322199 PMCID: PMC10839707 DOI: 10.21037/hbsn-22-506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/15/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND We aim to investigate the prevalence, patterns, risk factors, and outcomes of peritoneal metastases (PM) after curative laparoscopic hepatectomy (LH) for hepatocellular carcinoma (HCC). METHODS A multicenter cohort of 2,138 HCC patients who underwent curative LH from August 2010 to December 2016 from seven hospitals in China was retrospectively analyzed. The incidence of PM following LH was evaluated and compared with that in open hepatectomy (OH) after 1:1 propensity score matching (PSM). RESULTS PM prevalence was 5.1% (15/295) in the early period [2010-2013], 2.6% (47/1,843) in the later period [2014-2016], and 2.9% (62/2,138) in all LH patients, which was similar to 4.0% (59/1,490) in the OH patients. The recurrence patterns, timing, and treatment did not significantly vary between the LH and OH patients (P>0.05). Multivariate logistic regression revealed that tumor diameter >5 cm, non-anatomical resection, presence of microvascular invasion, and lesions <2 cm from major blood vessels were independent risk factors of PM after LH. Of the 62 cases with PM, 26 (41.9%) had PM only, 34 (54.9%) had intrahepatic recurrence (IHR) and PM, and 2 (3.2%) had synchronous extraperitoneal metastases (EPM). Patients with resectable PM had a 5-year overall survival (OS) of 65.0% compared to 9.0% for unresectable PM (P=0.001). CONCLUSIONS The prevalence, patterns and independent risk factors of PM were identified for HCC patients after LH. LH was not associated with increased incidence of PM in HCC patients for experienced surgeons. Surgical re-excision of PM was associated with prolonged survival.
Collapse
Affiliation(s)
- Yuan-Xiang Lu
- Hepatic Surgery Center, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Ping Zhao
- Hepatic Surgery Center, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Guan-Dou Yuan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming-Gen Hu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
| | - Chuan-Dong Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun-Lun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Chen
- Department of Radiology Intervention, The Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yong-Yi Zeng
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Zhi-Ying Yang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Wan-Guang Zhang
- Hepatic Surgery Center, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Dominguez DA, Wong P, Melstrom LG. Existing and emerging biomarkers in hepatocellular carcinoma: relevance in staging, determination of minimal residual disease, and monitoring treatment response: a narrative review. Hepatobiliary Surg Nutr 2024; 13:39-55. [PMID: 38322200 PMCID: PMC10839735 DOI: 10.21037/hbsn-22-526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/15/2023] [Indexed: 02/08/2024]
Abstract
Background and Objective With the development of novel active systemic therapies, the landscape of hepatocellular carcinoma (HCC) management is rapidly changing. However, HCC lacks sensitive and specific biomarkers to predict prognosis, monitor for minimal residual disease after locoregional therapy, and predict treatment response. In this review, we aim to summarize the best supporting evidence for refining existing, and development of novel biomarkers for staging, prognosis, determination of minimal residual disease and monitoring treatment response in HCC, focusing on those with evidence in clinical trials. Methods PubMed and Embase databases were searched using the keywords; hepatocellular carcinoma, biomarker, minimal residual disease, surveillance, prognosis, staging, alpha-fetoprotein (AFP), liquid biopsy, treatment response, adjuvant, immunotherapy. Relevant clinical studies were included. Key Content and Findings AFP remains the major workhorse as the most widely used biomarker in HCC, however, its lack of wide applicability due to the high proportion of patients with HCC who are AFP negative, limits its value throughout all stages of HCC management. Significant work has been done to combine AFP with other clinical and serologic factors to increase its accuracy and utility as a biomarkers. However, it is likely that other more novel biomarkers such as those obtained through liquid biopsy will provide the prognostic power necessary for applications such as detecting recurrence and predicting treatment response. Liquid biopsy provides not only a wealth of potential biomarkers including circulating tumor cells and cell-free RNA/DNA, but also the ability to examine the mutational characteristics of the tumor with next generation sequencing. While early evidence supports the potential impact of many new biomarkers, validation in large clinical trials is lacking. Conclusions This review highlights the paucity of sensitive and specific, widely applicable biomarkers, throughout all phases of management of HCC and summarizes evidence on biomarkers currently in use, as well as those in development and validation. Inclusion of biomarker analysis through clinical trials in HCC is critical to development of optimal therapeutic regimens, and improve patient outcomes.
Collapse
Affiliation(s)
- Dana A. Dominguez
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Paul Wong
- University of California, San Francisco, San Francisco, CA, USA
| | - Laleh G. Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
21
|
Panneerselvam S, Wilson C, Kumar P, Abirami D, Pamarthi J, Reddy MS, Varghese J. Overview of hepatocellular carcinoma: from molecular aspects to future therapeutic options. Cell Adh Migr 2023; 17:1-21. [PMID: 37726886 PMCID: PMC10512929 DOI: 10.1080/19336918.2023.2258539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most highly prevalent malignant tumor globally and the second most common cause of mortality. HCC develops with complex pathways that occur through multistage biological processes. Non-alcoholic fatty liver disease, metabolic-associated fatty liver disease, alcoholic liver disease, autoimmune hepatitis, hepatitis B, and hepatitis C are the causative etiologies of HCC. HCC develops as a result of epigenetic changes, protein-coding gene mutations, and altered signaling pathways. Biomarkers and potential therapeutic targets for HCC open up new possibilities for treating the disease. Immune checkpoint inhibitors are included in the treatment options in combination with molecular targeted therapy.
Collapse
Affiliation(s)
- Sugan Panneerselvam
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Cornelia Wilson
- Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Discovery Park, Sandwich, UK
| | - Prem Kumar
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Dinu Abirami
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Jayakrishna Pamarthi
- Multi-Disciplinary Research Unit, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- The Director and Head, Liver Transplant and HPB surgery, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
Lu Z, Ni H, Yang X, Tan L, Zhuang H, Mo Y, Wei X, Qi L, Xiang B. Prognostic potential of preoperative circulating tumor cells to predict the early progression recurrence in hepatocellular carcinoma patients after hepatectomy. BMC Cancer 2023; 23:1150. [PMID: 38012581 PMCID: PMC10680336 DOI: 10.1186/s12885-023-11629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The role of circulating tumor cells (CTCs) in prognosis prediction has been actively studied in hepatocellular carcinoma (HCC) patients. However, their efficiency in accurately predicting early progression recurrence (EPR) is unclear. This study aimed to investigate the clinical potential of preoperative CTCs to predict EPR in HCC patients after hepatectomy. METHODS One hundred forty-five HCC patients, whose preoperative CTCs were detected, were enrolled. Based on the recurrence times and types, the patients were divided into four groups, including early oligo-recurrence (EOR), EPR, late oligo-recurrence (LOR), and late progression recurrence (LPR). RESULTS Among the 145 patients, 133 (91.7%) patients had a postoperative recurrence, including 51 EOR, 42 EPR, 39 LOR, and 1 LPR patient. Kaplan-Meier survival curve analysis indicated that the HCC patients with EPR had the worst OS. There were significant differences in the total-CTCs (T-CTCs) and CTCs subtypes count between the EPR group with EOR and LOR groups. Cox regression analysis indicated that the T-CTC count of > 5/5 mL, the presence of microvascular invasion (MVI) and satellite nodules were the independent risk factors for EPR. The efficiency of T-CTCs was superior as compared to those of the other indicators in predicting EPR. Moreover, the combined model demonstrated a markedly superior area under the curve (AUC). CONCLUSIONS The HCC patients with EPR had the worst OS. The preoperative CTCs was served as a prognostic indicator of EPR for HCC patients. The combined models, including T-CTCs, MVI, and satellite nodules, had the best performance to predict EPR after hepatectomy.
Collapse
Grants
- 81960450 National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
- 81960450 National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
- 2017ZX10203207 the National Major Special Science and Technology Project
- 2017ZX10203207 the National Major Special Science and Technology Project
- AA18221001, AB18050020, and 2020AB34006 the High-Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges and Universities, "139" Projects for Training of High-Level Medical Science Talents from Guangxi, the Key Research and Development Project of Guangxi
- AA18221001, AB18050020, and 2020AB34006 the High-Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges and Universities, "139" Projects for Training of High-Level Medical Science Talents from Guangxi, the Key Research and Development Project of Guangxi
- GKE2017-ZZ02, GKE2018-KF02, and GKE2019-ZZ07 the Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors of the Ministry of Education, Guangxi Independent Research Project
- GKE2017-ZZ02, GKE2018-KF02, and GKE2019-ZZ07 the Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors of the Ministry of Education, Guangxi Independent Research Project
- S2019039 Development and Application of Medical and Health Appropriate Technology in Guangxi
- the High-Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges and Universities, “139” Projects for Training of High-Level Medical Science Talents from Guangxi, the Key Research and Development Project of Guangxi
Collapse
Affiliation(s)
- Zhan Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71# Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, People's Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People's Republic of China
- Guangxi Medical University, Nanning, People's Republic of China
| | - Hanghang Ni
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71# Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, People's Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People's Republic of China
- Guangxi Medical University, Nanning, People's Republic of China
| | - Xihua Yang
- Department of Surgical Oncology, Chenzhou No. 1 People's Hospital, Chenzhou, People's Republic of China
| | - Lihao Tan
- Guangxi Medical University, Nanning, People's Republic of China
| | - Haixiao Zhuang
- Guangxi Medical University, Nanning, People's Republic of China
| | - Yunning Mo
- Guangxi Medical University, Nanning, People's Republic of China
| | - Xingyu Wei
- Guangxi Medical University, Nanning, People's Republic of China
| | - Lunan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71# Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, People's Republic of China.
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People's Republic of China.
- Guangxi Medical University, Nanning, People's Republic of China.
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, People's Republic of China.
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71# Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, People's Republic of China.
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People's Republic of China.
- Guangxi Medical University, Nanning, People's Republic of China.
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, People's Republic of China.
| |
Collapse
|
23
|
Yang D, Kuang T, Zhou Y, Su Y, Shen J, Yu B, Zhao K, Ding Y. Tumor-associated endothelial cell prognostic risk model and tumor immune environment modulation in liver cancer based on single-cell and bulk RNA sequencing: Experimental verification. Int Immunopharmacol 2023; 124:110870. [PMID: 37690233 DOI: 10.1016/j.intimp.2023.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND To build a prognostic and immunotherapeutic response prediction model for liver cancer based on marker genes of tumor-associated endothelial cell (TEC). METHOD Single cell sequencing data from Gene Expression Omnibus (GEO) liver cancer patients were utilized to identify TEC subpopulations. Models were built from transcriptomic and clinical data of TCGA liver cancer patients. The GSE76427 and ICGC databases were used as independent validation sets. Time-dependent receiver operating characteristic (ROC) curves and Kaplan-Meier curves were used to verify the ability of the model to predict survival. XCELL, TIMER, QUANTISEQ, CIBERSORT, CIBERSORT-ABS, and ssGSEA were applied to evaluate tumor immune cell infiltration. The TIDE score was used to predict the effect of immunotherapy. Immune blockade checkpoint gene, tumor mutational load and GSVA enrichment analyses were further explored. The expression levels of candidate genes were measured and validated by real-time PCR between liver cancer tissues and adjacent nontumor liver tissues. RESULTS Eighty-seven genes were identified as marker genes for TECs. IGFBP3, RHOC, S100A16, FSCN1, and CLEC3B were included in the constructed prognostic model. Time-dependent ROC curve values were higher than 0.700 in both the model and validation groups. The low risk group exhibited high immune cell infiltration and function than the higher risk group. The TIDE score indicated that the low-risk group benefited more from immunotherapy than the high-risk group. The risk score and multiple immune blockade checkpoint genes and immune-related pathways were strongly correlated. CONCLUSION Novel signatures of TEC marker genes showed a powerful ability to predict prognosis and immunotherapy response in patients with liver cancer.
Collapse
Affiliation(s)
- Dashuai Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Tianrui Kuang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Yu Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Yang Su
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan 430060, Hubei, China.
| | - Jie Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Bin Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Kailiang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Youming Ding
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| |
Collapse
|
24
|
Zhang D, Lin J, Xu Y, Wu X, Xu X, Xie Y, Pan T, He Y, Luo J, Zhang Z, Fan L, Li S, Chen T, Wu A, Shao G. A novel dual-function SERS-based identification strategy for preliminary screening and accurate diagnosis of circulating tumor cells. J Mater Chem B 2023; 11:9666-9675. [PMID: 37779509 DOI: 10.1039/d3tb01545a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Non-specific adsorption of bioprobes based on surface-enhanced Raman spectroscopy (SERS) technology inevitably endows white blood cells (WBC) in the peripheral blood with Raman signals, which greatly interfere the identification accuracy of circulating tumor cells (CTCs). In this study, an innovative strategy was proposed to effectively identify CTCs by using SERS technology assisted by a receiver operating characteristic (ROC) curve. Firstly, a magnetic Fe3O4-Au complex SERS bioprobe was developed, which could effectively capture the triple negative breast cancer (TNBC) cells and endow the tumor cells with distinct SERS signals. Then, the ROC curve obtained based on the comparison of SERS intensity of TNBC cells and WBC was used to construct a tumor cell identification model. The merit of the model was that the detection sensitivity and specificity could be intelligently switched according to different identification purposes such as accurate diagnosis or preliminary screening of tumor cells. Finally, the difunctional recognition ability of the model for accurate diagnosis and preliminary screening of tumor cells was further validated by using the healthy human blood added with TNBC cells and blood samples of real tumor patients. This novel difunctional identification strategy provides a new perspective for identification of CTCs based on the SERS technology.
Collapse
Affiliation(s)
- Dinghu Zhang
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Jie Lin
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Yanping Xu
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Xiaoxia Wu
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Xiawei Xu
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Yujiao Xie
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Ting Pan
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yiwei He
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Jun Luo
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Zhewei Zhang
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - LinYin Fan
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Shunxiang Li
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Tianxiang Chen
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Aiguo Wu
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Guoliang Shao
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
25
|
Zhang Q, Huang Y, Xia Y, Liu Y, Gan J. Cuproptosis-related lncRNAs predict the prognosis and immune response in hepatocellular carcinoma. Clin Exp Med 2023; 23:2051-2064. [PMID: 36153416 DOI: 10.1007/s10238-022-00892-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
Cuproptosis has been recently used to indicate unique biological processes triggered by Cu action as a new term. This study aimed to explore the relationship between cuproptosis-related lncRNA and hepatocellular carcinoma (HCC) with regard to immunity and prognosis. RNA sequencing and the clinical data were downloaded from the TCGA database. The cuproptosis-related genes were sorted out through literature study. The cuproptosis-related IncRNA signature was identified by Cox regression analysis and the least absolute shrinkage and selection operator analysis. The K-M survival analysis, receiver operating characteristic analysis, and C-index analysis were adopted to evaluate the prognostic prediction performance of the signature. The functional enrichment, immune infiltration and tumor mutation analysis were further analyzed. Subsequently, we predicted the differences in chemosensitivity from tumor gene expression levels for some chemotherapy drugs. The prognostic signature consisting of 5 overall survival-related CUPlncRNAs. It showed an extraordinary ability to predict the prognoses of patients with HCC. The signature can predict the abundance of immune cell infiltration, immune functions, expression of immune checkpoint inhibitors, m6A genes, which was supported by the GO biological process and KEGG analysis. And it may also have a guiding effect in the sensitivity of different chemotherapeutic drugs and tumor mutation burden. We constructed a new cuproptosis-related lncRNA signature for HCC patients. The model can be used for prognostic prediction and immune evaluation, providing a reference for immunotherapies and targeted therapies.
Collapse
Affiliation(s)
- Qiongyue Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Yu Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yumeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Chen W, Gu T, Chen Q, Qu C, Zhang C, Hu Y, Xia R, Zhang Y, Wang M, Huang X, Li J, Shi C, Tian Z. Extracellular matrix remodelling and stiffening contributes to tumorigenesis of salivary carcinoma ex pleomorphic adenoma--A study based on patient-derived organoids. Cell Biosci 2023; 13:122. [PMID: 37393249 DOI: 10.1186/s13578-023-01071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Salivary carcinoma ex pleomorphic adenoma (CXPA) is defined as a carcinoma that develops from benign pleomorphic adenoma (PA). Abnormally activated Androgen signaling pathway and amplification of HER-2/neu(ERBB-2) gene are known to be involved in CXPA tumorigenesis. Recent progress in tumour microenvironment research has led to identification that extracellular matrix (ECM) remodelling and increased stiffness act as critical contributing role in tumour carcinogenesis. This study examined ECM modifications to elucidate the mechanism underlying CXPA tumorigenesis. RESULTS PA and CXPA organoids were successfully established. Histological observation, immunohistochemistry (IHC), and whole-exome sequencing demonstrated that organoids recapitulated phenotypic and molecular characteristics of their parental tumours. RNA-sequencing and bioinformatic analysis of organoids showed that differentially expressed genes are highly enriched in ECM-associated terms, implying that ECM alternations may be involved in carcinogenesis. Microscopical examination for surgical samples revealed that excessive hyalinized tissues were deposited in tumour during CXPA tumorigenesis. Transmission electron microscopy confirmed that these hyalinized tissues were tumour ECM in nature. Subsequently, examination by picrosirius red staining, liquid chromatography with tandem mass spectrometry, and cross-linking analysis indicated that tumour ECM was predominantly composed of type I collagen fibers, with dense collagen alignment and an increased level of collagen cross-linking. IHC revealed the overexpression of COL1A1 protein and collagen-synthesis-related genes, DCN and IGFBP5 (p < 0.05). Higher stiffness of CXPA than PA was demonstrated by atomic force microscopy and elastic imaging analysis. We utilized hydrogels to mimic ECM with varying stiffness degrees in vitro. Compared with softer matrices (5Kpa), CXPA cell line and PA primary cells exhibited more proliferative and invasive phenotypes in stiffer matrices (50Kpa, p < 0.01). Protein-protein interaction (PPI) analysis of RNA-sequencing data revealed that AR and ERBB-2 expression was associated with TWIST1. Moreover, surgical specimens demonstrated a higher TWIST1 expression in CXPA over PA. After knocking down TWIST1 in CXPA cells, cell proliferation, migration, and invasiveness were significantly inhibited (p < 0.01). CONCLUSION Developing CXPA organoids provides a useful model for cancer biology research and drug screening. ECM remodelling, attributed to overproduction of collagen, alternation of collagen alignment, and increased cross-linking, leads to increased ECM stiffness. ECM modification is an important contributor in CXPA tumorigenesis.
Collapse
Affiliation(s)
- Wanling Chen
- Department of Oral Pathology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ting Gu
- Department of Oral Pathology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qianqian Chen
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of ultrasound, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, P.R. China
| | - Chuxiang Qu
- Department of Oral Pathology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chunye Zhang
- Department of Oral Pathology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yuhua Hu
- Department of Oral Pathology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ronghui Xia
- Department of Oral Pathology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ying Zhang
- Department of Oral Pathology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Min Wang
- Department of Oral Pathology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xinyi Huang
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, China
| | - Jiang Li
- Department of Oral Pathology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, P.R. China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
| | - Chaoji Shi
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, China.
| | - Zhen Tian
- Department of Oral Pathology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, No. 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, P.R. China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
27
|
Omar MA, Omran MM, Farid K, Tabll AA, Shahein YE, Emran TM, Petrovic A, Lucic NR, Smolic R, Kovac T, Smolic M. Biomarkers for Hepatocellular Carcinoma: From Origin to Clinical Diagnosis. Biomedicines 2023; 11:1852. [PMID: 37509493 PMCID: PMC10377276 DOI: 10.3390/biomedicines11071852] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) and HCC-related deaths has increased over the last few decades. There are several risk factors of HCC such as viral hepatitis (B, C), cirrhosis, tobacco and alcohol use, aflatoxin-contaminated food, pesticides, diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and metabolic and genetic diseases. Diagnosis of HCC is based on different methods such as imaging ultrasonography (US), multiphasic enhanced computed tomography (CT), magnetic resonance imaging (MRI), and several diagnostic biomarkers. In this review, we examine the epidemiology of HCC worldwide and in Egypt as well as risk factors associated with the development of HCC and, finally, provide the updated diagnostic biomarkers for the diagnosis of HCC, particularly in the early stages of HCC. Several biomarkers are considered to diagnose HCC, including downregulated or upregulated protein markers secreted during HCC development, circulating nucleic acids or cells, metabolites, and the promising, recently identified biomarkers based on quantitative proteomics through the isobaric tags for relative and absolute quantitation (iTRAQ). In addition, a diagnostic model used to improve the sensitivity of combined biomarkers for the diagnosis of early HCC is discussed.
Collapse
Affiliation(s)
- Mona A. Omar
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt;
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Khaled Farid
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35524, Egypt;
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, National Research Centre, Cairo 12622, Egypt
- Immunology Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Yasser E. Shahein
- Molecular Biology Department, National Research Centre, Cairo 12622, Egypt
| | - Tarek M. Emran
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, New Damietta 34517, Egypt;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Nikola R. Lucic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Tanja Kovac
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| |
Collapse
|
28
|
Shaik MR, Sagar PR, Shaik NA, Randhawa N. Liquid Biopsy in Hepatocellular Carcinoma: The Significance of Circulating Tumor Cells in Diagnosis, Prognosis, and Treatment Monitoring. Int J Mol Sci 2023; 24:10644. [PMID: 37445822 DOI: 10.3390/ijms241310644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with poor outcomes when diagnosed at an advanced stage. Current curative treatments are most effective in early-stage HCC, highlighting the importance of early diagnosis and intervention. However, existing diagnostic methods, such as radiological imaging, alpha-fetoprotein (AFP) testing, and biopsy, have limitations that hinder early diagnosis. AFP elevation is absent in a significant portion of tumors, and imaging may have low sensitivity for smaller tumors or in the presence of cirrhosis. Additionally, as our understanding of the molecular pathogenesis of HCC grows, there is an increasing need for molecular information about the tumors. Biopsy, although informative, is invasive and may not always be feasible depending on tumor location. In this context, liquid biopsy technology has emerged as a promising approach for early diagnosis, enabling molecular characterization and genetic profiling of tumors. This technique involves analyzing circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-derived exosomes. CTCs are cancer cells shed from the primary tumor or metastatic sites and circulate in the bloodstream. Their presence not only allows for early detection but also provides insights into tumor metastasis and recurrence. By detecting CTCs in peripheral blood, real-time tumor-related information at the DNA, RNA, and protein levels can be obtained. This article provides an overview of CTCs and explores their clinical significance for early detection, prognosis, treatment selection, and monitoring treatment response in HCC, citing relevant literature.
Collapse
Affiliation(s)
- Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Prem Raj Sagar
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Nishat Anjum Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | | |
Collapse
|
29
|
Chen M, Li H, Xu X, Bao X, Xue L, Ai X, Xu J, Xu M, Shi Y, Zhen T, Li J, Yang Y, Ji Y, Fu Z, Xing K, Qing T, Wang Q, Zhong P, Zhu S. Identification of RAC1 in promoting brain metastasis of lung adenocarcinoma using single-cell transcriptome sequencing. Cell Death Dis 2023; 14:330. [PMID: 37202394 DOI: 10.1038/s41419-023-05823-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
Abstract
This study aims to give a new perspective to the biomarkers in the lung adenocarcinoma (LUAD) brain metastasis, pathways involved and potential therapeutics. We performed a comprehensive single-cell level transcriptomic analysis on one LUAD patient with circulating tumor cells (CTCs), primary tumor tissue and metastatic tumor tissue using scRNA-seq approach to identify metastasis related biomarkers. Further scRNA-seq were performed on 7 patients to validate the cancer metastatic hallmark. with single cells collected from either metastatic or primary LUAD tissues. Pathological and functional studies were also performed to evidence the critical role of RAC1 in the LUAD metastasis. Hallmark gene was verified based on immunohistochemistry staining, cytological experiment, survival information from The Cancer Genome Atlas (TCGA), and staining results from Human Protein Atlas (HPA) databases. PCA analysis revealed that CTCs were in the intermediate place between the metastatic group and primary group. In the unsupervised clustering analysis CTCs were closer to one of the metastatic tumor cells, implying heterogeneity of the metastatic tumor and origin of the CTCs were from metastatic site. Transitional phase related gene analysis identified RAC1 was enriched in metastatic tumor tissue (MTT) preferred gene set functioning as regulated cell death and apoptosis as well as promoted macromolecule organization. Compared with normal tissue, expression levels of RAC1 increased significantly in LUAD tissue based on HPA database. High expression of RAC1 predicts worse prognosis and higher-risk. EMT analysis identified the propensity of mesenchymal state in primary cells while epithelial signals were higher in the metastatic site. Functional clustering and pathway analyses suggested genes in RAC1 highly expressed cells played critical roles in adhesion, ECM and VEGF signaling pathways. Inhibition of RAC1 attenuates the proliferation, invasiveness and migration ability of lung cancer cells. Besides, through MRI T2WI results, we proved that RAC1 can promote brain metastasis in the RAC1-overexpressed H1975 cell burden nude mouse model. RAC1 and its mechanisms might promote drug design against LUAD brain metastasis.
Collapse
Affiliation(s)
- Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China
- School of Life Sciences, Fudan University, 200438, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Hanyue Li
- Department of Lung Tumor Clinical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, 200030, Shanghai, China
| | - Xiaolin Xu
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Naval Military Medical University, 200003, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, PR China
| | - Xunxia Bao
- School of Life Science, Anhui Medical University, 230032, Hefei, China
| | - Lei Xue
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Military Medical University, 200003, Shanghai, China
| | - Xinghao Ai
- Department of Lung Tumor Clinical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, 200030, Shanghai, China
| | - Jian Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China
- School of Life Sciences, Fudan University, 200438, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Ming Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China
- School of Life Sciences, Fudan University, 200438, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Yong Shi
- Cinoasia Institute, 200438, Shanghai, China
| | | | - Jie Li
- Cinoasia Institute, 200438, Shanghai, China
| | - Yi Yang
- Cinoasia Institute, 200438, Shanghai, China
| | - Yang Ji
- Cinoasia Institute, 200438, Shanghai, China
| | | | | | - Tao Qing
- Cinoasia Institute, 200438, Shanghai, China
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, 214000, Wuxi, Jiangsu, China.
| | - Ping Zhong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China.
- School of Life Sciences, Fudan University, 200438, Shanghai, China.
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
| | - Sibo Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China.
- School of Life Sciences, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
30
|
Luvhengo T, Molefi T, Demetriou D, Hull R, Dlamini Z. Use of Artificial Intelligence in Implementing Mainstream Precision Medicine to Improve Traditional Symptom-driven Practice of Medicine: Allowing Early Interventions and Tailoring better-personalised Cancer Treatments. ARTIFICIAL INTELLIGENCE AND PRECISION ONCOLOGY 2023:49-72. [DOI: 10.1007/978-3-031-21506-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Chen L, Yang J, Xu G, Wu Y. Potential Value and Application of Liquid Biopsy in Tumor, Neurodegeneration, and Muscle Degenerative Diseases. Methods Mol Biol 2023; 2695:317-335. [PMID: 37450129 DOI: 10.1007/978-1-0716-3346-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Liquid biopsy provides a promising alternative for the detection of disease-specific markers due to its superior noninvasive and original tissue representativeness. Liquid biopsies have a wide range of health and disease applications involving components ranging from circulating cells to acellular nucleic acid molecules and other metabolites. Here, we review the different components of liquid biopsy and investigate the most advanced noninvasive methods for detecting these components as well as their existing problems and trends. In particular, we emphasize the importance of analyzing liquid biopsy data from extracellular vesicles and small nucleic acids in neurological and muscle degeneration, with the aim of using this technique to enhance personalized healthcare. Although previous reviews have focused on cancer, this review mainly emphasizes the potential application of extracellular vesicles and microRNAs in liquid biopsy in neurodegeneration and muscle degeneration.
Collapse
Affiliation(s)
- Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei, People's Republic of China
| | - Jun Yang
- Jianghan University Library, Wuhan, Hubei, People's Republic of China
| | - Guodong Xu
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei, People's Republic of China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
32
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
33
|
Schlosser S, Tümen D, Volz B, Neumeyer K, Egler N, Kunst C, Tews HC, Schmid S, Kandulski A, Müller M, Gülow K. HCC biomarkers - state of the old and outlook to future promising biomarkers and their potential in everyday clinical practice. Front Oncol 2022; 12:1016952. [PMID: 36518320 PMCID: PMC9742592 DOI: 10.3389/fonc.2022.1016952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly tumors worldwide. Management of HCC depends on reliable biomarkers for screening, diagnosis, and monitoring of the disease, as well as predicting response towards therapy and safety. To date, imaging has been the established standard technique in the diagnosis and follow-up of HCC. However, imaging techniques have their limitations, especially in the early detection of HCC. Therefore, there is an urgent need for reliable, non/minimal invasive biomarkers. To date, alpha-fetoprotein (AFP) is the only serum biomarker used in clinical practice for the management of HCC. However, AFP is of relatively rather low quality in terms of specificity and sensitivity. Liquid biopsies as a source for biomarkers have become the focus of clinical research. Our review highlights alternative biomarkers derived from liquid biopsies, including circulating tumor cells, proteins, circulating nucleic acids, and exosomes, and their potential for clinical application. Using defined combinations of different biomarkers will open new perspectives for diagnosing, treating, and monitoring HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Chen J, Luo Y, Xi X, Li H, Li S, Zheng L, Yang D, Cai Z. Circulating tumor cell associated white blood cell cluster as a biomarker for metastasis and recurrence in hepatocellular carcinoma. Front Oncol 2022; 12:931140. [PMID: 36465354 PMCID: PMC9713305 DOI: 10.3389/fonc.2022.931140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/28/2022] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Recently, an in vivo study demonstrated that circulating tumor cell-associated white blood cell (CTC-WBC) cluster possess much greater potential than single CTCs. We aim to explore the correlation between the CTC-WBC cluster and the clinicopathological characteristics of hepatocellular carcinoma (HCC) patients to seek novel biomarkers for HCC metastasis and recurrence. METHODS We retrospectively analyzed 136 HCC patients from October 2014 to March 2020 who received CTC tests using the CanPatrol CTC enrichment technique. The correlation between the clinical features and total CTCs, EMT-CTCs, and CTC-WBC cluster were analyzed by a chi-square test. The ROC curves were simulated for evaluating the diagnostic performance of CTC parameters in HCC metastasis. Patients were followed up from February 2015 to November 2021, and the relapse-free survival (RFS) was analyzed using the Kaplan-Meier curve. RESULTS A total of 93.4% (127/136) and 31.6% (43/136) of HCC patients had detectable CTCs and CTC-WBC clusters. Baseline CTC-WBC cluster was closely correlated with microvascular invasion, portal vein tumor thrombus, and extrahepatic metastasis in pre-treatment HCC patients (P <0.05). The simulated ROC curves presented an AUC of 0.821 for the CTC-WBC cluster (sensitivity of 90.0% and specificity of 93.7%) in discriminating metastasis from non-metastatic HCC, which was higher than that for total CTCs (0.718) and EMT-CTCs (0.716). Further follow-up analysis showed that compared to the CTC-WBC cluster negative group (<1/5 ml), patients in the CTC-WBC cluster positive group (≥1/5 ml) presented an increased relapse ratio (60.0% versus 17.9%) and shorter RFS (22.9 versus 53.8 months). Dynamic analysis of CTCs parameters showed that total CTC level, EMT-CTCs proportion, and CTC-WBC cluster were decreased after microwave ablation treatment, while CTC-WBC cluster increased on average 10 months in advance of imaging (MRI) diagnosed recurrence. CONCLUSION The CTC-WBC cluster is a promising biomarker for the metastasis diagnosis and prognosis of HCC metastasis. Dynamic monitoring of the CTC-WBC cluster is an effective method for early detection and intervention of HCC recurrence and metastasis.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhong Luo
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxue Xi
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shufen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Cai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Farshbaf A, Lotfi M, Zare R, Mohtasham N. The organoid as reliable cancer modeling in personalized medicine, does applicable in precision medicine of head and neck squamous cell carcinoma? THE PHARMACOGENOMICS JOURNAL 2022; 23:37-44. [PMID: 36347937 DOI: 10.1038/s41397-022-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are introduced as the sixth most common cancer in the world. Detection of predictive biomarkers improve early diagnosis and prognosis. Recent cancer researches provide a new avenue for organoids, known as "mini-organs" in a dish, such as patient-derived organoids (PDOs), for cancer modeling. HNSCC burden, heterogeneity, mutations, and organoid give opportunities for the evaluation of drug sensitivity/resistance response according to the unique genetic profile signature. The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) nucleases, as an efficient genome engineering technology, can be used for genetic manipulation in three-dimensional (3D) organoids for cancer modeling by targeting oncogenes/tumor suppressor genes. Moreover, single-cell analysis of circulating tumor cells (CTCs) improved understanding of molecular angiogenesis, distance metastasis, and drug screening without the need for tissue biopsy. Organoids allow us to investigate the biopathogenesis of cancer, tumor cell behavior, and drug screening in a living biobank according to the specific genetic profile of patients.
Collapse
|
36
|
Liu Z, Li H, Dang Q, Weng S, Duo M, Lv J, Han X. Integrative insights and clinical applications of single-cell sequencing in cancer immunotherapy. Cell Mol Life Sci 2022; 79:577. [PMID: 36316529 PMCID: PMC11803023 DOI: 10.1007/s00018-022-04608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/03/2022]
Abstract
Recently, immunotherapy has gained increasing popularity in oncology. Several immunotherapies obtained remarkable clinical effects, but the efficacy varied, and only subsets of cancer patients benefited. Breaking the constraints and improving immunotherapy efficacy is extremely important in precision medicine. Whereas traditional sequencing approaches mask the characteristics of individual cells, single-cell sequencing provides multiple dimensions of cellular characterization at the single-cell level, including genomic, transcriptomic, epigenomic, proteomic, and multi-omics. Hence, the complexity of the tumor microenvironment, the universality of tumor heterogeneity, cell composition and cell-cell interactions, cell lineage tracking, and tumor drug resistance mechanisms are revealed in-depth. However, the clinical transformation of single-cell technology is not to the point of in-depth study, especially in the application of immunotherapy. The newly discovered vital cells and tremendous biomarkers facilitate the development of more efficient individualized therapeutic regimens to guide clinical treatment and predict prognosis. This review provided an overview of the progress in distinct single-cell sequencing methods and emerging strategies. For perspective, the expanding utility of combining single-cell sequencing and other technologies was discussed.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Huanyun Li
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengjie Duo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinxiang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
37
|
Chen M, Wu GB, Xie ZW, Shi DL, Luo M. A novel diagnostic four-gene signature for hepatocellular carcinoma based on artificial neural network: Development, validation, and drug screening. Front Genet 2022; 13:942166. [PMID: 36246599 PMCID: PMC9554094 DOI: 10.3389/fgene.2022.942166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common cancers with high mortality in the world. HCC screening and diagnostic models are becoming effective strategies to reduce mortality and improve the overall survival (OS) of patients. Here, we expected to establish an effective novel diagnostic model based on new genes and explore potential drugs for HCC therapy. Methods: The gene expression data of HCC and normal samples (GSE14811, GSE60502, GSE84402, GSE101685, GSE102079, GSE113996, and GSE45436) were downloaded from the Gene Expression Omnibus (GEO) dataset. Bioinformatics analysis was performed to distinguish two differentially expressed genes (DEGs), diagnostic candidate genes, and functional enrichment pathways. QRT-PCR was used to validate the expression of diagnostic candidate genes. A diagnostic model based on candidate genes was established by an artificial neural network (ANN). Drug sensitivity analysis was used to explore potential drugs for HCC. CCK-8 assay was used to detect the viability of HepG2 under various presentative chemotherapy drugs. Results: There were 82 DEGs in cancer tissues compared to normal tissue. Protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and infiltrating immune cell analysis were administered and analyzed. Diagnostic-related genes of MT1M, SPINK1, AKR1B10, and SLCO1B3 were selected from DEGs and used to construct a diagnostic model. The receiver operating characteristic (ROC) curves were 0.910 and 0.953 in the training and testing cohorts, respectively. Potential drugs, including vemurafenib, LOXO-101, dabrafenib, selumetinib, Arry-162, and NMS-E628, were found as well. Vemurafenib, dabrafenib, and selumetinib were observed to significantly affect HepG2 cell viability. Conclusion: The diagnostic model based on the four diagnostic-related genes by the ANN could provide predictive significance for diagnosis of HCC patients, which would be worthy of clinical application. Also, potential chemotherapy drugs might be effective for HCC therapy.
Collapse
Affiliation(s)
- Min Chen
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Wen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan-Li Shi
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Dan-Li Shi, ; Meng Luo,
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Dan-Li Shi, ; Meng Luo,
| |
Collapse
|
38
|
Ding J, Zhao W. The Application of Liquid Biopsy Techniques in High-Risk Population for Hepatocellular Carcinoma. Cancer Manag Res 2022; 14:2735-2748. [PMID: 36133739 PMCID: PMC9484767 DOI: 10.2147/cmar.s373165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/27/2022] [Indexed: 12/01/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system and has a 5-year overall survival rate of 14.1%. Many HCC patients are diagnosed at an advanced stage, and thus early screening is essential for reducing the mortality of HCC. In addition to commonly used detection indicators such as serum alpha-fetoprotein (AFP), lens culinaris agglutinin-reactive fraction of alpha-fetoprotein (AFP-L3) and abnormal prothrombin (protein induced by vitamin K absence II, PIVKA-II), liquid biopsy techniques have been demonstrated to have diagnostic value in HCC detection. Compared with invasive procedures, liquid biopsy can detect circulatory metabolites of malignant neoplasms. Liquid biopsy techniques can detect circulating tumor cells, circulating tumor DNA, circulating RNA and exosomes and have been used in the early screening, diagnosis and prognostic evaluation of HCC. This paper reviews the molecular biological characteristics and application of different liquid biopsy techniques, and aim to highlight promising biomarkers that may be feasible options for early-stage HCC evaluation to improve early screening in populations at high risk for HCC.
Collapse
Affiliation(s)
- Jingnuo Ding
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, JiangSu Province, 215000, People’s Republic of China
| | - Weifeng Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, JiangSu Province, 215000, People’s Republic of China
| |
Collapse
|
39
|
Combination of Preoperative Circulating Tumor Cell Count and Neutrophil-Lymphocyte Ratio for Prognostic Prediction in Hepatocellular Carcinoma Patients after Curative Hepatectomy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7305953. [PMID: 35880030 PMCID: PMC9308538 DOI: 10.1155/2022/7305953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022]
Abstract
Background Both the preoperative neutrophil-lymphocyte ratio (NLR) and circulating tumor cell count (CTC) are associated with poor prognosis in hepatocellular carcinoma (HCC). The purpose of this study was to explore the prognostic value of these two indices (CTC-NLR) in HCC. Methods We retrospectively collected demographic and clinical data, including NLR and CTC, from 97 patients with HCC who underwent curative hepatectomy at our institution from March 2014 to May 2017. X-Tile software was used to confirm the optimal cut-off value of NLR and CTC for predicting overall survival (OS) in this study. OS were also analyzed using Kaplan-Meier and Cox regression methods. Based on preoperative CTC and NLR, patients were divided into three groups: CTC-NLR (0), CTC-NLR (1), and CTC-NLR (2). Relationships of CTC-NLR with clinicopathological factors and survival were evaluated. Results Preoperatively, CTC positively correlated with NLR. Patients with NLR and CTC higher than the cut-offs had shorter OS than patients with low NLR and CTC. Kaplan-Meier analysis, and log-rank tests revealed significantly lower OS among patients with CTC-NLR scores of 0, 1, and 2. Uni- and multivariate analyses showed that CTC-NLR (hazard ratio 2.050, P = 0.005), CTC (hazard ratio 2.285, P = 0.032), and NLR (hazard ratio 1.902, P = 0.048) were independent predictor of OS. A time-dependent ROC curve indicated that the prognostic efficacy of the CTC-NLR at 1 year (0.714) was better than that of NLR (0.687) and CTC (0.590); the prognostic efficacy of the CTC-NLR at 2 years (0.746) was better than that of NLR (0.711) and CTC (0.601); the prognostic efficacy of the CTC-NLR at 3 years (0.742) was better than that of NLR (0.694) and CTC (0.629). Conclusions HCC patients with higher NLR and CTC tend to show shorter OS. Preoperative CTC-NLR may be associated with poor survival and might be a reliable prognostic predictor in HCC after curative hepatectomy.
Collapse
|
40
|
Clinical Implication of Circulating Tumor Cells Expressing Epithelial Mesenchymal Transition (EMT) and Cancer Stem Cell (CSC) Markers and Their Perspective in HCC: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143373. [PMID: 35884432 PMCID: PMC9322939 DOI: 10.3390/cancers14143373] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary One of the major problems regarding hepatocellular carcinoma (HCC) is the development of metastasis and recurrence, even in patients with an early stage. Recently, circulating tumor cells (CTCs) enumeration has been intensively studied as a diagnostic and prognostic biomarker in HCC. Nevertheless, increasing evidence suggests the role of metastasis-associated CTC phenotypes, including epithelial–mesenchymal transition (EMT)-CTCs and circulating cancer stem cells (CCSCs). We performed a systematic review to investigate the correlation of different CTC subtypes with HCC characteristics and their prognostic relevance to clinical outcomes. A preliminary meta-analysis found that CTC subtypes had prognostic power for predicting the probability of early recurrence. This study highlights the potential of CTC subtyping analysis as a biomarker for HCC management and provides information on metastasis-associated CTCs for a deeper molecular characterization of specific CTC subtypes. Abstract Circulating tumor cells (CTCs) play a key role in hematogenous metastasis and post-surgery recurrence. In hepatocellular carcinoma (HCC), CTCs have emerged as a valuable source of therapeutically relevant information. Certain subsets or phenotypes of CTCs can survive in the bloodstream and induce metastasis. Here, we performed a systematic review on the importance of epithelial–mesenchymal transition (EMT)-CTCs and circulating cancer stem cells (CCSCs) in metastatic processes and their prognostic power in HCC management. PubMed, Scopus, and Embase databases were searched for relevant publications. PRISMA criteria were used to review all studies. Twenty publications were eligible, of which 14, 5, and 1 study reported EMT-CTCs, CCSCs, and both phenotypes, respectively. Most studies evaluated that mesenchymal CTCs and CCSCs positivity were statistically associated with extensive clinicopathological features, including larger size and multiple numbers of tumors, advanced stages, micro/macrovascular invasion, and metastatic/recurrent disease. A preliminary meta-analysis showed that the presence of mesenchymal CTCs in pre- and postoperative blood significantly increased the risk of early recurrence. Mesenchymal-CTCs positivity was the most reported association with inferior outcomes based on the prognosis of HCC recurrence. Our finding could be a step forward, conveying additional prognostic values of CTC subtypes as promising biomarkers in HCC management.
Collapse
|
41
|
Yang JC, Hu JJ, Li YX, Luo W, Liu JZ, Ye DW. Clinical Applications of Liquid Biopsy in Hepatocellular Carcinoma. Front Oncol 2022; 12:781820. [PMID: 35211399 PMCID: PMC8860830 DOI: 10.3389/fonc.2022.781820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and poor prognosis in the world. The low rate of early diagnosis, as well as the high risk of postoperative metastasis and recurrence, led to the poor clinical prognosis of HCC patients. Currently, it mainly depends on serum markers, imaging examination, and tissue biopsy to diagnose and determine the recurrence and metastasis of HCC after treatments. Nevertheless, the accuracy and sensitivity of serum markers and imaging for early HCC diagnosis are suboptimal. Tissue biopsy, containing limited tissue samples, is insufficient to reveal comprehensive tumor biology information and is inappropriate to monitor dynamic tumor progression due to its invasiveness. Thus, low invasive diagnostic methods and novel biomarkers with high sensitivity and reliability must be found to improve HCC detection and prediction. As a non-invasive, dynamic, and repeatable detection method, “liquid biopsy”, has attracted much attention to early diagnosis and monitoring of treatment response, which promotes the progress of precision medicine. This review summarizes the clinical applications of liquid biopsy in HCC, including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosome in early diagnosis, prognostic evaluation, disease monitoring, and guiding personalized treatment.
Collapse
Affiliation(s)
- Jin-Cui Yang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Jie Hu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Xin Li
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Luo
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Zhou Liu
- Department of Pain Management, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pancreatic-Biliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
42
|
Zhao X, Zhao J, Tao L, Pan Y, Yang L, Zhang X, Yuan J, Zhu H. Significance of circulating tumor cells in the portal vein regarding metastases and vascular invasion in hepatocellular carcinoma patients. J Gastrointest Oncol 2021; 12:3050-3060. [PMID: 35070429 PMCID: PMC8748049 DOI: 10.21037/jgo-21-734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/08/2021] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Vascular invasion is an important risk factor of poor prognosis in hepatocellular carcinoma (HCC) patients. The detection of circulating tumor cells (CTCs) in the blood is direct evidence of tumor presence. There are few reports on CTCs and metastasis and vascular invasion of HCC. The purpose of this study was to analyze the significance of CTCs in the portal vein regarding metastases and vascular invasion in HCC patients. METHODS A total of 104 HCC patients diagnosed and treated in Zhengzhou University People's Hospital were enrolled. Surgery was performed in 60 individuals. Portal vein blood samples were collected before treatment for CTCs detection. We used the isolation by size of epithelial tumor cells (ISET) and fluorescence in situ hybridization (FISH) to enrich and classify CTCs from blood samples. The patients were divided into metastasis and nonmetastasis groups according to the metastasis status before treatment. Differences in clinical indicators such as alpha-fetoprotein (AFP) levels, tumor size, CTCs count, and macrovascular tumor thrombus between the two groups were analyzed as well as the associations of CTCs count with the above indicators. For individuals with postoperative pathology, the relationship between CTCs counts and microvascular invasion (MVI) was analyzed. RESULTS The amounts of portal vein CTCs were higher in patients with metastases compared with the nonmetastases group (20 vs. 7; z=3.795; P<0.001). Multivariate logistic regression analysis showed that the CTC count was a risk factor for HCC metastasis [odds ratio (OR) =1.044; 95% CI: 1.011-1.079]. The sensitivity and specificity of CTC count in predicting HCC metastasis were 82.93% and 52.38%, respectively. CTC count was significantly correlated with tumor size (rs=0.308; P=0.001), vascular invasion (z=4.211; P<0.001), and MVI (z=12.763; P=0.002). A threshold CTC count of seven showed the most significant power for predicting metastasis. CONCLUSIONS Vascular invasion positivity was closely related to HCC metastasis. Portal vein CTC count before treatment was correlated with vascular invasion and could be considered one of the factors affecting HCC metastasis. However, the ability of CTC count was limited in predicting HCC metastasis due to insufficient specificity.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Department of Ultrasound, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingge Zhao
- Clinical Research Center, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lianyuan Tao
- Department of Hepatobiliary Surgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yujin Pan
- Department of Hepatobiliary Surgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Long Yang
- Department of Ultrasound, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xijun Zhang
- Department of Ultrasound, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianjun Yuan
- Department of Ultrasound, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Haohui Zhu
- Department of Ultrasound, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
43
|
Liu M, Yang J, Xu B, Zhang X. Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (Beijing) 2021; 2:587-617. [PMID: 34977870 PMCID: PMC8706758 DOI: 10.1002/mco2.100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer metastasis is responsible for the vast majority of cancer-related deaths worldwide. In contrast to numerous discoveries that reveal the detailed mechanisms leading to the formation of the primary tumor, the biological underpinnings of the metastatic disease remain poorly understood. Cancer metastasis is a complex process in which cancer cells escape from the primary tumor, settle, and grow at other parts of the body. Epithelial-mesenchymal transition and anoikis resistance of tumor cells are the main forces to promote metastasis, and multiple components in the tumor microenvironment and their complicated crosstalk with cancer cells are closely involved in distant metastasis. In addition to the three cornerstones of tumor treatment, surgery, chemotherapy, and radiotherapy, novel treatment approaches including targeted therapy and immunotherapy have been established in patients with metastatic cancer. Although the cancer survival rate has been greatly improved over the years, it is still far from satisfactory. In this review, we provided an overview of the metastasis process, summarized the cellular and molecular mechanisms involved in the dissemination and distant metastasis of cancer cells, and reviewed the important advances in interventions for cancer metastasis.
Collapse
Affiliation(s)
- Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bushu Xu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
44
|
Zhao Q, Wongpoomchai R, Chariyakornkul A, Xiao Z, Pilapong C. Identification of Gene-Set Signature in Early-Stage Hepatocellular Carcinoma and Relevant Immune Characteristics. Front Oncol 2021; 11:740484. [PMID: 34745960 PMCID: PMC8570321 DOI: 10.3389/fonc.2021.740484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background The incidence of hepatocellular carcinoma (HCC) is rising worldwide, and there is limited therapeutic efficacy due to tumor microenvironment heterogeneity and difficulty in early-stage screening. This study aimed to develop and validate a gene set-based signature for early-stage HCC (eHCC) patients and further explored specific marker dysregulation mechanisms as well as immune characteristics. Methods We performed an integrated bioinformatics analysis of genomic, transcriptomic, and clinical data with three independent cohorts. We systematically reviewed the crosstalk between specific genes, tumor prognosis, immune characteristics, and biological function in the different pathological stage samples. Univariate and multivariate survival analyses were performed in The Cancer Genome Atlas (TCGA) patients with survival data. Diethylnitrosamine (DEN)-induced HCC in Wistar rats was employed to verify the reliability of the predictions. Results We identified a Cluster gene that potentially segregates patients with eHCC from non-tumor, through integrated analysis of expression, overall survival, immune cell characteristics, and biology function landscapes. Immune infiltration analysis showed that lower infiltration of specific immune cells may be responsible for significantly worse prognosis in HCC (hazard ratio, 1.691; 95% CI: 1.171–2.441; p = 0.012), such as CD8 Tem and cytotoxic T cells (CTLs) in eHCC. Our results identified that Cluster C1 signature presented a high accuracy in predicting CD8 Tem and CTL immune cells (receiver operating characteristic (ROC) = 0.647) and cancerization (ROC = 0.946) in liver. As a central member of Cluster C1, overexpressed PRKDC was associated with the higher genetic alteration in eHCC than advanced-stage HCC (aHCC), which was also connected to immune cell-related poor prognosis. Finally, the predictive outcome of Cluster C1 and PRKDC alteration in DEN-induced eHCC rats was also confirmed. Conclusions As a tumor prognosis-relevant gene set-based signature, Cluster C1 showed an effective approach to predict cancerization of eHCC and its related immune characteristics with considerable clinical value.
Collapse
Affiliation(s)
- Qijie Zhao
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
45
|
Zhang X, Guan L, Tian H, Zeng Z, Chen J, Huang D, Sun J, Guo J, Cui H, Li Y. Risk Factors and Prevention of Viral Hepatitis-Related Hepatocellular Carcinoma. Front Oncol 2021; 11:686962. [PMID: 34568017 PMCID: PMC8458967 DOI: 10.3389/fonc.2021.686962] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer in the world, and its incidence is increasing yearly. Hepatitis B virus (HBV) infection and hepatitis C virus (HCV) infection are important causes of HCC. Liver cirrhosis, age, sex, smoking and drinking, and metabolic risk factors will increase the risk of cancer in HBV/HCV patients. And viral load, APRI, FIB-4, and liver stiffness can all predict the risk of HCC in patients with viral infection. In addition, effective prevention strategies are essential in reducing the risk of HCC. The prevention of HCC involves mainly tertiary prevention strategies, while the primary prevention is based on standardized vaccine injections to prevent the occurrence of HBV/HCV. Eliminating the route of transmission and vaccination will lead to a decrease in the incidence of HCC. Secondary prevention involves effective antiviral treatment of HBV/HCV to prevent the disease from progressing to HCC, and tertiary prevention is actively treating HCC to prevent its recurrence.
Collapse
Affiliation(s)
- Xinhe Zhang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Guan
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haoyu Tian
- The 3rd Clinical Department of China Medical University, Shenyang, China
| | - Zilu Zeng
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiayu Chen
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Die Huang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ji Sun
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiaqi Guo
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huipeng Cui
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiling Li
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Wei T, Zhang XF, Xue F, Bagante F, Ratti F, Marques HP, Silva S, Soubrane O, Lam V, Poultsides GA, Popescu I, Grigorie R, Alexandrescu S, Martel G, Workneh A, Guglielmi A, Hugh T, Aldrighetti L, Endo I, Pawlik TM. Multi-Institutional Development and External Validation of a Nomogram for Prediction of Extrahepatic Recurrence After Curative-Intent Resection for Hepatocellular Carcinoma. Ann Surg Oncol 2021; 28:7624-7633. [PMID: 34019181 DOI: 10.1245/s10434-021-10142-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS Extrahepatic recurrence of hepatocellular carcinoma (HCC) after surgical resection is associated with unfavorable prognosis. The objectives of the current study were to identify the risk factors and develop a nomogram for the prediction of extrahepatic recurrence after initial curative surgery. METHODS A total of 635 patients who underwent curative-intent resection for HCC between 2000 and 2017 were identified from an international multi-institutional database. The clinicopathological characteristics, risk factors, and long-term survival of patients with extrahepatic recurrence were analyzed. A nomogram for the prediction of extrahepatic recurrence was established and validated in 144 patients from an external cohort. RESULTS Among the 635 patients in the derivative cohort, 283 (44.6%) experienced recurrence. Among patients who recurred, 80 (28.3%) patients had extrahepatic ± intrahepatic recurrence, whereas 203 (71.7%) had intrahepatic recurrence only. Extrahepatic recurrence was associated with more advanced initial tumor characteristics, early recurrence, and worse prognosis versus non-extrahepatic recurrence. A nomogram for the prediction of extrahepatic recurrence was developed using the β-coefficients from the identified risk factors, including neutrophil-to-lymphocyte ratio, multiple lesions, tumor size, and microvascular invasion. The nomogram demonstrated good ability to predict extrahepatic recurrence (c-index: training cohort 0.786; validation cohort: 0.845). The calibration plots demonstrated good agreement between estimated and observed extrahepatic recurrence (p = 0.658). CONCLUSIONS An externally validated nomogram was developed with good accuracy to predict extrahepatic recurrence following curative-intent resection of HCC. This nomogram may help identify patients at high risk of extrahepatic recurrence and guide surveillance protocols as well as adjuvant treatments.
Collapse
Affiliation(s)
- Tao Wei
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Division of Surgical Oncology, Department of Surgery, Medical Center and James Comprehensive Cancer Center, The Ohio State University Wexner, Columbus, OH, USA
| | - Feng Xue
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fabio Bagante
- Division of Surgical Oncology, Department of Surgery, Medical Center and James Comprehensive Cancer Center, The Ohio State University Wexner, Columbus, OH, USA.,Department of Surgery, University of Verona, Verona, Italy
| | | | - Hugo P Marques
- Department of Surgery, Curry Cabral Hospital, Lisbon, Portugal
| | - Silvia Silva
- Department of Surgery, Curry Cabral Hospital, Lisbon, Portugal
| | - Olivier Soubrane
- Department of Hepatobiliopancreatic Surgery, APHP, Beaujon Hospital, Clichy, France
| | - Vincent Lam
- Department of Surgery, Westmead Hospital, Sydney, NSW, Australia
| | | | - Irinel Popescu
- Department of Surgery, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Grigorie
- Department of Surgery, Fundeni Clinical Institute, Bucharest, Romania
| | | | | | - Aklile Workneh
- Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| | | | - Tom Hugh
- Department of Surgery, School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | | | - Itaru Endo
- Yokohama City University School of Medicine, Yokohama, Japan
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, Medical Center and James Comprehensive Cancer Center, The Ohio State University Wexner, Columbus, OH, USA.
| |
Collapse
|
47
|
Fernando K, Kwang LG, Lim JTC, Fong ELS. Hydrogels to engineer tumor microenvironments in vitro. Biomater Sci 2021; 9:2362-2383. [DOI: 10.1039/d0bm01943g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Illustration of engineered hydrogel to recapitulate aspects of the tumor microenvironment.
Collapse
Affiliation(s)
- Kanishka Fernando
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Leng Gek Kwang
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Joanne Tze Chin Lim
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
- The N.1 Institute for Health
- National University of Singapore
| |
Collapse
|