1
|
Gu Y, Liu H, Shi M, Pu F. Mechanism of the microRNA-373-3p/LATS2 Axis in the Prognosis and Metastasis of Thyroid Cancer Patients. J Biochem Mol Toxicol 2025; 39:e70181. [PMID: 39987521 DOI: 10.1002/jbt.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/16/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
This study focused on the role of the microRNA (miR)-373-3p/LATS2 axis in the prognosis and metastasis of thyroid cancer patients. miR-373-3p and LATS2 expression were assessed in thyroid cancer tissues and cells. The relationship between miR-373-3p and clinicopathological characteristics of patients with thyroid cancer and the impact of miR-373-3p and LATS2 expression levels on the survival and prognosis of thyroid cancer patients were analyzed. The targeting relationship between miR-373-3p and LATS2 was predicted and verified, and their impact on the malignant cell phenotype was assessed. Compared with adjacent normal tissues and normal human thyroid cells, miR-373-3p was highly expressed, while LATS2 was expressed at low levels in thyroid cancer tissues and cells (both p < 0.001). miR-373-3p expression was independent of age (p = 0.201) and gender (p = 0.516), and it was correlated with lymph node metastasis and TNM stage of thyroid cancer (both p < 0.001). Moreover, high miR-373-3p expression was associated with poor patient prognosis (p = 0.034). Interference with miR-373-3p or overexpression of LATS2 repressed KMH-2 cell malignant phenotypes (all p < 0.05). miR-373-3p targeted and suppressed LATS2 expression. Interference with miR-373-3p blocked its inhibition on LATS2, thereby repressing thyroid cancer progression and metastasis.
Collapse
Affiliation(s)
- Yingchao Gu
- Second Department of General Surgery, Qionglai Medical Center Hospital, Qionglai, Sichuan Province, China
| | - Hongbing Liu
- Second Department of General Surgery, Qionglai Medical Center Hospital, Qionglai, Sichuan Province, China
| | - Ming Shi
- Second Department of General Surgery, Qionglai Medical Center Hospital, Qionglai, Sichuan Province, China
| | - Fei Pu
- Second Department of General Surgery, Qionglai Medical Center Hospital, Qionglai, Sichuan Province, China
| |
Collapse
|
2
|
Yin QH, Hu JB, Zhou Q, Weng J, Shen ED, Wen F, Liu SL, Yin LL, Tong YJ, Long L, Tang KW, Bai ST, Ou LD. Unveiling miRNA30b's Role in Suppressing ADAM12 to Combat Triple-Negative Breast Cancer. Breast J 2024; 2024:5202941. [PMID: 39742357 PMCID: PMC11540880 DOI: 10.1155/2024/5202941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/25/2024] [Accepted: 10/15/2024] [Indexed: 01/03/2025]
Abstract
Background: Triple-negative breast cancer, a subtype of breast cancer, is characterized by a poor prognosis. Recent studies have shown that miRNA30b acts as an oncogene and is vital for the proliferation of malignancies across various systems. This study aimed to elucidate the impact of miRNA30b on the proliferation, migration, and invasion capabilities of breast cancer cells in vitro. Methods: Triple-negative breast cancer cell lines MDA-MB-231 were transiently transfected with miRNA30b inhibitor, mimic, or the negative control by Lipofectamine 2000. Successful transfection was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Functional assays, including CCK8, clone formation, scratch, and transwell assays, were conducted to evaluate the proliferation, invasion, and migration ability of MDA-MB-231 cells in each group. The target protein of miRNA30b was determined using an online prediction data website, and the dual-luciferase assay confirmed whether there was a binding site between miRNA30b and ADAM12. The effect was further verified by Western blot analysis. Results: MDA-MB-231 cells were transfected with miRNA30b inhibitor, mimic, and negative control. miRNA30b expression was downregulated in the cells. Relative to the negative control group, miRNA30b expression significantly increased in the mimic group and decreased in the miRNA30b inhibitor group, with the differences being statistically significant. The miRNA30b mimic group exhibited a significant increase in miRNA30b expression and a corresponding promotion of cell proliferation, colony formation, and migration. Conversely, the miRNA30b inhibitor group displayed significantly reduced miRNA30b expression and suppressed cell proliferation, colony formation, and migration abilities compared to the negative control cells. Bioinformatics software predicted ADAM12 as a potential target of miRNA30b. Dual-luciferase assays confirmed the presence of a binding site between miRNA30b and ADAM12. Western blot analysis revealed that overexpression of miRNA30b downregulated ADAM12 expression in MDA-MB-231 cells. Conclusions: miRNA30b could promote proliferation, migration, and invasion of TNBC cell lines MDA-MB-231. The effect of miRNA30b on triple-negative breast cancer would be achieved partly at least through inhibiting the expression of ADAM12.
Collapse
Affiliation(s)
- Qing-hua Yin
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Jian-bing Hu
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Qiang Zhou
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Jie Weng
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Er-dong Shen
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Fang Wen
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Song-lian Liu
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Lei-lan Yin
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Ya-jun Tong
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Ling Long
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Ke-wei Tang
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Si-te Bai
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Lu-di Ou
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| |
Collapse
|
3
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
4
|
Ali Ahmed E, Abd El-Basit SA, Mohamed MA, Swellam M. Clinical role of MiRNA 29a and MiRNA 335 on breast cancer management: their relevance to MMP2 protein level. Arch Physiol Biochem 2022; 128:1058-1065. [PMID: 32267166 DOI: 10.1080/13813455.2020.1749085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Circulating miRNAs are novel biomarkers, authors aimed to investigate the expression level of miR-29a and miR-335 and their relevance to CEA, CA15.3, and matrix metalloproteinase-2 (MMP2). MATERIALS AND METHODS Breast cancer (BC) patients (n = 44), benign breast lesion patients (n = 25), and healthy individuals (n = 19) were enrolled for detection of miRNA expression levels, MMP2 and biochemical markers using quantitative polymerase chain reaction (PCR) and ELISA, respectively. RESULTS Expression of miR-29a and miR-335 were significantly decreased in breast patients as compared to healthy individuals, while biochemical markers were high in BC patients as compared to the other two groups. The diagnostic efficacy for miR-29a, miR-335, and MMP2 were superior to both CEA and CA 15.3 for early detection of BC patients. CONCLUSIONS Detection of the miR-29a and miR335 expression levels in serum samples are significant promising biomarkers for BC diagnosis.
Collapse
Affiliation(s)
- Elham Ali Ahmed
- Zoology Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Sohir A Abd El-Basit
- Zoology Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Mona A Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, Giza, Egypt
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
5
|
Soofiyani SR, Hosseini K, Ebrahimi T, Forouhandeh H, Sadeghi M, Beirami SM, Ghasemnejad T, Tarhriz V, Montazersaheb S. Prognostic Value and Biological Role of miR-126 in Breast Cancer. Microrna 2022; 11:95-103. [PMID: 35507794 DOI: 10.2174/1876402914666220428123203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
In eukaryotic organisms such as humans, some noncoding single-stranded RNAs (ncRNAs) contribute to regulating the expression of some genes before and after the transcription process, which in turn controls a number of vital physiological processes, including cell proliferation, differentiation, invasion, angiogenesis, and embryonic development. miR-126 is one of these miRNAs expressed exclusively in endothelial cells such as capillaries and vessels involved in controlling angiogenesis. In recent years, the link between miRs such as miR-126 and the pathology of breast cancer has attracted the attention of many researchers. Numerous studies have shown that miR-126 may be able to suppress tumor tissue metastasis or to increase tumor metastasis through complex molecular mechanisms. There is ample clinical evidence that miR-126 can be used as a biomarker to predict and diagnose breast cancer due to the increased or decreased expression of certain genes in breast cancer tissue. In this review, we discuss the association between the growth and metastasis (tumorigenesis) of breast cancer and miR-126, as well as the relationship between current research advances in the prognosis, diagnosis, and treatment of breast cancer and miR-126.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit, Sina Educational, Research, and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Ebrahimi
- Department of Nano Biotechnology, Research Center Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Minaei Beirami
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Ryspayeva D, Halytskiy V, Kobyliak N, Dosenko I, Fedosov A, Inomistova M, Drevytska T, Gurianov V, Sulaieva O. Response to neoadjuvant chemotherapy in breast cancer: do microRNAs matter? Discov Oncol 2022; 13:43. [PMID: 35668332 PMCID: PMC9170858 DOI: 10.1007/s12672-022-00507-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Conventionally, breast cancer (BC) prognosis and prediction of response to therapy are based on TNM staging, histological and molecular subtype, as well as genetic alterations. The role of various epigenetic factors has been elucidated in carcinogenesis. However, it is still unknown to what extent miRNAs affect the response to neoadjuvant chemotherapy (NACT). This pilot study is focused on evaluating the role of miR-34a, miR-124a, miR-155, miR-137 and miR-373 in response to NACT. METHODS That was a prospective study enrolling 34 patients with histologically confirmed BC of II-III stages. The median age of patients was 53 (47-59.8) years old, 70.6% of whom were HR-positive. MiRs levels were measured in the primary tumor before and after NACT. The response to therapy was assessed after surgery using the Miller-Payne scoring system. To establish the role of miRs in modulating response to NACT the Cox model was applied for analysis. RESULTS BC demonstrated a great variability of miRs expression before and after NACT with no strong links to tumor stage and molecular subtype. Only miR-124a and miR-373 demonstrated differential expression between malignant and normal breast tissues before and after therapy though these distinctions did not impact response to NACT. Besides miR-124a and miR-137 levels after NACT were found to be dependent on HR status. While miR-124a levels increased (p = 0.021) in the tumor tissue, the expression of miR-137 was downregulated (p = 0.041) after NACT in HR positive BC. CONCLUSIONS The study revealed differences in miR-124a and miR-373 expression after NACT in primary BC tissues. Although miRs levels did not impact the response to NACT, we found miR-124a and miR-137 levels to be related to hormonal sensitivity of BC.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Department of Oncohematology and Adjuvant Treatment Methods, National Cancer Institute, Lomonosova str, 33/43, Kyiv, 03022, Ukraine.
| | - Volodymyr Halytskiy
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, 01601, Ukraine.
- Medical Laboratory CSD, Kyiv, 03148, Ukraine.
| | - Iryna Dosenko
- Department of Oncohematology and Adjuvant Treatment Methods, National Cancer Institute, Lomonosova str, 33/43, Kyiv, 03022, Ukraine
| | - Artem Fedosov
- Endocrinology Department, Bogomolets National Medical University, Kyiv, 01601, Ukraine
| | - Mariia Inomistova
- Department of Oncohematology and Adjuvant Treatment Methods, National Cancer Institute, Lomonosova str, 33/43, Kyiv, 03022, Ukraine
| | - Tetyana Drevytska
- Bogomolets Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vitalyi Gurianov
- Endocrinology Department, Bogomolets National Medical University, Kyiv, 01601, Ukraine
| | - Oksana Sulaieva
- Medical Laboratory CSD, Kyiv, 03148, Ukraine
- Sumy State University, Sumy, Ukraine
| |
Collapse
|
7
|
Ramadan A, Hashim M, M Hassan N, Swellam M. Expression of MiR-335 and its target metalloproteinase genes: clinical significance in breast cancer. Arch Physiol Biochem 2022; 128:569-575. [PMID: 31922434 DOI: 10.1080/13813455.2019.1703004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Early diagnosis of breast cancer decreases mortality rate; therefore, novel diagnostic methods are urgently required. In this study, authors aimed to investigate the role of serum-derived miR-335 in breast cancer, and the expression of matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9) and evaluating their feasibility and clinical utility as biomarkers for the early detection of breast cancer. MATERIALS AND METHODS Blood samples were collected from a total of 210 individuals who were enrolled in this study. The participants were divided into newly diagnosed breast cancer patients (n = 115), patients with benign breast lesions (n =55) and healthy individuals as control group (n =40). The expression profile of miR-335, MMP2 and MMP9 were determined using quantitative polymerase chain reaction (qPCR). RESULTS MiR 335 expression level was down-regulated in primary breast cancer group as compared to benign breast group and healthy individuals with 98% and 94.9% sensitivity and specificity, respectively. MMP2 and MMP9 showed significantly higher expression levels in breast cancer group as compared to both benign and healthy group and reporting 92.7% and 93% sensitivity, respectively. The relations between investigated markers and pathologic types, staging, grading, and lymph node involvement were significant with these factors. Expression level of miR-335 was decreased with increased MMP2 and MMP9 at significant level. CONCLUSION MiR-335, MMP2, and MMP9 can be used as diagnostic markers in breast cancer.
Collapse
Affiliation(s)
- Amal Ramadan
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Egypt
| | - Maha Hashim
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Egypt
| |
Collapse
|
8
|
El-Attar EA, Helmy Elkaffas RM, Aglan SA, Naga IS, Nabil A, Abdallah HY. Genomics in Egypt: Current Status and Future Aspects. Front Genet 2022; 13:797465. [PMID: 35664315 PMCID: PMC9157251 DOI: 10.3389/fgene.2022.797465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Egypt is the third most densely inhabited African country. Due to the economic burden and healthcare costs of overpopulation, genomic and genetic testing is a huge challenge. However, in the era of precision medicine, Egypt is taking a shift in approach from “one-size-fits all” to more personalized healthcare via advancing the practice of medical genetics and genomics across the country. This shift necessitates concrete knowledge of the Egyptian genome and related diseases to direct effective preventive, diagnostic and counseling services of prevalent genetic diseases in Egypt. Understanding disease molecular mechanisms will enhance the capacity for personalized interventions. From this perspective, we highlight research efforts and available services for rare genetic diseases, communicable diseases including the coronavirus 2019 disease (COVID19), and cancer. The current state of genetic services in Egypt including availability and access to genetic services is described. Drivers for applying genomics in Egypt are illustrated with a SWOT analysis of the current genetic/genomic services. Barriers to genetic service development in Egypt, whether economic, geographic, cultural or educational are discussed as well. The sensitive topic of communicating genomic results and its ethical considerations is also tackled. To understand disease pathogenesis, much can be gained through the advancement and integration of genomic technologies via clinical applications and research efforts in Egypt. Three main pillars of multidisciplinary collaboration for advancing genomics in Egypt are envisaged: resources, infrastructure and training. Finally, we highlight the recent national plan to establish a genome center that will aim to prepare a map of the Egyptian human genome to discover and accurately determine the genetic characteristics of various diseases. The Reference Genome Project for Egyptians and Ancient Egyptians will initialize a new genomics era in Egypt. We propose a multidisciplinary governance system in Egypt to support genomic medicine research efforts and integrate into the healthcare system whilst ensuring ethical conduct of data.
Collapse
Affiliation(s)
- Eman Ahmed El-Attar
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
- *Correspondence: Eman Ahmed El-Attar,
| | | | - Sarah Ahmed Aglan
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Iman S. Naga
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amira Nabil
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Hoda Y. Abdallah
- Medical Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Arzhanov I, Sintakova K, Romanyuk N. The Role of miR-20 in Health and Disease of the Central Nervous System. Cells 2022; 11:cells11091525. [PMID: 35563833 PMCID: PMC9100679 DOI: 10.3390/cells11091525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022] Open
Abstract
Current understanding of the mechanisms underlying central nervous system (CNS) injury is limited, and traditional therapeutic methods lack a molecular approach either to prevent acute phase or secondary damage, or to support restorative mechanisms in the nervous tissue. microRNAs (miRNAs) are endogenous, non-coding RNA molecules that have recently been discovered as fundamental and post-transcriptional regulators of gene expression. The capacity of microRNAs to regulate the cell state and function through post-transcriptionally silencing hundreds of genes are being acknowledged as an important factor in the pathophysiology of both acute and chronic CNS injuries. In this study, we have summarized the knowledge concerning the pathophysiology of several neurological disorders, and the role of most canonical miRNAs in their development. We have focused on the miR-20, the miR-17~92 family to which miR-20 belongs, and their function in the normal development and disease of the CNS.
Collapse
Affiliation(s)
- Ivan Arzhanov
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (I.A.); (K.S.)
- Department of Neuroscience, 2nd Medical Faculty, Charles University, 150 00 Prague, Czech Republic
| | - Kristyna Sintakova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (I.A.); (K.S.)
- Department of Neuroscience, 2nd Medical Faculty, Charles University, 150 00 Prague, Czech Republic
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (I.A.); (K.S.)
- Correspondence:
| |
Collapse
|
10
|
Significance of metastamiR-10b in breast cancer therapeutics. J Egypt Natl Canc Inst 2022; 34:19. [DOI: 10.1186/s43046-022-00120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/14/2022] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Breast cancer is a fatal disease and a major reason of cancer associated death in females. Many factors along with miRNA are responsible for the development and the progression of the disease. The miRNA plays a very crucial role in the regulation of the genes. MicroRNAs are of three major types—oncomiRs, tumor suppressive miRNAs, and metastamiRs.
Main body
MicoRNA-10b is a prometastatic microRNA targeting various genes that facilitates multiple outcomes such as metastasis, increased capacity for invasion, proliferation and migration, increased epithelial-mesenchymal transformation, angiogenesis, and therefore exhibits worse clinical outcomes. It is found to be upregulated in various malignancies and is thus to be considered as the possible therapeutic candidate.
Conclusion
The therapeutic delivery of miR-10b antagonists (antagomiRs) and/or knockdown of miRNA is beneficial in reducing tumor growth. Additionally, combination therapy which includes antisense oligonucleotides using miR-10b can function as an effective approach to tumor regression and drug resistance reversal.
Graphical abstract
Collapse
|
11
|
Mohamed AA, Allam AE, Aref AM, Mahmoud MO, Eldesoky NA, Fawazy N, Sakr Y, Sobeih ME, Albogami S, Fayad E, Althobaiti F, Jafri I, Alsharif G, El-Sayed M, Abdelgeliel AS, Abdel Aziz RS. Evaluation of Expressed MicroRNAs as Prospective Biomarkers for Detection of Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12040789. [PMID: 35453838 PMCID: PMC9026478 DOI: 10.3390/diagnostics12040789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Early detection and screening of breast cancer (BC) might help improve the prognosis of BC patients. This study evaluated the use of serum microRNAs (miRs) as non-invasive biomarkers in BC patients. Methods: Using quantitative real-time polymerase chain reaction, we evaluated the serum expression of four candidate miRs (miR-155, miR-373, miR-10b, and miR-34a) in 99 Egyptian BC patients and 40 healthy subjects (as a control). The miRs expression was correlated with clinicopathological data. In addition, the sensitivity and specificity of the miRs were determined using receiver operating characteristic (ROC) curve analysis. Results: Serum miR-155, miR-373, and miR-10b expression were significantly upregulated (p < 0.001), while serum miR-34a was downregulated (p < 0.00) in nonmetastatic (M0) BC patients compared to the control group. In addition, serum miR-155 and miR-10b were upregulated in BC patients with large tumor sizes and extensive nodal involvement (p < 0.001). ROC curve analysis showed high diagnostic accuracy (area under the curve = 1.0) when the four miRs were combined. Serum miR-373 was significantly upregulated in the human epidermal growth factor 2−negative (p < 0.001), estrogen receptor−positive (p < 0.005), and progesterone receptor (PR)-positive (p < 0.024) in BC patients, and serum miR-155 was significantly upregulated in PR-negative (p < 0.001) BC patients while both serum miR-155 and miR-373 were positively correlated with the tumor grade. Conclusions: Circulating serum miR-155, miR-373, miR-10b, and miR-34a are potential biomarkers for early BC detection in Egyptian patients and their combination shows high sensitivity and specificity.
Collapse
Affiliation(s)
- Amal Ahmed Mohamed
- Department of Biochemistry and Molecular Biology, National Hepatology and Tropical Medicine Research Institute, Cairo 11511, Egypt;
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
- Correspondence: (A.E.A.); (M.E.-S.)
| | - Ahmed M. Aref
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), Cairo 11511, Egypt;
| | - Maha Osama Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11511, Egypt;
| | - Noha A. Eldesoky
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11511, Egypt;
| | - Naglaa Fawazy
- Department of Clinical Pathology, National Institute of Diabetes & Endocrinology, Cairo 11511, Egypt; (N.F.); (Y.S.)
| | - Yasser Sakr
- Department of Clinical Pathology, National Institute of Diabetes & Endocrinology, Cairo 11511, Egypt; (N.F.); (Y.S.)
| | | | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Ghadi Alsharif
- College of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
| | - Marwa El-Sayed
- Department of Microbiology and Immunology, Faculty of Medicine, South Valley University, Qena 83523, Egypt
- Correspondence: (A.E.A.); (M.E.-S.)
| | - Asmaa Sayed Abdelgeliel
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Rania S. Abdel Aziz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo 11976, Egypt;
| |
Collapse
|
12
|
Wen LJ, Wang YS, Tan PY. miR-515-5p inhibits the proliferation, migration and invasion of human breast cancer cells by targeting CBX4. Exp Ther Med 2021; 22:1328. [PMID: 34630682 PMCID: PMC8495589 DOI: 10.3892/etm.2021.10763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/30/2021] [Indexed: 01/02/2023] Open
Abstract
microRNA (miR)-515-5p has been previously suggested to function as a tumor suppressor in various types of human cancer. Therefore, the role of miR-515-5p in breast cancer (BC) was explored in the present study. A series of assays were performed to study the function of miR-515-p in BC cells, including Cell Counting Kit-8, TUNEL, flow cytometric and colony formation to detect cell viability and apoptosis, wound healing and Transwell assays to measure cell motility. In addition, reverse transcription quantitative PCR and western blot analysis were used to assess miR-515-5p, CBX4, Cox-2, MMP2, MMP9, CDK2, p21 and Cyclin D1 respectively. Bioinformatics and dual-luciferase reporter assays were used to analyze the target genes of miR-515-5p, which confirmed the direct binding between miR-515-5p and polycomb chromobox 4 (CBX4). It was found that the expression of miR-515-5p is lower in BC cells compared with that in normal breast cells (MCF10A). Overexpression of miR-515-5p using the miR-515 mimic was found to reduce cell viability, facilitate cell apoptosis, inhibit cell proliferation and arrest cell cycle progressio at G1 phase. In addition, miR-515-5p overexpression could inhibit cell migration and invasion, whilst decreasing the expression levels of prostaglandin-endoperoxide synthase 2, MMP2 and MMP9 proteins. In addition, miR-515-5p overexpression could reduce the expression levels of CBX4 in MCF7 and ZR-75-30 cells. By contrast, overexpression of CBX4 reversed the effects of the miR-515-5p mimic transfection on cell proliferation, migration and invasion in MCF7 and ZR-75-30 cells. In combination, these results suggest that miR-515-5p inhibits BC cell proliferation, migration and invasion by directly targeting CBX4.
Collapse
Affiliation(s)
- Liu-Jing Wen
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yue-Sheng Wang
- Department of Dentistry, Second Hospital Affiliated to Tianjin Medical University, Tianjin 300211, P.R. China
| | - Pei-Yi Tan
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
13
|
Bakr NM, Mahmoud MS, Nabil R, Boushnak H, Swellam M. Impact of circulating miRNA-373 on breast cancer diagnosis through targeting VEGF and cyclin D1 genes. J Genet Eng Biotechnol 2021; 19:84. [PMID: 34089425 PMCID: PMC8179880 DOI: 10.1186/s43141-021-00174-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/28/2021] [Indexed: 01/07/2023]
Abstract
Background Breast cancer (BC) is the common primary tumor among females. Hence, there is an urgent need to improve the early prediction and diagnosis of BC. For that reason, the object of the current study is to analyze the expression levels of miRNA-373 and its target genes including vascular endothelial growth factor (VEGF) and cyclin D1 in women with BC. Results Upregulation of miRNA-373 and its target genes was observed in BC patients followed by patients with benign breast lesions compared to downregulation in controls. There was a significant association between the expression level of miRNA-373 and all clinical features. The same associations were observed between its target genes and all clinico-pathological features except hormonal status. The correlation between miRNA-373 and both genes was significant. Conclusions Our results prove that miRNA-373, as an oncomir, would be a vital biomarker for BC diagnosis and prognosis by targeting both VEGF and cyclin D1.
Collapse
Affiliation(s)
- Noha M Bakr
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, 12622, Egypt. .,High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Magda Sayed Mahmoud
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.,High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Reem Nabil
- Clinical Pathology Department, National Cancer Institute, Cairo, Egypt
| | - Hussein Boushnak
- Surgery Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.,High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
14
|
Zhu Y, Hu Y, Cheng X, Li Q, Niu Q. Elevated miR-129-5p attenuates hepatic fibrosis through the NF-κB signaling pathway via PEG3 in a carbon CCl 4 rat model. J Mol Histol 2021; 52:491-501. [PMID: 33743102 DOI: 10.1007/s10735-020-09949-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Hepatic fibrosis is a reversible scaring response to chronic liver injury. MicroRNA (miR)-129-5p might regulate fibrosis-related gene expression. This study is performed to decipher, potential of miR-129-5p to influence the progression of hepatic fibrosis in a carbon tetrachloride (CCl4) rat model. Rat hepatic fibrosis was successfully established by subcutaneous injection of 50% CCl4. RT-qPCR revealed that miR-129-5p was poorly expressed and PEG3 was highly expressed in hepatic fibrosis tissues. As reflected by dual-luciferase reporter gene assay, miR-129-5p targeted and reduced the expression of PEG3. Thereafter, miR-129-5p antagomir or short hairpin RNA against paternally expressed gene 3 (PEG3) was adopted for gain- and loss-of-function assay to determine the molecular regulatory mechanism of miR-129-5p. Moreover, we detected the expression of nuclear factor kappa B (NF-κB) signaling pathway-related proteins and apoptosis-related factors, and made a serological analysis of the rat serum samples. Results showed that upregulated miR-129-5p or downregulated PEG3 led to reduction of the histological changes of liver cirrhosis and lowered the apoptosis rate, via downstream effects on the NF-κB signaling pathway. Thus, the hepatic fibrosis induced by CCl4 can be rescued by upregulated miR-129-5p or downregulated PEG3 expression.
Collapse
Affiliation(s)
- Yuezhi Zhu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Yingbin Hu
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China
| | - Xianyong Cheng
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China
| | - Qiong Li
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China
| | - Qiong Niu
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China.
| |
Collapse
|
15
|
Ishikawa M, Iwasaki M, Zhao H, Saito J, Hu C, Sun Q, Sakamoto A, Ma D. Inhalational Anesthetics Inhibit Neuroglioma Cell Proliferation and Migration via miR-138, -210 and -335. Int J Mol Sci 2021; 22:ijms22094355. [PMID: 33919449 PMCID: PMC8122527 DOI: 10.3390/ijms22094355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
Inhalational anesthetics was previously reported to suppress glioma cell malignancy but underlying mechanisms remain unclear. The present study aims to investigate the effects of sevoflurane and desflurane on glioma cell malignancy changes via microRNA (miRNA) modulation. The cultured H4 cells were exposed to 3.6% sevoflurane or 10.3% desflurane for 2 h. The miR-138, -210 and -335 expression were determined with qRT-PCR. Cell proliferation and migration were assessed with wound healing assay, Ki67 staining and cell count kit 8 (CCK8) assay with/without miR-138/-210/-335 inhibitor transfections. The miRNA downstream proteins, hypoxia inducible factor-1α (HIF-1α) and matrix metalloproteinase 9 (MMP9), were also determined with immunofluorescent staining. Sevoflurane and desflurane exposure to glioma cells inhibited their proliferation and migration. Sevoflurane exposure increased miR-210 expression whereas desflurane exposure upregulated both miR-138 and miR-335 expressions. The administration of inhibitor of miR-138, -210 or -335 inhibited the suppressing effects of sevoflurane or desflurane on cell proliferation and migration, in line with the HIF-1α and MMP9 expression changes. These data indicated that inhalational anesthetics, sevoflurane and desflurane, inhibited glioma cell malignancy via miRNAs upregulation and their downstream effectors, HIF-1α and MMP9, downregulation. The implication of the current study warrants further study.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Anesthesiology and Pain medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (M.I.); (A.S.)
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
- Correspondence: (M.I.); (D.M.)
| | - Masae Iwasaki
- Department of Anesthesiology and Pain medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (M.I.); (A.S.)
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Aomori 036-8562, Japan
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (M.I.); (A.S.)
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
- Correspondence: (M.I.); (D.M.)
| |
Collapse
|
16
|
Circulating miRNAs as early indicators of diet and physical activity response in women with metastatic breast cancer. Future Sci OA 2021; 7:FSO694. [PMID: 33815828 PMCID: PMC8015665 DOI: 10.2144/fsoa-2020-0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatments for metastatic breast cancer (MBC) improve survival but often impose prolonged symptom burden. We performed molecular characterization of 84 miRNAs in the circulating serum of women with MBC to explore possible early indicators of intervention response. Expression levels of miR-10a-5p and miR-211-5p were downregulated in nonresponders, but upregulated in responders (miR-10a-5p: 0.40-fold and eightfold; miR 211-5p: 0.47-fold and fourfold). miR-205-5p expression was upregulated in both nonresponders and responders, but to a greater extent in responders (1.8-fold and sixfold). Additionally, levels of miR-10a-5p were negatively correlated with expression levels of IL-6 (r = -0.412). Exploration of these pathways may reveal mechanisms of action in lifestyle interventions aimed at improving quality of life and impacting disease progression for women with MBC. As treatment for women with metastatic breast cancer improves survival rates, interventions are needed that relieve symptom burden. We examined the serum of women with metastatic breast cancer who participated in a lifestyle intervention that improved diet and increased physical activity. Three miRNAs were discovered that may serve as early indicators of the ability of lifestyle interventions to improve quality of life and impact disease progression. Three miRNAs may predict how women with metastatic breast cancer respond to lifestyle interventions.
Collapse
|
17
|
Nair MG, Somashekaraiah VM, Ramamurthy V, Prabhu JS, Sridhar TS. miRNAs: Critical mediators of breast cancer metastatic programming. Exp Cell Res 2021; 401:112518. [PMID: 33607102 DOI: 10.1016/j.yexcr.2021.112518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA mediated aberrant gene regulation has been implicated in several diseases including cancer. Recent research has highlighted the role of epigenetic modulation of the complex process of breast cancer metastasis by miRNAs. miRNAs play a crucial role in the process of metastatic evolution by facilitating alterations in the phenotype of tumor cells and the tumor microenvironment that promote this process. They act as critical determinants of the multi-step progression starting from carcinogenesis all the way to organotropism. In this review, we focus on the current understanding of the compelling role of miRNAs in breast cancer metastasis.
Collapse
Affiliation(s)
- Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India.
| | | | - Vishakha Ramamurthy
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - T S Sridhar
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| |
Collapse
|
18
|
Rotimi SO, Rotimi OA, Salhia B. A Review of Cancer Genetics and Genomics Studies in Africa. Front Oncol 2021; 10:606400. [PMID: 33659210 PMCID: PMC7917259 DOI: 10.3389/fonc.2020.606400] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death globally and is projected to overtake infectious disease as the leading cause of mortality in Africa within the next two decades. Cancer is a group of genomic diseases that presents with intra- and inter-population unique phenotypes, with Black populations having the burden of morbidity and mortality for most types. At large, the prevention and treatment of cancers have been propelled by the understanding of the genetic make-up of the disease of mostly non-African populations. By the same token, there is a wide knowledge gap in understanding the underlying genetic causes of, and genomic alterations associated with, cancer among black Africans. Accordingly, we performed a review of the literature to survey existing studies on cancer genetics/genomics and curated findings pertaining to publications across multiple cancer types conducted on African populations. We used PubMed MeSH terms to retrieve the relevant publications from 1990 to December 2019. The metadata of these publications were extracted using R text mining packages: RISmed and Pubmed.mineR. The data showed that only 0.329% of cancer publications globally were on Africa, and only 0.016% were on cancer genetics/genomics from Africa. Although the most prevalent cancers in Africa are cancers of the breast, cervix, uterus, and prostate, publications representing breast, colorectal, liver, and blood cancers were the most frequent in our review. The most frequently reported cancer genes were BRCA1, BRCA2, and TP53. Next, the genes reported in the reviewed publications’ abstracts were extracted and annotated into three gene ontology classes. Genes in the cellular component class were mostly associated with cell part and organelle part, while those in biological process and molecular function classes were mainly associated with cell process, biological regulation, and binding, and catalytic activity, respectively. Overall, this review highlights the paucity of research on cancer genomics on African populations, identified gaps, and discussed the need for concerted efforts to encourage more research on cancer genomics in Africa.
Collapse
Affiliation(s)
- Solomon O Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Oluwakemi A Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Centre, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Ishikawa M, Iwasaki M, Zhao H, Saito J, Hu C, Sun Q, Sakamoto A, Ma D. Sevoflurane and Desflurane Exposure Enhanced Cell Proliferation and Migration in Ovarian Cancer Cells via miR-210 and miR-138 Downregulation. Int J Mol Sci 2021; 22:ijms22041826. [PMID: 33673181 PMCID: PMC7917656 DOI: 10.3390/ijms22041826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Inhalational anaesthetics were previously reported to promote ovarian cancer malignancy, but underlying mechanisms remain unclear. The present study aims to investigate the role of sevoflurane- or desflurane-induced microRNA (miRNA) changes on ovarian cancer cell behaviour. The cultured SKOV3 cells were exposed to 3.6% sevoflurane or 10.3% desflurane for 2 h. Expression of miR-138, -210 and -335 was determined with qRT-PCR. Cell proliferation and migration were assessed with wound healing assay, Ki67 staining and Cell Counting Kit-8 (CCK8) assay with or without mimic miR-138/-210 transfections. The miRNA downstream effector, hypoxia inducible factor-1α (HIF-1α), was also analysed with immunofluorescent staining. Sevoflurane or desflurane exposure to cancer cells enhanced their proliferation and migration. miR-138 expression was suppressed by both sevoflurane and desflurane, while miR-210 expression was suppressed only by sevoflurane. miR-335 expression was not changed by either sevoflurane or desflurane exposure. The administration of mimic miR-138 or -210 reduced the promoting effects of sevoflurane and desflurane on cancer cell proliferation and migration, in line with the HIF-1α expression changes. These data indicated that inhalational agents sevoflurane and desflurane enhanced ovarian cancer cell malignancy via miRNA deactivation and HIF-1α. The translational value of this work needs further study.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (M.I.); (M.I.); (A.S.)
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Masae Iwasaki
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (M.I.); (M.I.); (A.S.)
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Aomori 036-8562, Japan
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (M.I.); (M.I.); (A.S.)
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
- Correspondence:
| |
Collapse
|
20
|
Li Y, Tan W, Ye F, Wen S, Hu R, Cai X, Wang K, Wang Z. Inflammation as a risk factor for stroke in atrial fibrillation: data from a microarray data analysis. J Int Med Res 2021; 48:300060520921671. [PMID: 32367757 PMCID: PMC7222654 DOI: 10.1177/0300060520921671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective Stroke is a severe complication of atrial fibrillation (AF). We aimed to
discover key genes and microRNAs related to stroke risk in patients with AF
using bioinformatics analysis. Methods GSE66724 microarray data, including peripheral blood samples from eight
patients with AF and stroke and eight patients with AF without stroke, were
downloaded from the Gene Expression Omnibus (GEO) database. Differentially
expressed genes (DEGs) between AF patients with and without stroke were
identified using the GEO2R online tool. Functional enrichment analysis was
performed using the DAVID database. A protein–protein interaction (PPI)
network was obtained using the STRING database. MicroRNAs (miRs) targeting
these DEGs were obtained from the miRNet database. A miR–DEG network was
constructed using Cytoscape software. Results We identified 165 DEGs (141 upregulated and 24 downregulated). Enrichment
analysis showed enrichment of certain inflammatory processes. The miR–DEG
network revealed key genes, including MEF2A,
CAND1, PELI1, and
PDCD4, and microRNAs, including miR-1, miR-1-3p,
miR-21, miR-21-5p, miR-192, miR-192-5p, miR-155, and miR-155-5p. Conclusion Dysregulation of certain genes and microRNAs involved in inflammation may be
associated with a higher risk of stroke in patients with AF. Evaluating
these biomarkers could improve prediction, prevention, and treatment of
stroke in patients with AF.
Collapse
Affiliation(s)
- Yingyuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wulin Tan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rong Hu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Cai
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kebing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Adam-Artigues A, Garrido-Cano I, Simón S, Ortega B, Moragón S, Lameirinhas A, Constâncio V, Salta S, Burgués O, Bermejo B, Henrique R, Lluch A, Jerónimo C, Eroles P, Cejalvo JM. Circulating miR-30b-5p levels in plasma as a novel potential biomarker for early detection of breast cancer. ESMO Open 2021; 6:100039. [PMID: 33477007 PMCID: PMC7820029 DOI: 10.1016/j.esmoop.2020.100039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recently, microRNAs have been demonstrated to be potential non-invasive biomarkers for diagnosis, prognosis assessment or prediction of response to treatment in cancer. In this study, we evaluate the potential of miR-30b-5p as a biomarker for early diagnosis of breast cancer (BC) in tissue and plasma. METHODS Expression of miR-30b-5p was determined in a series of 112 BC and 40 normal breast tissues. Circulating miR-30b-5p levels in plasma samples were determined in a discovery cohort of 38 BC patients and 40 healthy donors and in a validation cohort of 83 BC patients and 83 healthy volunteers. miR-30b-5p expression was measured by quantitative real-time PCR and receiver operating characteristics curve analysis was carried out. RESULTS The miR-30b-5p expression was significantly lower in BC tissue than in healthy breast samples. In contrast, circulating miR-30b-5p levels were significantly higher in BC patients compared with healthy donors. Furthermore, circulating miR-30b-5p levels were significantly higher in patients with positive axillary lymph node and de novo metastatic patients. Receiver operating characteristics curve analysis demonstrated a good diagnostic potential of miR-30b-5p to detect BC even at an early stage of the disease. CONCLUSION Thus, we highlight the potential of miR-30b-5p as a non-invasive, fast, reproducible and cost-effective diagnostic biomarker of BC.
Collapse
Affiliation(s)
| | | | - S Simón
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - B Ortega
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - S Moragón
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - A Lameirinhas
- Biomedical Research Institute INCLIVA, Valencia, Spain
| | - V Constâncio
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal
| | - S Salta
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal
| | - O Burgués
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - B Bermejo
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - R Henrique
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar University of Porto (ICBAS-UP), Porto, Portugal
| | - A Lluch
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Medicine, Universitat de València, Valencia, Spain
| | - C Jerónimo
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar University of Porto (ICBAS-UP), Porto, Portugal
| | - P Eroles
- Biomedical Research Institute INCLIVA, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Physiology, Universitat de València, València, Spain.
| | - J M Cejalvo
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
22
|
Zhang Q, Liu S, Zhang J, Ma X, Dong M, Sun B, Xin Y. Roles and regulatory mechanisms of miR-30b in cancer, cardiovascular disease, and metabolic disorders (Review). Exp Ther Med 2021; 21:44. [PMID: 33273973 PMCID: PMC7706387 DOI: 10.3892/etm.2020.9475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs 21-23 nucleotides in length that regulate gene expression, and thereby modulate signaling pathways and protein synthesis in both physiological and pathogenic processes. miR-30b inhibits cell proliferation, migration, invasion and epithelial-mesenchymal transformation in multiple types of cancer. In addition to its role in several types of neoplasias, miR-30b has been shown to exhibit essential roles in cardiovascular and metabolic diseases. In the present review, an overview of the biological functions of miR-30b and its role in the pathogenesis of neoplastic, cardiovascular and metabolic diseases is provided. miR-30b is a potential candidate for clinical development as a diagnostic and prognostic biomarker, therapeutic agent and drug target. However, further research is required to elucidate its role in health and disease and to harness its potential clinical utility.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
| | - Jie Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Xuefeng Ma
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Mengzhen Dong
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Baokai Sun
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
23
|
The Expression Patterns of BECN1, LAMP2, and PINK1 Genes in Colorectal Cancer Are Potentially Regulated by Micrornas and CpG Islands: An In Silico Study. J Clin Med 2020; 9:jcm9124020. [PMID: 33322704 PMCID: PMC7764710 DOI: 10.3390/jcm9124020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Autophagy plays a dual role of tumor suppression and tumor promotion in colorectal cancer. The study aimed to find those microRNAs (miRNAs) important in BECN1, LAMP2, and PINK1 regulation and to determine the possible role of the epigenetic changes in examined colorectal cancer using an in silico approach. Methods: A total of 44 pairs of surgically removed tumors at clinical stages I‒IV and healthy samples (marginal tissues) from patients’ guts were analyzed. Analysis of the obtained results was conducted using the PL-Grid Infrastructure and Statistica 12.0 program. The miRNAs and CpG islands were estimated using the microrna.org database and MethPrimer program. Results: The autophagy-related genes were shown to be able to be regulated by miRNAs (BECN1—49 mRNA, LAMP2—62 mRNA, PINK1—6 mRNA). It was observed that promotion regions containing at least one CpG region were present in the sequence of each gene. Conclusions: The in silico analysis performed allowed us to determine the possible role of epigenetic mechanisms of regulation gene expression, which may be an interesting therapeutic target in the treatment of colorectal cancer.
Collapse
|
24
|
Kudela E, Samec M, Koklesova L, Liskova A, Kubatka P, Kozubik E, Rokos T, Pribulova T, Gabonova E, Smolar M, Biringer K. miRNA Expression Profiles in Luminal A Breast Cancer-Implications in Biology, Prognosis, and Prediction of Response to Hormonal Treatment. Int J Mol Sci 2020; 21:ijms21207691. [PMID: 33080858 PMCID: PMC7589921 DOI: 10.3390/ijms21207691] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer, which is the most common malignancy in women, does not form a uniform nosological unit but represents a group of malignant diseases with specific clinical, histopathological, and molecular characteristics. The increasing knowledge of the complex pathophysiological web of processes connected with breast cancercarcinogenesis allows the development of predictive and prognostic gene expressionand molecular classification systems with improved risk assessment, which could be used for individualized treatment. In our review article, we present the up-to-date knowledge about the role of miRNAs and their prognostic and predictive value in luminal A breast cancer. Indeed, an altered expression profile of miRNAs can distinguish not only between cancer and healthy samples, but they can classify specific molecular subtypes of breast cancer including HER2, Luminal A, Luminal B, and TNBC. Early identification and classification of breast cancer subtypes using miRNA expression profilescharacterize a promising approach in the field of personalized medicine. A detection of sensitive and specific biomarkers to distinguish between healthy and early breast cancer patients can be achieved by an evaluation of the different expression of several miRNAs. Consequently, miRNAs represent a potential as good diagnostic, prognostic, predictive, and therapeutic biomarkers for patients with luminal A in the early stage of BC.
Collapse
Affiliation(s)
- Erik Kudela
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
- Correspondence: ; Tel.: +421-9-0230-0017
| | - Marek Samec
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Erik Kozubik
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Tomas Rokos
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Terezia Pribulova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Eva Gabonova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (M.S.)
| | - Marek Smolar
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (M.S.)
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| |
Collapse
|
25
|
Grimaldi AM, Nuzzo S, Condorelli G, Salvatore M, Incoronato M. Prognostic and Clinicopathological Significance of MiR-155 in Breast Cancer: A Systematic Review. Int J Mol Sci 2020; 21:E5834. [PMID: 32823863 PMCID: PMC7461504 DOI: 10.3390/ijms21165834] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
There is an unmet need for novel non-invasive prognostic molecular tumour markers for breast cancer (BC). Accumulating evidence shows that miR-155 plays a pivotal role in tumorigenesis. Generally, miR-155 is considered an oncogenic miRNA promoting tumour growth, angiogenesis and aggressiveness of BC. Therefore, many researchers have focused on its use as a prognostic biomarker and therapeutic target. However, its prognostic value for BC patients remains controversial. To address this issue, the present systematic review aims to summarize the available evidence and give a picture of a prognostic significance of miR-155 in BC pathology. All eligible studies were searched on PubMed and EMBASE databases through various search strategies. Starting from 289 potential eligible records, data were examined from 28 studies, comparing tissue and circulating miR-155 expression levels with clinicopathological features and survival rates in BC patients. We discuss the pitfalls and challenges that need to be assessed to understand the power of miR-155 to respond to real clinical needs, highlighting the consistency, robustness or lack of results obtained to sate in translating this molecule to clinical practice. Our paper suggests that the prognostic role of miR-155 in the management of BC needs to be further verified.
Collapse
Affiliation(s)
- Anna Maria Grimaldi
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.M.G.); (S.N.); (M.S.)
| | - Silvia Nuzzo
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.M.G.); (S.N.); (M.S.)
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy;
- IRCCS Neuromed, Istituto Neurologico Mediterraneo, 86077 Pozzilli, Italy
| | - Marco Salvatore
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.M.G.); (S.N.); (M.S.)
| | | |
Collapse
|
26
|
Khalife H, Skafi N, Fayyad-Kazan M, Badran B. MicroRNAs in breast cancer: New maestros defining the melody. Cancer Genet 2020; 246-247:18-40. [PMID: 32805688 DOI: 10.1016/j.cancergen.2020.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs, short non-coding single-stranded RNAs, are important regulators and gatekeepers of the coding genes in the human genome. MicroRNAs are highly conserved among species and expressed in different tissues and cell types. They are involved in almost all the biological processes as apoptosis, proliferation, cell cycle arrest and differentiation. Playing all these roles, it is not surprising that the deregulation of the microRNA profile causes a number of diseases including cancer. Breast cancer, the most commonly diagnosed malignancy in women, accounts for the highest cancer-related deaths worldwide. Different microRNAs were shown to be up or down regulated in breast cancer. MicroRNAs can function as oncogenes or tumor suppressors according to their targets. In this review, the most common microRNAs implicated in breast cancer are fully illustrated with their targets. Besides, the review highlights the effect of exosomal microRNA on breast cancer and the effect of microRNAs on drug and therapies resistance as well as the miRNA-based therapeutic strategies used until today.
Collapse
Affiliation(s)
- Hoda Khalife
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Najwa Skafi
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
27
|
Ahmed F, Ijaz B, Ahmad Z, Farooq N, Sarwar MB, Husnain T. Modification of miRNA Expression through plant extracts and compounds against breast cancer: Mechanism and translational significance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153168. [PMID: 31982837 DOI: 10.1016/j.phymed.2020.153168] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cancer is hyper-proliferative, multi-factorial and multi-step, heterogeneous group of molecular disorders. It is the second most reported disease after heart diseases. Breast carcinoma is the foremost death causing disease in female population worldwide. Cancer can be controlled by regulating the gene expression. Current therapeutic options are associated with severe side effects and are expensive for the people living in under-developed countries. Plant derived substances have potential application against different diseases like cancer, inflammation and viral infections. HYPOTHESIS The mechanism of action of the medicinal plants is largely unknown. Targeting gene network and miRNA using medicinal plants could help in improving the therapeutic options against cancer. METHODS The literature from 135 articles was reviewed by using PubMed, google scholar, Science direct to find out the plants and plant-based compounds against breast cancer and also the studies reporting their mechanistic route of action both at coding and noncoding RNA levels. RESULTS Natural products act as selective inhibitors of the cancerous cells by targeting oncogenes and tumor suppressor genes or altering miRNA expression. Natural compounds like EGCG from tea, Genistein from fava beans, curcumin from turmeric, DIM found in cruciferous, Resveratrol a polyphenol and Quercetin a flavonoid is found in various plants have been studied for their anticancer activity. The EGCG was found to inhibit proliferative activity by modulating miR-16 and miR-21. Similarly, DIM was found to down regulate miR-92a which results to modulate NFkB and stops cancer development. Another plant-based compound Glyceollins found to upregulate miR-181c and miR-181d having role in tumor suppression. It also found to regulate miR-22, 29b and c, miR-30d, 34a and 195. Quercetin having anti-cancer activity induce the apoptosis through regulating miR-16, 26b, 34a, let-7g, 125a and miR-605 and reduce the miRNA expression like miR-146a/b, 503 and 194 which are involved in metastasis. CONCLUSION Targeting miRNA expression using natural plant extracts can have a reverse effect on cell proliferation; turning on and off tumor-inducing and suppressing genes. It can be efficiently adopted as an adjuvant with the conventional form of therapies to increase their efficacy against cancer progression.
Collapse
Affiliation(s)
- Fayyaz Ahmed
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Bushra Ijaz
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan.
| | - Zarnab Ahmad
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Nadia Farooq
- Department of Surgery, Sir Gangaram Hospital Lahore Punjab, Pakistan
| | - Muhammad Bilal Sarwar
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Tayyab Husnain
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| |
Collapse
|
28
|
Kundaktepe BP, Sozer V, Papila C, Durmus S, Kocael PC, Simsek G, Gelisgen R, Zengin K, Ulualp K, Uzun H. Associations Between miRNAs and Two Different Cancers: Breast and Colon. Cancer Manag Res 2020; 12:871-879. [PMID: 32104069 PMCID: PMC7012229 DOI: 10.2147/cmar.s227628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/22/2020] [Indexed: 12/23/2022] Open
Abstract
Objective Screening approaches using microRNAs (miRNAs) have been gaining increased attention owing to their potential applications in the diagnosis, prognosis, and monitoring of cancer, because aberrant miRNA expression plays a role in the development and advancement of malignancies. The objectives of this study were to characterize mir21, miR31, mir143, mir145, and control RNU43, which are differentially expressed in peripheral blood mononuclear cells (PBMCs) of breast and colorectal cancer patients, compared to that in controls and to establish whether this is specific to breast and colon cancer for use as tumor markers. Methods Thirty newly diagnosed patients with breast cancer and 30 patients with colorectal cancer were enrolled together with 30 healthy controls. PBMCs were isolated from venous blood samples of individuals. Next, miRNA expression analysis was performed by a two-step method of reverse transcription and qPCR. Results The expression levels of miR-143 and miR-31 were significantly decreased, whereas the expression levels of miR-145 and miR-21 were significantly increased in breast cancer patients compared to those in healthy subjects. Moreover, the expression levels of miR-143, miR-145, and miR-21 were significantly increased and, in contrast, the changes in the expression levels of miR-31 were not statistically significant in colon cancer compared to those in healthy subjects. miR-21 exhibited the highest increase in both breast and colon cancers. There was a weak positive correlation between miR-145 and CA-15.3 in patients with breast cancer (r = 0.451; p = 0.012). miR-143 was positively correlated with the TNM stage in colon cancer patients (r = 0.568; p = 0.001). Conclusion A biomarker panel composed of miR-21, miR-31, miR-143, and miR-145 in PBMC may provide a new diagnostic approach for the early detection of breast and colon cancer. As miR-21 expression was found to be the highest among all the miRNAs evaluated, it may represent a new tumor biomarker and a candidate therapeutic drug or gene target in colon and breast cancer.
Collapse
Affiliation(s)
- Berrin Papila Kundaktepe
- Department of General Surgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Volkan Sozer
- Department of Biochemistry, Yildiz Technical University, Istanbul, Turkey
| | - Cigdem Papila
- Department of Internal Medicine, Division of Oncology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sinem Durmus
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pinar Cigdem Kocael
- Department of General Surgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gonul Simsek
- Department of Physiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Remise Gelisgen
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kagan Zengin
- Department of General Surgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kenan Ulualp
- Department of General Surgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hafize Uzun
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
29
|
Li D, Zhong J, Zhang G, Lin L, Liu Z. Oncogenic Role and Prognostic Value of MicroRNA-937-3p in Patients with Breast Cancer. Onco Targets Ther 2019; 12:11045-11056. [PMID: 31853188 PMCID: PMC6916697 DOI: 10.2147/ott.s229510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose Breast cancer is the most common female tumor in the world. MicroRNA has been reported to play an important role in the progression of breast cancer. The purpose of this study was to explore the role of miR-937-3p in breast cancer. Patients and methods Expression of miR-937-3p in breast cancer tissues and serums was detected from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO) and patients' samples. Kaplan-Meier plotter identified the association between miR-937-3p and prognosis. Results The analysis of TCGA, GEO and qRT-PCR suggested that the level of miR-937-3p was increased in breast cancer tissues and serum compared with adjacent normal breast tissues and healthy persons, respectively. The decreased expression of miR-937-3p inhibited breast cancer proliferation, migration and invasion. CCRL2 was the target of miR-937-3p. In contrast to miR-937-3p, the level of CCRL2 was decreased in breast cancer tissues. Luciferase reporter assay revealed that miR-937-3p directly bound to the 3'-UTR of CCRL2. Double knockdown of CCRL2 and miR-937-3p promoted breast cancer cell proliferation, migration and invasion, suggesting that miR-937-3p promoted breast cancer cell proliferation, migration and invasion by targeting CCRL2. The Kaplan-Meier survival analysis suggested that breast cancer patients with high level of miR-937-3p or low level of CCRL2 had a reduced overall survival (OS). Conclusion miR-937-3p plays an important role in the diagnosis and prognosis of breast cancer. Inhibition of miR-937-3p expression may be a novel targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Deyu Li
- Department of Medical Oncology, Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Jiangming Zhong
- Department of Medical Oncology, Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Guifeng Zhang
- Department of Medical Oncology, Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Li Lin
- Department of Medical Oncology, Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Zhenhua Liu
- Department of Medical Oncology, Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| |
Collapse
|
30
|
Wu X, Ding M, Lin J. Three-microRNA expression signature predicts survival in triple-negative breast cancer. Oncol Lett 2019; 19:301-308. [PMID: 31897142 PMCID: PMC6923981 DOI: 10.3892/ol.2019.11118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific type of breast cancer with poor overall survival (OS) time. Previous studies revealed that microRNAs (miRNAs/miRs) serve important roles in the pathogenesis, progression and prognosis of TNBC. The present study analyzed the miRNA expression and clinical data of patients with TNBC downloaded from The Cancer Genome Atlas. A total of 194 differentially expressed miRNAs were identified between TNBC and matched normal tissues using the cut-off criteria of P<0.05 and |log2 fold change|>2. Of these miRNAs, 65 were downregulated and 129 were upregulated. Using Kaplan-Meier survival analysis, a total of 77 miRNAs that were closely associated with OS time were identified (P<0.05). The intersection of the 77 miRNAs and 194 differentially expressed miRNAs revealed six miRNAs. Log-rank tests based on survival curves were performed and two miRNAs were eliminated. The prognostic value of the remaining four miRNAs was evaluated with a Cox proportional hazards model using multiple logistic regression with forward stepwise selection of variables. Three miRNAs (miR-21-3p, miR-659-5p and miR-200b-5p) were subsequently identified as independent risk factors associated with OS time in the model. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the target genes of these three miRNAs were mainly involved in ‘cell protein metabolism’, ‘RNA transcriptional regulation’, ‘cell migration’, ‘MAPK signaling pathway’, ‘ErbB signaling pathway’, ‘prolactin signaling pathway’ and ‘adherens junctions’. Taken together, the results obtained in the present study suggested that the three-miRNA signature may serve as a prognostic biomarker for patients with TNBC.
Collapse
Affiliation(s)
- Xinquan Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mingji Ding
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jianqin Lin
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
31
|
Qingyihuaji formula reverses gemcitabine resistant human pancreatic cancer through regulate lncRNA AB209630/miR-373/EphB2-NANOG signals. Biosci Rep 2019; 39:BSR20190610. [PMID: 31147453 PMCID: PMC6579980 DOI: 10.1042/bsr20190610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
To investigate the possible mechanism of Qingyihuaji formula (QYHJ) for reversing gemcitabine (GEM) resistant human pancreatic cancer. Cell proliferation, apoptosis, migration and invasion were detected in CFPAC-1 cells. Xenograft mice established with CFPAC-1 through subcutaneous on 33 immunodeficient nude mice and randomly divided into four groups: vehicle, GEM (35 mg/kg), QYHJ (40 g/kg), and GEM + QYHJ (35 mg/kg + 40 g/kg) groups for 28-day treatment. Tumor growth and the mRNA expression of lncRNA AB209630, miR373, EphB2, and NANOG evaluated in dissected tumor tissue by real-time PCR, the CD133+ cancer stem cells were isolated by flow cytometer, and the changes of the tumor sphere forming were measured. QYHJ, especially the combination of GEM and QYHJ, was significantly inhibited the cell proliferation and migration of CFPAC-1 in vitro in the indicated times. The combination of GEM and QYHJ also remarkably promoted the cell apoptosis of CFPAC-1. QYHJ treatment effectively blocked the tumor growth in nude mice. QYHJ, especially GEM + QYHJ treatment, was significantly increased the mRNA expression of lncRNA AB209630, significantly decreased the mRNA levels of miR373, EphB2 and NANOG, and markedly reduced the tumor sphere formation and the numbers of CD133+ stem cells. In addition, GEM alone treatment had no significant effect in the above biomarker changes. QYHJ could effectivly enhance the antihuman pancreatic tumor activity of GEM, which may be through inhibiting pancreatic cancer stem cell differentiation by lncRNA AB209630/miR-373/EphB2-NANOG signaling pathway.
Collapse
|
32
|
Swellam M, Ramadan A, El-Hussieny EA, Bakr NM, Hassan NM, Sobeih ME, EzzElArab LR. Clinical significance of blood-based miRNAs as diagnostic and prognostic nucleic acid markers in breast cancer: Comparative to conventional tumor markers. J Cell Biochem 2019; 120:12321-12330. [PMID: 30825229 DOI: 10.1002/jcb.28496] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
microRNAs (miRNAs) are implicated in carcinogenesis and their expression in biological fluids offer great potential as nucleic acid markers for cancer detection and progression. Authors investigated the expression level of miRNAs (miRNA-21, miRNA-126, and miRNA-155) to evaluate their role as diagnostic and prognostic markers for breast cancer compared with other commonly used protein-based markers (CEA and CA15-3). Serum samples from patients with breast cancer (n = 96), patients with benign breast lesion (n = 47), and healthy individuals (n = 39) were enrolled for detection of miRNA expression levels and protein-based tumor markers using fluorescent real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Correlation among investigated markers with clinicopathological factors and clinical outcomes were determined. Expression of miRNA-21 and miRNA-155 revealed significant increases in patients with breast cancer compared with both benign and control groups, the same result was reported for tumor markers; on the other hand, miRNA-126 was significantly decreased in breast cancer group as compared with the other two groups. miRNA frequencies were significantly related to clinical staging and histological grading as compared with tumor markers. Patients with breast cancer with increased miRNA-21 and miRNA-155 and decreased miRNA-126 expressions had significantly worse disease-free survival, while only miRNA-21 and miRNA-126 showed poor OS (P< 0.005). In conclusion, investigated miRNAs were superior over tumor markers for the early stage of breast cancer especially those with high-risk factor and their assessment in blood facilitates their role as a potential prognostic molecular marker.
Collapse
Affiliation(s)
- Menha Swellam
- Biochemistry Department Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt.,High Throughput Molecular and Genetic Laboratory, Center for Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Amal Ramadan
- Biochemistry Department Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt.,High Throughput Molecular and Genetic Laboratory, Center for Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Enas A El-Hussieny
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Noha M Bakr
- Biochemistry Department Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt.,High Throughput Molecular and Genetic Laboratory, Center for Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Emam Sobeih
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lobna R EzzElArab
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
33
|
Javadian M, Gharibi T, Shekari N, Abdollahpour‐Alitappeh M, Mohammadi A, Hossieni A, Mohammadi H, Kazemi T. The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis. J Cell Physiol 2018; 234:5399-5412. [DOI: 10.1002/jcp.27445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mahsa Javadian
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Najibeh Shekari
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | | | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Arezoo Hossieni
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
34
|
Dalmasso B, Hatse S, Brouwers B, Laenen A, Berben L, Kenis C, Smeets A, Neven P, Schöffski P, Wildiers H. Age-related microRNAs in older breast cancer patients: biomarker potential and evolution during adjuvant chemotherapy. BMC Cancer 2018; 18:1014. [PMID: 30348127 PMCID: PMC6196565 DOI: 10.1186/s12885-018-4920-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators of cellular function and have been associated with both aging and cancer, but the impact of chemotherapy on age-related miRNAs has barely been studied. Our aim was to examine whether chemotherapy accelerates the aging process in elderly breast cancer patients using miRNA expression profiling. Methods We monitored age-related miRNAs in blood of women, aged 70 or older, receiving adjuvant chemotherapy (docetaxel and cyclophosphamide, TC) for invasive breast cancer (chemo group, CTG, n = 46). A control group of older breast cancer patients without chemotherapy was included for comparison (control group, CG, n = 43). All patients underwent geriatric assessment at inclusion (T0), after 3 months (T1) and 1 year (T2). Moreover, we analysed the serum expression of nine age-related miRNAs (miR-20a, miR-30b, miR-34a, miR-106b, miR-191, miR-301a, miR-320b, miR-374a, miR-378a) at each timepoint. Results Except for miR-106b, which behaved slightly different in CTG compared to CG, all miRNAs showed moderate fluctuations during the study course with no significant differences between groups. Several age-related miRNAs correlated with clinical frailty (miR-106b, miR-191, miR-301a, miR-320b, miR-374a), as well as with other biomarkers of aging, particularly Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1 (MCP-1) (miR-106b, miR-301a, miR-374a-5p, miR-378a-3p). Moreover, based on their ‘aging miRNA’ profiles, patients clustered into two distinct groups exhibiting significantly different results for several biological/clinical aging parameters. Conclusions These results further corroborate our earlier report, stating that adjuvant TC chemotherapy does not significantly boost aging progression in elderly breast cancer patients. Our findings also endorsed specific age-related miRNAs as promising aging/frailty biomarkers in oncogeriatric populations. Trial registration ClinicalTrials.gov, NCT00849758. Registered on 20 February 2009. This clinical trial was registered prospectively.
Collapse
Affiliation(s)
- Bruna Dalmasso
- Department of Oncology, Laboratory of Experimental Oncology (LEO), Leuven, KU, Belgium. .,Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium. .,Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.
| | - Sigrid Hatse
- Department of Oncology, Laboratory of Experimental Oncology (LEO), Leuven, KU, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Barbara Brouwers
- Department of Oncology, Laboratory of Experimental Oncology (LEO), Leuven, KU, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Annouschka Laenen
- Interuniversity Centre for Biostatistics and Statistical Bioinformatics, Leuven, Belgium
| | - Lieze Berben
- Department of Oncology, Laboratory of Experimental Oncology (LEO), Leuven, KU, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Cindy Kenis
- Department of General Medical Oncology and Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Schöffski
- Department of Oncology, Laboratory of Experimental Oncology (LEO), Leuven, KU, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Hans Wildiers
- Department of Oncology, Laboratory of Experimental Oncology (LEO), Leuven, KU, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
35
|
Dai W, Zhang J, Meng X, He J, Zhang K, Cao Y, Wang D, Dong H, Zhang X. Catalytic hairpin assembly gel assay for multiple and sensitive microRNA detection. Theranostics 2018; 8:2646-2656. [PMID: 29774065 PMCID: PMC5956999 DOI: 10.7150/thno.24480] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/21/2018] [Indexed: 01/28/2023] Open
Abstract
As important modulators of gene expression, microRNAs (miRNAs) have been identified as promising biomarkers with powerful predictive value in diagnosis and prognosis for several diseases, especially for cancers. Here we report a facile, multiple and sensitive miRNA detection method that uses conventional gel electrophoresis and catalytic hairpin assembly (CHA) system without any complex nanomaterials or enzymatic amplification. Methods: In this study, three pairs of hairpin probes are rationally designed with thermodynamically and kinetically preferable feasibility for the CHA process. In the present of target miRNA, the stem of the corresponding hairpin detection probe (HDP) will be unfolded and expose the concealed domain. The corresponding hairpin assistant probe (HAP) then replaces the hybridized target miRNA to form specific HDP/HAP complexes and releases miRNA based on thermodynamically driven entropy gain process, and the released miRNA triggers the next recycle to produce tremendous corresponding HDP/HAP complexes. Results: The results showed that the CHA gel assay can detect miRNA at fM levels and shows good capability of discriminating miRNA family members and base-mismatched miRNAs. It is able to analyze miRNAs extracted from cell lysates, which are consistent with the results of conventional polymerase chain reaction (PCR) method. Depending on the length of the designed hairpin probes, the CHA gel assay consisting of different hairpin probes effectively discriminated and simultaneously detected multiple miRNAs in homogenous solution and miRNAs extracted from cell lysates. Conclusion: The work highlights the practical use of a conventional gel electrophoresis for sensitive interesting nucleic acid sequences detection.
Collapse
Affiliation(s)
- Wenhao Dai
- Research Center for Bioengineering and Sensing Technology, Beijing Key Lab for Bioengineering and Sensing Technology, School of Chemistry and bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Jing Zhang
- School of Petrochemical Engineering, School of Food Science and Technology, Changzhou University, Changzhou 213164, P.R. China
| | - Xiangdan Meng
- Research Center for Bioengineering and Sensing Technology, Beijing Key Lab for Bioengineering and Sensing Technology, School of Chemistry and bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Jie He
- School of Computer and Communication Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Kai Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Lab for Bioengineering and Sensing Technology, School of Chemistry and bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Yu Cao
- Research Center for Bioengineering and Sensing Technology, Beijing Key Lab for Bioengineering and Sensing Technology, School of Chemistry and bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Dongdong Wang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Lab for Bioengineering and Sensing Technology, School of Chemistry and bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, Beijing Key Lab for Bioengineering and Sensing Technology, School of Chemistry and bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Lab for Bioengineering and Sensing Technology, School of Chemistry and bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
36
|
Li J, Ping JL, Ma B, Chen YR, Li LQ. Deregulation of miR-126-3p in basal-like breast cancers stroma and its clinical significance. Pathol Res Pract 2017; 213:922-928. [PMID: 28687161 DOI: 10.1016/j.prp.2017.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/22/2023]
Abstract
INTRODUCTION The aim of this study was to investigate miR-126-3p expression in stroma and tumor cells of basal-like breast cancer tissues, in an effort to elucidate the potential effect of miR-126-3p on tumor microenvironment and progress of basal-like breast cancer. METHODS Expression levels of miR-126-3p in 33 paired basal-like breast cancer tissues were assayed by real-time quantitative PCR. Tumor cells and normal epithelial cell were isolated from ten paired basal-like breast cancer tissues and matched adjacent tissues, separately, using laser capture microdissect(LCM)-based PCR method. Further validated in larger sets were assayed by tissue microarrays (TMA)-based ISH method. RESULTS MiR-126-3p expression level had no significant differences between basal-like breast cancer subtypes and matched adjacent tissues. However, a decreasing trend of miR-126-3p expression can be found in tumor cells of basal-like subtype, compared with matched adjacent tissues, using LCM-based PCR. Using TMA method, miR-126-3p expression level was the lowest in stroma of basal-like breast cancers among four subtypes (χ2=10.55, P=0.01), and was increasing in stroma of breast cancers compared with fibroadenomas. Furthermore, strong miR-126-3p expression in stroma is significantly associated with HER-2 expression (χ2=4.70, P=0.03) and Ki-67 index. (χ2=4.84, P=0.03), which suggested a potential prognostic value of miR-126-3p in stroma of breast cancer. However, miR-126-3p expression in tumor cells derived from different subtypes hadn't significant clinical values in this study. CONCLUSIONS the miR-126-3p expression level in breast cancer stroma was associated with different intrinsic subtypes and its correlation with hormone receptor and Ki-67 index shed light on the potential clinical prognostic value of miR-126-3p, in the field of specific breast cancer subtypes.
Collapse
Affiliation(s)
- Jing Li
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital Affiliated with Zhejiang University, Huzhou, 313000, China
| | - Jin Liang Ping
- Department of Pathology, Huzhou Central Hospital Affiliated with Zhejiang University, Huzhou, 313000, China
| | - Bo Ma
- Department of Surgery, Zhejiang Hospital, Hangzhou, 313000, China
| | - Ying Rong Chen
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital Affiliated with Zhejiang University, Huzhou, 313000, China
| | - Li Qin Li
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital Affiliated with Zhejiang University, Huzhou, 313000, China.
| |
Collapse
|
37
|
Luo LJ, Wang DD, Wang J, Yang F, Tang JH. Diverse roles of miR-335 in development and progression of cancers. Tumour Biol 2016; 37:15399–15410. [PMID: 27718128 DOI: 10.1007/s13277-016-5385-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs), a series of small noncoding RNAs that regulate gene expression at the post-transcriptional/translational level, are pivotal in cell differentiation, biological development, occurrence, and development of diseases, especially in cancers. Early studies have shown that miRNA-335 (miR-335) is widely dysregulated in human cancers and play critical roles in tumorigenesis and tumor progression. In this review, we aim to summarize the regulation of miR-335 expression mechanisms in cancers. We focus on the target genes regulated by miR-335 and its downstream signaling pathways involved in the biological effects of tumor growth, invasion, and metastasis both in vitro and in vivo, and analyze the relationships between miR-335 expression and the clinical characteristics of tumors as well as its effects on prognosis. The collected evidences support the potential use of miR-335 in prognosis and diagnosis as well as the therapeutic prospects of miR-335 in cancers.
Collapse
Affiliation(s)
- Long-Ji Luo
- Department of General Surgery, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
| | - Dan-Dan Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Yang
- Department of General Surgery, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
| | - Jin-Hai Tang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China.
| |
Collapse
|
38
|
Vegter EL, Schmitter D, Hagemeijer Y, Ovchinnikova ES, van der Harst P, Teerlink JR, O'Connor CM, Metra M, Davison BA, Bloomfield D, Cotter G, Cleland JG, Givertz MM, Ponikowski P, van Veldhuisen DJ, van der Meer P, Berezikov E, Voors AA, Khan MAF. Use of biomarkers to establish potential role and function of circulating microRNAs in acute heart failure. Int J Cardiol 2016; 224:231-239. [PMID: 27661412 DOI: 10.1016/j.ijcard.2016.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Circulating microRNAs (miRNAs) emerge as potential heart failure biomarkers. We aimed to identify associations between acute heart failure (AHF)-specific circulating miRNAs and well-known heart failure biomarkers. METHODS Associations between 16 biomarkers predictive for 180day mortality and the levels of 12 AHF-specific miRNAs were determined in 100 hospitalized AHF patients, at baseline and 48hours. Patients were divided in 4 pre-defined groups, based on clinical parameters during hospitalization. Correlation analyses between miRNAs and biomarkers were performed and complemented by miRNA target prediction and pathway analysis. RESULTS No significant correlations were found at hospital admission. However, after 48hours, 7 miRNAs were significantly negatively correlated to biomarkers indicative for a worse clinical outcome in the patient group with the most unfavorable in-hospital course (n=21); miR-16-5p was correlated to C-reactive protein (R=-0.66, p-value=0.0027), miR-106a-5p to creatinine (R=-0.68, p-value=0.002), miR-223-3p to growth differentiation factor 15 (R=-0.69, p-value=0.0015), miR-652-3p to soluble ST-2 (R=-0.77, p-value<0.001), miR-199a-3p to procalcitonin (R=-0.72, p-value<0.001) and galectin-3 (R=-0.73, p-value<0.001) and miR-18a-5p to procalcitonin (R=-0.68, p-value=0.002). MiRNA target prediction and pathway analysis identified several pathways related to cardiac diseases, which could be linked to some of the miRNA-biomarker correlations. CONCLUSIONS The majority of correlations between circulating AHF-specific miRNAs were related to biomarkers predictive for a worse clinical outcome in a subgroup of worsening heart failure patients at 48hours of hospitalization. The selective findings suggest a time-dependent effect of circulating miRNAs and highlight the susceptibility to individual patient characteristics influencing potential relations between miRNAs and biomarkers.
Collapse
Affiliation(s)
- Eline L Vegter
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Daniela Schmitter
- Momentum Research, Inc., Hagmattstrasse 17, CH-4123 Allschwil, Switzerland
| | - Yanick Hagemeijer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ekaterina S Ovchinnikova
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands; European Research Institute for the Biology of Ageing and University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - John R Teerlink
- University of California at San Francisco, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | - Marco Metra
- Cardiology, The Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | | | | | | | - John G Cleland
- National Heart & Lung Institute, Royal Brompton & Harefield Hospitals, Imperial College, London, UK
| | - Michael M Givertz
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing and University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Mohsin A F Khan
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
39
|
Jinling W, Sijing S, Jie Z, Guinian W. Prognostic value of circulating microRNA-21 for breast cancer: a systematic review and meta-analysis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1-6. [PMID: 27684463 DOI: 10.1080/21691401.2016.1216856] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is an urgent need for novel noninvasive prognostic molecular tumor marker for monitoring the recurrence of breast cancer. MicroRNA-21 (miR-21) play a crucial role in the progression and aggressiveness of breast cancer, but its prognostic significance for patients with breast cancer remains inconclusive. The aim of this meta-analysis is to summarize the role of circulating miR-21 as a molecular marker in patients with breast cancer. MATERIAL AND METHODS Eligible studies were searched from the PubMed, EMBASE and Web of Science databases. The χ2 and I2 tests were used to evaluate heterogeneity between studies. The pooled hazard ratios (HR) with 95% confidence interval (CI) were calculated by a fixed-effects model, if no heterogeneity existed. If there was heterogeneity, a random-effects model was applied. The meta-analysis was conducted using the Review Manager 5 software. RESULTS A total of 7 articles which included 1629 cases were selected for the meta-analysis. Elevated miR-21 expression was significantly predictive of poor overall survival (HR = 1.51, 95%CI 1.15-1.98, p = 0.003). The subgroup analysis consisted of in tissue sample (HR = 1.66, 95%CI 1.03-2.67, p = 0.04) and serum sample (HR = 1.73, 95%CI 1.22-2.46, p = 0.002). The association between miR-21 expression level and lymph node metastasis was statistically significant (OR = 2.36, 95%CI 1.04-4.78, p = 0.03). CONCLUSION Our findings suggest that the circulating miR-21 expression level can predict poor prognosis in patients with breast cancer.
Collapse
Affiliation(s)
- Wang Jinling
- a Department of Laboratory Medicine , the First Hospital of Zibo City , Shandong , China
| | - Sun Sijing
- b Department of Breast Surgery , the First Hospital of Zibo City , Shandong , China
| | - Zhang Jie
- c Department of Clinical Laboratory , Qilu Medical University , Shangdong , China
| | - Wang Guinian
- a Department of Laboratory Medicine , the First Hospital of Zibo City , Shandong , China
| |
Collapse
|
40
|
Toraih EA, Mohammed EA, Farrag S, Ramsis N, Hosny S. Pilot Study of Serum MicroRNA-21 as a Diagnostic and Prognostic Biomarker in Egyptian Breast Cancer Patients. Mol Diagn Ther 2016; 19:179-90. [PMID: 26063582 DOI: 10.1007/s40291-015-0143-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND MicroRNAs are small RNA molecules that bind to complementary sequences of target messenger RNAs and down-regulate their translation to protein or degrade them. MicroRNAs play critical roles in many different cellular processes. Hence, aberrant microRNA expression is common in a variety of disorders, including cancer. PATIENTS AND METHODS In this work, we quantified serum microRNA-21 (miR-21) expression levels in 30 breast cancer patients, 30 cancer-free individuals with risk factors for developing breast cancer, and another 30 controls without risk factors, in order to test the role of miR-21 as a possible diagnostic and prognostic biomarker in breast cancer. RESULTS Our results indicated that miR-21 expression was elevated in asymptomatic high-risk individuals (2.98-fold) compared with healthy non-risk controls (p < 0.001), and was increased in almost all sera of cancer patients (12.72-fold) compared with healthy controls (p < 0.001). Higher levels of serum miR-21 were also correlated with tumors of higher grades, more nodal involvement, distal metastasis and advanced clinical stages (p < 0.01). Furthermore, over-expression levels declined towards normal after surgical tumor resection (p < 0.001). CONCLUSION In conclusion, our findings demonstrate that serum miR-21 expression profile may serve as a potential non-invasive diagnostic and prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Circular Road, Ismailia, 41522, Egypt,
| | | | | | | | | |
Collapse
|
41
|
Li Y, Li Y, Ge P, Ma C. MiR-126 Regulates the ERK Pathway via Targeting KRAS to Inhibit the Glioma Cell Proliferation and Invasion. Mol Neurobiol 2016; 54:137-145. [PMID: 26732596 DOI: 10.1007/s12035-015-9654-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/17/2015] [Indexed: 11/30/2022]
Abstract
The activity of some constitutive contained in the extracellular signal-regulated kinase (ERK) pathway plays crucial roles in glioma cell growth and proliferation. Emerging studies have reported that microRNA (miRNA) could regulate the ERK signal pathway by directly targeting various oncogenes. This study enabled us to discover that the average miR-126 expression was significantly decreased in glioblastoma tissues, and this significant decrease was related to high histopathological grades. Our experiment also demonstrated that the over-expression of miR-126 suppressed glioma cell proliferation and invasion in vitro. Kirsten rat sarcoma viral oncogene (KRAS) which is involved in ERK pathway was directly targeted by miR-126 in glioma through binding to two sites in the 3' untranslated region (3'-UTR) of KRAS mRNA. Notably, the expression level of KRAS was positively correlated to the activity of ERK pathway and its downstream regulators (phosphorylation level of ERK (pERK) and c-Fos). Furthermore, the over-expression of KRAS expression vector without the 3'-UTR partially reverses the tumor-suppressive effects of miR-126. Moreover, the up-regulation of miR-126 contributes to the aberrant activation of the ERK signaling and inhibits cell proliferation and invasion through targeting KRAS. Therefore, it was suspected that miR-126 may be a potential therapeutic target for high-grade glioma.
Collapse
Affiliation(s)
- Yang Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Xinmin Street 71, Changchun, 130021, Jilin Province, China
| | - Pengfei Ge
- Department of Neurosurgery, The First Hospital of Jilin University, Xinmin Street 71, Changchun, 130021, Jilin Province, China
| | - Chengyuan Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Xinmin Street 71, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
42
|
Abstract
Breast cancer affects approximately 12 % women worldwide and results in 14 % of all cancer-related fatalities. Breast cancer is commonly categorized into one of four main subtypes (luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) positive and basal), indicating molecular characteristics and informing treatment regimes. The most severe form of breast cancer is metastasis, when the tumour spreads from the breast tissue to other parts of the body. Significantly, the primary tumour subtype affects rates and sites of metastasis. Currently, up to 5 % of patients present with incurable metastasis, with an additional 10–15 % of patients going on to develop metastasis within 3 years of diagnosis. MicroRNAs (miRNAs) are short 21–25 long nucleotides that have been shown to significantly affect gene expression. Currently, >2000 miRNAs have been identified and significantly, specific miRNAs have been found associated with diseases states. Importantly, miRNAs are found circulating in the blood, presenting an opportunity to use these circulating disease-related miRNAs as biomarkers. Clearly, the identification of circulating miRNA specific to metastatic breast cancer presents a unique opportunity for early disease identification and for monitoring disease burden. Currently however, few groups have identified miRNA associated with metastatic breast cancer. Here, we review the literature surrounding the identification of metastatic miRNA in breast cancer patients, highlighting key areas where miRNA biomarker discovery could be beneficial, identifying key concepts, recognizing critical areas requiring further research and discussing potential problems.
Collapse
|
43
|
MicroRNA-21 Expression in Primary Breast Cancer Tissue Among Egyptian Female Patients and its Correlation with Chromosome 17 Aneusomy. Mol Diagn Ther 2015; 19:365-73. [DOI: 10.1007/s40291-015-0161-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Tu HF, Chang KW, Cheng HW, Liu CJ. Upregulation of miR-372 and -373 associates with lymph node metastasis and poor prognosis of oral carcinomas. Laryngoscope 2015; 125:E365-70. [PMID: 26152520 DOI: 10.1002/lary.25464] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVES/HYPOTHESIS Oral squamous cell carcinoma (OSCC) is prevalent worldwide, and survival in OSCC has not improved significantly in the last few decades. MicroRNAs (miRNAs) have an important regulatory role in human cancer, including oral carcinogenesis. MiR-372 and miR-373 perform oncogenic and tumor-suppressive functions of between different human malignancies. This study investigated the miR-372 and miR-373 expression and their clinical implication in OSCC. METHODS Fifty patients with primary OSCC were included in the study. Primary cancer cells and matched normal oral epithelium were purified by laser capture microdissection. RNA were extracted from these samples. The expression levels of miR-372 and miR-373 in the tissue of OSCC patients were measured by quantitative reverse transcription polymerase chain reaction. The large tumor suppressor kinase 2 (LATS2) protein expression level was measured by Western blotting. RESULTS Both miR-372 and miR-373 was up-regulated in OSCC tissue relative to control mucosa. Among different clinical variables, over-expression of miR-372 and miR-373 were associated with nodal metastasis, lymphovascular invasion, and poor survival. Multivariate analysis showed that both high miR-372 and miR-373 expression were independent predictors for poor survival in OSCC. MiR-372 regulated LATS2 expression in OSCC cell lines. LATS2 expression levels are inversely correlated miR-372 in OSCC tissues. CONCLUSION Over-expression of miR-372 and miR-373 indicate worse survival in OSCC. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Hsi-Feng Tu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University Hospital, Yi-Lan, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
45
|
Zhang W, Xu J, Shi Y, Sun Q, Zhang Q, Guan X. The novel role of miRNAs for tamoxifen resistance in human breast cancer. Cell Mol Life Sci 2015; 72:2575-84. [PMID: 25782411 PMCID: PMC11113898 DOI: 10.1007/s00018-015-1887-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 01/04/2023]
Abstract
The selective estrogen receptor modulator tamoxifen is the most commonly used treatment for patients with ER-positive breast cancer. However, tumor cells often develop resistance to tamoxifen therapy, which is a major obstacle limiting the success of breast cancer treatment. miRNAs, as oncogenic or tumor suppressor genes, regulate the expression and function of their related target genes to affect the biological behaviors of cancer cells, including cancer initiation, progression, metastasis, and therapeutic resistance. In detail, many miRNAs associated with breast cancer tamoxifen resistance have been identified, which offer new targets for breast cancer therapy. Here, we review the miRNAs involved in regulation of tamoxifen resistance in human breast cancer and the mechanism of how the modulation of miRNAs may regulate the sensitivity of breast cancer cells to tamoxifen. We also discuss the future prospects of studies about miRNAs in regulation of tamoxifen resistance and miRNA-based therapeutics for tamoxifen resistance breast cancer patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Jing Xu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Qian Sun
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Qun Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| |
Collapse
|
46
|
Erturk E, Cecener G, Polatkan V, Gokgoz S, Egeli U, Tunca B, Tezcan G, Demirdogen E, Ak S, Tasdelen I. Evaluation of genetic variations in miRNA-binding sites of BRCA1 and BRCA2 genes as risk factors for the development of early-onset and/or familial breast cancer. Asian Pac J Cancer Prev 2015; 15:8319-24. [PMID: 25339023 DOI: 10.7314/apjcp.2014.15.19.8319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron- exon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/ BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs c.*1287C>T (rs12516) (BRCA1) and c.*105A>C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism c.*1287C>T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP c.*1287C>T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.
Collapse
Affiliation(s)
- Elif Erturk
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu J, Huang W, Yang H, Luo Y. Expression and function ofmiR-155 in breast cancer. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1043946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
48
|
Kalniete D, Nakazawa-Miklaševiča M, Štrumfa I, Āboliņš A, Irmejs A, Gardovskis J, Miklaševičs E. High expression of miR-214 is associated with a worse disease-specific survival of the triple-negative breast cancer patients. Hered Cancer Clin Pract 2015; 13:7. [PMID: 25705321 PMCID: PMC4335782 DOI: 10.1186/s13053-015-0028-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 01/20/2015] [Indexed: 12/14/2022] Open
Abstract
Background Hereditary triple-negative breast cancer patients have better recurrence-free survival than triple-negative sporadic ones. High expression of some of the miRNAs is related to worse overall and disease-free survival of triple-negative breast cancer patients. The attempt to associate expression level of some miRNA in triple-negative hereditary and sporadic breast cancers to disease specific survival was performed in this study. Material and methods Study group was made of 18 triple-negative breast cancer patients harboring the BRCA1 gene mutations and 32 triple-negative sporadic breast cancer patients. Quantitative amount of mir-10b, mir-21, mir-29a, mir-31, and mir-214 by real-time PCR was assessed. The disease-specific survival in relation of high and low levels of some of the miRNAs was analyzed using Log-rank (Mantel-Cox) test. Results MiR-214 showed significantly higher expression level in sporadic tissues than in hereditary ones (p = 0.0005). Triple-negative breast cancer patients with high level of miR-214 showed significantly worse disease-specific survival than patients with low level (p = 0.0314). Conclusions Our finding suggests that miR-214 possibly could be used as a potential prognostic biomarker for triple-negative breast cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s13053-015-0028-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dagnija Kalniete
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia
| | | | - Ilze Štrumfa
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia
| | - Arnis Āboliņš
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia
| | - Arvīds Irmejs
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia ; Breast Disease Center, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, Riga, LV-1002 Latvia
| | - Jānis Gardovskis
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia
| | - Edvīns Miklaševičs
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007 Latvia
| |
Collapse
|
49
|
Goh JN, Loo SY, Datta A, Siveen KS, Yap WN, Cai W, Shin EM, Wang C, Kim JE, Chan M, Dharmarajan AM, Lee ASG, Lobie PE, Yap CT, Kumar AP. microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer. Biol Rev Camb Philos Soc 2015; 91:409-28. [DOI: 10.1111/brv.12176] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Jen N. Goh
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Ser Y. Loo
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR); Singapore 138672 Singapore
| | - Arpita Datta
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
| | - Kodappully S. Siveen
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Wei N. Yap
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Eun M. Shin
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
| | - Chao Wang
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Ji E. Kim
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
| | - Maurice Chan
- Division of Medical Sciences; National Cancer Centre; Singapore 169610 Singapore
| | - Arun M. Dharmarajan
- Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University; 6845 Perth Western Australia Australia
| | - Ann S.-G. Lee
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
- Division of Medical Sciences; National Cancer Centre; Singapore 169610 Singapore
- Duke-NUS Graduate Medical School; Singapore 169857 Singapore
| | - Peter E. Lobie
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
- National University Cancer Institute; Singapore 1192288 Singapore
| | - Celestial T. Yap
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
- National University Cancer Institute; Singapore 1192288 Singapore
| | - Alan P. Kumar
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
- Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University; 6845 Perth Western Australia Australia
- National University Cancer Institute; Singapore 1192288 Singapore
- Department of Biological Sciences; University of North Texas; Denton TX 76203-5017 U.S.A
| |
Collapse
|
50
|
Allaya N, Khabir A, Sallemi-Boudawara T, Sellami N, Daoud J, Ghorbel A, Frikha M, Gargouri A, Mokdad-Gargouri R, Ayadi W. Over-expression of miR-10b in NPC patients: correlation with LMP1 and Twist1. Tumour Biol 2015; 36:3807-14. [DOI: 10.1007/s13277-014-3022-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022] Open
|