1
|
Abbaspour S, Mohamadzadeh M, Shojaosadati SA. Protein-based nanocarriers for paclitaxel (PTX) delivery in cancer treatment: A review. Int J Biol Macromol 2025; 310:143068. [PMID: 40220831 DOI: 10.1016/j.ijbiomac.2025.143068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Paclitaxel (PTX) is recognized as one of the most potent chemotherapy agents and is widely used to treat various cancers, including ovarian, lung, breast, head, and neck cancer. Due to the limited solubility and high toxicity of PTX, its use in cancer treatment is challenging and limited. Hence, strategies have been devised to improve the solubility and bioavailability of paclitaxel. In recent years, biocompatible nanocarriers have garnered attention due to their desirable properties, including increased permeability, targeted delivery, extended circulatory half-life, and biological drug delivery for the delivery of chemotherapeutic drugs. Protein nanostructures have been widely studied for the delivery of paclitaxel due to their significant advantages, such as safety, low toxicity, availability, and relatively easy preparation. This review article reviews recent advances in the development of protein-based drug delivery systems for loading and releasing paclitaxel. These nanocarriers have great potential to improve paclitaxel's antitumor properties and efficacy. Therefore, in the future, the integration of the pharmaceutical industry and artificial intelligence techniques will provide more opportunities for research and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Sakineh Abbaspour
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Kodel HDAC, Alizadeh P, Ebrahimi SN, Machado TOX, Oliveira MBPP, Fathi F, Souto EB. Liposomes and Niosomes: New trends and applications in the delivery of bioactive agents for cancer therapy. Int J Pharm 2025; 668:124994. [PMID: 39586512 DOI: 10.1016/j.ijpharm.2024.124994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Lipid-based nanocarriers have been in continuous development as strategies to enhance drug delivery efficiency. Liposomes are delivery systems primarily composed of phospholipids and cholesterol (or other suitable stabilizers) that have transformed the pharmaceutical field by improving drug targeting and release control. The success of this technology is strongly attributed to phospholipids, which are components of cell membranes, forming a biocompatible system. Nevertheless, drawbacks related to their production cost and stability under certain conditions led to the development of niosomes by replacing phospholipids with non-ionic surfactants. Both liposomes and niosomes have been widely studied and optimized for the delivery of bioactive agents targeting many diseases, including cancer. They can improve the efficacy of cancer therapy by reducing toxicity and off-target effects. Due to the complexity of this disease, many approaches should be considered, and the composition and physical properties of liposomes and niosomes influence the outcomes. In this review, we discuss the role of liposomes and niosomes in delivering bioactives for cancer therapy, emphasizing their specific characteristics, associated challenges, and the latest advancements aimed at enhancing their effectiveness.
Collapse
Affiliation(s)
- Helena de A C Kodel
- Rede Nordeste de Biotecnologia-RENORBIO, University of Tiradentes, Farolândia, 49010-390, Aracaju, Sergipe, Brazil
| | - Paria Alizadeh
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Samad N Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Tatiane O X Machado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Jorge de Viterbo Ferreira, 4050-313, Porto, Portugal; Department of Agroindustry, Federal Institute of Sertão Pernambucano, Campus Petrolina Zona Rural, PE 647, Km 22, PISNC N4, 56302-970, Petrolina, Pernambuco, Brazil
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Faezeh Fathi
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
3
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
4
|
Yang Z, Zuo Q, Liu R, Wu H, Chen J, Xiong L, Jia J, Xiang Z. The efficiency of liposomal paclitaxel versus docetaxel in neoadjuvant chemotherapy with the TPF regimen for locally advanced nasopharyngeal carcinoma: a retrospective study. Front Oncol 2024; 14:1465038. [PMID: 39450259 PMCID: PMC11499222 DOI: 10.3389/fonc.2024.1465038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose This retrospective study aimed to explore the efficiency and untoward reaction of liposomal paclitaxel versus docetaxel for locally advanced nasopharyngeal carcinoma (NPC). Methods This retrospective study included 115 patients diagnosed with NPC at our hospital between January 2018 and December 2021. Patients were stratified into two groups based on their treatment with either liposomal paclitaxel (n = 71) or docetaxel (n = 44) as part of the neoadjuvant chemotherapy regimen. Objective response rate (ORR), progression-free survival (PFS), locoregional relapse-free survival (LRFS), distant metastasis-free survival (DMFS), and overall survival (OS) were compared between the two groups. Results ORR was significantly improved in the liposomal paclitaxel group than in the docetaxel group (62.0% versus 40.9%, p = 0.028). The 3-year PFS (PFS: 84.4% versus 77.5%, p = 0.303), LRFS (95.8% versus 94.4%, p = 0.810), DMFS (87.2% versus 83.0%, p = 0.443), and OS (90.7% versus 88.8%, p = 0.306) revealed no significance. The neutrophil-to-lymphocyte ratio [hazard ratio (HR): 3.510; p = 0.039] and distant metastasis (HR: 4.384; p = 0.035) were regarded as the risk factors using multivariate regression analysis. Moreover, the incidence of leukopenia at grades 1-2 in the liposomal paclitaxel group was significantly lower than that in the docetaxel group (28.1% versus 79.5%, p < 0.05). Conclusions Liposomal paclitaxel had better efficacy in terms of short-term effects and lower incidence of leukopenia at grades 1-2 compared with the docetaxel group.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Quan Zuo
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Rong Liu
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Hui Wu
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Jia Chen
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Li Xiong
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Jieqi Jia
- Department of Otolaryngology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Zhibi Xiang
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| |
Collapse
|
5
|
Kumari NU, Pardhi E, Chary PS, Mehra NK. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy. Ther Deliv 2024; 15:279-303. [PMID: 38374774 DOI: 10.4155/tde-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Breast cancer (BC) is a heterogeneous disease with various morphological features, clinicopathological conditions and responses to different therapeutic options, which is responsible for high mortality and morbidity in women. The heterogeneity of BC necessitates new strategies for diagnosis and treatment, which is possible only by cautious harmonization of the advanced nanomaterials. Recent developments in vesicular nanocarrier therapy indicate a paradigm shift in breast cancer treatment by providing an integrated approach to address current issues. This review provides a detailed classification of various nanovesicles in the treatment of BC with a special emphasis on recent advances, challenges in translating nanomaterials and future potentials.
Collapse
Affiliation(s)
- Nalla Usha Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
6
|
Tian Y, Guo H, Hu Y, Yang P, Liu Y, Zhang Z, Ding P, Zheng T, Fan L, Zhang Z, Li Y, Zhao Q. Safety and efficacy of robotic-assisted versus laparoscopic distal gastrectomy after neoadjuvant chemotherapy for advanced gastric cancer. Surg Endosc 2023; 37:6761-6770. [PMID: 37221415 DOI: 10.1007/s00464-023-10122-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Robot-assisted distal gastrectomy (RADG) has been used in the minimally invasive surgical treatment of gastric cancer, but the research on advanced gastric cancer (AGC) after neoadjuvant chemotherapy (NAC) has not been reported. This study aimed to analyze the outcomes of RADG versus laparoscopic distal gastrectomy (LDG) after NAC for AGC. METHODS This was a retrospective propensity score-matched analysis from February 2020 and March 2022. Patients who underwent RADG or LDG for AGC (cT3-4a/N +) following NAC were enrolled and a propensity score-matched analysis was performed in a 1:1 manner. The patients were divided into RADG group and LDG group. The clinicopathological characteristics and short-term outcomes were observed. RESULTS After propensity score matching, 67 patients each in the RADG and LDG groups. RADG was associated with a lower intraoperative blood loss (35.6 vs. 118.8 ml, P = 0.014) and more retrieved lymph nodes (LNs) (50.7 vs. 39.5, P < 0.001), more extraperigastric (18.3 vs. 10.4, P < 0.001), and suprapancreatic LNs (16.33 vs. 13.70, P = 0.042). The RADG group showed lower VAS scores at postoperative 24 h (2.2 vs 3.3, P = 0.034), earlier ambulation (1.3 vs. 2.6, P = 0.011), aerofluxus time (2.2 vs. 3.6, P = 0.025), and shorter postoperative hospital stay (8.3 vs. 9.8, P = 0.004). There were no significant differences in the operative time (216.7 vs.194.7 min, P = 0.204) and postoperative complications between the two groups. CONCLUSION RADG may be a potential therapeutic option for patients with AGC after NAC considering its advantages in perioperative period compared with LDG.
Collapse
Affiliation(s)
- Yuan Tian
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Honghai Guo
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Yiyang Hu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Peigang Yang
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Yang Liu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ze Zhang
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Pingan Ding
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Tao Zheng
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Liqiao Fan
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Zhidong Zhang
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Yong Li
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, No.12, Jian-Kang Road, Shijiazhuang, 050011, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
7
|
Fatima Qizilbash F, Sartaj A, Qamar Z, Kumar S, Imran M, Mohammed Y, Ali J, Baboota S, Ali A. Nanotechnology revolutionises breast cancer treatment: harnessing lipid-based nanocarriers to combat cancer cells. J Drug Target 2023; 31:794-816. [PMID: 37525966 DOI: 10.1080/1061186x.2023.2243403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
One of the most common cancers that occur in females is breast cancer. Despite the significant leaps and bounds that have been made in treatment of breast cancer, the disease remains one of the leading causes of death among women and a major public health challenge. The therapeutic efficacy of chemotherapeutics is hindered by chemoresistance and toxicity. Nano-based lipid drug delivery systems offer controlled drug release, nanometric size and site-specific targeting. Breast cancer treatment includes surgery, chemotherapy and radiotherapy. Despite this, no single method of treatment for the condition is currently effective due to cancer stem cell metastasis and chemo-resistance. Therefore, the employment of nanocarrier systems is necessary in order to target breast cancer stem cells. This article addresses breast cancer treatment options, including modern treatment procedures such as chemotherapy, etc. and some innovative therapeutic options highlighting the role of lipidic nanocarriers loaded with chemotherapeutic drugs such as nanoemulsion, solid-lipid nanoparticles, nanostructured lipid carriers and liposomes, and their investigations have demonstrated that they can limit cancer cell growth, reduce the risk of recurrence, as well as minimise post-chemotherapy metastasis. This article also explores FDA-approved lipid-based nanocarriers, commercially available formulations, and ligand-based formulations that are being considered for further research.
Collapse
Affiliation(s)
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
- Lloyd School of Pharmacy, Greater Noida, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
8
|
Pei Q, Jiang B, Hao D, Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharm Sin B 2023; 13:3252-3276. [PMID: 37655323 PMCID: PMC10465968 DOI: 10.1016/j.apsb.2023.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023] Open
Abstract
Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity. The self-assembled PTX nanoparticles possess a high drug content and could incorporate various functional molecules for enhancing the therapeutic index. In this work, we summarize the self-assembly strategy for diverse nanodrugs of PTX. Then, the advancement of nanodrugs for tumor therapy, especially emphasis on mono-chemotherapy, combinational therapy, and theranostics, have been outlined. Finally, the challenges and potential improvements have been briefly spotlighted.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
10
|
Wenhao Zhou, Hu H, Wang T. Study on Modification of Paclitaxel and Its Antitumor Preparation. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
11
|
Lopez-Mendez TB, Strippoli R, Trionfetti F, Calvo P, Cordani M, Gonzalez-Valdivieso J. Clinical Trials Involving Chemotherapy-Based Nanocarriers in Cancer Therapy: State of the Art and Future Directions. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Simón-Gracia L, Scodeller P, Fisher WS, Sidorenko V, Steffes VM, Ewert KK, Safinya CR, Teesalu T. Paclitaxel-Loaded Cationic Fluid Lipid Nanodiscs and Liposomes with Brush-Conformation PEG Chains Penetrate Breast Tumors and Trigger Caspase-3 Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56613-56622. [PMID: 36521233 PMCID: PMC9879205 DOI: 10.1021/acsami.2c17961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel approaches are required to address the urgent need to develop lipid-based carriers of paclitaxel (PTX) and other hydrophobic drugs for cancer chemotherapy. Carriers based on cationic liposomes (CLs) with fluid (i.e., chain-melted) membranes (e.g., EndoTAG-1) have shown promise in preclinical and late-stage clinical studies. Recent work found that the addition of a cone-shaped poly(ethylene glycol)-lipid (PEG-lipid) to PTX-loaded CLs (CLsPTX) promotes a transition to sterically stabilized, higher-curvature (smaller) nanoparticles consisting of a mixture of PEGylated CLsPTX and PTX-containing fluid lipid nanodiscs (nanodiscsPTX). These CLsPTX and nanodiscsPTX show significantly improved uptake and cytotoxicity in cultured human cancer cells at PEG coverage in the brush regime (10 mol % PEG-lipid). Here, we studied the PTX loading, in vivo circulation half-life, and biodistribution of systemically administered CLsPTX and nanodiscsPTX and assessed their ability to induce apoptosis in triple-negative breast-cancer-bearing immunocompetent mice. We focused on fluid rather than solid lipid nanodiscs because of the significantly higher solubility of PTX in fluid membranes. At 5 and 10 mol % of a PEG-lipid (PEG5K-lipid, molecular weight of PEG 5000 g/mol), the mixture of PEGylated CLsPTX and nanodiscsPTX was able to incorporate up to 2.5 mol % PTX without crystallization for at least 20 h. Remarkably, compared to preparations containing 2 and 5 mol % PEG5K-lipid (with the PEG chains in the mushroom regime), the particles at 10 mol % (with PEG chains in the brush regime) showed significantly higher blood half-life, tumor penetration, and proapoptotic activity. Our study suggests that increasing the PEG coverage of CL-based drug nanoformulations can improve their pharmacokinetics and therapeutic efficacy.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, 28049, Madrid, Spain
| | - William S. Fisher
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Valeria Sidorenko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Victoria M. Steffes
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Kai K. Ewert
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R. Safinya
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
He B, Yang Q. Recent Development of LDL-Based Nanoparticles for Cancer Therapy. Pharmaceuticals (Basel) 2022; 16:ph16010018. [PMID: 36678515 PMCID: PMC9863478 DOI: 10.3390/ph16010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Low-density lipoprotein (LDL), a natural lipoprotein transporting cholesterol in the circulatory system, has been a possible drug carrier for targeted delivery. LDL can bind to the LDL receptor (LDLR) with its outside apolipoprotein B-100 and then enter the cell via LDLR-mediated endocytosis. This targeting function inspires researchers to modify LDL to deliver different therapeutic drugs. Drugs can be loaded in the surficial phospholipids, hydrophobic core, or apolipoprotein for the structure of LDL. In addition, LDL-like synthetic nanoparticles carrying therapeutic drugs are also under investigation for the scarcity of natural LDL. In addition to being a carrier, LDL can also be a targeting molecule, decorated to the surface of synthetic nanoparticles loaded with cytotoxic compounds. This review summarizes the properties of LDL and the different kinds of LDL-based delivery nanoparticles, their loading strategies, and the achievements of the recent anti-tumor advancement.
Collapse
|
14
|
Qian X, Hu W, Yan J. Nano-Chemotherapy synergize with immune checkpoint inhibitor- A better option? Front Immunol 2022; 13:963533. [PMID: 36016946 PMCID: PMC9395615 DOI: 10.3389/fimmu.2022.963533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) is one of the most important tumor treatment methods. Although the therapeutic efficiency of immune checkpoint inhibitor mono-therapy is limited, the combination of chemotherapy plus immune checkpoint inhibitors has shown great advantages in cancer treatment. This is mainly due to the fact that tumor reactive T cells could fully provide their anti-tumor function as chemotherapy could not only cause immunogenic cell death to increase antigen presentation, but also improve the immunosuppressive tumor micro-environment to synergize with immune checkpoint inhibitors. However, traditional chemotherapy still has shortcomings such as insufficient drug concentration in tumor region, short drug duration, drug resistance, major adverse events, etc, which might lead to the failure of the therapy. Nano chemotherapeutic drugs, which refer to chemotherapeutic drugs loaded in nano-based drug delivery system, could overcome the above shortcomings of traditional chemotherapeutic drugs to further improve the therapeutic effect of immune checkpoint inhibitors on tumors. Therefore, the scheme of nano chemotherapeutic drugs combined with immune checkpoint inhibitors might lead to improved outcome of cancer patients compared with the scheme of traditional chemotherapy combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- School of Clinical Medicine, Tsinghua University, Beijing, China
- *Correspondence: Xinye Qian,
| | - Wang Hu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for Overcoming Cancer Drug Resistance. Pharmaceutics 2022; 14:pharmaceutics14081606. [PMID: 36015232 PMCID: PMC9412887 DOI: 10.3390/pharmaceutics14081606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Clinically, cancer drug resistance to chemotherapy, targeted therapy or immunotherapy remains the main impediment towards curative cancer therapy, which leads directly to treatment failure along with extended hospital stays, increased medical costs and high mortality. Therefore, increasing attention has been paid to nanotechnology-based delivery systems for overcoming drug resistance in cancer. In this respect, novel tumor-targeting nanomedicines offer fairly effective therapeutic strategies for surmounting the various limitations of chemotherapy, targeted therapy and immunotherapy, enabling more precise cancer treatment, more convenient monitoring of treatment agents, as well as surmounting cancer drug resistance, including multidrug resistance (MDR). Nanotechnology-based delivery systems, including liposomes, polymer micelles, nanoparticles (NPs), and DNA nanostructures, enable a large number of properly designed therapeutic nanomedicines. In this paper, we review the different mechanisms of cancer drug resistance to chemotherapy, targeted therapy and immunotherapy, and discuss the latest developments in nanomedicines for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Jiayue Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Yuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Fengbo Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| |
Collapse
|
16
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
17
|
Paclitaxel Drug Delivery Systems: Focus on Nanocrystals' Surface Modifications. Polymers (Basel) 2022; 14:polym14040658. [PMID: 35215570 PMCID: PMC8875890 DOI: 10.3390/polym14040658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent that belongs to the taxane family and which was approved to treat various kinds of cancers including breast cancer, ovarian cancer, advanced non-small-cell lung cancer, and acquired immunodeficiency syndrome (AIDS)-related Kaposi’s sarcoma. Several delivery systems for PTX have been developed to enhance its solubility and pharmacological properties involving liposomes, nanoparticles, microparticles, micelles, cosolvent methods, and the complexation with cyclodextrins and other materials that are summarized in this article. Specifically, this review discusses deeply the developed paclitaxel nanocrystal formulations. As PTX is a hydrophobic drug with inferior water solubility properties, which are improved a lot by nanocrystal formulation. Based on that, many studies employed nano-crystallization techniques not only to improve the oral delivery of PTX, but IV, intraperitoneal (IP), and local and intertumoral delivery systems were also developed. Additionally, superior and interesting properties of PTX NCs were achieved by performing additional modifications to the NCs, such as stabilization with surfactants and coating with polymers. This review summarizes these delivery systems by shedding light on their route of administration, the methods used in the preparation and modifications, the in vitro or in vivo models used, and the advantages obtained based on the developed formulations.
Collapse
|
18
|
Zhang J, Pan Y, Shi Q, Zhang G, Jiang L, Dong X, Gu K, Wang H, Zhang X, Yang N, Li Y, Xiong J, Yi T, Peng M, Song Y, Fan Y, Cui J, Chen G, Tan W, Zang A, Guo Q, Zhao G, Wang Z, He J, Yao W, Wu X, Chen K, Hu X, Hu C, Yue L, Jiang D, Wang G, Liu J, Yu G, Li J, Bai J, Xie W, Zhao W, Wu L, Zhou C. Paclitaxel liposome for injection (Lipusu) plus cisplatin versus gemcitabine plus cisplatin in the first-line treatment of locally advanced or metastatic lung squamous cell carcinoma: A multicenter, randomized, open-label, parallel controlled clinical study. Cancer Commun (Lond) 2022; 42:3-16. [PMID: 34699693 PMCID: PMC8753311 DOI: 10.1002/cac2.12225] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lipusu is the first commercialized liposomal formulation of paclitaxel and has demonstrated promising efficacy against locally advanced lung squamous cell carcinoma (LSCC) in a small-scale study. Here, we conducted a multicenter, randomized, phase 3 study to compare the efficacy and safety of cisplatin plus Lipusu (LP) versus cisplatin plus gemcitabine (GP) as first-line treatment in locally advanced or metastatic LSCC. METHODS Patients enrolled were aged between 18 to 75 years, had locally advanced (clinical stage IIIB, ineligible for concurrent chemoradiation or surgery) or metastatic (Stage IV) LSCC, had no previous systemic chemotherapy and at least one measurable lesion as per the Response Evaluation Criteria in Solid Tumors (version 1.1) before administration of the trial drug. The primary endpoint was progression-free survival (PFS). The secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety profiles. To explore the possible predictive value of plasma cytokines for LP treatment, plasma samples were collected from the LP group at baseline and first efficacy evaluation time and were then subjected to analysis by 45-Plex ProcartaPlex Panel 1 to detect the presence of 45 cytokines using the Luminex xMAP technology. The correlation between treatment outcomes and dynamic changes in the levels of cytokines were evaluated in preliminary analyses. RESULTS The median duration of follow-up was 15.4 months. 237 patients in the LP group and 253 patients in the GP group were included in the per protocol set (PPS). In the PPS, the median PFS was 5.2 months versus 5.5 months in the LP and GP group (hazard ratio [HR]: 1.03, P = 0.742) respectively. The median OS was 14.6 months versus 12.5 months in the LP and GP group (HR: 0.83, P = 0.215). The ORR (41.8% versus 45.9%, P = 0.412) and DCR (90.3% versus 88.1%, P = 0.443) were also similar between the LP and GP group. A significantly lower proportion of patients in the LP group experienced adverse events (AEs) leading to treatment interruptions (10.9% versus 26.4%, P < 0.001) or treatment termination (14.3% versus 23.1%, P = 0.011). The analysis of cytokine levels in the LP group showed that low baseline levels of 27 cytokines were associated with an increased ORR, and 15 cytokines were associated with improved PFS, with 14 cytokines, including TNF-α, IFN-γ, IL-6, and IL-8, demonstrating an overlapping trend. CONCLUSION The LP regimen demonstrated similar PFS, OS, ORR and DCR as the GP regimen for patients with locally advanced or metastatic LSCC but had more favorable toxicity profiles. The study also identified a spectrum of different cytokines that could be potentially associated with the clinical benefit in patients who received the LP regimen.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Yueyin Pan
- Department of Chemotherapy, Anhui Provincial Hospital, Hefei, Anhui, 230001, P. R. China
| | - Qin Shi
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, P. R. China
| | - Guojun Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Liyan Jiang
- Department of Respiration, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xiaorong Dong
- Cancer Center, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Kangsheng Gu
- Department of Medical Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Huijuan Wang
- Department of Respiration, Henan Cancer Hospital, Zhengzhou, Henan, 450008, P. R. China
| | - Xiaochun Zhang
- Department of Medical Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P. R. China
| | - Nong Yang
- Department of Medical Oncology, Hunan Cancer Hospital, Changsha, Hunan, 410013, P. R. China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical College, Shangcai village, Wenzhou, Zhejiang, 325000, P. R. China
| | - Jianping Xiong
- Department of Medical Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Tienan Yi
- Department of Medical Oncology, Xiang Yang Central Hospital, Xiangyang, Hubei, 441021, P. R. China
| | - Min Peng
- Department of Medical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Yong Song
- Department of Respiration, General Hospital of Eastern Theater Command of Chinese People's Liberation Army, Nanjing, Jiangsu, 210002, P. R. China
| | - Yun Fan
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, P. R. China
| | - Jiuwei Cui
- Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, 130021, P. R. China
| | - Gongyan Chen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, P. R. China
| | - Wei Tan
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong, 261000, P. R. China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071030, P. R. China
| | - Qisen Guo
- Department of Internal Medicine, Shandong Cancer Hospital & Institute, Jinan, Shandong, 250117, P. R. China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, P. R. China
| | - Ziping Wang
- Department of Medical Oncology, Beijing Cancer Hospital, Beijing, 100142, P. R. China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, P. R. China
| | - Wenxiu Yao
- Department of Chemotherapy, Sichuan Cancer Hospital & Institute, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaohong Wu
- Department of Medical Oncology, the Fourth People's Hospital of Wuxi, Wuxi, Jiangsu, 214062, P. R. China
| | - Kai Chen
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Xiaohua Hu
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Chunhong Hu
- Department of Medical Oncology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, P. R. China
| | - Lu Yue
- Department of Medical Oncology, Qingdao Municipal Hospital, Qingdao, Shandong, 266071, P. R. China
| | - Da Jiang
- Department of Medical Oncology, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, P. R. China
| | - Guangfa Wang
- Department of Respiratory Medicine, Peking University First Hospital, Beijing, 100034, P. R. China
| | - Junfeng Liu
- Department of Thoracic Surgery, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, P. R. China
| | - Guohua Yu
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong, 261000, P. R. China
| | - Junling Li
- Cancer Hospital Chinese Academy of Medical Sciences, Beijing, 100021, P. R. China
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Wenmin Xie
- Nanjing Luye Pharmaceutical Co., Ltd, Nanjing, Jiangsu, 210061, P. R. China
| | - Weihong Zhao
- Nanjing Luye Pharmaceutical Co., Ltd, Nanjing, Jiangsu, 210061, P. R. China
| | - Lihong Wu
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, 214104, P. R. China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| |
Collapse
|
19
|
Singh D, Kaur P, Attri S, Singh S, Sharma P, Mohana P, Kaur K, Kaur H, Singh G, Rashid F, Singh D, Kumar A, Rajput A, Bedi N, Singh B, Buttar HS, Arora S. Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy. Curr Drug Deliv 2021; 19:560 - 586. [PMID: 34906056 DOI: 10.2174/1567201818666211214112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
The conventional anticancer chemotherapies not only cause serious toxic effects, but also produce resistance in tumor cells exposed to long-term therapy. Usually, the killing of metastasized cancer cells requires long-term therapy with higher drug doses, because the cancer cells develop resistance due to the induction of poly-glycoproteins (P-gps) that act as a transmembrane efflux pump to transport drugs out of the cells. During the last few decades, scientists have been exploring new anticancer drug delivery systems such as microencapsulation, hydrogels, and nanotubes to improve bioavailability, reduce drug-dose requirement, decrease multiple drug resistance, and to save normal cells as non-specific targets. Hopefully, the development of novel drug delivery vehicles (nanotubes, liposomes, supramolecules, hydrogels, and micelles) will assist to deliver drug molecules at the specific target site and reduce the undesirable side effects of anticancer therapies in humans. Nanoparticles and lipid formulations are also designed to deliver small drug payload at the desired tumor cell sites for their anticancer actions. This review will focus on the recent advances in the drug delivery systems, and their application in treating different cancer types in humans.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Pallavi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga. India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario. Canada
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
20
|
Prajapati MK, Pai R, Vavia P. Tuning ligand number to enhance selectivity of paclitaxel liposomes towards ovarian cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
de Lázaro I, Mooney DJ. Obstacles and opportunities in a forward vision for cancer nanomedicine. NATURE MATERIALS 2021; 20:1469-1479. [PMID: 34226688 DOI: 10.1038/s41563-021-01047-7] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/01/2021] [Indexed: 05/14/2023]
Abstract
Cancer nanomedicines were initially envisioned as magic bullets, travelling through the circulation to target tumours while sparing healthy tissues the toxicity of classic chemotherapy. While a limited number of nanomedicine therapies have resulted, the disappointing news is that major obstacles were overlooked in the nanoparticle's journey. However, some of these challenges may be turned into opportunities. Here, we discuss biological barriers to cancer nanomedicines and elaborate on two directions that the field is currently exploring to meet its initial expectations. The first strategy entails re-engineering cancer nanomedicines to prevent undesired interactions en route to the tumour. The second aims instead to leverage these obstacles into out-of-the-box diagnostic and therapeutic applications of nanomedicines, for cancer and beyond. Both paths require, among other developments, a deeper understanding of nano-bio interactions. We offer a forward look at how classic cancer nanomedicine may overcome its limitations while contributing to other areas of research.
Collapse
Affiliation(s)
- Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
22
|
Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021; 13:5346. [PMID: 34771511 PMCID: PMC8582402 DOI: 10.3390/cancers13215346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Since the commercialization of morphine in 1826, numerous alkaloids have been isolated and exploited effectively for the betterment of mankind, including cancer treatment. However, the commercialization of alkaloids as anticancer agents has generally been limited by serious side effects due to their lack of specificity to cancer cells, indiscriminate tissue distribution and toxic formulation excipients. Lipid-based nanoparticles represent the most effective drug delivery system concerning clinical translation owing to their unique, appealing characteristics for drug delivery. To the extent of our knowledge, this is the first review to compile in vitro and in vivo evidence of encapsulating anticancer alkaloids in lipid-based nanoparticles. Alkaloids encapsulated in lipid-based nanoparticles have generally displayed enhanced in vitro cytotoxicity and an improved in vivo efficacy and toxicity profile than free alkaloids in various cancers. Encapsulated alkaloids also demonstrated the ability to overcome multidrug resistance in vitro and in vivo. These findings support the broad application of lipid-based nanoparticles to encapsulate anticancer alkaloids and facilitate their clinical translation. The review then discusses several limitations of the studies analyzed, particularly the discrepancies in reporting the pharmacokinetics, biodistribution and toxicity data. Finally, we conclude with examples of clinically successful encapsulated alkaloids that have received regulatory approval and are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
23
|
Mishra K, Jain AK. Liposomes: An Emerging Approach for the Treatment of Cancer. Curr Pharm Des 2021; 27:2398-2414. [PMID: 33823772 DOI: 10.2174/1381612827666210406141449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Conventional drug delivery agents for a life-threatening disease, i.e., cancer, lack specificity towards cancer cells, producing a greater degree of side effects in the normal cells with a poor therapeutic index. These toxic side effects often limit dose escalation of anti-cancer drugs, leading to incomplete tumor suppression/ cancer eradication, early disease relapse, and ultimately, the development of drug resistance. Accordingly, targeting the tumor vasculatures is essential for the treatment of cancer. OBJECTIVE To search and describe a safer drug delivery carrier for the treatment of cancer with reduced systemic toxicities. METHOD Data were collected from Medline, PubMed, Google Scholar, Science Direct using the following keywords: 'liposomes', 'nanocarriers', 'targeted drug delivery', 'ligands', 'liposome for anti-cancerous drugs', 'treatment for cancer' and 'receptor targeting.' RESULTS Liposomes have provided a safe platform for the targeted delivery of encapsulated anti-cancer drugs for the treatment of cancer, which results in the reduction of the cytotoxic side effects of anti-cancer drugs on normal cells. CONCLUSION Liposomal targeting is a better emerging approach as an advanced drug delivery carrier with targeting ligands for anti-cancer agents.
Collapse
Affiliation(s)
- Keerti Mishra
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Akhlesh K Jain
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| |
Collapse
|
24
|
Martínez-Relimpio AM, Benito M, Pérez-Izquierdo E, Teijón C, Olmo RM, Blanco MD. Paclitaxel-Loaded Folate-Targeted Albumin-Alginate Nanoparticles Crosslinked with Ethylenediamine. Synthesis and In Vitro Characterization. Polymers (Basel) 2021; 13:2083. [PMID: 34202848 PMCID: PMC8272094 DOI: 10.3390/polym13132083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Among the different ways to reduce the secondary effects of antineoplastic drugs in cancer treatment, the use of nanoparticles has demonstrated good results due to the protection of the drug and the possibility of releasing compounds to a specific therapeutic target. The α-isoform of the folate receptor (FR) is overexpressed on a significant number of human cancers; therefore, folate-targeted crosslinked nanoparticles based on BSA and alginate mixtures and loaded with paclitaxel (PTX) have been prepared to maximize the proven antineoplastic activity of the drug against solid tumors. Nanometric-range-sized particles (169 ± 28 nm-296 ± 57 nm), with negative Z-potential values (between -0.12 ± 0.04 and -94.1± 0.4), were synthesized, and the loaded PTX (2.63 ± 0.19-3.56 ±0.13 µg PTX/mg Np) was sustainably released for 23 and 27 h. Three cell lines (MCF-7, MDA-MB-231 and HeLa) were selected to test the efficacy of the folate-targeted PTX-loaded BSA/ALG nanocarriers. The presence of FR on the cell membrane led to a significantly larger uptake of BSA/ALG-Fol nanoparticles compared with the equivalent nanoparticles without folic acid on their surface. The cell viability results demonstrated a cytocompatibility of unloaded nanoparticle-Fol and a gradual decrease in cell viability after treatment with PTX-loaded nanoparticle-Fol due to the sustainable PTX release.
Collapse
Affiliation(s)
- Ana María Martínez-Relimpio
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Marta Benito
- Fundación San Juan de Dios, Centro de Ciencias de la Salud San Rafael, Universidad de Nebrija, Paseo de La Habana, 70, 28036 Madrid, Spain;
| | - Elena Pérez-Izquierdo
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - César Teijón
- Nursing Department, Faculty of Nursing, Physiotherapy and Podiatry, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Rosa María Olmo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.M.O.); (M.D.B.)
| | - María Dolores Blanco
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.M.O.); (M.D.B.)
| |
Collapse
|
25
|
Diab T, Alkafaas SS, Shalaby TI, Hessien M. Paclitaxel Nanoparticles Induce Apoptosis and Regulate TXR1, CYP3A4 and CYP2C8 in Breast Cancer and Hepatoma Cells. Anticancer Agents Med Chem 2021; 20:1582-1591. [PMID: 32364081 DOI: 10.2174/1871520620666200504071530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Although the anticancer potentials of water-insoluble drugs are improved by nanoformulation, other intervening factors may contribute in the drug efficacy. This work was designated to explore the effect of paclitaxel-loaded Poly(Lactic-co-Glycolic Acid) (PLGA) nanoparticles on the viability of cancer cells, the expression of Taxol Resistance gene I (TXR1) and paclitaxel metabolizing genes. METHODS Paclitaxel loaded PLGA Nanoparticles (PTX-NPs) were prepared, physically characterized and used in the treatment of breast adenocarcinoma cells (MCF-7) and hepatoma cells (HepG2). Cells viability and apoptosis were investigated. In parallel, RNA was isolated, reverse transcribed and used to monitor the expression levels of TXR1, CYP 3A4 and CYP2C8 genes. RESULTS PTX-NPs were characterized by transmission electron microscopy to be of a nano-size sphere-like shape. FTIR analysis revealed good coupling between PTX and PLGA. The encapsulation efficiency was 99% and the drug release demonstrated a progressive releasing phase followed by slower and sustained releasing phases. Although HepG2 cells demonstrated more resistance to PTX than MCF-7 cells, both cell types were more responsive to PTX-NPS compared to PTX. The IC50 values decreased from 19.3 to 6.7 in breast cancer cells and from 42.5 to 13.1μg/ml in hepatoma cells. The apoptosis was the key mechanism in both cells, where at least 44% of cells underwent apoptosis. The expression of TXR1 decreased when either cells were treated with PTX-NPs, respectively, meanwhile the expressions of CYP3A4 and CYP2C8 were increased. CONCLUSION Taken together, this in vitro study reports the associations between the enhanced responsiveness of MCF-7 and HepG2 cells to PLGA-loaded paclitaxel nanoparticles and the accompanying decrease in the cells resistance to the PTX and its enhanced metabolism.
Collapse
Affiliation(s)
- Thoria Diab
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Samar S Alkafaas
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed Hessien
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
26
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
27
|
Voci S, Gagliardi A, Molinaro R, Fresta M, Cosco D. Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels 2021; 7:33. [PMID: 33804970 PMCID: PMC8103278 DOI: 10.3390/gels7020033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
The discovery of paclitaxel (PTX) has been a milestone in anti-cancer therapy and has promoted the development and marketing of various formulations that have revolutionized the therapeutic approach towards several malignancies. Despite its peculiar anti-cancer activity, the physico-chemical properties of PTX compromise the administration of the compound in polar media. Because of this, since the development of the first Food and Drug Administration (FDA)-approved formulation (Taxol®), consistent efforts have been made to obtain suitable delivery systems able to preserve/increase PTX efficacy and to overcome the side effects correlated to the presence of some excipients. The exploitation of natural polymers as potential materials for drug delivery purposes has favored the modulation of the bioavailability and the pharmacokinetic profiles of the drug, and in this regard, several formulations have been developed that allow the controlled release of the active compound. In this mini-review, the recent advances concerning the design and applications of natural polymer-based hydrogels containing PTX-loaded biocompatible nanocarriers are discussed. The technological features of these formulations as well as the therapeutic outcome achieved following their administration will be described, demonstrating their potential role as innovative systems to be used in anti-tumor therapy.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | | | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| |
Collapse
|
28
|
Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021; 16. [DOI: 10.1088/1748-605x/abe35a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
|
29
|
Zhou H, Yan J, Chen W, Yang J, Liu M, Zhang Y, Shen X, Ma Y, Hu X, Wang Y, Du K, Li G. Population Pharmacokinetics and Exposure-Safety Relationship of Paclitaxel Liposome in Patients With Non-small Cell Lung Cancer. Front Oncol 2021; 10:1731. [PMID: 33614470 PMCID: PMC7892953 DOI: 10.3389/fonc.2020.01731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Paclitaxel liposome (Lipusu) is the first commercialized liposomal formulation of paclitaxel. There has been little data collected on the pharmacokinetics (PK) of paclitaxel liposome, especially in relation to patient use. This study aimed to build a population pharmacokinetic (PopPK) model and further explore the exposure–safety relationship for paclitaxel liposome in patients with non-small cell lung cancer (NSCLC). Methods Data from 45 patients with a total of 349 plasma concentrations were analyzed. The PopPK model was built using the non-linear mixed effect modeling technique. Results The PK of paclitaxel liposome were well described by a three-compartment model with first-order elimination. For a dose of 175 mg m–2, the estimated clearance of total plasma paclitaxel was 21.55 L h–1. Age, sex, body weight, total bilirubin, albumin, serum creatinine, and creatinine clearance did not influence the paclitaxel PK. Exposure to paclitaxel had no significant change in the presence of the traditional Chinese medicine, aidi injection. The exploratory exposure–safety relationship was well described by a generalized linear regression model. Higher probabilities of grade >1 neutropenia were observed in patients with higher exposure to paclitaxel. Conclusion This PopPK model adequately described the PK of paclitaxel liposome in patients with NSCLC. Predicted exposure of paclitaxel did not change in the presence of the traditional Chinese medicine, aidi injection. The exposure–safety analysis suggested that a higher risk of neutropenia was correlated with higher exposure to paclitaxel.
Collapse
Affiliation(s)
- Haiyan Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Yang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Liu
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Shen
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinglin Ma
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kehe Du
- Quality Assurance Department, Iphase Pharma Services, Beijing, China
| | - Guohui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Norouzi M, Hardy P. Clinical applications of nanomedicines in lung cancer treatment. Acta Biomater 2021; 121:134-142. [PMID: 33301981 DOI: 10.1016/j.actbio.2020.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Owing to a lack of early-stage diagnosis, most lung cancers are detected in advanced stages, limiting the available therapeutic options. Moreover, extensive systemic chemotherapy of lung tumors is often associated with severe off-target toxicity and drug resistance of cancer cells, thus diminishing the outcomes of chemotherapy modalities. In this light, nanomedicines have opened an alternative avenue to develop more efficacious therapeutic platforms while addressing several current challenges. Clinical findings have revealed that nanomedicines improve the pharmacokinetics and biodistribution of the therapeutic agents while decreasing their systemic toxicity. This review provides an update on nanomedicines that have been clinically approved or are undergoing clinical trials for treatment of lung cancer. By discussing the clinical findings of the current nanoformulations, this review provides prospects for the development of more efficacious nanomedicines to improve the clinical outcomes of lung cancer treatment.
Collapse
|
31
|
Chen S, Song Z, Feng R. Recent Development of Copolymeric Nano-Drug Delivery System for Paclitaxel. Anticancer Agents Med Chem 2020; 20:2169-2189. [PMID: 32682385 DOI: 10.2174/1871520620666200719001038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Background:
Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic
effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse
pharmacokinetic property limit its clinical application.
Objective:
To review the recent progress on the PTX delivery systems.
Methods:
In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly
includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or
further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic
property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent
progress on the nano-drug delivery system for PTX since 2011.
Results:
The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic
property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its
activities against cancer are also comparable or high when compared with the commercial formulation.
Conclusion:
Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping
or enhancing its activity and improving its pharmacokinetic property.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| |
Collapse
|
32
|
Dhupal M, Chowdhury D. Phytochemical-Based Nanomedicine for Advanced Cancer Theranostics: Perspectives on Clinical Trials to Clinical Use. Int J Nanomedicine 2020; 15:9125-9157. [PMID: 33244231 PMCID: PMC7683832 DOI: 10.2147/ijn.s259628] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/12/2020] [Indexed: 12/24/2022] Open
Abstract
In the current chapter, a new strategic compilation of phytochemicals with potent antitumor properties has been addressed, most importantly focusing on cell cycle arrest and apoptotic signaling mechanism. A promising approach in tumor prevention is to eliminate cancer cells preferably via cell cycle arrest and programmed cell death with lesser harm to neighboring normal cells. Cancer cells have a survival advantage to escape apoptosis and relentlessly divide to proliferate, gearing up the cell cycle process. Recently, the use of phytochemical-derived conjugated chemotherapeutic agents has increased dramatically owing to its biocompatibility, low cytotoxicity, low resistance, and dynamic physiochemical properties discriminating normal cells in the treatment of various cancer types. For decades, biomedical investigations have targeted cell cycle and apoptotic cell death mechanism as an effective cancer-killing tool for systemically assessing the potential biological interactions of functional phytocompounds compared to its synthetic counterparts during their complete life cycles from entry, biodistribution, cellular/molecular interactions to excretion. Newly emerging nanotechnology application in anticancer drug formulations has revolutionized cancer therapy. Tissue-specific phyto-nanomedicine plays a vital role in advanced cancer diagnostics using liposome, micelle, and nanoparticles as a precise and effective delivery vehicle. This chapter specifically focuses on the therapeutic phytomolecules approved by the Food and Drug Administration (FDA, USA) along with phyto-chemopreventives currently on clinical trials (Phase-I/II/III/IV). Besides, detailed coverage is given to the FDA-approved nanotechnology-based formulations only in the areas of cancer theranostics via cell cycle arrest and apoptotic pathways including present challenges and future perspectives.
Collapse
Affiliation(s)
- Madhusmita Dhupal
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju26426, Republic of Korea
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati781035, India
| |
Collapse
|
33
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
34
|
Shi M, Gu A, Tu H, Huang C, Wang H, Yu Z, Wang X, Cao L, Shu Y, Wang H, Yang R, Li X, Chang J, Hu Y, Shen P, Hu Y, Guo Z, Tao M, Zhang Y, Liu X, Sun Q, Zhang X, Jiang Z, Zhao J, Chen F, Yu H, Zhang W, Sun J, Li D, Zhou J, Han B, Wu YL. Comparing nanoparticle polymeric micellar paclitaxel and solvent-based paclitaxel as first-line treatment of advanced non-small-cell lung cancer: an open-label, randomized, multicenter, phase III trial. Ann Oncol 2020; 32:85-96. [PMID: 33130217 DOI: 10.1016/j.annonc.2020.10.479] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Polymeric micellar paclitaxel (pm-Pac) is a novel Cremophor EL-free, nanoparticle micellar formulation of paclitaxel. We aimed to compare the efficacy and safety between pm-Pac plus cisplatin and solvent-based paclitaxel (sb-Pac) plus cisplatin in advanced non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS A total of 448 stage IIIB to IV NSCLC patients were randomly assigned (2:1) to receive six 3-week cycles of either pm-Pac (230 mg/m2) plus cisplatin (70 mg/m2; n = 300), followed by dose escalation of pm-Pac to 300 mg/m2 from the second 3-week cycle if prespecified toxic effects were not observed after the first cycle, or sb-Pac (175 mg/m2) plus cisplatin (70 mg/m2; n = 148). The primary end point was objective response rate (ORR) assessed by independent review committees (IRCs). The secondary end points included IRC-assessed progression-free survival (PFS), overall survival (OS), and safety. RESULTS Patients in the pm-Pac-plus-cisplatin group showed significant improvements in IRC-assessed ORR compared with those in the sb-Pac-plus-cisplatin group (50% versus 26%; rate ratio 1.91; P < 0.0001). Additionally, subgroup analysis showed that a higher ORR was consistently observed in both squamous and nonsquamous histological types. IRC-assessed median PFS was significantly higher in the pm-Pac-plus-cisplatin group than in the sb-Pac-plus-cisplatin group (6.4-month versus 5.3-month; hazard ratio 0.63; P = 0.0001). Median OS was not significantly different between the two groups. The incidence of treatment-related serious adverse events (9% versus 18%; P = 0.0090) was significantly lower in the pm-Pac-plus-cisplatin group than in the sb-Pac-plus-cisplatin group. CONCLUSION Pm-Pac plus cisplatin yielded superior ORR and PFS along with a favorable safety profile and should become an option for patients with advanced NSCLC. CLINICAL TRIAL IDENTIFIER ClinicalTrials.gov NCT02667743; https://clinicaltrials.gov/ct2/show/NCT02667743.
Collapse
Affiliation(s)
- M Shi
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - A Gu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - H Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - C Huang
- Department of Thoracic Oncology, Fujian Cancer Hospital, The Affiliated Cancer Hospital of Fujian Medical University, Fuzhou, China
| | - H Wang
- Department of Medical Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Z Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - X Wang
- Department of Chemotherapy, Qilu Hospital of Shandong University, Jinan, China
| | - L Cao
- Department of Pneumology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, China
| | - Y Shu
- Department of Oncology, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - H Wang
- Department of Medical Oncology, Tianjin Union Medical Centre, Tianjin, China
| | - R Yang
- Department of Tumor Chemotherapy, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - X Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - J Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Y Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, China
| | - P Shen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Y Hu
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Z Guo
- Department of Pneumology, Shanghai East Hospital, The Affiliated East Hospital of Tongji University, Shanghai, China
| | - M Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Y Zhang
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - X Liu
- Department of Medical Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, China
| | - Q Sun
- Department of Medical Oncology, Henan Provincial Chest Hospital, Zhengzhou, China
| | - X Zhang
- Department of Pneumology, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | - Z Jiang
- Department of Medical Oncology, Puyang Oilfield General Hospital, Puyang, China
| | - J Zhao
- Department of Medical Oncology, The Affiliated Hospital of Qinghai University, Xining, China
| | - F Chen
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - H Yu
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - W Zhang
- Shanghai Yizhong Biotechnical Co., Ltd., Shanghai, China
| | - J Sun
- Shanghai Yizhong Biotechnical Co., Ltd., Shanghai, China
| | - D Li
- Shanghai Yizhong Biotechnical Co., Ltd., Shanghai, China
| | - J Zhou
- Shanghai Yizhong Biotechnical Co., Ltd., Shanghai, China
| | - B Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Y L Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
35
|
Lipid-Based Drug Delivery Nanoplatforms for Colorectal Cancer Therapy. NANOMATERIALS 2020; 10:nano10071424. [PMID: 32708193 PMCID: PMC7408503 DOI: 10.3390/nano10071424] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is a prevalent disease worldwide, and patients at late stages of CRC often suffer from a high mortality rate after surgery. Adjuvant chemotherapeutics (ACs) have been extensively developed to improve the survival rate of such patients, but conventionally formulated ACs inevitably distribute toxic chemotherapeutic drugs to healthy organs and thus often trigger severe side effects. CRC cells may also develop drug resistance following repeat dosing of conventional ACs, limiting their effectiveness. Given these limitations, researchers have sought to use targeted drug delivery systems (DDSs), specifically the nanotechnology-based DDSs, to deliver the ACs. As lipid-based nanoplatforms have shown the potential to improve the efficacy and safety of various cytotoxic drugs (such as paclitaxel and vincristine) in the clinical treatment of gastric cancer and leukemia, the preclinical progress of lipid-based nanoplatforms has attracted increasing interest. The lipid-based nanoplatforms might be the most promising DDSs to succeed in entering a clinical trial for CRC treatment. This review will briefly examine the history of preclinical research on lipid-based nanoplatforms, summarize the current progress, and discuss the challenges and prospects of using such approaches in the treatment of CRC.
Collapse
|
36
|
Xiao D, Zhou R. Advances in the Application of Liposomal Nanosystems in Anticancer Therapy. Curr Stem Cell Res Ther 2020; 16:14-22. [PMID: 32324519 DOI: 10.2174/1574888x15666200423093906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023]
Abstract
Cancer is the disease with the highest mortality rate, which poses a great threat to people's lives. Cancer caused approximately 3.4 million death worldwide annually. Surgery, chemotherapy and radiotherapy are the main therapeutic methods in clinical practice. However, surgery is only suitable for patients with early-stage cancers, and chemotherapy as well as radiotherapy have various side effects, both of which limit the application of available therapeutic methods. In 1965, liposome was firstly developed to form new drug delivery systems given the unique properties of nanoparticles, such as enhanced permeability and retention effect. During the last 5 decades, liposome has been widely used for the purpose of anticancer drug delivery, and several advances have been made regarding liposomal technology, including long-circulating liposomes, active targeting liposomes and triggered release liposomes, while problems exist all along. This review introduced the advances as well as the problems during the development of liposomal nanosystems for cancer therapy in recent years.
Collapse
Affiliation(s)
- Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Banskota S, Saha S, Bhattacharya J, Kirmani N, Yousefpour P, Dzuricky M, Zakharov N, Li X, Spasojevic I, Young K, Chilkoti A. Genetically Encoded Stealth Nanoparticles of a Zwitterionic Polypeptide-Paclitaxel Conjugate Have a Wider Therapeutic Window than Abraxane in Multiple Tumor Models. NANO LETTERS 2020; 20:2396-2409. [PMID: 32125864 DOI: 10.1021/acs.nanolett.9b05094] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Small-molecule therapeutics demonstrate suboptimal pharmacokinetics and bioavailability due to their hydrophobicity and size. One way to overcome these limitations-and improve their efficacy-is to use "stealth" macromolecular carriers that evade uptake by the reticuloendothelial system. Although unstructured polypeptides are of increasing interest as macromolecular drug carriers, current recombinant polypeptides in the clinical pipeline typically lack stealth properties. We address this challenge by developing new unstructured polypeptides, called zwitterionic polypeptides (ZIPPs), that exhibit "stealth" behavior in vivo. We show that conjugating paclitaxel to a ZIPP imparts amphiphilicity to the polypeptide chain that is sufficient to drive its self-assembly into micelles. This in turn increases the half-life of paclitaxel by 17-fold compared to free paclitaxel, and by 1.6-fold compared to the nonstealth control, i.e., ELP-paclitaxel. Treatment of mice bearing highly aggressive prostate or colon cancer with a single dose of ZIPP-paclitaxel nanoparticles leads to near-complete eradication of the tumor, and these nanoparticles have a wider therapeutic window than Abraxane, an FDA-approved taxane nanoformulation.
Collapse
Affiliation(s)
- Samagya Banskota
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Soumen Saha
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jayanta Bhattacharya
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, North Carolina 27708, United States
| | - Parisa Yousefpour
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Michael Dzuricky
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nikita Zakharov
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Xinghai Li
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ivan Spasojevic
- Department of Medicine, Pharmaceutical Research PK/PD Core Laboratory, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kenneth Young
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
38
|
Dexamethasone simulates the anticancer effect of nano-formulated paclitaxel in breast cancer cells. Bioorg Chem 2020; 99:103792. [PMID: 32240873 DOI: 10.1016/j.bioorg.2020.103792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/12/2020] [Accepted: 03/22/2020] [Indexed: 02/08/2023]
Abstract
Although the chemosensitizing effect of Dexamethasone (DEX) and its ability to increase the sensitivity of breast cancer cells to chemotherapy were previously reported, this study aimed to explore how far cotreatment of breast cancer cells with paclitaxel (PTX) and DEX mimics the anticancer effect of nanoformulated PTX. To establish this goal, PTX was nanoformulated with poly (lactic-co-glycolic acid) (PLGA) and the nanoparticles (PTX-NPs) were physically authenticated. Breast cancer cells (MCF-7) were treated with PTX or PTX-NPs in presence or absence of low concentration (10 nM) of DEX. Cells viability (assessed by MTT assay), apoptosis (assessed by flow cytometry) and the expression of PTX resistance gene (TRX1) and PTX metabolizing genes (CYP2C8 and CYP3A4) were investigated. The results showed that nanoformulated PTX was validated by nano-size assessment, increased the anionic surface charge and prober conjugation with the biodegradable carrier (PLGA), as indicated by the FTIR spectroscopy. Initially, the IC50 value of PTX was 19.3 μg/ml and cotreatment with DEX minimized it to 5.22 μg/ml, whereas PTX-NPs alone inhibited cell proliferation with IC50 6.67 μg/ml. Also, in presence of DEX, PTX-NPs further decreased the IC50 to 5 μg/ml. In parallel, DEX has increased the responsiveness of cells to PTX without potentiating its apoptotic effect. Moreover, the glucocorticoid (with PTX or PTX-NPs) downregulated TXR1 gene by 26% (P < 0.01) and 28.4% (P < 0.05) respectively. Similarly, the mRNA level of CYP3A4 significantly decreased in presence of DEX. The main PTX metabolizing gene CYP2C8, in contrast, was upregulated, especially in cells cotreated with PTX/DEX (P < 0.001). Conclusively, the study reports that cotreatment of breast cancer cells with submolar concentration of DEX acts as similar as the nanoformulated PTX, possibly through its modulatory effects on the expression of the main PTX metabolizing gene (CYP2C8) and downregulating Taxol resistance gene.
Collapse
|
39
|
Chou PL, Huang YP, Cheng MH, Rau KM, Fang YP. Improvement of Paclitaxel-Associated Adverse Reactions (ADRs) via the Use of Nano-Based Drug Delivery Systems: A Systematic Review and Network Meta-Analysis. Int J Nanomedicine 2020; 15:1731-1743. [PMID: 32210563 PMCID: PMC7075337 DOI: 10.2147/ijn.s231407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Paclitaxel is wildly used in chemotherapy, however, the adverse drug reactions (ADRs) occurred frequently. Various novel nano-based paclitaxel delivery systems were developed. The aim performed systemically review and meta-analyses to evaluate the effect adverse drug reactions (ADRs) of paclitaxel and its nano-based delivery systems. Methods Systematically searched PubMed, Embase, Web of Science, Cochrane, Clinicalkey, Clinicaltrial.com, ASCO and ESMO. Data of adverse effect were analyzed to odds ratio (ORs) with 95% confidence interval (CI). The quality of studies was assessed with CASP Randomised Controlled Trial Checklist. Statistical analysis was used WinBUGS software (version 1.4.3) with the NetMetaXL interface (version 1.6.1). Results Twenty-one studies, including 7011 patients and 6 paclitaxel formulations fulfilled the inclusion criteria. In all grade hypersensitivity reactions, comparing to SB-P, people with Lip-P had 0.19 times (95% CI= 0.02, 1.3) of chance, with Nab-P had 0.47 times (95% CI= 0.11, 1.40) of chance, with PPX had 0.44 times (95% CI= 0.03, 5.7) of chance for all grade adverse effect. In All grad neutropenia, comparing to Lip-P, people with SB-P had 0.83 times (95% CI= 0.15, 4.81) of chance for all grade adverse effect; comparing to PM-P, people with SB-P had 0.73 times (95% CI= 0.22, 2.42) of chance for all grade adverse effect. In leucopenia, comparing to Nab-P, people with SB-P had 0.66 times (95% CI= 0.50, 0.87) of chance for all grade adverse effect; comparing to PM-P, people with SB-P had 0.64 times (95% CI= 0.32, 1.16) of chance for all grade adverse effect. The rate of incidence in peripheral sensory neuropathy, myalgias and arthralgias tend to no significant differences between different formulations. Conclusion Nano-based paclitaxel delivery resulted in fewer hypersensitivity reactions than solvent-based delivery. However, the incidence of neutropenia and leucopenia was higher in nano-based than solvent-based paclitaxel delivery. Dose-dependent ADRs were more frequent in paclitaxel anticancer treatment.
Collapse
Affiliation(s)
- Pi-Ling Chou
- School of Nursing, College of Nursing, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ping Huang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacy, Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
| | - Meng-Hsuan Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Ming Rau
- Department of Hematology-Oncology, E-Da Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Ping Fang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medical and Cell Therapy Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Han B, Yang Y, Chen J, Tang H, Sun Y, Zhang Z, Wang Z, Li Y, Li Y, Luan X, Li Q, Ren Z, Zhou X, Cong D, Liu Z, Meng Q, Sun F, Pei J. Preparation, Characterization, and Pharmacokinetic Study of a Novel Long-Acting Targeted Paclitaxel Liposome with Antitumor Activity. Int J Nanomedicine 2020; 15:553-571. [PMID: 32158208 PMCID: PMC6986409 DOI: 10.2147/ijn.s228715] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background Breast cancer is the leading cause of cancer death in women. Chemotherapy to inhibit the proliferation of cancer cells is considered to be the most important therapeutic strategy. The development of long-circulating PEG and targeting liposomes is a major advance in drug delivery. However, the techniques used in liposome preparation mainly involve conventional liposomes, which have a short half-life, high concentrations in the liver and spleen reticuloendothelial system, and no active targeting. Methods Four kinds of paclitaxel liposomes were prepared and characterized by various analytical techniques. The long-term targeting effect of liposomes was verified by fluorescence detection methods in vivo and in vitro. Pharmacokinetic and acute toxicity tests were conducted in ICR mice to evaluate the safety of different paclitaxel preparations. The antitumor activity of ES-SSL-PTX was investigated in detail using in vitro and in vivo human breast cancer MCF-7 cell models. Results ER-targeting liposomes had a particle size of 137.93±1.22 nm and an acceptable encapsulation efficiency of 88.07±1.25%. The liposome preparation is best stored at 4°C, and is stable for up to 48 hrs. Cytotoxicity test on MCF-7 cells demonstrated the stronger cytotoxic activity of liposomes in comparison to free paclitaxel. We used the near-infrared fluorescence imaging technique to confirm that ES-SSL-PTX was effectively targeted and could quickly and specifically identify the tumor site. Pharmacokinetics and acute toxicity in vivo experiments were carried out. The results showed that ES-SSL-PTX could significantly prolong the half-life of the drug, increase its circulation time in vivo, improve its bioavailability and reduce its toxicity and side effects. ES-SSL-PTX can significantly improve the pharmacokinetic properties of paclitaxel, avoid allergic reaction of the original solvent, increase antitumor efficacy and reduce drug toxicity and side effects. Conclusion ES-SSL-PTX has great potential for improving the treatment of breast cancer, thereby improving patient prognosis and quality of life.
Collapse
Affiliation(s)
- Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yue Yang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China.,Department of Pharmacy, Ministry of Health Service, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jinglin Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yuxin Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Zheng Zhang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Zeng Wang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yan Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yao Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Xue Luan
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Qianwen Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Zhihui Ren
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Xiaowei Zhou
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Dengli Cong
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Zhiyi Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Qin Meng
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Fei Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| |
Collapse
|
41
|
Peng Y, Bariwal J, Kumar V, Tan C, Mahato RI. Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Peng
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Jitender Bariwal
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Virender Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University MS 38677 USA
| | - Ram I. Mahato
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
42
|
Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0055-y] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
In recent years, disease treatment has evolved strategies that require increase in pharmaceutical agent’s efficacy and selectivity while decreasing their toxicity in normal tissues. These requirements have led to the development of nanoscale liposome systems for drug release. This review focuses on lipid features, pharmacological properties of liposomal formulations and the clinical studies of their application.
Main body
Several lipids are available, but their properties could affect pharmacological or clinical efficiency of drug formulations. Many liposomal formulations have been developed and are currently on the market. Proper selection of lipid is essential for the pharmacological effect to be improved. Most of the formulations use mainly zwitterionic, cationic or anionic lipids, PEG and/or cholesterol, which have different effects on stability, pharmacokinetics and delivery of the drug formulation. Clinical trials have shown that liposomes are pharmacologically and pharmacokinetically more efficient than drug-alone formulations in treating acute myeloid leukemia, hepatitis A, pain management, ovary, gastric breast and lung cancer, among others.
Conclusion
Liposomal formulations are less toxic than drugs alone and have better pharmacological parameters. Although they seem to be the first choice for drug delivery systems for various diseases, further research about dosage regimen regarding dose and time needs to be carried out.
Collapse
|
43
|
Han G, Shi J, Mi L, Li N, Shi H, Li C, Shan B, Yin F. Clinical efficacy and safety of paclitaxel liposomes as first-line chemotherapy in advanced gastric cancer. Future Oncol 2019; 15:1617-1627. [PMID: 31038363 DOI: 10.2217/fon-2018-0439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/11/2019] [Indexed: 01/19/2023] Open
Abstract
Aim: To compare the performance of first-line paclitaxel liposome + oxaliplatin and SOX (tegafur/gimeracil/oteracil + oxaliplatin) in advanced gastric cancer patients. Materials & methods: Stage IIb-IV gastric cancer patients underwent either first-line paclitaxel liposome + oxaliplatin (n = 52) or SOX (n = 69) between 2010-2013, and followed up until 2015 or death. Results: Both groups had similar objective response rate (p = 0.48) and disease control rate (p = 0.992) after two chemotherapy cycles, median progression-free survival (p = 0.495) and median overall survival (p = 0.208). Liposome group had significantly lower rate of grade I-II platelet decline and liver function damage (p = 0.04 and 0.019). Multivariate COX regression identified pre-treatment neutrophil-to-lymphocyte ratio as an independent prognostic factor. Conclusion: First-line paclitaxel liposome + oxaliplatin has comparable efficacy, but causes reduced adverse reactions in advanced gastric cancer as compared with SOX.
Collapse
Affiliation(s)
- Guangjie Han
- Department of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Heibei, PR China
| | - Jianfei Shi
- Department of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Heibei, PR China
| | - Lili Mi
- Department of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Heibei, PR China
| | - Ning Li
- Department of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Heibei, PR China
| | - Huacun Shi
- Department of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Heibei, PR China
| | - Cuizhen Li
- Department of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Heibei, PR China
| | - Baoen Shan
- Department of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Heibei, PR China
| | - Fei Yin
- Department of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Heibei, PR China
| |
Collapse
|
44
|
Liu SL, Sun XS, Li XY, Chen QY, Lin HX, Wen YF, Guo SS, Liu LT, Xie HJ, Tang QN, Liang YJ, Yan JJ, Lin C, Yang ZC, Tang LQ, Guo L, Mai HQ. Liposomal paclitaxel versus docetaxel in induction chemotherapy using Taxanes, cisplatin and 5-fluorouracil for locally advanced nasopharyngeal carcinoma. BMC Cancer 2018; 18:1279. [PMID: 30572856 PMCID: PMC6302514 DOI: 10.1186/s12885-018-5192-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Background We wished to evaluate the efficacy and safety of liposomal paclitaxel and docetaxel for induction chemotherapy (IC) for nasopharyngeal carcinoma (NPC). Methods A total of 1498 patients with newly-diagnosed NPC between 2009 and 2017 treated with IC plus concurrent chemotherapy were included in our observational study. Overall survival (OS), progression-free survival (PFS), locoregional relapse-free survival (LRFS), distant metastasis-free survival (DMFS) and grade-3–4 toxicities were compared between groups using propensity score matching (PSM). Results In total, 767 patients were eligible for this study, with 104 (13.6%) and 663 (86.4%) receiving a liposomal paclitaxel-based and docetaxel-based taxanes, cisplatin and 5-fluorouracil (TPF) regimen, respectively. PSM identified 103 patients in the liposomal-paclitaxel group and 287 patients in the docetaxel group. There was no significant difference at 3 years for OS (92.2% vs. 93.9%, P = 0.942), PFS (82.6% vs. 81.7%, P = 0.394), LRFS (94.7% vs. 93.3%, P = 0.981) or DMFS (84.6% vs. 87.4%, P = 0.371) between the two groups after PSM. Significant interactions were not observed between the effect of chemotherapy regimen and sex, age, T stage, N stage, overall stage, or Epstein–Barr virus DNA level in the subgroup multivariate analysis. The prevalence of grade-3–4 leukopenia and neutropenia in the liposomal-paclitaxel group was significantly lower than that of the docetaxel group (P < 0.05 for all). Conclusions Compared with docetaxel, liposomal paclitaxel has identical anti-tumor efficacy, but causes fewer and milder adverse reactions in IC for NPC.
Collapse
Affiliation(s)
- Sai-Lan Liu
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Xue-Song Sun
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiao-Yun Li
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Qiu-Yan Chen
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Huan-Xin Lin
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Radiotherapy, Sun Yat-sen University Cancer Center
- , Guangzhou, Guangdong Province, People's Republic of China
| | - Yue-Feng Wen
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Shan-Shan Guo
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Li-Ting Liu
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Hao-Jun Xie
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Qing-Nan Tang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Yu-Jing Liang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Jin-Jie Yan
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Chao Lin
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhen-Chong Yang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Lin-Quan Tang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Ling Guo
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
45
|
A cabazitaxel liposome for increased solubility, enhanced antitumor effect and reduced systemic toxicity. Asian J Pharm Sci 2018; 14:658-667. [PMID: 32104492 PMCID: PMC7032206 DOI: 10.1016/j.ajps.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/27/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
The potential side effects of cabazitaxel (CBZ) in the field of cancer treatment have become a great limitation to its further clinical application. Liposomal delivery is a well-established approach to increase the therapeutic index of hydrophobic drugs. In this study, a PEG-modified liposome was developed for efficiently encapsulating CBZ, thus enhancing its specific tumor inhibition effect and reducing the systemic toxicity. It was found that the loading efficiency of CBZ into the liposome could be improved with the increase of lipophilic materials, as it could be over 80% under the weight ratio of 20:1 (total lipid: CBZ). The diameter of CBZ loaded liposome (CBZ@Lipo) was ∼100 nm. And the liposome suspending in aqueous medium was stable at 4 °C for at least one month, according to the change of its size distribution. The killing ability of CBZ@Lipo to cancer cells was significantly lower comparing to that of CBZ solution, which could be attributed to the slow release of CBZ from the liposomes. However, CBZ@Lipo could induce an obvious apoptosis of the cancer cells at low concentration. Furthermore, CBZ@Lipo exhibited an expressively enhanced tumor growth inhibition effect comparing to CBZ solution. More importantly, CBZ@Lipo showed an obviously higher biosafety proved by lower hemolysis probability, stable body weight of mice during the whole experiment and no obvious lesion in histology analysis. Our work provided a useful reference of the formulation of CBZ, which had potential for greater clinical application.
Collapse
|
46
|
Gilabert-Oriol R, Ryan GM, Leung AWY, Firmino NS, Bennewith KL, Bally MB. Liposomal Formulations to Modulate the Tumour Microenvironment and Antitumour Immune Response. Int J Mol Sci 2018; 19:ijms19102922. [PMID: 30261606 PMCID: PMC6213379 DOI: 10.3390/ijms19102922] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
Tumours are complex systems of genetically diverse malignant cells that proliferate in the presence of a heterogeneous microenvironment consisting of host derived microvasculature, stromal, and immune cells. The components of the tumour microenvironment (TME) communicate with each other and with cancer cells, to regulate cellular processes that can inhibit, as well as enhance, tumour growth. Therapeutic strategies have been developed to modulate the TME and cancer-associated immune response. However, modulating compounds are often insoluble (aqueous solubility of less than 1 mg/mL) and have suboptimal pharmacokinetics that prevent therapeutically relevant drug concentrations from reaching the appropriate sites within the tumour. Nanomedicines and, in particular, liposomal formulations of relevant drug candidates, define clinically meaningful drug delivery systems that have the potential to ensure that the right drug candidate is delivered to the right area within tumours at the right time. Following encapsulation in liposomes, drug candidates often display extended plasma half-lives, higher plasma concentrations and may accumulate directly in the tumour tissue. Liposomes can normalise the tumour blood vessel structure and enhance the immunogenicity of tumour cell death; relatively unrecognised impacts associated with using liposomal formulations. This review describes liposomal formulations that affect components of the TME. A focus is placed on formulations which are approved for use in the clinic. The concept of tumour immunogenicity, and how liposomes may enhance radiation and chemotherapy-induced immunogenic cell death (ICD), is discussed. Liposomes are currently an indispensable tool in the treatment of cancer, and their contribution to cancer therapy may gain even further importance by incorporating modulators of the TME and the cancer-associated immune response.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Gemma M Ryan
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Ada W Y Leung
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6N 3P8, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - Natalie S Firmino
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Marcel B Bally
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6N 3P8, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Centre for Drug Research and Development, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
47
|
Zhang Q, Wang J, Zhang H, Liu D, Ming L, Liu L, Dong Y, Jian B, Cai D. The anticancer efficacy of paclitaxel liposomes modified with low-toxicity hydrophobic cell-penetrating peptides in breast cancer: an in vitro and in vivo evaluation. RSC Adv 2018; 8:24084-24093. [PMID: 35539172 PMCID: PMC9081855 DOI: 10.1039/c8ra03607a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/18/2018] [Indexed: 12/02/2022] Open
Abstract
In our recent study, hydrophobic cell-penetrating peptides (CPPs) were demonstrated as an effective method of improving cancer treatment. To provide more evidence and broaden the application range for this promising strategy of improving cancer treatment, novel hydrophobic CPP-modified (PFV-modified) nanoliposomes loaded with paclitaxel, termed PFV-Lip-PTX, were developed as a treatment for breast cancer. Physicochemical evaluations of PFV-Lip-PTX revealed spheroid-like regular vesicles of about 120 nm in diameter with negative charge. An in vitro release study indicated that PTX was released from the liposomes in a controlled and sustained manner. A cellular uptake study indicated that PFV-Lip-PTX exhibited higher internalization efficiency in MCF-7 cells than non-modified liposomes. It was also demonstrated that PFV modification improved the cytotoxicity of PTX via a hydrophobic interaction between the PFV-Lip and cell lipid membranes compared with non-modified liposomes. Moreover, in vivo studies demonstrated that the PFV-modified liposomes led to highly efficient targeting and accumulation in an MCF-7 xenograft tumor and improved the antitumor efficacy of PTX. Finally, PFV-Lip-PTX showed low systemic toxicity evidenced by fewer changes in the body weights of mice and no visible histological changes in major healthy organs. Therefore, our results indicate that PFV-Lip-PTX has great potential in tumor-targeting and effective antitumor treatment.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University Qiqihar 161006 P. R. China +86-452-2663376
| | - Jing Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University Qiqihar 161006 P. R. China +86-452-2663376
| | - Hao Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University Qiqihar 161006 P. R. China +86-452-2663376
| | - Dan Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University Qiqihar 161006 P. R. China +86-452-2663376
| | - Linlin Ming
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 P. R. China
| | - Lei Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University Qiqihar 161006 P. R. China +86-452-2663376
| | - Yan Dong
- College of Pharmacy, Qiqihar Medical University Qiqihar 161006 P. R. China
| | - Baiyu Jian
- College of Pharmacy, Qiqihar Medical University Qiqihar 161006 P. R. China
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University Qiqihar 161006 P. R. China +86-452-2663376
| |
Collapse
|
48
|
Membrane Loaded Copper Oleate PEGylated Liposome Combined with Disulfiram for Improving Synergistic Antitumor Effect In Vivo. Pharm Res 2018; 35:147. [DOI: 10.1007/s11095-018-2414-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022]
|
49
|
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules 2018; 23:E907. [PMID: 29662019 PMCID: PMC6017847 DOI: 10.3390/molecules23040907] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022] Open
Abstract
Cancer is a life-threatening disease contributing to ~3.4 million deaths worldwide. There are various causes of cancer, such as smoking, being overweight or obese, intake of processed meat, radiation, family history, stress, environmental factors, and chance. The first-line treatment of cancer is the surgical removal of solid tumours, radiation therapy, and chemotherapy. The systemic administration of the free drug is considered to be the main clinical failure of chemotherapy in cancer treatment, as limited drug concentration reaches the tumour site. Most of the active pharmaceutical ingredients (APIs) used in chemotherapy are highly cytotoxic to both cancer and normal cells. Accordingly, targeting the tumour vasculatures is essential for tumour treatment. In this context, encapsulation of anti-cancer drugs within the liposomal system offers secure platforms for the targeted delivery of anti-cancer drugs for the treatment of cancer. This, in turn, can be helpful for reducing the cytotoxic side effects of anti-cancer drugs on normal cells. This short-review focuses on the use of liposomes in anti-cancer drug delivery.
Collapse
Affiliation(s)
- Temidayo O B Olusanya
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Rita Rushdi Haj Ahmad
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Daniel M Ibegbu
- Department of Medical Biochemistry, College of Medicine, University of Nigeria Enugu Campus, Nigeria.
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| |
Collapse
|
50
|
Seca AML, Pinto DCGA. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int J Mol Sci 2018; 19:ijms19010263. [PMID: 29337925 PMCID: PMC5796209 DOI: 10.3390/ijms19010263] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer is a multistage process resulting in an uncontrolled and abrupt division of cells and is one of the leading causes of mortality. The cases reported and the predictions for the near future are unthinkable. Food and Drug Administration data showed that 40% of the approved molecules are natural compounds or inspired by them, from which, 74% are used in anticancer therapy. In fact, natural products are viewed as more biologically friendly, that is less toxic to normal cells. In this review, the most recent and successful cases of secondary metabolites, including alkaloid, diterpene, triterpene and polyphenolic type compounds, with great anticancer potential are discussed. Focusing on the ones that are in clinical trial development or already used in anticancer therapy, therefore successful cases such as paclitaxel and homoharringtonine (in clinical use), curcumin and ingenol mebutate (in clinical trials) will be addressed. Each compound’s natural source, the most important steps in their discovery, their therapeutic targets, as well as the main structural modifications that can improve anticancer properties will be discussed in order to show the role of plants as a source of effective and safe anticancer drugs.
Collapse
Affiliation(s)
- Ana M L Seca
- cE3c-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal.
- Department of Chemistry & QOPNA-Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Diana C G A Pinto
- Department of Chemistry & QOPNA-Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|