1
|
Chintalaramulu N, Singh DP, Sapkota B, Raman D, Alahari S, Francis J. Caveolin-1: an ambiguous entity in breast cancer. Mol Cancer 2025; 24:109. [PMID: 40197489 PMCID: PMC11974173 DOI: 10.1186/s12943-025-02297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women and the second leading cause of death from cancer among women. Metastasis is the major cause of BC-associated mortality. Accumulating evidence implicates Caveolin-1 (Cav-1), a structural protein of plasma membrane caveolae, in BC metastasis. Cav-1 exhibits a dual role, as both a tumor suppressor and promoter depending on the cellular context and BC subtype. This review highlights the role of Cav-1 in modulating glycolytic metabolism, tumor-stromal interactions, apoptosis, and senescence. Additionally, stromal Cav-1's expression is identified as a potential prognostic marker, offering insights into its contrasting roles in tumor suppression and progression. Furthermore, Cav-1's context-dependent effects are explored in BC subtypes including hormone receptor-positive, HER2-positive, and triple-negative BC (TNBC). The review further delves into the role of Cav-1 in regulating the metastatic cascade including extracellular matrix interactions, cell migration and invasion, and premetastatic niche formation. The later sections discuss the therapeutic targeting of Cav-1 by metabolic inhibitors such as betulinic acid and Cav-1 modulating compounds. While Cav-1 may be a potential biomarker and therapeutic target, its heterogeneous expression and context-specific activity necessitates further research to develop precise interventions. Future studies investigating the mechanistic role of Cav-1 in metastasis may pave the way for effective treatment of metastatic BC.
Collapse
Affiliation(s)
- Naveen Chintalaramulu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | | | - Biplov Sapkota
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, USA
| | | | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
2
|
Firouzjaei AA, Mahmoudi A, Almahmeed W, Teng Y, Kesharwani P, Sahebkar A. Identification and analysis of the molecular targets of statins in colorectal cancer. Pathol Res Pract 2024; 256:155258. [PMID: 38522123 DOI: 10.1016/j.prp.2024.155258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. According to several types of research, statins may impact the development and treatment of CRC. This work aimed to use bioinformatics to discover the relationship between statin targets and differentially expressed genes (DEGs) in CRC patients and determine the possible molecular effect of statins on CRC suppression. We used CRC datasets from the GEO database to select CRC-related DEGs. DGIdb and STITCH databases were used to identify gene targets of subtypes of statin. Further, we identified the statin target of CRC DEGs hub genes by using a Venn diagram of CRC DEGs and statin targets. Funrich and enrichr databases were carried out for the KEGG pathway and gene ontology (GO) enrichment analysis, respectively. GSE74604 and GSE10950 were used to identify CRC DEGs. After analyzing datasets,1370 genes were identified as CRC DEGs, and 345 targets were found for statins. We found that 35 genes are CRC DEGs statin targets. We found that statin targets in CRC were enriched in the receptor and metallopeptidase activity for molecular function, cytoplasm and plasma membrane for cellular component, signal transduction, and cell communication for biological process genes were substantially enriched based on FunRich enrichment. Analysis of the KEGG pathways revealed that the overexpressed DEGs were enriched in the IL-17, PPAR, and Toll-like receptor signaling pathways. Finally, CCNB1, DNMT1, AURKB, RAC1, PPARGC1A, CDKN1A, CAV1, IL1B, and HSPD1 were identified as hub CRC DEGs statin targets. The genetic and molecular aspects of our findings reveal that statins might have a therapeutic effect on CRC.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Williams TM, Schneeweiss A, Jackisch C, Shen C, Weber KE, Fasching PA, Denkert C, Furlanetto J, Heinmöller E, Schmatloch S, Karn T, Szeto CW, van Mackelenbergh MT, Nekljudova V, Stickeler E, Soon-Shiong P, Schem C, Mairinger T, Müller V, Marmé F, Untch M, Loibl S. Caveolin Gene Expression Predicts Clinical Outcomes for Early-Stage HER2-Negative Breast Cancer Treated with Paclitaxel-Based Chemotherapy in the GeparSepto Trial. Clin Cancer Res 2023; 29:3384-3394. [PMID: 37432976 PMCID: PMC10530448 DOI: 10.1158/1078-0432.ccr-23-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Caveolin-1 and -2 (CAV1/2) dysregulation are implicated in driving cancer progression and may predict response to nab-paclitaxel. We explored the prognostic and predictive potential of CAV1/2 expression for patients with early-stage HER2-negative breast cancer receiving neoadjuvant paclitaxel-based chemotherapy regimens, followed by epirubicin and cyclophosphamide. EXPERIMENTAL DESIGN We correlated tumor CAV1/2 RNA expression with pathologic complete response (pCR), disease-free survival (DFS), and overall survival (OS) in the GeparSepto trial, which randomized patients to neoadjuvant paclitaxel- versus nab-paclitaxel-based chemotherapy. RESULTS RNA sequencing data were available for 279 patients, of which 74 (26.5%) were hormone receptor (HR)-negative, thus triple-negative breast cancer (TNBC). Patients treated with nab-paclitaxel with high CAV1/2 had higher probability of obtaining a pCR [CAV1 OR, 4.92; 95% confidence interval (CI), 1.70-14.22; P = 0.003; CAV2 OR, 5.39; 95% CI, 1.76-16.47; P = 0.003] as compared with patients with high CAV1/2 treated with solvent-based paclitaxel (CAV1 OR, 0.33; 95% CI, 0.11-0.95; P = 0.040; CAV2 OR, 0.37; 95% CI, 0.12-1.13; P = 0.082). High CAV1 expression was significantly associated with worse DFS and OS in paclitaxel-treated patients (DFS HR, 2.29; 95% CI, 1.08-4.87; P = 0.030; OS HR, 4.97; 95% CI, 1.73-14.31; P = 0.003). High CAV2 was associated with worse DFS and OS in all patients (DFS HR, 2.12; 95% CI, 1.23-3.63; P = 0.006; OS HR, 2.51; 95% CI, 1.22-5.17; P = 0.013), in paclitaxel-treated patients (DFS HR, 2.47; 95% CI, 1.12-5.43; P = 0.025; OS HR, 4.24; 95% CI, 1.48-12.09; P = 0.007) and in patients with TNBC (DFS HR, 4.68; 95% CI, 1.48-14.85; P = 0.009; OS HR, 10.43; 95% CI, 1.22-89.28; P = 0.032). CONCLUSIONS Our findings indicate high CAV1/2 expression is associated with worse DFS and OS in paclitaxel-treated patients. Conversely, in nab-paclitaxel-treated patients, high CAV1/2 expression is associated with increased pCR and no significant detriment to DFS or OS compared with low CAV1/2 expression.
Collapse
Affiliation(s)
- Terence M. Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | | | | | - Changxian Shen
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | | | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten Denkert
- Institut für Pathologie Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | - Thomas Karn
- Department of Gynecology and Obstetrics, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | | | | | | | | | | | - Volkmar Müller
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Sibylle Loibl
- German Breast Group, Neu-Isenburg, Germany
- Centre for Haematology and Oncology, Bethanien Frankfurt/M, Germany
| |
Collapse
|
4
|
Malacrida A, Erriquez J, Hashemi M, Rodriguez-Menendez V, Cassetti A, Cavaletti G, Miloso M. Evaluation of antitumoral effect of Hibiscus sabdariffa extract on human breast cancer cells. Biochem Biophys Rep 2022; 32:101353. [PMID: 36186735 PMCID: PMC9519930 DOI: 10.1016/j.bbrep.2022.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
BackgroundBreast cancer is the most frequent tumor in women. Natural substances represent an important source of innovative therapeutic solutions, eventually integrating or substituting conventional drugs and chemicals. Hibiscus sabdariffa L. is a plant of the Malvaceae family that has raised interest thanks to its anti-inflammatory, antioxidant and anticancer effects. In this work, we evaluated the antitumoral effects of an enriched fraction of Hibiscus sabdariffa L. extract (HsEF) in two human breast cancer cell lines, MCF-7(ERα +) and MDA-MB-231 (triple negative). Methods and resultsCell viability was assessed by MTT and Trypan blue assays. HsEF reduced both cell lines viability in a dose and time dependent manner and this effect results irreversible. In MCF-7 cells immunofluorescence experiments, demonstrated that HsEF induced ERα trans-location from nucleus to perinuclear area and in cytoplasmic compartment. qRT-PCR and western blotting high-lighted that HsEF reduced ERα, BRCA1 and caveolin1 gene and protein expression in MCF-7 cells, but not in MDA-MB-231 cells. Moreover, we demonstrated that HsEF reduced proteasome activity, an increased autophagy, impair migration and invasion in both cell lines. ConclusionsOur data suggest HsEF has an antitumoral effects on both breast tumor cells examined and that ERα involvement could explain the differences observed between the two cell lines.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | | | - Maryamsadat Hashemi
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Virginia Rodriguez-Menendez
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Arianna Cassetti
- CREA, Research Centre for Vegetable and Ornamental Crops, Sanremo, Italy
| | - Guido Cavaletti
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Mariarosaria Miloso
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| |
Collapse
|
5
|
Popov LD. Deciphering the relationship between caveolae-mediated intracellular transport and signalling events. Cell Signal 2022; 97:110399. [PMID: 35820545 DOI: 10.1016/j.cellsig.2022.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
The caveolae-mediated transport across polarized epithelial cell barriers has been largely deciphered in the last decades and is considered the second essential intracellular transfer mechanism, after the clathrin-dependent endocytosis. The basic cell biology knowledge was supplemented recently, with the molecular mechanisms beyond caveolae generation implying the key contribution of the lipid-binding proteins (the structural protein Caveolin and the adapter protein Cavin), along with the bulb coat stabilizing molecules PACSIN-2 and Eps15 homology domain protein-2. The current attention is focused also on caveolae architecture (such as the bulb coat, the neck, the membrane funnel inside the bulb, and the associated receptors), and their specific tasks during the intracellular transport of various cargoes. Here, we resume the present understanding of the assembly, detachment, and internalization of caveolae from the plasma membrane lipid raft domains, and give an updated view on transcytosis and endocytosis, the two itineraries of cargoes transport via caveolae. The review adds novel data on the signalling molecules regulating caveolae intracellular routes and on the transport dysregulation in diseases. The therapeutic possibilities offered by exploitation of Caveolin-1 expression and caveolae trafficking, and the urgent issues to be uncovered conclude the review.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
6
|
Shi Y, Ye Z, Lu G, Yang N, Zhang J, Wang L, Cui J, del Pozo MA, Wu Y, Xia D, Shen HM. Cholesterol-enriched membrane micro-domaindeficiency induces doxorubicin resistancevia promoting autophagy in breast cancer. Mol Ther Oncolytics 2021; 23:311-329. [PMID: 34786475 PMCID: PMC8573103 DOI: 10.1016/j.omto.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 10/27/2022] Open
Abstract
Drug resistance has become one of the largest challenges for cancer chemotherapies. Under certain conditions, cancer cells hijack autophagy to cope with therapeutic stress, which largely undermines the chemo-therapeutic efficacy. Currently, biomarkers indicative of autophagy-derived drug resistance remain largely inclusive. Here, we report a novel role of lipid rafts/cholesterol-enriched membrane micro-domains (CEMMs) in autophagosome biogenesis and doxorubicin resistance in breast tumors. We showed that CEMMs are required for the interaction of VAMP3 with syntaxin 6 (STX6, a cholesterol-binding SNARE protein). Upon disruption of CEMM, VAMP3 is released from STX6, resulting in the trafficking of ATG16L1-containing vesicles to recycling endosomes and subsequent autophagosome biogenesis. Furthermore, we found that CEMM marker CAV1 is decreased in breast cancer patients and that the CEMM deficiency-induced autophagy is related to doxorubicin resistance, which is overcome by autophagy inhibition. Taken together, we propose a novel model whereby CEMMs in recycling endosomes support the VAMP3 and STX6 interaction and function as barriers to limit the activity of VAMP3 in autophagic vesicle fusion, thus CEMM deficiency promotes autophagosome biogenesis and doxorubicin resistance in breast tumors.
Collapse
Affiliation(s)
- Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Zu Ye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Naidi Yang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, Jiangsu Province 211800, China
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Miguel A. del Pozo
- Integrin Signaling Laboratory, Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
7
|
Chen X, Wang L, Yu X, Wang S, Zhang J. Caveolin-1 facilitates cell migration by upregulating nuclear receptor 4A2/retinoid X receptor α-mediated β-galactoside α2,6-sialyltransferase I expression in human hepatocarcinoma cells. Int J Biochem Cell Biol 2021; 137:106027. [PMID: 34157397 DOI: 10.1016/j.biocel.2021.106027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
It has been reported that caveolin-1 (Cav-1) acts as a tumor promoter in hepatocellular carcinoma (HCC). Our previous studies showed that Cav-1 promoted mouse hepatocarcinoma cell adhesion to fibronectin by upregulating β-galactoside α2,6-sialyltransferase I (ST6Gal-I) expression. However, the detailed mechanism by which Cav-1 regulates ST6Gal-I is not fully understood. In this study, we found that the expression levels of Cav-1 and ST6Gal-I were increased in HCC tissues and correlated with poor prognosis. Cav-1 upregulated ST6Gal-I expression to promote the migration and invasion of HCC cells by inducing epithelial-to-mesenchymal transition. Importantly, the binding of the transcription factor nuclear receptor 4A2/retinoid X receptor alpha (NR4A2/RXRα) to the -550/-200 region of the ST6GAL1 promoter was critical for Cav-1-induced ST6GAL1 gene expression. Furthermore, Cav-1 expression activated the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, followed by upregulation of NR4A2 expression and phosphorylation of RXRα, which facilitated the complex of NR4A2 and phosphorylated RXRα forming and binding to the ST6GAL1 promoter region to induce its transcription. Finally, in the diethylnitrosamine (DEN)-induced HCC murine model, the expression levels of NR4A2, p-RXRα, ST6Gal-I, and α2,6-linked sialic acid decreased in parallel in Cav-1-/- mice compared with Cav-1+/+ mice, which was consistent with the above in vitro results. These findings provide insight into the mechanism of ST6GAL1 gene transcription mediated by Cav-1, which may lead to the development of novel therapeutic strategies targeting metastasis in HCC.
Collapse
Affiliation(s)
- Xixi Chen
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Liping Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiao Yu
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianing Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China.
| |
Collapse
|
8
|
Fodor A, Lazar AL, Buchman C, Tiperciuc B, Orasan OH, Cozma A. MicroRNAs: The Link between the Metabolic Syndrome and Oncogenesis. Int J Mol Sci 2021; 22:ijms22126337. [PMID: 34199293 PMCID: PMC8231835 DOI: 10.3390/ijms22126337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) represents a cluster of disorders that increase the risk of a plethora of conditions, in particular type two diabetes, cardiovascular diseases, and certain types of cancers. MetS is a complex entity characterized by a chronic inflammatory state that implies dysregulations of adipokins and proinflammatory cytokins together with hormonal and growth factors imbalances. Of great interest is the implication of microRNA (miRNA, miR), non-coding RNA, in cancer genesis, progression, and metastasis. The adipose tissue serves as an important source of miRs, which represent a novel class of adipokines, that play a crucial role in carcinogenesis. Altered miRs secretion in the adipose tissue, in the context of MetS, might explain their implication in the oncogenesis. The interplay between miRs expressed in adipose tissue, their dysregulation and cancer pathogenesis are still intriguing, taking into consideration the fact that miRNAs show both carcinogenic and tumor suppressor effects. The aim of our review was to discuss the latest publications concerning the implication of miRs dysregulation in MetS and their significance in tumoral signaling pathways. Furthermore, we emphasized the role of miRNAs as potential target therapies and their implication in cancer progression and metastasis.
Collapse
Affiliation(s)
- Adriana Fodor
- Department of Diabetes and Nutrtion, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Andrada Luciana Lazar
- Department of Dermatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Cristina Buchman
- Department of Oncology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Brandusa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Olga Hilda Orasan
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.H.O.); (A.C.)
| | - Angela Cozma
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.H.O.); (A.C.)
| |
Collapse
|
9
|
Ling X, Li Y, Qiu F, Lu X, Yang L, Chen J, Li T, Wu D, Xiong H, Su W, Huang D, Chen J, Yang B, Zhao H, Xie C, Zhou Y, Lu J. Down expression of lnc-BMP1-1 decreases that of Caveolin-1 is associated with the lung cancer susceptibility and cigarette smoking history. Aging (Albany NY) 2020; 12:462-480. [PMID: 31901898 PMCID: PMC6977698 DOI: 10.18632/aging.102633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Lnc-BMP1-1 is a lncRNA transcribed from SFTPC (surfactant associated protein C), a lung tissue specific gene encoding pulmonary-associated surfactant protein C (SPC) that is solely secreted by alveolar typeⅡ epithelial cells, among which the ones with SFTPC+ might be transformed into lung adenocarcinoma cells. Caveolin-1 (Cav-1) is a candidate tumor suppressor gene and is vital for coping with oxidative stress induced by cigarette smoke. When comparing lung cancer tissues with their adjacent normal tissues, the expression of lnc-BMP1-1 were decreased, especially in patients with cigarette smoking history (P=0.027), and positively associated with the expression of Cav-1 (P<0.001). When comparing to A549 cells transfected with empty vector (A549-NC cells), the expression level of Cav-1 in A549 cells with over-expressed lnc-BMP1-1 (A549-BMP cells) was increased along with the decreased level of HDAC2 protein. The drug sensitivity of A549-BMP cells to Doxorubicin hydrochloride (DOX) was increased; the growth and migration capability of A549-BMP cells were inhibited along with the decreased protein level of Bcl-2 and DNMT3a; the growth of tumor in nude mice injected with A549-BMP cells were inhibited, too. Furthermore, the lnc-BMP1-1 and Cav-1 expression was also down-regulated in the human bronchial epithelial (16HBE) cells treated with cigarette smoke extract (CSE).
Collapse
Affiliation(s)
- Xiaoxuan Ling
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute of Environmental and Health of Dongguan Key Laboratory, Guangdong Medical University, Dongguan, China
| | - Yinyan Li
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Xiaoxiao Lu
- Department of English and American Studies, Faculty of Languages and Literatures, Ludwig Maximilian University (LMU), Munich, Germany
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| | - Jinbin Chen
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| | - Tiegang Li
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Huali Xiong
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Wenpeng Su
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Dongsheng Huang
- Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Jiansong Chen
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Binyao Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Hongjun Zhao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Chenli Xie
- The Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Prieto-Vila M, Usuba W, Takahashi RU, Shimomura I, Sasaki H, Ochiya T, Yamamoto Y. Single-Cell Analysis Reveals a Preexisting Drug-Resistant Subpopulation in the Luminal Breast Cancer Subtype. Cancer Res 2019; 79:4412-4425. [PMID: 31289135 DOI: 10.1158/0008-5472.can-19-0122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
Drug resistance is a major obstacle in the treatment of breast cancer. Surviving cells lead to tumor recurrence and metastasis, which remains the main cause of cancer-related mortality. Breast cancer is also highly heterogeneous, which hinders the identification of individual cells with the capacity to survive anticancer treatment. To address this, we performed extensive single-cell gene-expression profiling of the luminal-type breast cancer cell line MCF7 and its derivatives, including docetaxel-resistant cells. Upregulation of epithelial-to-mesenchymal transition and stemness-related genes and downregulation of cell-cycle-related genes, which were mainly regulated by LEF1, were observed in the drug-resistant cells. Interestingly, a small number of cells in the parental population exhibited a gene-expression profile similar to that of the drug-resistant cells, indicating that the untreated parental cells already contained a rare subpopulation of stem-like cells with an inherent predisposition toward docetaxel resistance. Our data suggest that during chemotherapy, this population may be positively selected, leading to treatment failure. SIGNIFICANCE: This study highlights the role of breast cancer intratumor heterogeneity in drug resistance at a single-cell level.
Collapse
Affiliation(s)
- Marta Prieto-Vila
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Wataru Usuba
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Urology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Ryou-U Takahashi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Cellular and Molecular Biology, Hiroshima University, Hiroshima, Japan
| | - Iwao Shimomura
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideo Sasaki
- Department of Urology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Takahiro Ochiya
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
11
|
Yoon HJ, Kim DH, Kim SJ, Jang JH, Surh YJ. Src-mediated phosphorylation, ubiquitination and degradation of Caveolin-1 promotes breast cancer cell stemness. Cancer Lett 2019; 449:8-19. [DOI: 10.1016/j.canlet.2019.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
|
12
|
S-nitrosylation and its role in breast cancer angiogenesis and metastasis. Nitric Oxide 2019; 87:52-59. [PMID: 30862477 DOI: 10.1016/j.niox.2019.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/23/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
S-nitrosylation, the modification by nitric oxide of free sulfhydryl groups in cysteines, has become an important regulatory mechanism in carcinogenesis and metastasis. S-nitrosylation of targets in tumor cells contributes to metastasis regulating epithelial to mesenchymal transition, migration and invasion. In the tumor environment, the role of S-nitrosylation in endothelium has not been addressed; however, the evidence points out that S-nitrosylation of endothelial proteins may regulate angiogenesis, adhesion of tumor cells to the endothelium, intra and extravasation of tumor cells and contribute to metastasis.
Collapse
|
13
|
Qian XL, Pan YH, Huang QY, Shi YB, Huang QY, Hu ZZ, Xiong LX. Caveolin-1: a multifaceted driver of breast cancer progression and its application in clinical treatment. Onco Targets Ther 2019; 12:1539-1552. [PMID: 30881011 PMCID: PMC6398418 DOI: 10.2147/ott.s191317] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human breast cancer is one of the most frequent cancer diseases and causes of death among female population worldwide. It appears at a high incidence and has a high malignancy, mortality, recurrence rate and poor prognosis. Caveolin-1 (Cav1) is the main component of caveolae and participates in various biological events. More and more experimental studies have shown that Cav1 plays a critical role in the progression of breast cancer including cell proliferation, apoptosis, autophagy, invasion, migration and breast cancer metastasis. Besides, Cav1 has been found to be involved in chemotherapeutics and radiotherapy resistance, which are still the principal problems encountered in clinical breast cancer treatment. In addition, stromal Cav1 may be a potential indicator for breast cancer patients' prognosis. In the current review, we cover the state-of-the-art study, development and progress on Cav1 and breast cancer, altogether describing the role of Cav1 in breast cancer progression and application in clinical treatment, in the hope of providing a basis for further research and promoting CAV1 gene as a potential target to diagnose and treat aggressive breast cancers.
Collapse
Affiliation(s)
- Xian-Ling Qian
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yi-Hang Pan
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Bo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Qing-Yun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Zhen-Zhen Hu
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| |
Collapse
|
14
|
Wang X, Liu Z, Yang Z. Expression and clinical significance of Caveolin-1 in prostate Cancer after transurethral surgery. BMC Urol 2018; 18:102. [PMID: 30424755 PMCID: PMC6234622 DOI: 10.1186/s12894-018-0418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Background Prostate cancer is a common malignancy of the male genitourinary system that occurs worldwide. The current research aims to investigate caveolin-1 expression in prostate cancer tissue and its relationship with pathological grade, clinical pathologic staging, and preoperative prostate-specific antigen (PSA) levels. Methods From January 2012 to December 2014, samples from 47 patients with prostate cancer who had received transurethral prostatic resection (TURP) and 20 patients with benign prostatic hyperplasia were collected at the First Affiliated Hospital of Guangxi Medical University. Caveolin-1 was detected by streptavidin-perosidase (SP) immunohistochemical staining in pathological tissue slices. The results were statistically analyzed for pathological grade, clinical stage, and preoperative PSA level. Results The expression of caveolin-1 was significantly higher in prostate cancer samples than in benign prostatic hyperplasia samples (P < 0.05), and caveolin-1 expression was significantly different among the pathological grades of poorly, moderately and well-differentiated prostate cancer (P < 0.05). The difference in caveolin-1 expression was significant for different clinical stages (T1-T2 and T3-T4) of prostate cancer (P < 0.05). The difference in caveolin-1 expression was not significant among samples with different preoperative PSA levels (0–10, 10–100 and > 100 μg/L) (P > 0.05). Conclusions Caveolin-1 is closely related to the pathological grade and clinical stage of prostate cancer after transurethral surgery, and it may be a novel tumor marker for prostate cancer. The expression of caveolin-1 is not associated with preoperative serum PSA levels.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, No 166 DaXueDong Road, Nanning, 530007, Guangxi, China.
| | - Zhigui Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhanbin Yang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
15
|
Wang HB, Li T, Ma DZ, Zhi H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells. FASEB J 2018; 32:fj201701386. [PMID: 29932870 DOI: 10.1096/fj.201701386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuroblastoma is the most common cancer in infants and the third most common cancer in children after leukemia and brain cancer. The purpose of our study was to investigate the effects of estrogen receptor (ER)-α36 gene silencing on tau protein phosphorylation, cell proliferation, and cell apoptosis in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with estrogen or left untreated, to investigate the effects of estrogen stimulation on ERα36 and the ERK/protein B kinase (AKT) signaling pathway. ERα36 mRNA expressions were detected by quantitative RT-PCR. A phosphatase kit was used to test protein phosphatase (PP)-2A activity before and after treatment. Western blot analysis was conducted to detect protein expression of ERα36; tau protein; phosphorylated- tau (p-tau) at site Thr231 [p-tau (Thr231)]; glycogen synthase kinase (GSK)3β and its specificity sites (Tyr216 and Ser9); Cyclin Dl; proliferating cell nuclear antigen (PCNA); B-cell lymphoma (Bcl)-2; and Bcl-2-associated X protein (Bax). A cell-counting kit (CCK)-8 assay was used to determine cell viability. Cell apoptosis and rate of tumor growth and volume were determined by Annexin V-FITC/PI staining and a xenotransplanted tumor model in nude mice. Results show that without estrogen stimulation, ERα36 was inactivated. When stimulated by estrogen, expression of ERα36, PP2A, p-GSK3β (Ser9)/total protein ( t)-GSK3β, Cyclin Dl, PCNA, and Bcl-2 were up-regulated, and p-GSK3β (Tyr216)/ t-GSK3β expression was down-regulated, as was p-tau (Thr231) and Bax expression. The expression of p-ERK/ERK, p-AKT/AKT, p-methyl ethyl ketone (MEK)/MEK, and p-mammalian target of rapamycin (mTOR)/mTOR expression was up-regulated, suggesting that the ERK/AKT signaling pathway is activated. Cell proliferation was also accelerated, whereas apoptosis was inhibited with stimulation by estrogen. However, we found that the effects of silencing ERα36 on the expression of related intracellular factors had no association with estrogen. Our study demonstrates that ERα36 gene silencing can inhibit the activation of the ERK/AKT signaling pathway, increase tau protein phosphorylation, decrease cell vitality and tumorigenicity, and promote apoptosis of human neuroblastoma SH-SY5Y cells.-Wang, H.-B., Li, T., Ma, D.-Z., Zhi, H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Hong-Bin Wang
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Tao Li
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Dong-Zhou Ma
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Hua Zhi
- Department of Cardiology, Affiliated Hospital, Hebei University of Engineering, Handan, China
| |
Collapse
|
16
|
Novikova MV, Rybko VA, Kochatkov AV, Khromova NV, Bogomazova SY, Dugina VB, Lyadov VK, Kopnin PB. [A change in the expression of membrane-associated proteins and cytoplasmic actin isoforms in the progression of human colon tumors]. Arkh Patol 2018; 79:15-21. [PMID: 28418353 DOI: 10.17116/patol201779215-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor progression is a complex process that also involves the restructuring of the actin cytoskeleton and the weakening of intercellular adhesive contacts due to the tumor cells that pass through the epithelial-mesenchymal transition (EMT). AIM Тo identify correlations between clinical features, risk of progression and/or recurrence of human colon adenocarcinomas (CAC), and EMT-related tumor markers. MATERIAL AND METHODS Descending colon and sigmoid colon adenocarcinoma samples were examined immunohistochemically. Formalin-fixed paraffin-embedded tissue sections were incubated with antigen-specific antibodies, then secondary antibodies labeled with fluorochromes, and the fluorescence intensity of microscopy images was analyzed. RESULTS The cells of a tumor compared to those of intact colon tissue showed a weak staining of E-cadherin in the cell-cell contact areas. The reduced membrane staining and nuclear localization of β-catenin were detected in moderately (G2) and poorly (G3) differentiated tumors. There were substantially decreased β-actin levels in almost all tumor samples and increased γ-actin ones, mainly in the samples belonging to stage IV disease. CONCLUSION A correlation was found between stage, tumor differentiation grade, risk for relapse or progression of disease, and the impaired expression of different EMT markers: total or partial loss of E-cadherin expression, β-catenin reorganization in cell-cell contacts, and a change in the ratio of cytoplasmic actin isoforms in the late stages of CAC development. We believe that these molecular markers may have a prognostic potential.
Collapse
Affiliation(s)
- M V Novikova
- N.N. Blokhin Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V A Rybko
- N.N. Blokhin Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Kochatkov
- Treatment and Rehabilitation Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N V Khromova
- N.N. Blokhin Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S Yu Bogomazova
- Treatment and Rehabilitation Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V B Dugina
- A.N. Belozersky Institute of Physicochemical Biology, Moscow State University, Moscow, Russia
| | - V K Lyadov
- Treatment and Rehabilitation Center, Ministry of Health of the Russian Federation, Moscow, Russia; Russian Medical Academy of Postgraduate Education, Russian Ministry of Health of the Russian Federation, Moscow, Russia
| | - P B Kopnin
- N.N. Blokhin Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
17
|
Yang J, Zhu T, Zhao R, Gao D, Cui Y, Wang K, Guo Y. Caveolin-1 Inhibits Proliferation, Migration, and Invasion of Human Colorectal Cancer Cells by Suppressing Phosphorylation of Epidermal Growth Factor Receptor. Med Sci Monit 2018; 24:332-341. [PMID: 29339715 PMCID: PMC5783188 DOI: 10.12659/msm.907782] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Although downregulation of caveolin-1 (Cav-1), which is a key constituent of membrane caveolae and a regulator of cellular processes, is associated with colorectal cancer (CRC), its involvement in the disease progression is largely unknown. This study aimed to explore the role of Cav-1 in CRC and the associated mechanisms. Material/Methods Fresh tissues from patients with CRC and human CRC SW480 cells were used to evaluate Cav-1 and Ki-67 expression using immunohistochemistry and Western blotting. The MTS and Transwell assays were performed to determine the effects of Cav-1 overexpression via pcDNA3.1/Cav-1 plasmid on cell proliferation and metastasis. The effect of Cav-1 on the epidermal growth factor receptor (EGFR) activation was evaluated by Western blotting. The correlation of Cav-1 expression with clinicopathological factors was statistically analyzed. Results Overexpression of Cav-1 significantly reduced proliferation, migration, and invasion of SW480 cancer cells in vitro. The EGF-induced phosphorylation of EGFR and activations of the RAF-MEK-ERK and PI3K-AKT pathways were adversely regulated by Cav-1 overexpression in vitro. In 76 cases of CRC patients with EGFR expression, a negative correlation was observed between the level of Cav-1 and tumor-node-metastasis stage, lymph node metastasis, and distant metastasis (All p<0.05). Finally, the expression level of Cav-1 was negatively correlated with that of Ki-67. Conclusions This report is the first to show that overexpression of Cav-1significantly inhibits the proliferation, migration, and invasion potential of SW480 cells, possibly through reducing EGF-induced EGFR activation. High Cav-1 expression level may be a predictor of positive outcomes in patients with colorectal cancer.
Collapse
Affiliation(s)
- Juanli Yang
- Department of Pain and Rehabilitation, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Tienian Zhu
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention in Serious Diseases in Hebei Province, Shijiazhuang, Hebei, China (mainland).,Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Ruijing Zhao
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention in Serious Diseases in Hebei Province, Shijiazhuang, Hebei, China (mainland)
| | - Dongmei Gao
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Yujie Cui
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Kun Wang
- Department of Transfusion, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
18
|
Zheng W, Li J, Wang X, Yuan Y, Zhang J, Xiu Z. Effects of Antarctic krill docosahexaenoic acid on MCF-7 cell migration and invasion induced by the interaction of CD95 with caveolin-1. Life Sci 2018; 192:270-277. [DOI: 10.1016/j.lfs.2017.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/09/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022]
|
19
|
Liu W, Yin NC, Liu H, Nan KJ. Cav-1 promote lung cancer cell proliferation and invasion through lncRNA HOTAIR. Gene 2018; 641:335-340. [DOI: 10.1016/j.gene.2017.10.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022]
|
20
|
Wang M, Tian T, Ma X, Zhu W, Guo Y, Duan Z, Fan J, Lin S, Liu K, Zheng Y, Sheng Q, Dai ZJ, Peng H. Genetic polymorphisms in caveolin-1 associate with breast cancer risk in Chinese Han population. Oncotarget 2017; 8:91654-91661. [PMID: 29207674 PMCID: PMC5710954 DOI: 10.18632/oncotarget.21560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Caveolin-1(CAV-1) was demonstrated to be a tumor suppressor gene and be implicated in the development of breast cancer (BC). Numerous potentially functional polymorphisms in CAV-1 have been identified, but their effects on BC were not clear. This case-control study aims to evaluate the relationship between CAV-1 polymorphisms and BC risk. 560 BC patients and 583 healthy controls were enrolled in the present study, all from Chinese Han population. We detected 3 single nucleotide polymorphisms (rs3807987, rs1997623, and rs7804372) in CAV-1 using the Sequenom MassARRAY method. The association between CAV-1genotypes and BC risk was assessed in six genetic models by calculating the odds ratio (OR) and 95% confidence intervals (95% CIs) with χ2-test. The CAV-1 rs3807987 polymorphism was observed to increase the risk of BC And the A allele of rs3807987 relates to a larger tumor size (≥2cm) and lower incidence of PR-positive BC while the AA genotype of rs7804372 associates with a higher ER and Her-2 positive rate among BC patients. In addition, Ars1997623Grs3807987Trs7804372 haplotype was linked to a decreased risk of BC (OR =0.64, 95%CI=0.44-0.93), whereas Crs1997623Ars3807987Trs7804372 haplotype was related to an increased BC risk (OR =1.74, 95%CI=1.04-2.92). Our study suggests that CAV-1 rs3807987 can increase the BC risk among Chinese Han women. And the rs3807987 and rs7804372 in CAV-1 may serve as predictors for prognosis of BC.
Collapse
Affiliation(s)
- Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tian Tian
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Yan Guo
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zhao Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiangbo Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kang Liu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qianwen Sheng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhi-Jun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huixia Peng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Parrales A, Iwakuma T. p53 as a Regulator of Lipid Metabolism in Cancer. Int J Mol Sci 2016; 17:ijms17122074. [PMID: 27973397 PMCID: PMC5187874 DOI: 10.3390/ijms17122074] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Enhanced proliferation and survival are common features of cancer cells. Cancer cells are metabolically reprogrammed which aids in their survival in nutrient-poor environments. Indeed, changes in metabolism of glucose and glutamine are essential for tumor progression. Thus, metabolic reprogramming is now well accepted as a hallmark of cancer. Recent findings suggest that reprogramming of lipid metabolism also occurs in cancer cells, since lipids are used for biosynthesis of membranes, post-translational modifications, second messengers for signal transduction, and as a source of energy during nutrient deprivation. The tumor suppressor p53 is a transcription factor that controls the expression of proteins involved in cell cycle arrest, DNA repair, apoptosis, and senescence. p53 also regulates cellular metabolism, which appears to play a key role in its tumor suppressive activities. In this review article, we summarize non-canonical functions of wild-type and mutant p53 on lipid metabolism and discuss their association with cancer progression.
Collapse
Affiliation(s)
- Alejandro Parrales
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
22
|
Thapa B, Walkiewicz M, Murone C, Asadi K, Deb S, Barnett S, Knight S, Mitchell P, Liew D, Watkins DN, John T. Calretinin but not caveolin-1 correlates with tumour histology and survival in malignant mesothelioma. Pathology 2016; 48:660-665. [PMID: 27780599 DOI: 10.1016/j.pathol.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022]
Abstract
Malignant mesothelioma (MM) continues to be a disease with poor prognosis and limited treatment options. Calretinin and caveolin-1 expression by tumour in MM have recently been described to be associated with tumour histology, differentiation and consequently survival. In a large, well annotated cohort, we studied both of these biomarkers and explored their association with clinicopathological parameters and survival. A retrospective search of patients with MM who underwent surgery at the Austin Hospital in Melbourne, Australia, was conducted. Clinical history and outcome data were retrieved from patient records. Tissue microarrays (TMAs) were constructed and stained for calretinin and caveolin-1. 'H scores' were derived, taking intensity and distribution of staining, and the cohort was dichotomised using median values for both markers. In the 329 patients evaluated, median age was 67 years. Males outnumbered females by 5:1. Epithelioid histology 202/319 (62.9%) was the most common, followed by biphasic 72/319 (21.8%) and sarcomatoid 45/319 (13.6%); histology could not be confirmed in 10 patients. Calretinin expression was detected in 246 of the 324 (76%) evaluable patients and high expression was associated with epithelioid histology (p < 0.0001). Caveolin-1 was expressed in 298 (94%) of 317 evaluable patients which was much higher compared to its expression in a cohort of lung adenocarcinomas (8/58, 13.7%). However, no association with histology was found (p = 0.409). When taken as a continuous variable, calretinin expression was found to be an independent predictor of survival, alongside histology, neutrophil-lymphocyte ratio, weight loss and stage. No prognostic value was demonstrable for caveolin-1 expression and calretinin/caveolin-1 ratio. There was no relationship between calretinin and caveolin-1 expression. In MM, increased calretinin expression is associated with epithelioid histology and better survival. Caveolin-1 is a sensitive MM marker and is expressed in a high proportion of cases but lacks association with histology and survival.
Collapse
Affiliation(s)
- Bibhusal Thapa
- Department of Medicine, University of Melbourne, Vic, Australia; Olivia Newton John Cancer Research Institute, Vic, Australia
| | | | - Carmel Murone
- Olivia Newton John Cancer Research Institute, Vic, Australia; Department of Pathology, Austin Health, Vic, Australia
| | | | - Siddhartha Deb
- Olivia Newton John Cancer Research Institute, Vic, Australia; Anatpath, Gardenvale, Vic, Australia
| | - Stephen Barnett
- Department of Thoracic Surgery, Austin Hospital, Melbourne, Vic, Australia
| | - Simon Knight
- Department of Thoracic Surgery, Austin Hospital, Melbourne, Vic, Australia
| | - Paul Mitchell
- Department of Medical Oncology, Austin Health, Olivia-Newton John Cancer and Wellness Centre, Vic, Australia
| | - Danny Liew
- Department of Epidemiology and Preventive Medicine, Monash University, Vic, Australia
| | | | - Thomas John
- Olivia Newton John Cancer Research Institute, Vic, Australia; Department of Medical Oncology, Austin Health, Olivia-Newton John Cancer and Wellness Centre, Vic, Australia; School of Cancer Medicine, La Trobe University, Vic, Australia.
| |
Collapse
|
23
|
Expression of KCNA5 Protein in Human Mammary Epithelial Cell Line Associated with Caveolin-1. J Membr Biol 2016; 249:449-57. [DOI: 10.1007/s00232-016-9885-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/06/2016] [Indexed: 11/24/2022]
|