1
|
Almayouf MA, Charguia R, Awad MA, Ben Bacha A, Ben Abdelmalek I. Nanotherapy for Cancer and Biological Activities of Green Synthesized AgNPs Using Aqueous Saussurea costus Leaves and Roots Extracts. Pharmaceuticals (Basel) 2024; 17:1371. [PMID: 39459011 PMCID: PMC11510687 DOI: 10.3390/ph17101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Nanoparticles derived from medicinal plants are gaining attention for their diverse biological activities and potential therapeutic applications. Methods: This study explored the antioxidant, anti-inflammatory, anti-tumoral, and antimicrobial properties of green synthesized silver nanoparticles (AgNPs) using the aqueous leaf and root extracts of Saussurea costus (S. costus). The physicochemical characterizations of both biosynthesized AgNPs using the aqueous leaf extract (L-AgNPs) and root extract (R-AgNPs) were examined using UV spectroscopy, fluorescence spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, dynamic light scattering, and Fourier-transform infrared spectroscopy. The antioxidant activity measured using ABTS, DPPH, and FRAP assays showed that AgNPs, particularly from roots, had higher activity than aqueous extracts, attributed to phenolic compounds acting as capping and antioxidant agents. Results: Enzyme inhibition studies indicated that AgNPs exhibited remarkable anti-inflammatory effects, inhibiting COX-1, 5-LOX, and secreted PLA2 enzymes by over 99% at 120 µg/mL, comparable to standard drugs. The anti-tumoral effects were evaluated on the human cancer cell lines HCT-116, LoVo, and MDA-MB-231, with AgNPs inhibiting cell proliferation dose-dependently and IC50 values between 42 and 60 µg/mL, demonstrating greater potency than extracts. The AgNPs also showed enhanced antimicrobial activities against various microbial strains, with IC50 values as low as 14 µg/mL, which could be linked to nanoparticle interactions with microbial cell membranes, causing structural damage and cell death. Conclusions: These findings suggest that S. costus-derived AgNPs are promising natural, biodegradable agents for various biological applications and potential new therapeutic agents, necessitating further research to explore their mechanisms and applications.
Collapse
Affiliation(s)
- Mina A. Almayouf
- Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Raihane Charguia
- Department of Physics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Manal A. Awad
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abir Ben Bacha
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Imen Ben Abdelmalek
- Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
2
|
Liu H, Lu Y, Wang X, Wang X, Li R, Lu C, Lan X, Chen Y. Selection and Validation of Reference Genes for RT-qPCR Analysis in Tibetan Medicinal Plant Saussurea Laniceps Callus under Abiotic Stresses and Hormone Treatments. Genes (Basel) 2022; 13:904. [PMID: 35627289 PMCID: PMC9140610 DOI: 10.3390/genes13050904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Real-time quantitative PCR (RT-qPCR) is an important technique for studying gene expression analysis, but accurate and reliable results depend on the use of a stable reference gene. This study proposes to test the expression stability of candidate reference genes in the callus of Saussurea laniceps, a unique Tibetan medicinal plant. Based on the S. laniceps callus transcriptome, eleven candidate reference genes, including TUA2, TUB3, TUB8, TIF3B1, TIF3H1, ELF5A, PP2AA2, UEV1D, UBL5, UBC36, and SKIP1), were validated for RT-qPCR normalization in the callus under abiotic stress (salt, cold, and UV) and hormone treatments (abscisic acid, MeJA, and salicylic acid). The stability of the candidate genes was evaluated in all the samples of S. laniceps. Comprehensive analysis of all samples showed that the best reference genes were UBC36 and UBL5. ELF5A and TIF3B1 were ranked as the most stable genes in the sample sets under abiotic stress. For hormone stimulation, UBC36 and TIF3H1 genes had the best stability. This study provides useful guidelines and a starting point for reference gene selection for expression analysis using RT-qPCR techniques in S. laniceps.
Collapse
Affiliation(s)
- Huan Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Yaning Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Xiaojing Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Xiaowei Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Rongchen Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Cunfu Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China
| | - Yuzhen Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| |
Collapse
|
3
|
Cytotoxic and Antimigration Activity of Etlingera alba (A.D.) Poulsen Rhizome. Adv Pharmacol Pharm Sci 2022; 2021:6597402. [PMID: 34993485 PMCID: PMC8727096 DOI: 10.1155/2021/6597402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Etlingera alba is one of the Etlingera plants that might have anticancer activity. This study aims to investigate the cytotoxic and antimetastatic activity of E. alba rhizome fractions and migration cell assay against MDA-MB-231 cell lines, which are used for triple-negative breast cancer (TNBC) treatment assay. The cytotoxic activity was assayed using CCK-8 assay, while the antimetastatic was assayed using migration cell assay for the fractions A–F. They were followed by LCMS/MS profiling to determine the chemical contents in the most active fraction. According to results obtained, fraction B was the most active fraction for cytotoxic activity with an IC50 value of 65.43 μg/mL, while fraction E was the most active fraction for antimetastasis activity against migration rate doses of 50, 100, and 200 ppm which were 6.80, 3.66, and 3.00%, respectively. Several compounds in fraction B, such as rengyolone, licochalcone A, sugiol, and spinasterol, might have been known to have activity against cancer cells, as well as aschantin and lirioresinol B dimethyl ether from fraction E. In conclusion, the chemical components from E. alba rhizome fractions provided potency for discovering new agents for cancer treatment, specifically for TNBC.
Collapse
|
4
|
Gao J, Wang Y, Lyu B, Chen J, Chen G. Component Identification of Phenolic Acids in Cell Suspension Cultures of Saussureainvolucrata and Its Mechanism of Anti-Hepatoma Revealed by TMT Quantitative Proteomics. Foods 2021; 10:foods10102466. [PMID: 34681515 PMCID: PMC8535732 DOI: 10.3390/foods10102466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Saussurea involucrata (S. involucrata) had been reported to have anti-hepatoma function. However, the mechanism is complex and unclear. To evaluate the anti-hepatoma mechanism of S. involucrata comprehensively and make a theoretical basis for the mechanical verification of later research, we carried out this work. In this study, the total phenolic acids from S. involucrata determined by a cell suspension culture (ESPI) was mainly composed of 4,5-dicaffeoylquinic acid, according to the LC-MS analysis. BALB/c nude female mice were injected with HepG2 cells to establish an animal model of liver tumor before being divided into a control group, a low-dose group, a middle-dose group, a high-dose group, and a DDP group. Subsequently, EPSI was used as the intervention drug for mice. Biochemical indicators and differences in protein expression determined by TMT quantitative proteomics were used to resolve the mechanism after the low- (100 mg/kg), middle- (200 mg/kg), and high-dose (400 mg/kg) interventions for 24 days. The results showed that EPSI can not only limit the growth of HepG2 cells in vitro, but also can inhibit liver tumors significantly with no toxicity at high doses in vivo. Proteomics analysis revealed that the upregulated differentially expressed proteins (DE proteins) in the high-dose group were over three times that in the control group. ESPI affected the pathways significantly associated with the protein metabolic process, metabolic process, catalytic activity, hydrolase activity, proteolysis, endopeptidase activity, serine-type endopeptidase activity, etc. The treatment group showed significant differences in the pathways associated with the renin-angiotensin system, hematopoietic cell lineage, etc. In conclusion, ESPI has a significant anti-hepatoma effect and the potential mechanism was revealed.
Collapse
Affiliation(s)
- Junpeng Gao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Yi Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
- Correspondence:
| |
Collapse
|
5
|
Adnan M, Siddiqui AJ, Hamadou WS, Snoussi M, Badraoui R, Ashraf SA, Jamal A, Awadelkareem AM, Sachidanandan M, Hadi S, Khan MA, Patel M. Deciphering the Molecular Mechanism Responsible for Efficiently Inhibiting Metastasis of Human Non-Small Cell Lung and Colorectal Cancer Cells Targeting the Matrix Metalloproteinases by Selaginella repanda. PLANTS (BASEL, SWITZERLAND) 2021; 10:979. [PMID: 34068885 PMCID: PMC8156211 DOI: 10.3390/plants10050979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/23/2022]
Abstract
Selaginella species are known to have antimicrobial, antioxidant, anti-inflammatory, anti-diabetic as well as anticancer effects. However, no study has examined the cytotoxic and anti-metastatic efficacy of Selaginella repanda (S. repanda) to date. Therefore, this study aimed to evaluate the potential anti-metastatic properties of ethanol crude extract of S. repanda in human non-small-cell lung (A-549) and colorectal cancer (HCT-116) cells with possible mechanisms. Effect of S. repanda crude extract on the growth, adhesion, migration and invasion of the A-549 and HCT-116 were investigated. We demonstrated that S. repanda crude extract inhibited cell growth of metastatic cells in a dose and time dependent manner. Incubation of A-549 and HCT-116 cells with 100-500 µg/mL of S. repanda crude extract significantly inhibited cell adhesion to gelatin coated surface. In the migration and invasion assay, S. repanda crude extract also significantly inhibited cellular migration and invasion in both A-549 and HCT-116 cells. Moreover, reverse transcription-polymerase chain reaction, and real-time PCR (RT-PCR) analysis revealed that the activity and mRNA level of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP) were inhibited. While the activity of tissue inhibitor matrix metalloproteinase 1 (TIMP-1); an inhibitor of MMPs was stimulated by S. repanda crude extract in a concentration-dependent manner. Therefore, the present study not only indicated the inhibition of motility and invasion of malignant cells by S. repanda, but also revealed that such effects were likely associated with the decrease in MMP-2/-9 expression of both A-549 and HCT-116 cells. This further suggests that S. repanda could be used as a potential source of anti-metastasis agent in pharmaceutical development for cancer therapy.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Mushtaq Ahmad Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain 17666, United Arab Emirates
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 394230, India
| |
Collapse
|
6
|
Gong G, Huang J, Yang Y, Qi B, Han G, Zheng Y, He H, Chan K, Tsim KW, Dong TT. Saussureae Involucratae Herba (Snow Lotus): Review of Chemical Compositions and Pharmacological Properties. Front Pharmacol 2020; 10:1549. [PMID: 32009958 PMCID: PMC6971814 DOI: 10.3389/fphar.2019.01549] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Saussureae Involucratae Herba is the dried ground part of Saussurea involucrata (Kar. et Kir.) Sch.-Bip, which is also named as “Snow lotus” and being used in traditional Uyghur and/or Chinese medicine. This rare herb can be found at 4,000 m elevation in western part of Tianshan Mountain, Xinjiang China. According to China Pharmacopoeia (2015), the major pharmaceutical values of “Snow lotus” (Xuě liánhuā in Chinese) are alleviating rheumatoid arthritis, accelerating blood circulation and mitigating other “cold” syndromes. Traditionally, the clinical application of “Snow lotus” includes the treatments in inflammation-associated disorder, blood circulation acceleration and heat and dampness elimination. Recent studies suggested that “Snow lotus” possessed therapeutic effects associating with anti-cancer, anti-oxidation, adipogenesis suppression and neuroprotection activities, which were proposed to be related with its bioactive constitutes, i.e. acacetin, hispidulin, and rutin. In the present review, we aim to summarize pharmacological effects and underlying cell signaling pathways of “Snow lotus” in treating various medical problems.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Jing Huang
- College of Environmental and Biological Engineering, Putian University, Putian, China
| | - Yang Yang
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Baohui Qi
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Guangyi Han
- Gansu Institute for Drug Control, Lanzhou, China
| | - Yuzhong Zheng
- Department of Biology, Hanshan Normal University, Chaozhou, China
| | - Huan He
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Kelvin Chan
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Karl Wk Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Tina Tx Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
7
|
Dai CY, Liao PR, Zhao MZ, Gong C, Dang Y, Qu Y, Qiu LS. Optimization of Ultrasonic Flavonoid Extraction from Saussurea involucrate, and the Ability of Flavonoids to Block Melanin Deposition in Human Melanocytes. Molecules 2020; 25:molecules25020313. [PMID: 31941038 PMCID: PMC7024147 DOI: 10.3390/molecules25020313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
Abstract
(1) Background: Flavonoids are the primary medicinal ingredient of Saussurea involucrate, which have significant antioxidant capacity. Optimizing the extraction of Saussurea involucrate flavonoids (SIFs) and exploring the ability to block melanin deposition caused by reactive oxygen can greatly promote the development of S. involucrate whitening products. (2) Methods: Ultrasonic extraction process was optimized using the Box-Behnken design (BBD) and response surface methodology (RSM). Then, the effect of SIFs on antioxidant activity and anti-deposition of melanin, and genes related to the melanin synthesis are studied. (3) Results: The optimal extraction procedures are as follows: the extraction time, ethanol content, and solvent ratio (v/w) are 64 min, 54%, and 54:1, respectively. The reducing activity and scavenging rates of 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide anion, hydroxyl radical, and ABTS+ were promoted as more S. involucrate flavonoid extract was added. The SIFs extract induced a decrease in the melanin synthesis by inhibiting the human melanoma A375 cell tyrosinase activity. SIFs also depress expression of melanin synthesis related genes. (4) Conclusions: the highest SIFs content was obtained by using 54% ethanol and 54:1 solvent ratio (v/w) for 64 min. The extract of SIFs exhibited good ability of antioxidant and anti-deposition of melanin in human melanocytes.
Collapse
Affiliation(s)
- Chun-Yan Dai
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (C.-Y.D.); (P.-R.L.); (M.-Z.Z.); (C.G.); (Y.D.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming 650500, China
- Kunming University of Science and Technology, Analysis and Testing Center, Kunming 650500, China
| | - Pei-Ran Liao
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (C.-Y.D.); (P.-R.L.); (M.-Z.Z.); (C.G.); (Y.D.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming 650500, China
- Kunming University of Science and Technology, Analysis and Testing Center, Kunming 650500, China
| | - Ming-Zhuo Zhao
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (C.-Y.D.); (P.-R.L.); (M.-Z.Z.); (C.G.); (Y.D.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming 650500, China
- Kunming University of Science and Technology, Analysis and Testing Center, Kunming 650500, China
| | - Chao Gong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (C.-Y.D.); (P.-R.L.); (M.-Z.Z.); (C.G.); (Y.D.)
| | - Yue Dang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (C.-Y.D.); (P.-R.L.); (M.-Z.Z.); (C.G.); (Y.D.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming 650500, China
- Kunming University of Science and Technology, Analysis and Testing Center, Kunming 650500, China
| | - Yuan Qu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (C.-Y.D.); (P.-R.L.); (M.-Z.Z.); (C.G.); (Y.D.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming 650500, China
- Kunming University of Science and Technology, Analysis and Testing Center, Kunming 650500, China
- Correspondence: (Y.Q.); (L.-S.Q.); Tel.: +86-136-6970-6827 (Y.Q.); +86-136-7872-4800 (L.-S.Q.)
| | - Li-Sha Qiu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (C.-Y.D.); (P.-R.L.); (M.-Z.Z.); (C.G.); (Y.D.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming 650500, China
- Kunming University of Science and Technology, Analysis and Testing Center, Kunming 650500, China
- Correspondence: (Y.Q.); (L.-S.Q.); Tel.: +86-136-6970-6827 (Y.Q.); +86-136-7872-4800 (L.-S.Q.)
| |
Collapse
|
8
|
Lu WL, Yang T, Song QJ, Fang ZQ, Pan ZQ, Liang C, Jia DW, Peng PK. Akebia trifoliata (Thunb.) Koidz Seed Extract inhibits human hepatocellular carcinoma cell migration and invasion in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2019; 234:204-215. [PMID: 30528882 DOI: 10.1016/j.jep.2018.11.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The high recurrence rate postoperative and extensive metastases have become the obstacle of Hepatocellular Carcinoma (HCC) efficacy improvements, which contribute to most of the patient mortality. Akebia trifoliata (Thunb.) Koidz has been shown pharmacological activities in clinical and anti-HCC biological activity in previous research, but its potential function of anti-metastasis remains unknown. AIM OF THIS STUDY To make sure whether ATKSE inhibits migration and invasion in HCC cell lines in vitro and the potential mechanism. MATERIALS AND METHODS A UHPLC-HRMS analysis was adopted to identify and control the quality of the ethanol extract of Akebia trifoliata (Thunb.) Koidz Seed (abbreviated ATKSE). Cell viability of three kinds of HCC cell lines (HEPG2, HUH7, and SMMC7721) was detected using MTT assay and Flow cytometry. Adhesion capacity was measured by cell-matrigel adhesion assay. Wounded healing and Matrigel-transwell invasion assays were performed to assess cell migration and invasion, respectively. Western blot assay was used to detect several metastasis-related protein molecules, including FAK adhesion signaling, cadherin molecules, and MMPs. ELISA assay was used to evaluate the secreted MMP9 level. RESULTS ATKSE significantly suppressed HCC cells viability and proliferation (from 0.9 up to 3.0 mg/ml); then under sub-lethal concentration (from 0.25 up to 1.0 mg/ml), ATKSE inhibited cell adhesion, migration, and invasion in a way of dose-dependent. Several metastatic-related molecules or pathway, including FAK adhesion signaling, cadherin molecules, and MMPs, took part in this process. There are both differences and commonalities in various cell lines: typically such as p-FAK was down-regulated by ATKSE in both HEPG2 and SMMC7721, while was raised in HUH7; Further attempts on the combination of ATKSE and FAK inhibitors, provide us with the enhanced inhibitory effects of invasion and migration in HEPG2 and HUH7 cells, as well as antagonistic effects in SMMC7721. As a target or potential mechanism, it may be more valuable to concern FAK inhibition by ATKSE in HEPG2 cells than in the other two cells. CONCLUSIONS These results suggest that ATKSE has anti-metastasis potency in HCC cells.
Collapse
Affiliation(s)
- Wen-Li Lu
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Tao Yang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Qiu-Jia Song
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Zhao-Qin Fang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Zhi-Qiang Pan
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Cao Liang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Dong-Wei Jia
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Pei-Ke Peng
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| |
Collapse
|
9
|
Deng JS, Chang JS, Liao JC, Chao W, Lee MM, Cheng CH, Huang GJ. Actinidia callosa var. callosa suppresses metastatic potential of human hepatoma cell SK-Hep1 by inhibiting matrix metalloproteinase-2 through PI3K/Akt and MAPK signaling pathways. BOTANICAL STUDIES 2018; 59:3. [PMID: 29356905 PMCID: PMC5778090 DOI: 10.1186/s40529-017-0216-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Cancer cell metastasis involving multi-step procedures and cytophysiological property changes may make difficult in the clinical management and death rate increasing. RESULTS In this study, we first observed that ethyl acetate fraction of Actinidia callosa var. callosa (EAAC) carry out a dose-dependent inhibitory effect without cytotoxicity on the mobility and invasion of highly metastatic SK-Hep1 cells. To investigate the EAAC in cancer metastasis, SK-Hep1 cells were treated with EAAC at various concentrations and then subjected to gelatin zymography, casein zymography and western blot to study the impacts of EAAC on metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1/2 (TIMP-1/2), respectively. Our results showed that EAAC treatment may decrease the expressions of MMP-2 and enhance the expression of TIMP-1/2 in a concentration-dependent manner. EAAC also inhibited effect on the phosphorylation of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase/serine/threonine protein kinase [or protein kinase B (PI3K/Akt)] and focal adhesion kinase (FAK). CONCLUSIONS These results indicate that EAAC inhibited SK-Hep1 cell of metastasis by reduced protein level of MMP-2 through the suppression of MAPK and FAK signaling pathway and of the activity of PI3K/Akt. These findings suggest that EAAC may be used as an antimetastatic agent.
Collapse
Affiliation(s)
- Jeng-Shyan Deng
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Jui-Shu Chang
- School of Chinese Medicine, Graduate Institute of Integrated Medicine College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jung-Chun Liao
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wei Chao
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Ming Lee
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chien-Hua Cheng
- Department of Visual Communication Design, Asia University, Taichung, Taiwan
| | - Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Lim EG, Kim GT, Kim BM, Kim EJ, Kim SY, Kim YM. Ethanol extract from Cnidium monnieri (L.) Cusson induces cell cycle arrest and apoptosis via regulation of the p53‑independent pathway in HepG2 and Hep3B hepatocellular carcinoma cells. Mol Med Rep 2017; 17:2572-2580. [PMID: 29207130 DOI: 10.3892/mmr.2017.8183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/12/2017] [Indexed: 11/05/2022] Open
Abstract
Cnidium monnieri (L.) Cusson is a frequently used traditional Chinese medicine that treats gynecological diseases and carbuncles. However, the mechanism of action of C. monnieri remains to be fully elucidated. The present study examined the cell cycle arrest and apoptotic effects resulting from ethanol extract of C. monnieri (CME) in HepG2 (wild‑type p53) and Hep3B (p53‑null) hepatocellular carcinoma cells. An MTT assay was used to confirm the anti‑proliferative effect of CME. The cells were stained with Hoechst 33342 or propidium iodide. It was demonstrated that proliferation of HepG2 cells was suppressed by CME. Cell cycle arrest occurred in the G1 phase following treatment with CME and the number of apoptotic bodies was increased. The expression levels of cell cycle‑associated proteins, including protein kinase B (Akt), glycogen synthase kinase‑3β (GSK‑3β), p53, cyclin E and cyclin‑dependent kinase 2 (CDK2) were determined by western blot analysis. The protein levels of phosphorylated (p)‑Akt, p‑GSK‑3β, p‑MDM2 and cyclin E were decreased, whereas the protein levels of p53, p21 and p‑CDK2 (Thr14/Tyr15) were increased following treatment with CME. Furthermore, treatment or co‑treatment with LY294002 (phosphoinositide‑3‑kinase/Akt inhibitor) or Pifithrin‑α (p53 inhibitor) with CME resulted in CME‑induced G1 arrest which occurred through the p53‑independent signaling pathway in hepatocellular carcinoma cells. In conclusion, CME induces G1 arrest and apoptosis via the Akt/GSK‑3β signaling pathway which is regulated by MDM2‑induced degradation of p21, rather than p53.
Collapse
Affiliation(s)
- Eun Gyeong Lim
- Department of Biological Sciences and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Republic of Korea
| | - Guen Tae Kim
- Department of Biological Sciences and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Republic of Korea
| | - Bo Min Kim
- Department of Biological Sciences and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Republic of Korea
| | - Eun Ji Kim
- Department of Biological Sciences and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Republic of Korea
| | - Sang-Yong Kim
- Department of Food Science and Bio Technology, Shinansan University, Ansan, Gyeonggi‑do 425-792, Republic of Korea
| | - Young Min Kim
- Department of Biological Sciences and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Republic of Korea
| |
Collapse
|
11
|
dela Cruz JF, Kim YS, Lumbera WML, Hwang SG. Viscum Album Var Hot Water Extract Mediates Anti-cancer Effects through G1 Phase Cell Cycle Arrest in SK-Hep1 Human Hepatocarcinoma cells. Asian Pac J Cancer Prev 2016; 16:6417-21. [PMID: 26434853 DOI: 10.7314/apjcp.2015.16.15.6417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Viscum album var (VAV) also known as mistletoe, has long been categorized as a traditional herbal medicine in Asia. In addition to its immunomodulating activities, mistletoe has also been used in the treatment of chronic hepatic disorders in China and Korea. There are numerous reports showing that VAV possesses anti-cancer effects, however influence on human hepatocarcinoma has never been elucidated. In the present study, hot water extracts of VAV was evaluated for its potential anti-cancer effect in vitro. SK-Hep1 cells were treated with VAV (50-400 ug/ml) for both 24 and 48 hours then cell viability was measured by cell counting kit-8 (CCK-8). Flow cytometry analysis was used to measure the proportion of SK-Hep1 in the different stages of cell cycle. RT-PCR and Western blot analysis were conducted to measure expression of cell cycle arrest related genes and proteins respectively. VAV dose dependently inhibited the proliferation of SK-Hep1 cells without any cytotoxicity with normal Chang liver cell (CCL-13). Flow cytometry analysis showed that VAV extract inhibited the cell cycle of SK-Hep1 cells via G1 phase arrest. RT-PCR and Western blot analysis both revealed that cyclin dependent kinase 2 (Cdk2) and cyclin D1 gene expression were significantly down regulated while p21 was upregulated dose dependently by VAV treatment. Combined down regulation of Cdk2, Cyclin D1 and up regulation of p21 can result in cell death. These results indicate that VAV showed evidence of anti-cancer activity through G1 phase cell cycle arrest in SK-Hep1 cells.
Collapse
Affiliation(s)
- Joseph Flores dela Cruz
- Department of Animal Life And Environmental Science, Molecular Biology And Biotechnology, Hankyong National University, Anseong-Si, Korea E-mail :
| | | | | | | |
Collapse
|
12
|
|
13
|
Amini E, Nabiuni M, Baharara J, Parivar K, Asili J. Metastatic Inhibitory and Radical Scavenging Efficacies of Saponins Extracted from the Brittle Star (Ophiocoma erinaceus). Asian Pac J Cancer Prev 2016; 16:4751-8. [PMID: 26107236 DOI: 10.7314/apjcp.2015.16.11.4751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Echinodermata use saponins in chemical defense against pathogens and predators. The molecular mechanisms of antimetastatic effects of brittle star saponins are still unknown. The present study examined antioxidant capacity and invasive ability in HeLa carcinoma cells exposed to brittle star crude saponins. Discolorating methods with DPPH and ABTS and expression of SOD-2 with RT-PCR were used to estimate the antioxidant activity. The anti-invasive activity of extracted saponins was examined through adhesion of HeLa cells to extracellular matrix, wound healing and evaluation of the mRNA levels of MMP-2 and MMP-9 by real time-PCR. The results showed that extracted saponins had cytotoxicity against cervical cancer cells and ABTS and DPPH scavenging properties with IC50 values of 604.5, 1012 μg/ml, respectively. Further, we found that, in wound healing assay, brittle star saponins could prevent invasion of HeLa cells in a concentration dependent manner. Furthermore, cell adhesion assay demonstrated blockage of cell attachment to extracellular matrix with an IC50 concentration of 16.1μg/ml. The significant dose dependent down regulation of MMP-2 and MMP-9 in treated cells demonstrated that isolated saponins can decline tumor metastasis in vitro. The brittle star saponins remarkably prevented cervical cancer invasion and migration associated with down regulation of matrix metalloproteinase expression. Therefore, saponins could be suggested as an anti-invasive candidate against cervical cancer and an antioxidant as well.
Collapse
Affiliation(s)
- Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, IranE-mail :
| | | | | | | | | |
Collapse
|
14
|
Kuo CL, Agrawal DC, Chang HC, Chiu YT, Huang CP, Chen YL, Huang SH, Tsay HS. In vitro culture and production of syringin and rutin in Saussurea involucrata (Kar. et Kir.) - an endangered medicinal plant. BOTANICAL STUDIES 2015; 56:12. [PMID: 28510821 PMCID: PMC5430372 DOI: 10.1186/s40529-015-0092-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/06/2015] [Indexed: 05/14/2023]
Abstract
BACKGROUND Saussurea involucrata (Kar. et Kir.) commonly known as 'snow lotus' or 'Xue Lian' is an important plant in the traditional Chinese system of medicine. The plant contains flavonoids such as syringin and rutin. These compounds have been reported to be anti-rheumatic, anti-inflammatory and dilate blood vessels, lower blood pressure, prevent cardiovascular diseases, enhance immunity, and act as anti-aging, anti-cancer, and anti-fatigue agents. The species has become endangered due to the excessive collection of S. involucrata plants in the wild, slower plant growth and ecological destruction of natural habitats. There is a severe shortage of plant material, while the market demand is ever increasing. Hence, it is very important to apply tissue culture technique for plant propagation and production of the bioactive compounds of this species. RESULTS Multiple shoot induction and proliferation in shoot base explants derived from in vitro raised seedlings of S. involucrata was achieved on 3/4 strength of Murashige and Skoog's (MS) basal medium (MSBM) supplemented with 1.0 mg/L-1 BA and 1.5 mg/L-1 NAA. Rooting was induced in 100 % shoots cultured on 1/2X MSBM supplemented with 1.0 mg/L-1 IBA for one week and then transfer to auxin free medium. The plantlets could be acclimatized successfully by sachet technique and established in the greenhouse. Maximum callus induction and proliferation in leaf segments was achieved on 1/2X MSBM supplemented with 0.5 mg/L-1 BA, 0.5 mg/L-1 NAA, 0.4 % gelrite and on incubation at 20 °C. Container closures had an influence on the quality and quantity of callus and production of the active compounds. The HPLC analysis showed much higher syringin content in in vitro shoots and callus as compared to commercially available market crude drug. CONCLUSION The present study describes an in vitro culture protocol of Saussurea involucrata. The bioactive compounds, syringin and rutin could be produced through tissue culture technique without sacrificing the endangered Saussurea involucrata plants in the wild.
Collapse
Affiliation(s)
- Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | | | - Hung-Chi Chang
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
- Department of Golden-Ager Industry Management, Chaoyang University of Technology, Taichung, Taiwan
| | - Ya-Ting Chiu
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | - Chu-Peng Huang
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | - Yi-Lin Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| | - Shih-Hung Huang
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | - Hsin-Sheng Tsay
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Chik WI, Zhu L, Fan LL, Yi T, Zhu GY, Gou XJ, Tang YN, Xu J, Yeung WP, Zhao ZZ, Yu ZL, Chen HB. Saussurea involucrata: A review of the botany, phytochemistry and ethnopharmacology of a rare traditional herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:44-60. [PMID: 26113182 DOI: 10.1016/j.jep.2015.06.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saussurea involucrata Matsum. & Koidz. is an endangered species of the Asteraceae family, growing in the high mountains of central Asia. It has been, and is, widely used in traditional Uyghur, Mongolian and Kazakhstan medicine as well as in Traditional Chinese Medicine as Tianshan Snow Lotus (Chinese: ). In traditional medical theory, S. involucrata can promote blood circulation, thereby alleviating all symptoms associated with poor circulation. It also reputedly eliminates cold and dampness from the body, diminishes inflammation, invigorates, and strengthens Yin and Yang. It has long been used to treat rheumatoid arthritis, cough with cold, stomach ache, dysmenorrhea, and altitude sickness in Uyghur and Chinese medicine. AIM OF THE REVIEW To comprehensively summarize the miscellaneous research that has been done regarding the botany, ethnopharmacology, phytochemistry, biological activity, and toxicology of S. involucrata. METHOD An extensive review of the literature was carried out. Apart from different electronic databases including SciFinder, Chinese National Knowledge Infrastructure (CNKI), ScienceDirect that were sourced for information, abstracts, full-text articles and books written in English and Chinese, including those traditional records tracing back to the Qing Dynasty. Pharmacopoeia of China and other local herbal records in Uighur, Mongolian and Kazakhstan ethnomedicines were investigated and compared for pertinent information. RESULTS The phytochemistry of S. involucrata has been comprehensively investigated. More than 70 compounds have been isolated and identified; they include phenylpropanoids, flavonoids, coumarins, lignans, sesquiterpenes, steroids, ceramides, polysaccharides. Scientific studies on the biological activity of S. involucrata are equally numerous. The herb has been shown to have anti-neoplastic, anti-inflammatory, analgesic, anti-oxidative, anti-fatigue, anti-aging, anti-hypoxic, neuroprotective and immunomodulating effects. Many have shown correlations to the traditional clinical applications in Traditional Chinese Medicine and medicines. The possible mechanisms of S. involucrata in treating various cancers are revealed in the article, these include inhibition of cancer cells by affecting their growth, adhesion, migration, aggregation and invasion, inhibition of epidermal growth factor receptor signaling in cancer cells, hindrance of cancer cell proliferation, causing cytotoxicity to cancer cells and promoting expression of tumor suppressor genes. Dosage efficacy is found to be generally concentration- and time-dependent. However, studies on the correlation between particular chemical constituents and specific bioactivities are limited. CONCLUSION In this review, we have documented the existing traditional uses of S. involucrata and summarized recent research into the phytochemistry and pharmacology of S. involucrata. Many of the traditional uses have been validated by phytochemical and modern pharmacological studies but there are still some areas where the current knowledge could be improved. Although studies have confirmed that S. involucrata has a broad range of bioactivities, further in-depth studies on the exact bioactive molecules and the mechanism of action are expected. Whether we should use this herb independently or in combination deserves to be clarified. The exact quality control as well as the toxicology studies is necessary to guarantee the stability and safety of the clinic use. The sustainable use of this endangered resource was also addressed. In conclusion, this review was anticipated to highlight the importance of S. involucrata and provides some directions for the future development of this plant.
Collapse
Affiliation(s)
- Wai-I Chik
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Lin Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Lan-Lan Fan
- Guangxi Botanical Garden of Medicinal Plant, Nanning, Guangxi 530023, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| | - Guo-Yuan Zhu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao-Jun Gou
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610051, China
| | - Yi-Na Tang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Wing-Ping Yeung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Zhong-Zhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
16
|
Zheng L, Zhang YM, Zhan YZ, Liu CX. Momordica cochinchinensis seed extracts suppress migration and invasion of human breast cancer ZR-75-30 cells via down-regulating MMP-2 and MMP-9. Asian Pac J Cancer Prev 2014; 15:1105-10. [PMID: 24606426 DOI: 10.7314/apjcp.2014.15.3.1105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Metastases and invasion are the main reasons for oncotherapy failure. Momordica cochinchinensis (Mu Bie Zi in Chinese) had been used for a variety of purposes, and shown anti-cancer action. In this article, we focused on effects on regulation of breast cancer cell ZR-75-30 metastases and invasion by extracts of Momordica cochinchinensis seeds (ESMCs). METHODS Effect of ESMCs on ZR-75-30 human breast cancer cells proliferation were evaluated by MTT assay and on invasion and migration by wound-healing and matrigel invasion chamber assays. Expression and protease activity of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were analyzed by Western blotting and gelatin zymography, respectively. RESULTS ESMC revealed strong growth inhibitory effects on ZR-75-30 cells, and effectively inhibited ZR-75-30 cell invasion in a dose-dependent manner. Western blot and gelatin zymography analysis showed that ESMC significantly inhibited the expression and secretion of MMP-2 and MMP-9 in ZR-75-30 cells. CONCLUSIONS ESMC has the potential to suppress the migration and invasion of ZR-75-30 cancer cells, and it might prove to of interest in the development of novel inhibitors for breast cancer.
Collapse
Affiliation(s)
- Lei Zheng
- School of Medicine, Xi'an Jiaotong University, Xi'an, China E-mail :
| | | | | | | |
Collapse
|
17
|
Byambaragchaa M, Cruz JD, Kh A, Hwang SG. Anticancer Potential of an Ethanol Extract of Saussurea Involucrata against Hepatic Cancer Cells in vitro. Asian Pac J Cancer Prev 2014; 15:7527-32. [DOI: 10.7314/apjcp.2014.15.18.7527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|