1
|
Sybesma W, Westerik N, Dalukdeniya C, Tumuhimbise J, Gregorowitsch E, Garssen J, Wijeyesekera A, Kort R. Effects of probiotic yogurt on relative respiratory tract infections, urine, saliva biomarkers, and fecal bacterial load in Ugandan children: a randomized controlled trial. Sci Rep 2025; 15:9478. [PMID: 40108292 PMCID: PMC11923141 DOI: 10.1038/s41598-025-93603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
This study evaluated the effects of locally produced probiotic yogurt on infectious diseases in Ugandan children aged 3-6 years. Over nine weeks, 196 children participated in a randomized, double-blind, placebo-controlled trial, consuming 125 ml daily of either probiotic yogurt containing Lacticaseibacillus rhamnosus yoba 2012 and Streptococcus thermophilus C106 or a non-fermented dairy placebo. The primary outcome, average daily incidence of upper respiratory tract symptoms, showed no significant difference between groups. However, the probiotic yogurt group experienced a significant reduction in respiratory tract infection symptoms over time (p = 0.02). Biomarker analysis revealed significant changes in the probiotic yogurt group, including higher urine hippurate levels (p = 0.02), increased lactic acid bacteria (p = 0.04) and total bacterial load (p = 0.04) in stool, and elevated SLPI (p = 0.005) in saliva from baseline to endline. Despite these within-group effects, the lack of significant differences between the yogurt and placebo groups highlights the need for further research with larger cohorts and longer durations to confirm the potential benefits of this probiotic yogurt for reducing infection symptoms and improving health biomarkers under these study conditions.
Collapse
Affiliation(s)
- Wilbert Sybesma
- Yoba for Life Foundation, Plot 10, Haji Kasaka Road, Kamukuzi, Mbarara, Uganda
| | - Nieke Westerik
- Yoba for Life Foundation, Plot 10, Haji Kasaka Road, Kamukuzi, Mbarara, Uganda
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Choshani Dalukdeniya
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK
| | | | - Els Gregorowitsch
- Yoba for Life Foundation, Plot 10, Haji Kasaka Road, Kamukuzi, Mbarara, Uganda
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anisha Wijeyesekera
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK
| | - Remco Kort
- Yoba for Life Foundation, Plot 10, Haji Kasaka Road, Kamukuzi, Mbarara, Uganda.
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- ARTIS-Micropia, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Hafeez S, Khalid A, Ahmed S, Umrani F, Qureshi AK, Ahmed K, Shaheen F, Hotwani A, Kabir F, Moore SR, Ali SA, Iqbal J, Iqbal NT. The Role of Fermented Pickles in Shaping Gut Microbiota and Immune Response in Women: A Community-Based Trial in Pakistan. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.10.25320071. [PMID: 39830252 PMCID: PMC11741486 DOI: 10.1101/2025.01.10.25320071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A gut microbiome-targeted diet can potentially mitigate chronic diseases like malnutrition. In a prospective 12-week intervention trial, we evaluated the effects of six different plant-based fermented pickles (∼50g/day) on clinical, inflammatory, and gut-microbiome parameters in women (n=230) in a rural setting with a high prevalence of undernutrition. Blood was collected at two, whereas stool was collected at three timepoints. Among fecal biomarkers, myeloperoxidase (MPO), Lipocalin-2 (LCN2), and 16S rRNA sequencing were measured at baseline, 8 th, and 12 th weeks. Overall compliance rate was >70%. WBC and neutrophils significantly decreased among radish (p=0.002, p=0.01) and carrot (p=0.005, p=0.006) groups compared to controls. In lemon-chili groups, platelets significantly decreased (p<0.001) while MCV increased (p=0.02). In onion and lemon-chili groups, the alpha (р=0.001 and p=0.0005, respectively) and beta diversities (p=9e-04 and p=0.0223, respectively) were significantly increased. Post-intervention linear discriminant analysis (LDA) identified 25 bacterial taxa markers at 8 th and 12 th week, that included Eggerthellaceae and Oscillospiraceae, Erysipelatoclostridiaceae and Subdoligranumlum, predominantly in lemon-chili group. Correlation analysis revealed six taxa negatively associated with inflammatory markers such as CRP, LCN2, and platelets. Our study provides preliminary information about consumption of culturally acceptable fermented pickles exerting beneficial changes in hematological and gut microbiome profiles of women, post-intervention.
Collapse
|
3
|
Mathan Muthu CM, Vickram AS, Bhavani Sowndharya B, Saravanan A, Kamalesh R, Dinakarkumar Y. A comprehensive review on the utilization of probiotics in aquaculture towards sustainable shrimp farming. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109459. [PMID: 38369068 DOI: 10.1016/j.fsi.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Probiotics in shrimp aquaculture have gained considerable attention as a potential solution to enhance production efficiency, disease management, and overall sustainability. Probiotics, beneficial microorganisms, have shown promising effects when administered to shrimp as dietary supplements or water additives. Their inclusion has been linked to improved gut health, nutrient absorption, and disease resistance in shrimp. Probiotics also play a crucial role in maintaining a balanced microbial community within the shrimp pond environment, enhancing water quality and reducing pathogen prevalence. This article briefly summarizes the many ways that probiotics are used in shrimp farming and the advantages that come with them. Despite the promising results, challenges such as strain selection, dosage optimization, and environmental conditions are carefully addressed for successful probiotic integration in shrimp aquaculture. The potential of probiotics as a sustainable and ecologically friendly method of promoting shrimp development and health while advancing environmentally friendly shrimp farming techniques is highlighted in this analysis. Further research is required to fully exploit probiotics' benefits and develop practical guidelines for their effective implementation in shrimp aquaculture.
Collapse
Affiliation(s)
- C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - B Bhavani Sowndharya
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Yuvaraj Dinakarkumar
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
4
|
Reid G. A value chain to improve human, animal and insect health in developing countries. MICROBIOME RESEARCH REPORTS 2023; 3:10. [PMID: 38455087 PMCID: PMC10917616 DOI: 10.20517/mrr.2023.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 03/09/2024]
Affiliation(s)
- Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London N6A 4V2, Ontario, Canada
- Departments of Microbiology and Immunology, and Surgery, Western University, London N6A 4V2, Ontario, Canada
| |
Collapse
|
5
|
Brett BE, Doumbia HOY, Koko BK, Koffi FK, Assa SE, Zahé KYAS, Kort R, Sybesma W, Reid G, de Weerth C. Normative cognition and the effects of a probiotic food intervention in first grade children in Côte d'Ivoire. Sci Rep 2022; 12:19491. [PMID: 36376341 PMCID: PMC9663712 DOI: 10.1038/s41598-022-23797-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The cognitive skills critical for success have largely been studied in Western populations, despite the fact that children in low- and middle-income countries are at risk to not reach their full developmental potential. Moreover, scientists should leverage recent discovery to explore means of boosting cognition in at-risk populations. This semi-randomized controlled trial examined normative cognitive development and whether it could be enhanced by consumption of a probiotic food in a sample of 251 4- to 7-year-old children in urban schools in Côte d'Ivoire. Participants completed executive functioning measures at baseline (T1) and 5 months later (T2). After T1, children in one school received a probiotic (N = 74) or placebo (N = 79) fermented dairy food every day they were in school for one semester; children in the other school (N = 98) continued their diet as usual. Children improved on all tests across time (Cohen's d = 0.08-0.30). The effects of probiotic ingestion were inconclusive and are interpreted with caution due to socio-political factors affecting daily administration. Given the general feasibility of the study, we hope that it will serve as an inspiration for future research into child development and sustainable (health-promoting) interventions for school children in developing nations.
Collapse
Affiliation(s)
- Bonnie E. Brett
- grid.10417.330000 0004 0444 9382Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Bruno K. Koko
- UFR Biosciences, Université Félix Houghouët-Boigny, Abidjan, Côte d’Ivoire
| | | | - Savorgnan E. Assa
- UFR Biosciences, Université Félix Houghouët-Boigny, Abidjan, Côte d’Ivoire
| | | | - Remco Kort
- Yoba For Life Foundation, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Gregor Reid
- grid.415847.b0000 0001 0556 2414Lawson Health Research Institute and Western University, London, Canada
| | - Carolina de Weerth
- grid.10417.330000 0004 0444 9382Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Ebenso B, Otu A, Giusti A, Cousin P, Adetimirin V, Razafindralambo H, Effa E, Gkisakis V, Thiare O, Levavasseur V, Kouhounde S, Adeoti K, Rahim A, Mounir M. Nature-Based One Health Approaches to Urban Agriculture Can Deliver Food and Nutrition Security. Front Nutr 2022; 9:773746. [PMID: 35360699 PMCID: PMC8963785 DOI: 10.3389/fnut.2022.773746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
The increasing global human population is projected to reach 9.7 billion people by 2050. This population growth is currently linked to the trends of world-wide urbanization, growth of megacities and shifting dietary patterns. While humankind faces the daunting challenge of feeding and providing healthy lives for its teeming populations, urban agriculture holds promise for improving the quality of life in cities. Fortunately, policymakers and planners are accepting the need to support peri-urban farmers to increase the resilience of food systems while efficiently managing already strained natural resources. We argue that for urban agriculture to significantly increase food yields, it is crucial to adopt a One Health approach to agriculture and environmental stewardship. Here, we propose six nature-based and climate-smart approaches to accelerate the transition toward more sustainable food systems. These approaches include reducing the reliance on synthetic agricultural inputs, increasing biodiversity through producing locally adapted crops and livestock breeds, using probiotics and postbiotics, and adopting portable digital decision-support systems. Such radical approaches to transforming food production will require cross-sectoral stakeholder engagement at international, national, and community levels to protect biodiversity and the environment whilst ensuring sustainable and nutritious diets that are culturally acceptable, accessible, and affordable for all.
Collapse
Affiliation(s)
- Bassey Ebenso
- Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Akaninyene Otu
- Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
- Foundation for Healthcare Innovation and Development (FHIND), Calabar, Nigeria
- Department of Internal Medicine, University of Calabar, Calabar, Nigeria
- Hull University Teaching Hospital, Hull, United Kingdom
| | | | | | - Victor Adetimirin
- Department of Crop and Horticultural Sciences, University of Ibadan, Ibadan, Nigeria
| | | | - Emmanuel Effa
- Foundation for Healthcare Innovation and Development (FHIND), Calabar, Nigeria
- Department of Internal Medicine, University of Calabar, Calabar, Nigeria
| | - Vasileios Gkisakis
- Institute of Olive Tree, Subtropical Crops & Viticulture, Department of Olive and Horticultural crops, ELGO – DIMITRA, Kalamata, Greece
| | - Ousmane Thiare
- Université Gaston Berger de Saint Louis, Saint-Louis, Senegal
| | | | - Sonagnon Kouhounde
- Laboratory of Applied Biologic Sciences, Université Aube Nouvelle, Bobo-Dioulasso, Burkina Faso
| | - Kifouli Adeoti
- Laboratoire de Microbiologie et de Technologie Alimentaire (LAMITA), Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Benin
| | | | - Majid Mounir
- Department of Food Science and Nutrition, Biotransformations Laboratory, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat Instituts, Rabat, Morocco
| |
Collapse
|
7
|
Contribution of traditional fermented foods to food systems transformation: value addition and inclusive entrepreneurship. Food Secur 2021. [DOI: 10.1007/s12571-021-01185-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractTo date, many efforts to eradicate hunger include increasing agricultural production, processing of raw materials and supplementation, and fortification of foods. Locally produced foods represent a significant part of Food Systems as they contribute to tackling hunger and malnutrition. However, few studies have investigated the processing of traditional fermented foods at household level as a means to improve nutrition and triggering inclusive entrepreneurship, two crucial dimensions Food Systems build on. Fermentation is an ancient processing technique that relies on transformation of raw materials by microbial activity and is mainly undertaken by women. This paper posits that upscaling small scale fermented food processing activities while enhancing functional food properties and fostering women entrepreneurship contributes to prevention of food losses, promotion of nutrition and health, and entrepreneurial opportunities for current processors. This is key for effective policy interventions to foster food security in challenging contexts.⨪.
Collapse
|
8
|
Petrova MI, Reid G, Ter Haar JA. Lacticaseibacillus rhamnosus GR-1, a.k.a. Lactobacillus rhamnosus GR-1: Past and Future Perspectives. Trends Microbiol 2021; 29:747-761. [PMID: 33865678 DOI: 10.1016/j.tim.2021.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Lacticaseibacillus rhamnosus GR-1 (LGR-1) (previously classified as Lactobacillus rhamnosus GR-1) is the most researched probiotic strain for women's health. Its various urogenital health effects, including a reduction in the recurrence of bacterial vaginosis and urinary-tract infection, are well documented. The strain has also been safely used by HIV-positive subjects, a portion of whom have reported reduced diarrhea and increased CD4 counts. Unlike most probiotic strains used for urogenital health, LGR-1 has been extensively studied for its properties, including its genomic and metabolic traits and its surface properties. This review aims to highlight the totality of research performed with LGR-1, to act as a rigorous scientific benchmark for probiotic microbes, especially for application to women's health.
Collapse
Affiliation(s)
- Mariya I Petrova
- Microbiome Insights and Probiotics Consultancy, Karlovo, Bulgaria.
| | - Gregor Reid
- Canadian Research and Development Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, Canada; Department of Microbiology and Immunology, The University of Western Ontario, London, Canada; Department of Surgery, The University of Western Ontario, London, Canada
| | | |
Collapse
|
9
|
Westerik N, Nelson A, Wacoo AP, Sybesma W, Kort R. A Comparative Interrupted Times Series on the Health Impact of Probiotic Yogurt Consumption Among School Children From Three to Six Years Old in Southwest Uganda. Front Nutr 2020; 7:574792. [PMID: 33363193 PMCID: PMC7756026 DOI: 10.3389/fnut.2020.574792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Following a school milk feeding program in Southwest Uganda, we initiated a probiotic yogurt school feeding program in the same region in 2018. In order to investigate the potential health benefits from probiotic yogurt we conducted an observational study, where we compared the effect of the consumption of locally produced probiotic yogurt containing Lactobacillus rhamnosus yoba 2012 to milk in pre-primary schoolchildren from different schools on the occurrence of respiratory tract infections (common cold) and skin infections (e.g., tinea capitis). Method: A comparative interrupted time series over a period of 3 weeks of baseline followed by 9 weeks of 100 ml of probiotic yogurt or milk consumption for 5 days per week. In total 584 children attending five different schools were followed during consumption of probiotic yogurt and 532 children attending five other schools during consumption of milk. Incidences of respiratory tract infection symptoms and skin infection symptoms, changes in anthropometric indicators and absenteeism were recorded. Results: Over the course of the study period the incidence rate for common cold symptoms decreased faster in the yogurt group than in the milk group (p = 0.09) resulting in a final RR of 0.85 (95% CI: 0.5-1.4) at the end of the observational period. The incidence rate of skin infection related symptoms also reduced faster in the yogurt group compared to the milk group (p < 0.0001) resulting in a relative risk factor (RR) of 0.6 (CI: 0.4-0.9) at the end of the observational period. Anthropometric indicators and level of absenteeism did not show significant differences between yogurt and milk. Conclusion: Notwithstanding the observed positive trend and effect of probiotic yogurt on the incidences of common cold and skin infections, respectively, we consider the results of this comparative interrupted time series inconclusive due to differences in the recorded health parameters between the probiotic yogurt and milk control groups at base line, and fluctuations over the course of the intervention period. An improved study design, with more uniform study groups, a longer intervention period and a third control group without yogurt or milk is required to draw definitive conclusions.
Collapse
Affiliation(s)
- Nieke Westerik
- Yoba for Life Foundation, Amsterdam, Netherlands
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Alex Paul Wacoo
- Yoba for Life Foundation, Amsterdam, Netherlands
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | | | - Remco Kort
- Yoba for Life Foundation, Amsterdam, Netherlands
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Spacova I, Dodiya HB, Happel AU, Strain C, Vandenheuvel D, Wang X, Reid G. Future of Probiotics and Prebiotics and the Implications for Early Career Researchers. Front Microbiol 2020; 11:1400. [PMID: 32714306 PMCID: PMC7344207 DOI: 10.3389/fmicb.2020.01400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
The opportunities in the fields of probiotics and prebiotics to a great degree stem from what we can learn about how they influence the microbiota and interact with the host. We discuss recent insights, cutting-edge technologies and controversial results from the perspective of early career researchers innovating in these areas. This perspective emerged from the 2019 meeting of the International Scientific Association for Probiotics and Prebiotics - Student and Fellows Association (ISAPP-SFA). Probiotic and prebiotic research is being driven by genetic characterization and modification of strains, state-of-the-art in vitro, in vivo, and in silico techniques designed to uncover the effects of probiotics and prebiotics on their targets, and metabolomic tools to identify key molecules that mediate benefits on the host. These research tools offer unprecedented insights into the functionality of probiotics and prebiotics in the host ecosystem. Young scientists need to acquire these diverse toolsets, or form inter-connected teams to perform comprehensive experiments and systematic analysis of data. This will be critical to identify microbial structure and co-dependencies at body sites and determine how administered probiotic strains and prebiotic substances influence the host. This and other strategies proposed in this review will pave the way for translating the health benefits observed during research into real-life outcomes. Probiotic strains and prebiotic products can contribute greatly to the amelioration of global issues threatening society. The intent of this article is to provide an early career researcher's perspective on where the biggest opportunities lie to advance science and impact human health.
Collapse
Affiliation(s)
- Irina Spacova
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Hemraj B. Dodiya
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Anna-Ursula Happel
- Division of Immunology, Department of Pathology, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Ireland
| | - Dieter Vandenheuvel
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Xuedan Wang
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Department of Surgery, The University of Western Ontario, London, ON, Canada
| |
Collapse
|