1
|
Evtimov VJ, Nguyen NYN, Hammett MV, Pupovac A, Hudson PJ, Zhuang J, Lee JY, Kim S, Trounson AO, Boyd RL, Shu R. CRISPR-Cas9 knockout of DGKα/ζ improves the anti-tumor activities of TAG-72 CAR-T cells in ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200962. [PMID: 40207199 PMCID: PMC11981736 DOI: 10.1016/j.omton.2025.200962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
High recurrence and chemoresistance in solid tumors, like ovarian cancer, stress the need for new therapies. Chimeric antigen receptor (CAR)-T cells show promise but face challenges due to tumor heterogeneity and immune suppression in the tumor microenvironment (TME). Thus, novel approaches are needed to further enhance the efficacy of CAR-T cell therapies. In T cell therapies, inhibiting checkpoint molecules is crucial for overcoming exhaustion and boosting anti-tumor activity. Additionally, prioritizing safety by engineering cells to target markers absent on normal healthy cells reduces off-target risks. We targeted tumor-associated glycoprotein 72 (TAG-72), an oncofetal antigen highly expressed in adenocarcinomas like ovarian cancer, by engineering TAG-72 CAR-T cells and used CRISPR-Cas9 to knock out the T cell-inhibitory enzymes diacylglycerol kinase (DGK) α and ζ. DGKα/ζ knockout (KO) did not impact CAR-T cell viability or phenotype. These cells selectively killed TAG-72-expressing cancer cells in vitro and ablated established tumors in vivo for up to 100 days, whereas non-deleted control TAG-72 CAR-T cells showed tumor relapse around 40 days. These findings highlight the potential of CRISPR-induced DGKα/ζ KO to enhance CAR-T cell efficacy against solid tumors such as ovarian cancer, offering a promising avenue for improved cancer therapies.
Collapse
Affiliation(s)
- Vera J. Evtimov
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Nhu-Y N. Nguyen
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Maree V. Hammett
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Aleta Pupovac
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Peter J. Hudson
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Junli Zhuang
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | | | | | - Alan O. Trounson
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Richard L. Boyd
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Runzhe Shu
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
| |
Collapse
|
2
|
Sollini M, Calais J, Chiti A, Emmett L, Fanti S, Fendler W, Herrmann K, Hope TA, Sartor O, Shuch B, Tagawa S, Hofman MS. Novel Radiopharmaceuticals and Future of Theranostics in Genitourinary Cancers. Eur Urol 2025; 87:125-139. [PMID: 39428326 DOI: 10.1016/j.eururo.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND OBJECTIVE This review aims to provide an overview of novel diagnostic and therapeutic radiopharmaceuticals tested recently or used currently in genitourinary cancers within prospective phase 1-2 clinical trials, summarizing progresses and future directions. METHODS A systematic search was conducted using the PubMed/MEDLINE and ClinicalTrials.gov databases for original prospective research studies following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. KEY FINDINGS AND LIMITATIONS Forty-six papers were systematically reviewed; 74 ongoing clinical trials were identified. The results of 27 novel radiopharmaceuticals (ie, not approved by the Food and Drug Administration/European Medicines Agency and not listed in the Pharmacopeia) prospectively investigated in genitourinary cancers, mostly prostate, for diagnostic, theranostic, or therapeutic purposes (21, one, and five of the 27 radiopharmaceuticals, respectively) over the past 5 yr were presented. Most were prostate-specific membrane antigen-targeting agents (17/27); other targets included gastrin-releasing peptide receptor, carbonic anhydrase IX, Cu, six transmembrane epithelial antigen of the prostate 1, tumor-associated glycoprotein 42, and urokinase-type plasminogen activator receptor. Ongoing research confirms the same trend. Fibroblast activation protein inhibitor, PD-L1, CD8, nectin-4, and HER2 are other targets under investigation. Among the 22 ongoing therapeutic trials (out of the 74 ongoing clinical trials), targeted alpha therapy is being explored in 12, and five are evaluating combinations of radioligand therapy with other treatments. We confirmed the safety of radiopharmaceuticals (regardless of the diagnostic/therapeutic purpose) and showed promising results in terms of diagnostic accuracy and therapeutic efficacy in genitourinary cancers. CONCLUSIONS AND CLINICAL IMPLICATIONS There continues to be expansion in radiopharmaceutical approaches to genitourinary cancers, reflecting a strong emphasis on improving tumor detection and treatment, which will likely impact future management across the disease spectrum, with the potential for improved patient care and outcomes.
Collapse
Affiliation(s)
- Martina Sollini
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milano, Italy; IRCCS Nuclear Medicine Department, IRCCS San Raffaele, Milano, Italy.
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Arturo Chiti
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milano, Italy; IRCCS Nuclear Medicine Department, IRCCS San Raffaele, Milano, Italy
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, Sydney, Australia
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Wolfgang Fendler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany; Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany; Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Department of Radiology, San Francisco VA Medical Center, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Oliver Sartor
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Brian Shuch
- Department of Urology, UCLA, Los Angeles, CA, USA
| | | | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Wei Z, Li B, Wen X, Jakobsson V, Liu P, Chen X, Zhang J. Engineered Antibodies as Cancer Radiotheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402361. [PMID: 38874523 PMCID: PMC11321656 DOI: 10.1002/advs.202402361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Radiotheranostics is a rapidly growing approach in personalized medicine, merging diagnostic imaging and targeted radiotherapy to allow for the precise detection and treatment of diseases, notably cancer. Radiolabeled antibodies have become indispensable tools in the field of cancer theranostics due to their high specificity and affinity for cancer-associated antigens, which allows for accurate targeting with minimal impact on surrounding healthy tissues, enhancing therapeutic efficacy while reducing side effects, immune-modulating ability, and versatility and flexibility in engineering and conjugation. However, there are inherent limitations in using antibodies as a platform for radiopharmaceuticals due to their natural activities within the immune system, large size preventing effective tumor penetration, and relatively long half-life with concerns for prolonged radioactivity exposure. Antibody engineering can solve these challenges while preserving the many advantages of the immunoglobulin framework. In this review, the goal is to give a general overview of antibody engineering and design for tumor radiotheranostics. Particularly, the four ways that antibody engineering is applied to enhance radioimmunoconjugates: pharmacokinetics optimization, site-specific bioconjugation, modulation of Fc interactions, and bispecific construct creation are discussed. The radionuclide choices for designed antibody radionuclide conjugates and conjugation techniques and future directions for antibody radionuclide conjugate innovation and advancement are also discussed.
Collapse
Affiliation(s)
- Zhenni Wei
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Bingyu Li
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Xuejun Wen
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Peifei Liu
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Departments of SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Institute of Molecular and Cell BiologyAgency for ScienceTechnologyand Research (A*STAR)61 Biopolis Drive, ProteosSingapore138673Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| |
Collapse
|
4
|
Hitchcock CL, Chapman GJ, Mojzisik CM, Mueller JK, Martin EW. A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors. Oncol Rev 2024; 18:1409410. [PMID: 39119243 PMCID: PMC11306801 DOI: 10.3389/or.2024.1409410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
The authors propose a concept of "systems engineering," the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient's EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer's signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Actis Medical, LLC, Powell, OH, United States
| | - Gregg J. Chapman
- Actis Medical, LLC, Powell, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | | | | | - Edward W. Martin
- Actis Medical, LLC, Powell, OH, United States
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Mohr P, van Sluis J, Lub-de Hooge MN, Lammertsma AA, Brouwers AH, Tsoumpas C. Advances and challenges in immunoPET methodology. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1360710. [PMID: 39355220 PMCID: PMC11440922 DOI: 10.3389/fnume.2024.1360710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 10/03/2024]
Abstract
Immuno-positron emission tomography (immunoPET) enables imaging of specific targets that play a role in targeted therapy and immunotherapy, such as antigens on cell membranes, targets in the disease microenvironment, or immune cells. The most common immunoPET applications use a monoclonal antibody labeled with a relatively long-lived positron emitter such as 89Zr (T 1/2 = 78.4 h), but smaller antibody-based constructs labeled with various other positron emitting radionuclides are also being investigated. This molecular imaging technique can thus guide the development of new drugs and may have a pivotal role in selecting patients for a particular therapy. In early phase immunoPET trials, multiple imaging time points are used to examine the time-dependent biodistribution and to determine the optimal imaging time point, which may be several days after tracer injection due to the slow kinetics of larger molecules. Once this has been established, usually only one static scan is performed and semi-quantitative values are reported. However, total PET uptake of a tracer is the sum of specific and nonspecific uptake. In addition, uptake may be affected by other factors such as perfusion, pre-/co-administration of the unlabeled molecule, and the treatment schedule. This article reviews imaging methodologies used in immunoPET studies and is divided into two parts. The first part summarizes the vast majority of clinical immunoPET studies applying semi-quantitative methodologies. The second part focuses on a handful of studies applying pharmacokinetic models and includes preclinical and simulation studies. Finally, the potential and challenges of immunoPET quantification methodologies are discussed within the context of the recent technological advancements provided by long axial field of view PET/CT scanners.
Collapse
Affiliation(s)
- Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Shu R, Hammett M, Evtimov V, Pupovac A, Nguyen N, Islam R, Zhuang J, Lee S, Kang T, Lee K, Nisbet I, Hudson P, Lee JY, Boyd R, Trounson A. Engineering T cell receptor fusion proteins using nonviral CRISPR/Cas9 genome editing for cancer immunotherapy. Bioeng Transl Med 2023; 8:e10571. [PMID: 38023726 PMCID: PMC10658519 DOI: 10.1002/btm2.10571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 12/01/2023] Open
Abstract
Manufacture of chimeric antigen receptor (CAR)-T cells usually involves the use of viral delivery systems to achieve high transgene expression. However, it can be costly and may result in random integration of the CAR into the genome, creating several disadvantages including variation in transgene expression, functional gene silencing and potential oncogenic transformation. Here, we optimized the method of nonviral, CRISPR/Cas9 genome editing using large donor DNA delivery, knocked-in an anti-tumor single chain variable fragment (scFv) into the N-terminus of CD3ε and efficiently generated fusion protein (FP) T cells. These cells displayed FP integration within the TCR/CD3 complex, lower variability in gene expression compared to CAR-T cells and good cell expansion after transfection. CD3ε FP T cells were predominantly CD8+ effector memory T cells, and exhibited anti-tumor activity in vitro and in vivo. Dual targeting FP T cells were also generated through the incorporation of scFvs into other CD3 subunits and CD28. Compared to viral-based methods, this method serves as an alternative and versatile way of generating T cells with tumor-targeting receptors for cancer immunotherapy.
Collapse
Affiliation(s)
- Runzhe Shu
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Maree Hammett
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Vera Evtimov
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Aleta Pupovac
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Nhu‐Y Nguyen
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Rasa Islam
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Junli Zhuang
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | | | | | | | - Ian Nisbet
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Peter Hudson
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | | | - Richard Boyd
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Alan Trounson
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonAustralia
| |
Collapse
|
7
|
Khilji SK, Op 't Hoog C, Warschkau D, Lühle J, Goerdeler F, Freitag A, Seeberger PH, Moscovitz O. Smaller size packs a stronger punch - Recent advances in small antibody fragments targeting tumour-associated carbohydrate antigens. Theranostics 2023; 13:3041-3063. [PMID: 37284439 PMCID: PMC10240822 DOI: 10.7150/thno.80901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
Attached to proteins, lipids, or forming long, complex chains, glycans represent the most versatile post-translational modification in nature and surround all human cells. Unique glycan structures are monitored by the immune system and differentiate self from non-self and healthy from malignant cells. Aberrant glycosylations, termed tumour-associated carbohydrate antigens (TACAs), are a hallmark of cancer and are correlated with all aspects of cancer biology. Therefore, TACAs represent attractive targets for monoclonal antibodies for cancer diagnosis and therapy. However, due to the thick and dense glycocalyx as well as the tumour micro-environment, conventional antibodies often suffer from restricted access and limited effectiveness in vivo. To overcome this issue, many small antibody fragments have come forth, showing similar affinity with better efficiency than their full-length counterparts. Here we review small antibody fragments against specific glycans on tumour cells and highlight their advantages over conventional antibodies.
Collapse
Affiliation(s)
- Sana Khan Khilji
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Charlotte Op 't Hoog
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Graduate School of Life Sciences, Utrecht University, 3584 CH Utrecht, Netherlands
| | - David Warschkau
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jost Lühle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Felix Goerdeler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anika Freitag
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Oren Moscovitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Chou J, Egusa EA, Wang S, Badura ML, Lee F, Bidkar AP, Zhu J, Shenoy T, Trepka K, Robinson TM, Steri V, Huang J, Wang Y, Small EJ, Chan E, Stohr BA, Ashworth A, Delafontaine B, Rottey S, Cooke KS, Hashemi Sadraei N, Yu B, Salvati M, Bailis JM, Feng FY, Flavell RR, Aggarwal R. Immunotherapeutic Targeting and PET Imaging of DLL3 in Small-Cell Neuroendocrine Prostate Cancer. Cancer Res 2023; 83:301-315. [PMID: 36351060 DOI: 10.1158/0008-5472.can-22-1433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Effective treatments for de novo and treatment-emergent small-cell/neuroendocrine (t-SCNC) prostate cancer represent an unmet need for this disease. Using metastatic biopsies from patients with advanced cancer, we demonstrate that delta-like ligand 3 (DLL3) is expressed in de novo and t-SCNC and is associated with reduced survival. We develop a PET agent, [89Zr]-DFO-DLL3-scFv, that detects DLL3 levels in mouse SCNC models. In multiple patient-derived xenograft models, AMG 757 (tarlatamab), a half-life-extended bispecific T-cell engager (BiTE) immunotherapy that redirects CD3-positive T cells to kill DLL3-expressing cells, exhibited potent and durable antitumor activity. Late relapsing tumors after AMG 757 treatment exhibited lower DLL3 levels, suggesting antigen loss as a resistance mechanism, particularly in tumors with heterogeneous DLL3 expression. These findings have been translated into an ongoing clinical trial of AMG 757 in de novo and t-SCNC, with a confirmed objective partial response in a patient with histologically confirmed SCNC. Overall, these results identify DLL3 as a therapeutic target in SCNC and demonstrate that DLL3-targeted BiTE immunotherapy has significant antitumor activity in this aggressive prostate cancer subtype. SIGNIFICANCE The preclinical and clinical evaluation of DLL3-directed immunotherapy, AMG 757, and development of a PET radiotracer for noninvasive DLL3 detection demonstrate the potential of targeting DLL3 in SCNC prostate cancer.
Collapse
Affiliation(s)
- Jonathan Chou
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Emily A Egusa
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Radiation Oncology and Urology, University of California, San Francisco, California
| | - Sinan Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Michelle L Badura
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Radiation Oncology and Urology, University of California, San Francisco, California.,Department of Biology, Santa Clara University, Santa Clara, California
| | - Fei Lee
- Oncology Research, Amgen Research, Amgen, South San Francisco, California
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Jun Zhu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Radiation Oncology and Urology, University of California, San Francisco, California
| | - Tanushree Shenoy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Kai Trepka
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Radiation Oncology and Urology, University of California, San Francisco, California.,Medical Scientist Training Program, University of California, San Francisco, California
| | - Troy M Robinson
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Radiation Oncology and Urology, University of California, San Francisco, California
| | - Veronica Steri
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, North Carolina
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia.,Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric J Small
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Emily Chan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Pathology, University of California, San Francisco, California
| | - Bradley A Stohr
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Pathology, University of California, San Francisco, California
| | - Alan Ashworth
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | | | | | - Keegan S Cooke
- Oncology Research, Amgen Research, Amgen, Thousand Oaks, California
| | | | - Brian Yu
- Global Development, Amgen, Thousand Oaks, California
| | - Mark Salvati
- Global Development, Amgen, Thousand Oaks, California
| | - Julie M Bailis
- Oncology Research, Amgen Research, Amgen, South San Francisco, California
| | - Felix Y Feng
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Radiation Oncology and Urology, University of California, San Francisco, California
| | - Robert R Flavell
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Rahul Aggarwal
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| |
Collapse
|
9
|
Rodriguez C, Delaney S, Sarrett SM, Keinänen OM, Zeglis BM. Antibody Engineering for Nuclear Imaging and Radioimmunotherapy. J Nucl Med 2022; 63:1316-1322. [PMID: 35863894 PMCID: PMC9454464 DOI: 10.2967/jnumed.122.263861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/07/2022] [Indexed: 01/26/2023] Open
Abstract
Radiolabeled antibodies have become indispensable tools in nuclear medicine. However, the natural roles of antibodies within the immune system mean that they have several intrinsic limitations as a platform for radiopharmaceuticals. In recent years, the field has increasingly turned to antibody engineering to circumvent these issues while retaining the manifold benefits of the immunoglobulin framework. In this "Focus on Molecular Imaging" review, we cover recent advances in the application of antibody engineering to immunoPET, immunoSPECT, and radioimmunotherapy. Specifically, we address how antibody engineering has been used to improve radioimmunoconjugates on four fronts: optimizing pharmacokinetics, facilitating site-specific bioconjugation, modulating Fc interactions, and creating bispecific constructs.
Collapse
Affiliation(s)
- Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, New York
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha Delaney
- Department of Chemistry, Hunter College, City University of New York, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Ph.D. Program in Biochemistry, Graduate Center of City University of New York, New York, New York
| | - Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Ph.D. Program in Biochemistry, Graduate Center of City University of New York, New York, New York
| | - Outi M Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Chemistry, University of Helsinki, Helsinki, Finland; and
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, New York;
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Ph.D. Program in Biochemistry, Graduate Center of City University of New York, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
10
|
A phase 1 safety and bioimaging trial of antibody DS-8895a against EphA2 in patients with advanced or metastatic EphA2 positive cancers. Invest New Drugs 2022; 40:747-755. [DOI: 10.1007/s10637-022-01237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
11
|
Hitchcock CL, Povoski SP, Mojzisik CM, Martin EW. Survival Advantage Following TAG-72 Antigen-Directed Cancer Surgery in Patients With Colorectal Carcinoma: Proposed Mechanisms of Action. Front Oncol 2021; 11:731350. [PMID: 34950576 PMCID: PMC8688248 DOI: 10.3389/fonc.2021.731350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/25/2021] [Indexed: 12/09/2022] Open
Abstract
Patients with colorectal carcinoma (CRC) continue to have variable clinical outcomes despite undergoing the same surgical procedure with curative intent and having the same pathologic and clinical stage. This problem suggests the need for better techniques to assess the extent of disease during surgery. We began to address this problem 35 years ago by injecting patients with either primary or recurrent CRC with 125I-labeled murine monoclonal antibodies against the tumor-associated glycoprotein-72 (TAG-72) and using a handheld gamma-detecting probe (HGDP) for intraoperative detection and removal of radioactive, i.e., TAG-72-positive, tissue. Data from these studies demonstrated a significant difference in overall survival data (p < 0.005 or better) when no TAG-72-positive tissue remained compared to when TAG-72-positive tissue remained at the completion of surgery. Recent publications indicate that aberrant glycosylation of mucins and their critical role in suppressing tumor-associated immune response help to explain the cellular mechanisms underlying our results. We propose that monoclonal antibodies to TAG-72 recognize and bind to antigenic epitopes on mucins that suppress the tumor-associated immune response in both the tumor and tumor-draining lymph nodes. Complete surgical removal of all TAG-72-positive tissue serves to reverse the escape phase of immunoediting, allowing a resetting of this response that leads to improved overall survival of the patients with either primary or recurrent CRC. Thus, the status of TAG-72 positivity after resection has a significant impact on patient survival.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephen P. Povoski
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cathy M. Mojzisik
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Edward W. Martin
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Gupta P, Hare DL, Wookey PJ. Strategic Development of an Immunotoxin for the Treatment of Glioblastoma and Other Tumours Expressing the Calcitonin Receptor. Cells 2021; 10:cells10092347. [PMID: 34571996 PMCID: PMC8466289 DOI: 10.3390/cells10092347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
New strategies aimed at treatment of glioblastoma are frequently proposed to overcome poor prognosis. Recently, research has focused on glioma stem cells (GSCs), some quiescent, which drive expansion of glioblastoma and provide the complexity and heterogeneity of the tumour hierarchy. Targeting quiescent GSCs is beyond the capability of conventional drugs such as temozolomide. Here, we discuss the proposal that the calcitonin receptor (CT Receptor), expressed in 76–86% of patient biopsies, is expressed by both malignant glioma cells and GSCs. Forty-two percent (42%) of high-grade glioma (HGG; representative of GSCs) cell lines available from one source express CT Receptor protein in cell culture. The pharmacological calcitonin (CT)-response profiles of four of the HGG cell lines were reported, suggesting mutational/splicing inactivation. Alternative splicing, commonly associated with cancer cells, could result in the predominant expression of the insert-positive isoform and explain the atypical pharmacology exhibited by CT non-responders. A role for the CT Receptor as a putative tumour suppressor and/or oncoprotein is discussed. Both CT responders and non-responders were sensitive to immunotoxins based on an anti-CT Receptor antibody conjugated to ribosomal-inactivating proteins. Sensitivity was increased by several logs with the triterpene glycoside SO1861, an endosomal escape enhancer. Under these conditions, the immunotoxins were 250–300 times more potent than an equivalent antibody conjugated with monomethyl auristatin E. Further refinements for improving the penetration of solid tumours are discussed. With this knowledge, a potential strategy for effective targeting of CSCs expressing this receptor is proposed for the treatment of GBM.
Collapse
|
13
|
Islam A, Pishesha N, Harmand TJ, Heston H, Woodham AW, Cheloha RW, Bousbaine D, Rashidian M, Ploegh HL. Converting an Anti-Mouse CD4 Monoclonal Antibody into an scFv Positron Emission Tomography Imaging Agent for Longitudinal Monitoring of CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1468-1477. [PMID: 34408009 PMCID: PMC8387391 DOI: 10.4049/jimmunol.2100274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Immuno-positron emission tomography (PET), a noninvasive imaging modality, can provide a dynamic approach for longitudinal assessment of cell populations of interest. Transformation of mAbs into single-chain variable fragment (scFv)-based PET imaging agents would allow noninvasive tracking in vivo of a wide range of possible targets. We used sortase-mediated enzymatic labeling in combination with PEGylation to develop an anti-mouse CD4 scFv-based PET imaging agent constructed from an anti-mouse CD4 mAb. This anti-CD4 scFv can monitor the in vivo distribution of CD4+ T cells by immuno-PET. We tracked CD4+ and CD8+ T cells in wild-type mice, in immunodeficient recipients reconstituted with monoclonal populations of OT-II and OT-I T cells, and in a B16 melanoma model. Anti-CD4 and -CD8 immuno-PET showed that the persistence of both CD4+ and CD8+ T cells transferred into immunodeficient mice improved when recipients were immunized with OVA in CFA. In tumor-bearing animals, infiltration of both CD4+ and CD8+ T cells increased as the tumor grew. The approach described in this study should be readily applicable to convert clinically useful Abs into the corresponding scFv PET imaging agents.
Collapse
Affiliation(s)
- Ashraful Islam
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Society of Fellows, Harvard University, Cambridge, MA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Hailey Heston
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Djenet Bousbaine
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA; and
- Department of Radiology, Harvard Medical School, Boston, MA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA;
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Piramoon M, Khodadust F, Hosseinimehr SJ. Radiolabeled nanobodies for tumor targeting: From bioengineering to imaging and therapy. Biochim Biophys Acta Rev Cancer 2021; 1875:188529. [PMID: 33647388 DOI: 10.1016/j.bbcan.2021.188529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
So far, numerous molecules and biomolecules have been evaluated for tumor targeting purposes for radionuclide-based imaging and therapy modalities. Due to the high affinity and specificity against tumor antigens, monoclonal antibodies are appropriate candidates for tumor targeting. However, their large size prevents their comprehensive application in radionuclide-based tumor imaging or therapy, since it leads to their low tumor penetration, low blood clearance, and thus inappropriate tumor-to-background ratio. Nowadays, the variable domain of heavy-chain antibodies from the Camelidae family, known as nanobodies (Nbs), turn into exciting candidates for medical research. Considering several innate advantages of these new tumor-targeting agents, including excellent affinity and specificity toward antigen, high solubility, high stability, fast washout from blood, convenient production, ease of selection, and low immunogenicity, it assumes that they may overcome generic problems of monoclonal antibodies, their fragments, and other vectors used for tumor imaging/therapy. After three decades of Nbs discovery, the increasing number of their preclinical and clinical investigations, which have led to outstanding results, confirm their application for tumor targeting purposes. This review describes Nbs characteristics, the diagnostic and therapeutic application of their radioconjugates, and their recent advances.
Collapse
Affiliation(s)
- Majid Piramoon
- Department of Medicinal Chemistry and Radiopharmacy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Khodadust
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
15
|
Shu R, Evtimov VJ, Hammett MV, Nguyen NYN, Zhuang J, Hudson PJ, Howard MC, Pupovac A, Trounson AO, Boyd RL. Engineered CAR-T cells targeting TAG-72 and CD47 in ovarian cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:325-341. [PMID: 33614914 PMCID: PMC7868933 DOI: 10.1016/j.omto.2021.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/09/2021] [Indexed: 02/04/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have revolutionized blood cancer immunotherapy; however, their efficacy against solid tumors has been limited. A common mechanism of tumor escape from single target therapies is downregulation or mutational loss of the nominal epitope. Targeting multiple antigens may thus improve the effectiveness of CAR immunotherapies. We generated dual CAR-T cells targeting two tumor antigens: TAG-72 (tumor-associated glycoprotein 72) and CD47. TAG-72 is a pan-adenocarcinoma oncofetal antigen, highly expressed in ovarian cancers, with increased expression linked to disease progression. CD47 is ubiquitously overexpressed in multiple tumor types, including ovarian cancer; it is a macrophage “don’t eat me” signal. However, CD47 is also expressed on many normal cells. To avoid this component of the dual CAR-T cells killing healthy tissue, we designed a truncated CD47 CAR devoid of intracellular signaling domains. The CD47 CAR facilitates binding to CD47+ cells, increasing the prospect of TAG-72+ cell elimination via the TAG-72 CAR. Furthermore, we could reduce the damage to normal tissue by monomerizing the CD47 CAR. Our results indicate that the co-expression of the TAG-72 CAR and the CD47-truncated monomer CAR on T cells could be an effective, dual CAR-T cell strategy for ovarian cancer, also applicable to other adenocarcinomas.
Collapse
Affiliation(s)
- Runzhe Shu
- Cartherics Pty, Ltd., Clayton, VIC 3168, Australia
| | | | | | | | - Junli Zhuang
- Cartherics Pty, Ltd., Clayton, VIC 3168, Australia
| | - Peter J Hudson
- Cartherics Pty, Ltd., Clayton, VIC 3168, Australia.,Avipep Pty, Ltd., Parkville, VIC 3052, Australia
| | | | | | - Alan O Trounson
- Cartherics Pty, Ltd., Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | | |
Collapse
|