1
|
Klamrak A, Rahman SS, Nopkuesuk N, Nabnueangsap J, Narkpuk J, Janpan P, Saengkun Y, Soonkum T, Sriburin S, Teeravechyan S, Sitthiwong P, Jangpromma N, Kulchat S, Choowongkomon K, Patramanon R, Chaveerach A, Daduang J, Daduang S. Integrative computational analysis of anti-influenza potential in Caesalpinia mimosoides Lamk hydroethanolic extract. Sci Rep 2025; 15:3988. [PMID: 39893295 PMCID: PMC11787316 DOI: 10.1038/s41598-025-87585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
In a recent study, we used chemical analysis to show that the Caesalpinia mimosoides aqueous extract, which contains a high concentration of simple phenolics, has strong anti-influenza activity. We determined through molecular docking methods that its potential target inhibitor is the neuraminidase. Therefore, our study objectives were to evaluate whether the aqueous-ethanol extract (30% v/v) of this plant species exhibits greater antiviral activity than the aqueous plant extract. The C. mimosoides hydroethanolic extract exhibited potent antioxidant activity in the DPPH assay, with an IC50 value of 15.01 µg/mL, comparable to authentic quercetin (IC50 = 12.72 µg/mL) and approximately 4.91 times greater than standard gallic acid (IC50 = 3.06 µg/mL). Through untargeted metabolomic analyses (UPLC-ESI(±)-QTOF-MS/MS) and subsequent stepwise computational metabolomics analyses, we identified the extract as primarily containing simple phenolics (e.g., gallic acid, ellagic acid, shikimic acid, and chlorogenic acid), flavonoid derivatives (e.g., quercetin, taxifolin, myricitrin, and afzelin), and other bioactive components, including dicarboxylic acids and germacrone. The polyphenol-rich extract showed strong anti-influenza activity, with an IC50 of 2.33 µg/mL against the influenza A/PR/8/34 virus and no cytotoxic effects, as indicated by a CC50 greater than 50 µg/mL. This represents an approximately 3.35-fold increase in effectiveness compared to its corresponding aqueous extract (IC50 = 7.81 µg/mL). Furthermore, the extract demonstrated no hemolytic activity, even at a maximum concentration of 2,000 µg/mL, suggesting its potential as a safe antiviral agent. Molecular docking analyses revealed that the identified phytochemicals can simultaneously interact with the "drug-target binding sites" of neuraminidase (NA) and PB2 subunit of influenza RNA polymerase, indicating their potential polypharmacological effects. The antiviral activity of the ethanolic-aqueous extract against other strains is being explored due to the versatile biological effects of phenolic substances.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia, 7000, Bangladesh
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jaran Nabnueangsap
- Salaya Central Instrument Faculty RSPG, Research Management and Development Division, Mahidol University, Bangkok, Thailand
| | - Jaraspim Narkpuk
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yutthakan Saengkun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thananya Soonkum
- Salaya Central Instrument Faculty RSPG, Research Management and Development Division, Mahidol University, Bangkok, Thailand
| | - Supawadee Sriburin
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Poramet Sitthiwong
- Khaoyai Panorama Farm Co., Ltd, 297 M.6, Thanarat Rd., Nongnamdang, Pakchong, Nakhonratchasima, 30130, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Yu T, Gao S, Jin F, Yan B, Wang W, Wang Z. Characteristics of the vaginal microbiota and vaginal metabolites in women with cervical dysplasia. Front Cell Infect Microbiol 2024; 14:1457216. [PMID: 39450338 PMCID: PMC11499233 DOI: 10.3389/fcimb.2024.1457216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Emerging evidence suggests that the vaginal microbiota is closely associated with cervical cancer. However, little is known about the relationships among the vaginal microbiota, vaginal metabolites, and cervical lesion progression in women undergoing cervical dysplasia. Methods In this study, to understand vaginal microbiota signatures and vaginal metabolite changes in women with cervical lesions of different grades and cancer, individuals with normal or cervical dysplasia were recruited and divided into healthy controls (HC) group, low-grade squamous intraepithelial lesions (LSIL) group, high-grade squamous intraepithelial lesions (HSIL) group, and cervical cancer (CC) group. Vaginal secretion samples were collected for 16S rRNA gene sequencing, liquid chromatography coupled with mass spectrometry (LC-MS)-based metabolomics, and integrated analysis. Results The results demonstrated that bacterial richness and diversity were greater in the CC group than the other three groups. Additionally, Lactobacillus was found to be negatively associated with bacterial diversity and bacterial metabolic functions, which increased with the degree of cervical lesions and cancer. Metabolomic analysis revealed that distinct metabolites were enriched in these metabolite pathways, including tryptophan metabolism, retinol metabolism, glutathione metabolism, alanine, aspartate, and glutamate metabolism, as well as citrate cycle (TCA cycle). Correlation analysis revealed positive associations between CC group-decreased Lactobacillus abundance and CC group-decreased metabolites. Lactobacillus iners was both negative to nadB and kynU genes, the predicted abundance of which was significantly higher in the CC group. The linear regression model showed that the combination of the vaginal microbiota and vaginal metabolites has good diagnostic performance for cervical cancer. Discussion Our results indicated a clear difference in the vaginal microbiota and vaginal metabolites of women with cervical dysplasia. Specifically altered bacteria and metabolites were closely associated with the degree of cervical lesions and cancer, indicating the potential of the vaginal microbiota and vaginal metabolites as modifiable factors and therapeutic targets for preventing cervical cancer.
Collapse
Affiliation(s)
- Tiantian Yu
- Female Pelvic Floor Urinary Reconstructive Center, Dalian Women and Children’s Medical Group, Dalian, China
| | - Shan Gao
- Female Pelvic Floor Urinary Reconstructive Center, Dalian Women and Children’s Medical Group, Dalian, China
| | - Fen Jin
- Female Pelvic Floor Urinary Reconstructive Center, Dalian Women and Children’s Medical Group, Dalian, China
| | - Bingbing Yan
- Female Pelvic Floor Urinary Reconstructive Center, Dalian Women and Children’s Medical Group, Dalian, China
| | - Wendong Wang
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Zhongmin Wang
- Female Pelvic Floor Urinary Reconstructive Center, Dalian Women and Children’s Medical Group, Dalian, China
| |
Collapse
|
3
|
Klamrak A, Nabnueangsap J, Narkpuk J, Saengkun Y, Janpan P, Nopkuesuk N, Chaveerach A, Teeravechyan S, Rahman SS, Dobutr T, Sitthiwong P, Maraming P, Nualkaew N, Jangpromma N, Patramanon R, Daduang S, Daduang J. Unveiling the Potent Antiviral and Antioxidant Activities of an Aqueous Extract from Caesalpinia mimosoides Lamk: Cheminformatics and Molecular Docking Approaches. Foods 2023; 13:81. [PMID: 38201109 PMCID: PMC10778375 DOI: 10.3390/foods13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Our group previously demonstrated that Caesalpinia mimosoides Lamk exhibits many profound biological properties, including anticancer, antibacterial, and antioxidant activities. However, its antiviral activity has not yet been investigated. Here, the aqueous extract of C. mimosoides was prepared from the aerial parts (leaves, stalks, and trunks) to see whether it exerts anti-influenza (H1N1) effects and to reduce the organic solvents consumed during extraction, making it a desirable approach for the large-scale production for medical uses. Our plant extract was quantified to contain 7 g of gallic acid (GA) per 100 g of a dry sample, as determined using HPLC analysis. It also exerts potent antioxidant activities comparable to those of authentic GA. According to untargeted metabolomics (UPLC-ESI(-)-QTOF-MS/MS) with the aid of cheminformatics tools (MetFrag (version 2.1), SIRIUS (version 5.8.3), CSI:FingerID (version 4.8), and CANOPUS), the major metabolite was best annotated as "gallic acid", phenolics (e.g., quinic acid, shikimic acid, and protocatechuic acid), sugar derivatives, and dicarboxylic acids were deduced from this plant species for the first time. The aqueous plant extract efficiently inhibited an influenza A (H1N1) virus infection of MDCK cells with an IC50 of 5.14 µg/mL. Of equal importance, hemolytic activity was absent for this plant extract, signifying its applicability as a safe antiviral agent. Molecular docking suggested that GA interacts with conserved residues (e.g., Arg152 and Asp151) located in the catalytic inner shell of the viral neuraminidase (NA), sharing the same pocket as those of anti-neuraminidase drugs, such as laninamivir and oseltamivir. Additionally, other metabolites were also found to potentially interact with the active site and the hydrophobic 430-cavity of the viral surface protein, suggesting a possibly synergistic effect of various phytochemicals. Therefore, the C. mimosoides aqueous extract may be a good candidate for coping with increasing influenza virus resistance to existing antivirals.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Jaraspim Narkpuk
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (J.N.); (S.T.)
| | - Yutthakan Saengkun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (J.N.); (S.T.)
| | - Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia 7000, Bangladesh
| | - Theerawat Dobutr
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Poramet Sitthiwong
- Khaoyai Panorama Farm Co., Ltd., 297 M.6, Thanarat Rd., Nongnamdang, Pakchong, Nakhonratchasima 30130, Thailand;
| | - Pornsuda Maraming
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Jureerut Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Liu W, Cui X, Zhong Y, Ma R, Liu B, Xia Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: molecular pathways explaining their efficacy. Pharmacol Res 2023:106812. [PMID: 37271425 DOI: 10.1016/j.phrs.2023.106812] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Polyphenols, also known as phenolic compounds, are chemical substances containing aromatic rings as well as at least two hydroxyl groups. Natural phenolic compounds exist widely in plants, which protect plants from ultraviolet radiation and other insults. Phenolic compounds have superior pharmacological and nutritional properties (antimicrobial, antibacterial, antiviral, anti-sclerosis, antioxidant, and anti-inflammatory activities), which have been paid more and more attention by the scientific community. Phenols can protect key cellular components from reactive free radical damage, which is mainly due to their property to activate antioxidant enzymes and alleviate oxidative stress and inflammation. It can also inhibit or isolate reactive oxygen species and transfer electrons to free radicals, thereby avoiding cell damage. It has a regulatory role in glucose metabolism, which has a promising prospect in the prevention and intervention of diabetes. It also prevents cardiovascular disease by regulating blood pressure and blood lipids. Polyphenols can inhibit cell proliferation by affecting Erk1/2, CDK, and PI3K/Akt signaling pathways. Polyphenols can function as enhancers of intrinsic defense systems, including superoxide dismutase (SOD) and glutathione peroxidase (GPX). Simultaneously, they can modulate multiple proteins and transcription factors, making them promising candidates in the investigation of anti-cancer medications. This review focuses on multiple aspects of phenolic substances, including their natural origins, production process, disinfection activity, oxidative and anti-inflammatory functions, and the effects of different phenolic substances on tumors.
Collapse
Affiliation(s)
- Wenshi Liu
- Department of Translantation/Hepatobiliary, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Bo Liu
- Department of Cardiac Surgery, First Hospital of China Medical University, Shenyang, China.
| | - Yonghui Xia
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Bhat P, Upadhya V, Hegde GR, Hegde HV, Roy S. Attenuation of dermal wounds through topical application of ointment containing phenol enriched fraction of Caesalpinia mimosoides Lam. Front Pharmacol 2022; 13:1025848. [PMID: 36313327 PMCID: PMC9608657 DOI: 10.3389/fphar.2022.1025848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 03/06/2024] Open
Abstract
Caesalpinia mimosoides Lam. is one of the important medicinal plants used by the traditional healers of Uttara Kannada district, Karnataka (India) for treating wounds. In our previous study ethanol extract of the plant was evaluated for its wound healing activity. In continuation, the present study was aimed to evaluate the phenol enriched fraction (PEF) of ethanol extract for wound healing activity along with its antioxidant, anti-inflammatory and antimicrobial properties. The potent wound healing activity of PEF was evidenced by observation of increased rate of cell migration in L929, 3T3L1 and L6 cells (92.59 ± 1.53%, 98.42 ± 0.82% and 96.63 ± 0.61% respectively) at 7.81 μg/ml doses in assays carried out in vitro. Significantly enhanced rate of wound contraction (97.92 ± 0.41%), tensile strength (973.67 ± 4.43 g/mm2), hydroxyproline (31.31 ± 0.64 mg/g) and hexosamine (8.30 ± 0.47 mg/g) contents were observed on 15th post wounding day in 5% PEF treated animals. The enzymatic and non-enzymatic cellular antioxidants (superoxide dismutase, catalase and reduced glutathione) were upregulated (15.89 ± 0.17 U/mg, 48.30 ± 4.60 U/mg and 4.04 ± 0.12 μg/g respectively) with the administration of 5% PEF. The significant antimicrobial, antioxidant and anti-inflammatory activities support the positive correlation of PEF with its enhanced wound healing activity. PEF contains expressive amounts of total phenolic and total flavonoid contents (578.28 ± 2.30 mg GAE/g and 270.76 ± 2.52 mg QE/g). Of the various chemicals displayed in RP-UFLC-DAD analysis of PEF, gallic acid (68.08 μg/mg) and ethyl gallate (255.91 μg/mg) were predominant. The results indicate that PEF has great potential for the topical management of open wounds.
Collapse
Affiliation(s)
- Pradeep Bhat
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, India
- Department of Studies in Botany, Karnatak University, Dharwad, India
| | - Vinayak Upadhya
- Department of Forest Products and Utilization, College of Forestry, University of Agricultural Sciences, Sirsi, India
| | - Ganesh R. Hegde
- Department of Studies in Botany, Karnatak University, Dharwad, India
| | - Harsha V. Hegde
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, India
| | - Subarna Roy
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, India
| |
Collapse
|
6
|
Rangsinth P, Prasansuklab A, Duangjan C, Gu X, Meemon K, Wink M, Tencomnao T. Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:164. [PMID: 31286949 PMCID: PMC6615182 DOI: 10.1186/s12906-019-2578-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Caesalpinia mimosoides, a vegetable consumed in Thailand, has been reported to exhibit in vitro antioxidant properties. The in vivo antioxidant and anti-aging activities have not been investigated. The aim of this research was to study the antioxidant activity of C. mimosoides extracts in Caenorhabditis elegans, a widely used model organism in this context. METHODS C. elegans were treated with C. mimosoides extracts in a various concentrations. To investigate the protective effects of the extract against oxidative stress, wild-type N2 were used to determine survival rate under oxidative stress and intracellular ROS. To study underlying mechanisms, the mutant strains with GFP reporter gene including TJ356, CF1553, EU1 and LD4 were used to study DAF-16, SOD-3, SKN-1 and GST-4 gene, respectively. Lifespan and aging pigment of the worms were also investigated. RESULTS A leaf extract of C. mimosoides improved resistance to oxidative stress and reduced intracellular ROS accumulation in nematodes. The antioxidant effects were mediated through the DAF-16/FOXO pathway and SOD-3 expression, whereas the expression of SKN-1 and GST-4 were not altered. The extract also prolonged lifespan and decreased aging pigments, while the body length and brood size of the worms were not affected by the extract, indicating low toxicity and excluding dietary restriction. CONCLUSIONS The results of this study establish the antioxidant activity of C. mimosoides extract in vivo and suggest its potential as a dietary supplement and alternative medicine to defend against oxidative stress and aging, which should be investigated in intervention studies.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Chatrawee Duangjan
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Xiaojie Gu
- Department of Biotechnology, School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028 China
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
7
|
Oh M, Park S, Song JH, Ko HJ, Kim SH. Chemical components from the twigs of Caesalpinia latisiliqua and their antiviral activity. J Nat Med 2019; 74:26-33. [PMID: 31243670 DOI: 10.1007/s11418-019-01335-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 01/13/2023]
Abstract
Three new compounds, (3S)-dihydrobonducellin 8-O-β-D-glucopyranoside (1), 3',5'-dimethoxy-jezonolid (2), and latisilinoid (3), along with 16 known compounds, were isolated from the twigs of Caesalpinia latisiliqua (Leguminosae). The known compounds were identified as flavonoids, stilbenes, and phenolics as determined by extensive spectroscopic methods, including 1D and 2D NMR. All the isolated compounds were evaluated for their antiviral activity in HRV1B-, CVB3-, and EV71-infected cells. Among the tested compounds, three flavonoids (4-6) and two stilbenes (12 and 14) exhibited significant antiviral activity. This is the first phytochemical investigation of C. latisiliqua twigs.
Collapse
Affiliation(s)
- Mira Oh
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - SeonJu Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Jae-Hyoung Song
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| |
Collapse
|
8
|
Jeong HJ, Nam SY, Kim HY, Jin MH, Kim MH, Roh SS, Kim HM. Anti-allergic inflammatory effect of vanillic acid through regulating thymic stromal lymphopoietin secretion from activated mast cells. Nat Prod Res 2017; 32:2945-2949. [DOI: 10.1080/14786419.2017.1389938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hyun-Ja Jeong
- Department of Food Science & Technology and Research Institute for Basic Science, Hoseo University, Asan, Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hee-Yun Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Mu Hyun Jin
- Oriental Herbal Research Center, Research Park, LG Household & Healthcare Ltd, Daejeon, Republic of Korea
| | - Mi Hye Kim
- Department of Food and Nutrition, Hoseo University, Asan, Republic of Korea
| | - Seok Seon Roh
- College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Sánchez-Carranza JN, Alvarez L, Marquina-Bahena S, Salas-Vidal E, Cuevas V, Jiménez EW, Veloz G RA, Carraz M, González-Maya L. Phenolic Compounds Isolated from Caesalpinia coriaria Induce S and G2/M Phase Cell Cycle Arrest Differentially and Trigger Cell Death by Interfering with Microtubule Dynamics in Cancer Cell Lines. Molecules 2017; 22:molecules22040666. [PMID: 28441723 PMCID: PMC6154320 DOI: 10.3390/molecules22040666] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Caesalpinia coriaria (C. coriaria), also named cascalote, has been known traditionally in México for having cicatrizing and inflammatory properties. Phytochemical reports on Caesalpinia species have identified a high content of phenolic compounds and shown antineoplastic effects against cancer cells. The aim of this study was to isolate and identify the active compounds of a water:acetone:ethanol (WAE) extract of C. coriaria pods and characterize their cytotoxic effect and cell death induction in different cancer cell lines. The compounds isolated and identified by chromatography and spectroscopic analysis were stigmasterol, ethyl gallate and gallic acid. Cytotoxic assays on cancer cells showed different ranges of activities. A differential effect on cell cycle progression was observed by flow cytometry. In particular, ethyl gallate and tannic acid induced G2/M phase cell cycle arrest and showed interesting effect on microtubule stabilization in Hep3B cells observed by immunofluorescence. The induction of apoptosis was characterized by morphological characteristic changes, and was supported by increases in the ratio of Bax/Bcl-2 expression and activation of caspase 3/7. This work constitutes the first phytochemical and cytotoxic study of C. coriaria and showed the action of its phenolic constituents on cell cycle, cell death and microtubules organization.
Collapse
Affiliation(s)
- Jessica Nayelli Sánchez-Carranza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| | - Silvia Marquina-Bahena
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| | - Enrique Salas-Vidal
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, C.P. 62209 Morelos, Mexico.
| | - Verónica Cuevas
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| | - Elizabeth W Jiménez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| | - Rafael A Veloz G
- Departamento de Ingenieria Agroindustrial, Universidad de Guanajuato, Salvatierra, C.P. 38000 Guanajuato, Mexico.
| | - Maelle Carraz
- UMR152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France.
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| |
Collapse
|
10
|
Listyawati S, Sismindari, Mubarika S, Murti YB, Ikawati M. Anti-Proliferative Activity and Apoptosis Induction of an Ethanolic Extract of Boesenbergia pandurata (Roxb.) Schlecht. against HeLa and Vero Cell Lines. Asian Pac J Cancer Prev 2016; 17:183-7. [PMID: 26838207 DOI: 10.7314/apjcp.2016.17.1.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Rhizomes of Boesenbergia pandurata (Roxb.) Schlecht have been reported to contain active compounds with anticancer properties. This research was carried out to examine anti-proliferative and apoptotic induction against HeLa and Vero cells-line. Dried powder of B. pandurata rhizomes was extracted by a maceration method using 90% ethanol. Cytotoxic assays to determine IC50 and anti-proliferative effects were carried out by MTT methods. Observation of apoptosis was achieved with double staining using acridine orange and ethidium bromide. The results showed that ethanolic extract of B. pandurata was more cytotoxic against HeLa cells (IC50 of 60 μg/ mL) than Vero cells (IC50 of 125 μg/mL). The extract had higher anti-proliferative activity as well as apoptotic induction in HeLa than Vero cells. Therefore, it was concluded that the ethanolic extract of B. pandurata had anti-proliferative as well as apoptosis induction activity dependent on the cell type.
Collapse
Affiliation(s)
- Shanti Listyawati
- Doctoral Program of Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia E-mail :
| | | | | | | | | |
Collapse
|
11
|
Bhat PB, Hegde S, Upadhya V, Hegde GR, Habbu PV, Mulgund GS. Evaluation of wound healing property of Caesalpinia mimosoides Lam. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:712-724. [PMID: 27717906 DOI: 10.1016/j.jep.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/02/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caesalpinia mimosoides Lam. is one of the important traditional folk medicinal plants in the treatment of skin diseases and wounds used by healers of Uttara Kannada district of Karnataka state (India). However scientific validation of documented traditional knowledge related to medicinal plants is an important path in current scenario to fulfill the increasing demand of herbal medicine. AIM OF THE STUDY The study was carried out to evaluate the claimed uses of Caesalpinia mimosoides using antimicrobial, wound healing and antioxidant activities followed by detection of possible active bio-constituents. MATERIALS AND METHODS Extracts prepared by hot percolation method were subjected to preliminary phytochemical analysis followed by antimicrobial activity using MIC assay. In vivo wound healing activity was evaluated by circular excision and linear incision wound models. The extract with significant antimicrobial and wound healing activity was investigated for antioxidant capacity using DPPH, nitric oxide, antilipid peroxidation and total antioxidant activity methods. Total phenolic and flavonoid contents were also determined by Folin-Ciocalteu, Swain and Hillis methods. Possible bio-active constituents were identified by GC-MS technique. RP-UFLC-DAD analysis was carried out to quantify ethyl gallate and gallic acid in the plant extract. RESULTS Preliminary phytochemical analysis showed positive results for ethanol and aqueous extracts for all the chemical constituents. The ethanol extract proved potent antimicrobial activity against both bacterial and fungal skin pathogens compared to other extracts. The efficacy of topical application of potent ethanol extract and traditionally used aqueous extracts was evidenced by the complete re-epithelization of the epidermal layer with increased percentage of wound contraction in a shorter period. However, aqueous extract failed to perform a consistent effect in the histopathological assessment. Ethanol extract showed effective scavenging activity against DPPH and nitric oxide free radicals with an expressive amount of phenolic and moderate concentration of flavonoid contents. Ethyl gallate and gallic acid were found to be the probable bio-active compounds evidenced by GCMS and RP-UFLC-DAD analysis. CONCLUSION The study revealed the significant antimicrobial, wound healing and antioxidant activities of tender parts of C. mimosoides and proved the traditional folklore knowledge.
Collapse
Affiliation(s)
- Pradeep Bhaskar Bhat
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, India.
| | - Shruti Hegde
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, India
| | - Vinayak Upadhya
- Regional Medical Research Centre, Indian Council of Medical Research, Nehru Nagar, Belagavi 590010, India
| | - Ganesh R Hegde
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, India
| | - Prasanna V Habbu
- Soniya Education Trust's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad 580002, India
| | - Gangadhar S Mulgund
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, India
| |
Collapse
|
12
|
Rattanata N, Klaynongsruang S, Daduang S, Tavichakorntrakool R, Limpaiboon T, Lekphrom R, Boonsiri P, Daduang J. Inhibitory Effects of Gallic Acid Isolated from Caesalpinia mimosoides Lamk on Cholangiocarcinoma Cell Lines and Foodborne Pathogenic Bacteria. Asian Pac J Cancer Prev 2016; 17:1341-5. [DOI: 10.7314/apjcp.2016.17.3.1341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Amini E, Nabiuni M, Baharara J, Parivar K, Asili J. Metastatic Inhibitory and Radical Scavenging Efficacies of Saponins Extracted from the Brittle Star (Ophiocoma erinaceus). Asian Pac J Cancer Prev 2016; 16:4751-8. [PMID: 26107236 DOI: 10.7314/apjcp.2015.16.11.4751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Echinodermata use saponins in chemical defense against pathogens and predators. The molecular mechanisms of antimetastatic effects of brittle star saponins are still unknown. The present study examined antioxidant capacity and invasive ability in HeLa carcinoma cells exposed to brittle star crude saponins. Discolorating methods with DPPH and ABTS and expression of SOD-2 with RT-PCR were used to estimate the antioxidant activity. The anti-invasive activity of extracted saponins was examined through adhesion of HeLa cells to extracellular matrix, wound healing and evaluation of the mRNA levels of MMP-2 and MMP-9 by real time-PCR. The results showed that extracted saponins had cytotoxicity against cervical cancer cells and ABTS and DPPH scavenging properties with IC50 values of 604.5, 1012 μg/ml, respectively. Further, we found that, in wound healing assay, brittle star saponins could prevent invasion of HeLa cells in a concentration dependent manner. Furthermore, cell adhesion assay demonstrated blockage of cell attachment to extracellular matrix with an IC50 concentration of 16.1μg/ml. The significant dose dependent down regulation of MMP-2 and MMP-9 in treated cells demonstrated that isolated saponins can decline tumor metastasis in vitro. The brittle star saponins remarkably prevented cervical cancer invasion and migration associated with down regulation of matrix metalloproteinase expression. Therefore, saponins could be suggested as an anti-invasive candidate against cervical cancer and an antioxidant as well.
Collapse
Affiliation(s)
- Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, IranE-mail :
| | | | | | | | | |
Collapse
|
14
|
Paradkar PH, Joshi JV, Mertia PN, Agashe SV, Vaidya RA. Role of cytokines in genesis, progression and prognosis of cervical cancer. Asian Pac J Cancer Prev 2016; 15:3851-64. [PMID: 24935564 DOI: 10.7314/apjcp.2014.15.9.3851] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cytokine research is currently at the forefront in cancer research. Deciphering the functions of these multiple small molecules, discovered within the cell and in intercellular spaces, with their abundance and pleotrophism, was initially a great challenge. Advances in analytical chemistry and molecular biology have made it possible to unravel the pathophysiological functions of these polypeptides/proteins which are called interleukins, chemokines, monokines, lymphokines and growth factors. With more than 5 million women contracting cervical cancer every year this cancer is a major cause of mortality and morbidity the world over, particularly in the developing countries. In more than 95% of cases it is associated with human papilloma virus (HPV) infection which is persistent, particularly in those with a defective immune system. Although preventable, the mere magnitude of prevalence of HPV in the world population makes it a dominating current health hazard. The discovery of cytokine dysregulation in cervical cancer has spurted investigation into the possibility of using them as biomarkers in the early diagnosis of cases at high risk of developing cancer. Their critical role in carcinogenesis and progression of cervical cancer is now being revealed to a great extent. From diagnostics to prognosis, and now with a possible role in therapeutics and prevention of cervical cancer, the cytokines are being evaluated in all anticancer approaches. This review endeavours to capture the essence of the astonishing journey of cytokine research in cervical neoplasia.
Collapse
|
15
|
Promraksa B, Daduang J, Chaiyarit P, Tavichakorntrakool R, Khampitak T, Rattanata N, Tangrassameeprasert R, Boonsiri P. Cytotoxicity of Cratoxylum Formosum Subsp. Pruniflorum Gogel Extracts in Oral Cancer Cell Lines. Asian Pac J Cancer Prev 2015; 16:7155-9. [DOI: 10.7314/apjcp.2015.16.16.7155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
16
|
Hampson L, Martin-Hirsch P, Hampson IN. An overview of early investigational drugs for the treatment of human papilloma virus infection and associated dysplasia. Expert Opin Investig Drugs 2015; 24:1529-37. [PMID: 26457651 DOI: 10.1517/13543784.2015.1099628] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION High-risk HPV (HR-HPV) related invasive cervical cancer (ICC) causes >270,000 deaths per annum world-wide with over 85% of these occurring in low-resource countries. Ablative and excisional treatment modalities are restricted for use with high-grade pre-cancerous cervical disease with HPV infection and low-grade dysplasia mostly managed by a watch-and-wait policy. AREAS COVERED Various pharmacological approaches have been investigated as non-destructive alternatives for the treatment of HR-HPV infection and associated dysplasia. These are discussed dealing with efficacy, ease-of-use (physician or self-applied), systemic or locally applied, side-effects, cost and risks. The main focus is the perceived impact on current clinical practice of a self-applied, effective and safe pharmacological anti-HPV treatment. EXPERT OPINION Current prophylactic HPV vaccines are expensive, HPV type restricted and have little effect in already infected women. Therapeutic vaccines are under development but are also HPV type-restricted. At present, the developed nations use national cytology screening and surgical procedures to treat only women identified with HPV-related high-grade dysplastic disease. However, since HPV testing is rapidly replacing cytology as the test-of-choice, a suitable topically-applied and low-cost antiviral treatment could be an ideal solution for treatment of HPV infection per se with test-of-cure carried out by repeat HPV testing. Cytology would only then be necessary for women who remained HPV positive. Although of significant benefit in the developed countries, combining such a treatment with self-sampled HPV testing could revolutionise the management of this disease in the developing world which lack both the infrastructure and resources to establish national cytology screening programs.
Collapse
Affiliation(s)
- Lynne Hampson
- a Viral Oncology Laboratories, Research Floor, St Mary's Hospital , University of Manchester , Manchester M13 9WL , UK
| | - Pierre Martin-Hirsch
- b Department of Obstetrics and Gynaecology , Royal Preston Hospital , Preston PR2 9HT , UK
| | - Ian N Hampson
- a Viral Oncology Laboratories, Research Floor, St Mary's Hospital , University of Manchester , Manchester M13 9WL , UK
| |
Collapse
|
17
|
Promraksa B, Daduang J, Khampitak T, Tavichakorntrakool R, Koraneekit A, Palasap A, Tangrassameeprasert R, Boonsiri P. Anticancer Potential of Cratoxylum formosum Subsp. Pruniflorum (Kurz.) Gogel Extracts Against Cervical Cancer Cell Lines. Asian Pac J Cancer Prev 2015; 16:6117-21. [DOI: 10.7314/apjcp.2015.16.14.6117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Lee HE, Nam JS, Shin JA, Hong IS, Yang IH, You MJ, Cho SD. Convallaria keiskei as a novel therapeutic alternative for salivary gland cancer treatment by targeting myeloid cell leukemia-1. Head Neck 2015; 38 Suppl 1:E761-70. [PMID: 25914292 DOI: 10.1002/hed.24096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Various chemotherapeutic agents have been used largely for the treatment of salivary gland cancer. However, results are disappointing, and these agents can cause some serious side effects. Therefore, recent studies have focused on the possible roles of natural products to overcome these limitations. METHODS Salivary gland cancer cells treated with or without Convallaria keiskei (MECK) for 24 hours. Apoptotic changes were evaluated by live/dead assay, immunoblotting, and expression levels of caspase-3 and B-cell lymphoma-2 family member. RESULTS MECK significantly inhibited salivary gland cancer growth. At the molecular level, MECK dramatically reduced myeloid cell leukemia-1 (Mcl-1) in a translation-dependent manner and thereby induced apoptosis through Bax/Bid. Furthermore, we found that Mcl-1 could be a potential therapeutic target of MECK-induced apoptosis and its stability is regulated by extracellular signal-regulated kinases 1/2 (ERK1/2) signaling CONCLUSION MECK can be used as a safe and efficient therapeutic alternative for the treatment of salivary gland cancer. © 2015 Wiley Periodicals, Inc. Head Neck 38: E761-E770, 2016.
Collapse
Affiliation(s)
- Haeng-Eun Lee
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju, Republic of Korea
| | - Jeong-Seok Nam
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju, Republic of Korea
| | - In-Sun Hong
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju, Republic of Korea
| | - Myung-Jo You
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Centre, Chonbuk National University, Jeonju, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
19
|
Lee WS, Yun JW, Nagappan A, Jung JH, Yi SM, Kim DH, Kim HJ, Kim G, Ryu CH, Shin SC, Hong SC, Choi YH, Jung JM. Flavonoids from Orostachys Japonicus A. Berger Induces Caspase-dependent Apoptosis at Least Partly through Activation of p38 MAPK Pathway in U937 Human Leukemic Cells. Asian Pac J Cancer Prev 2015; 16:465-9. [DOI: 10.7314/apjcp.2015.16.2.465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Daduang J, Palasap A, Daduang S, Boonsiri P, Suwannalert P, Limpaiboon T. Gallic Acid Enhancement of Gold Nanoparticle Anticancer Activity in Cervical Cancer Cells. Asian Pac J Cancer Prev 2015; 16:169-74. [DOI: 10.7314/apjcp.2015.16.1.169] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Xie QJ, Cao XL, Bai L, Wu ZR, Ma YP, Li HY. Anti-tumor effects and apoptosis induction by Realgar bioleaching solution in Sarcoma-180 cells in vitro and transplanted tumors in mice in vivo. Asian Pac J Cancer Prev 2015; 15:2883-8. [PMID: 24761919 DOI: 10.7314/apjcp.2014.15.6.2883] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Realgar which contains arsenic components has been used in traditional Chinese medicine (TCM) as an anticancer drug. However, neither Realgar nor its formula are soluble in water. As a result, high dose of Realgar has to be administered to achieve an effective blood medicine concentration, and this is associated with adverse side effects. The objective of the present study was to increase the solubility of a formula using hydrometallurgy technology as well as investigating its effects on in vitro and in vivo cell proliferation and apoptosis in Sarcoma-180 cell line. MATERIALS AND METHODS Antiproliferative activity of Realgar Bioleaching Solution (RBS) was evaluated by MTT assay. Further, effects of RBS on cell proliferation and apoptosis were studied using flow cytometry and transmission electron microscopy. Kunming mice were administered RBS in vivo, where arsenic specifically targeted solid tumors. RESULTS The results indicated that RBS extract potently inhibited the tumor growth of Sarcoma-180 cell line in a dose-dependent manner. Flow cytometry and transmission electron microscopy further indicated that RBS significantly induced cell apoptosis through the inhibition of cell cycle pathway in a dose-dependent manner. Further, on RBS administration to mice, arsenic was specifically targeted to solid tumors CONCLUSIONS RBS could substitute for traditional Realgar or its formula to work as a potent tool in cancer treatment.
Collapse
Affiliation(s)
- Qin-Jian Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China E-mail :
| | | | | | | | | | | |
Collapse
|
22
|
Panatto D, Amicizia D, Bragazzi NL, Rizzitelli E, Tramalloni D, Valle I, Gasparini R. Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|