1
|
Li C, Dai H, Guo X, Zhou L, Jiang M. Comprehensive review of non-invasive-treatment-related cardiovascular toxicity in breast cancer. iScience 2025; 28:111759. [PMID: 40207253 PMCID: PMC11980005 DOI: 10.1016/j.isci.2025.111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Cardiovascular toxicity is a significant side effect of breast cancer treatment and has emerged as a leading cause of non-tumor-related deaths among breast cancer survivors, emphasizing the critical need for effective monitoring and management of these complications. As breast cancer remains the most prevalent cancer among women, advancements in survival rates have been achieved through treatments such as chemotherapy, targeted therapy, endocrine therapy, immunotherapy, and radiotherapy. This review provides a comprehensive understanding of the cardiovascular toxicity mechanisms associated with both established and emerging breast cancer therapies, identifies potential therapeutic targets and monitoring strategies, and highlights key deficiencies and challenges in the field. By offering insights into the early detection, prevention, and management of cardiovascular complications, this review aims to guide future research directions and clinical practices, ultimately improving outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Cenyu Li
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinning Guo
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Meng Jiang
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| |
Collapse
|
2
|
Hu K, Wang Y, Ma Y, Xiu C. Clinical utility of quantitative ultrasonography parameters combined with serum cancer antigen 15‑3, human epidermal growth factor receptor 2 and soluble E‑cadherin in diagnosing mass‑type breast cancer. Oncol Lett 2025; 29:133. [PMID: 39822943 PMCID: PMC11737295 DOI: 10.3892/ol.2025.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 01/19/2025] Open
Abstract
Contrast-enhanced ultrasonography (CEUS), a newly developed imaging technique, holds certain value in differentiating benign from malignant tumors. Additionally, serum tumor markers also exhibit significant clinical importance in the diagnosis and monitoring of malignant tumors. Reports have indicated abnormal expression of HER-2, CA153 and sE-cad in breast cancer. Early diagnosis of breast cancer facilitates early clinical intervention and enhances the overall quality of life for patients. Therefore, this study aims to explore the clinical value of quantitative CEUS parameters combined with serum levels of CA153, HER-2 and sE-cad in diagnosing mass-type breast cancer. In total, 49 patients with breast cancer (breast cancer group) and 56 patients with benign breast tumors (benign group) were selected as the study participants, while 50 healthy women served as the control group. Ultrasonography was performed on the patients in the breast cancer and benign groups using diagnostic color Doppler ultrasonography. The serum CA15-3, HER-2 and sE-cad levels in all three study groups were measured using a fully automated electrochemiluminescence immunoassay. Pearson's correlation test was used to analyze the correlation between the quantitative ultrasonography parameters and serum CA15-3, HER-2 and sE-cad levels. Logistic multivariate regression analysis was performed to analyze the independent risk factors, and a receiver operating characteristic curve was plotted to assess the diagnostic value of these factors. The peak intensity (PI), wash-in slope (WIS), gradient (Grad) and local mean transit time (mTTI), along with the CA15-3, HER-2 and sE-cad levels in the breast cancer group were significantly higher, and the time to peak (TTP) was significantly lower, compared with those values in the benign and control groups. CA15-3, HER-2 and sE-cad were negatively correlated with TTP in the breast cancer group (all P<0.05) and positively correlated with PI, WIS, Grad and mTTI (all P<0.05). The area under the curve (AUC) values for CA15-3, HER-2, sE-cad, PI, WIS, Grad, mTTI and TTP for the diagnosis of malignant breast cancer were 0.640, 0.730, 0.687, 0.683, 0.692, 0.737, 0.697 and 0.671, respectively. The AUC for the combined diagnosis was 0.919, with a sensitivity of 0.857 and a specificity of 0.911, outperforming each index alone for a single diagnosis. Logistic multivariate regression analysis revealed that HER-2, TTP, PI, WI and Grad were independent risk factors for malignant breast cancer. In conclusion, combining the quantitative ultrasonography parameters with the CA15-3, HER-2 and sE-cad levels facilitated the differential diagnosis of benign and malignant breast lesions, and may provide a reference for clinical treatment in the future.
Collapse
Affiliation(s)
- Keshuo Hu
- Department of Breast Surgery, The Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Yichun Wang
- Department of Cardiothoracic Vascular Surgery, The Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Yang Ma
- Department of Pain, Jilin Central Hospital, Jilin, Jilin 132011, P.R. China
| | - Chao Xiu
- Department of Imaging, The Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| |
Collapse
|
3
|
Khanmammadov N, Doğan I, Khishigsuren B, Azizy A, Saip P, Aydiner A. Rechallenge of trastuzumab-based therapy in HER2-positive breast cancer patients who progressed after lapatinib plus capecitabine. Medicine (Baltimore) 2025; 104:e41468. [PMID: 39928785 PMCID: PMC11813031 DOI: 10.1097/md.0000000000041468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 02/12/2025] Open
Abstract
Data regarding the use of rechallenge trastuzumab (RTmab)-based therapies in the management of heavily pretreated patients with HER2-positive breast cancer (BC) in the literature are limited. This study aimed to evaluate the efficacy of trastuzumab-based therapy in patients who experienced disease progression after receiving lapatinib plus capecitabine (LC). In this retrospective study, the data of thirty three HER2 positive metastatic BC patients who progressed after LC treatment and subsequently received trastuzumab-based treatment were evaluated. Trastuzumab was administered at an initial loading dose of 8 mg/kg followed by a maintenance dose of 6 mg/kg every 21 days. The average age of patients is 47 years (range 25-72 years). The predominant histopathological subtype was invasive ductal carcinoma, which was observed in 23 (70%) patients. Estrogen receptor (ER) positivity was also noted in 16 (48%) patients. All patients had received palliative trastuzumab plus chemotherapy (Cht) before the lapatinib. In conjunction with trastuzumab-based therapy, vinorelbine was administered to 14 (42%) patients, paclitaxel to 12 (36%), and other chemotherapeutic agents to 4 (12%). For all patients, the objective response and disease control rates were 27% and 69%, respectively. Furthermore, the median progression-free survival (PFS) was 8.8 months (95% confidence interval [CI]: 6.6-11), and the median overall survival was 20 months (95% CI: 15.1-25.8). There were no statistically significant differences in PFS rates based on several factors, including age, ER status, denovo metastasis, brain metastasis, perioperative Cht, pre-Rtmab hormone therapy, and which Cht was used along with Rtmab (P > .05). Mild to moderate adverse events were observed in 17 (52%) patients, whereas only 4 (12%) patients had Grade 3 to 4 toxicity. This study demonstrated that RTmab-based therapy is effective in patients who progressed after LC. These findings contribute to the literature by suggesting that RTmab is a viable treatment option for patients with HER2-positive metastatic BC.
Collapse
Affiliation(s)
- Nijat Khanmammadov
- Department of Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Izzet Doğan
- Department of Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Bayarmaa Khishigsuren
- Department of Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Abdulmunir Azizy
- Department of Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Pinar Saip
- Department of Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Adnan Aydiner
- Department of Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| |
Collapse
|
4
|
Saeed S, Hassan AF, Suliman A, Moustafa AEA, Alali F. Methanolic Leaves Extract of Ziziphus spina-christi Inhibits Cell Proliferation and Migration of HER2-Positive Breast Cancer via p38 MAPK Signaling Pathway. Int J Mol Sci 2025; 26:654. [PMID: 39859369 PMCID: PMC11765879 DOI: 10.3390/ijms26020654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a subtype of breast cancer that is associated with poor prognosis and low survival rates. The discovery of novel anti-cancer agents to manage this subtype of cancer is still needed. Ziziphus spina-christi (ZSC) is a plant species that is native to Qatar. It exerts various biological activities, including cytotoxicity as it contains different essential bioactive constituents, mainly rutin and quercetin. To examine the outcome of ZSC on HER2-positive breast cancer, we standardized the ZSC methanolic leaves extracted by Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) analysis using the flavonoids rutin and quercetin as marker compounds. Here we used two HER2-positive breast cancer cell lines, ZR-75-1 and SK-BR-3, and the chorioallantoic membrane as an angiogenesis model. We found that ZSC extract significantly reduces viability, alters the normal morphological phenotype of HER2-positive breast cancer cells, and inhibits cell migration as well as colony formation; this is accompanied by deregulating different apoptotic markers such as Bax/Bcl-2 and NF-κB in both cell lines. Additionally, ZSC methanolic extract significantly represses the angiogenesis of the chorioallantoic membrane model. Moreover, the molecular pathway investigations pointed out that ZSC extract represses the activity of HER2 and p38 MAPK which could be the main pathways behind the effect of ZSC in HER2-positive cells. Collectively, our results support the potential role of ZSC in the management of HER2-positive breast cancer and form the basis for future investigations.
Collapse
Affiliation(s)
- Sumayyah Saeed
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (S.S.); (A.F.H.); (A.S.)
| | - Arij Fouzat Hassan
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (S.S.); (A.F.H.); (A.S.)
| | - Azza Suliman
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (S.S.); (A.F.H.); (A.S.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Oncology Department, McGill University, Montreal, QC H4A 3T2, Canada
| | - Feras Alali
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (S.S.); (A.F.H.); (A.S.)
| |
Collapse
|
5
|
Kondakova I, Sereda E, Sidenko E, Vtorushin S, Vedernikova V, Burov A, Spirin P, Prassolov V, Lebedev T, Morozov A, Karpov V. Association of Proteasome Activity and Pool Heterogeneity with Markers Determining the Molecular Subtypes of Breast Cancer. Cancers (Basel) 2025; 17:159. [PMID: 39796785 PMCID: PMC11720674 DOI: 10.3390/cancers17010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed. Breast cancer (BC) therapy depends on the subtype of the tumor, determined by the expression level of Ki67, HER-2, estrogen and progesterone receptors. Relationships between the presence of specific proteasome forms and proteins that determine the BC subtype remain unclear. Here, using gene expression data in 19,145 tumor samples from 144 datasets and tissues from 159 patients with different subtypes of BC, we investigated the association between the activity and expression of proteasomes and levels of BC subtype markers. METHODS Bioinformatic analysis of proteasome subunit (PSMB1-10) gene expression in BC was performed. Proteasome heterogeneity in BC cell lines was investigated by qPCR. By Western blotting, proteasome composition was assessed in cells and patient tissue lysates. Proteasome activities were studied using fluorogenic substrates. BC molecular subtypes were determined by immunohistochemistry. RESULTS BC subtypes demonstrate differing proteasome subunit expression pattern and strong PSMB8-10 co-correlation in tumors. A significant increase in chymotrypsin- and caspase-like proteasome activities in BC compared to adjacent tissues was revealed. The subunit composition of proteasomes in tumor tissues of BC subtypes varied. Regression analysis demonstrated a positive correlation between proteasome activities and the expression of Ki67, estrogen receptors and progesterone receptors. CONCLUSION BC subtypes demonstrate differences within the proteasome pool. Correlations between the proteasome activity, hormone receptors and Ki67 indicate possible mutual influence. Obtained results facilitate development of novel drug combinations for BC therapy.
Collapse
Affiliation(s)
- Irina Kondakova
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
| | - Elena Sereda
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeniya Sidenko
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Sergey Vtorushin
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Valeria Vedernikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Moscow Center for Advanced Studies, Kulakova 20, 123592 Moscow, Russia
| | - Alexander Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| |
Collapse
|
6
|
Xiao S, Yu T, Yang F, Yuan H, Ni J. LMAN2 interacts with HEATR3 to expedite HER2-positive breast cancer advancement and inflammation and Akt/ERK/NF-κB signaling. Biochem Cell Biol 2025; 103:1-11. [PMID: 39772898 DOI: 10.1139/bcb-2024-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The paper aimed to reveal the impacts and the possible mechanism of action of lectin mannose-binding 2 protein (LMAN2) in HER2-positive breast cancer (BC). The expression, prognostic potential of LMAN2, and the correlation between LMAN2 and HEAT repeat containing 3 (HEATR3) in BC were analyzed in TCGA database. Intact, Mentha, and BioGrid databases predicted LMAN2-HEATR3 interactions. Reverse transcription-quantitative PCR and Western blot examined LMAN2 expression. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays, respectively, detected the aggressive cellular biological behaviors including proliferation, migration, and invasion. Western blot analyzed the expression of matrix metalloproteinases, HEATR3, and protein kinase B (Akt)/extracellular signal-regulated kinase (ERK)/nuclear factor-kappaB (NF-κB) signaling-related proteins. Co-immunoprecipitation assay was used to prove the relationship of LMAN2 with HEATR3. Enzyme-linked immunosorbent assay detected inflammatory cytokine levels. LMAN2 was overexpressed in HER2-positive BC tissues and cells and indicated unfavorable prognosis of BC patients. LMAN2 knockdown suppressed HER2-positive BC cell proliferation, migration, and invasion. LMAN2 interacted with and had a positive correlation with HEATR3. HEATR3 up-regulation reversed the repressive role of LMAN2 interference in the progression of HER2-positive BC, Akt/ERK/NF-κB signaling, and inflammatory response. Altogether, LMAN2 silencing might exert anti-tumor and anti-inflammatory properties and inactivate Akt/ERK/NF-κB signaling in HER2-positive BC via binding to HEATR3.
Collapse
Affiliation(s)
- Sujian Xiao
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Tong Yu
- Blood Transfusion Department, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Fulan Yang
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Huozhong Yuan
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Jun Ni
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
7
|
Mendes J, Soares AC, Peyroteo M, Canotilho R, Ribeiro C, Abreu de Sousa J. Ultrasound-Guided Versus Wire-Guided Breast-Conserving Surgery for Non-palpable Breast Lesions: A Retrospective Review. Cureus 2024; 16:e72525. [PMID: 39606532 PMCID: PMC11600384 DOI: 10.7759/cureus.72525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background Breast-conserving surgery (BCS) is standard for early breast cancer, yet achieving clear surgical margins remains challenging. Ultrasound (US)-guided BCS has emerged as a potential alternative to wire-guided surgery, but its efficacy compared to traditional methods requires evaluation. Methods A retrospective review of patients undergoing BCS from April 2022 to April 2023 at the Portuguese Institute of Oncology of Porto (IPO-Porto) was conducted. Preoperative assessment by the surgeon determined the choice between ultrasound-guided and wire-guided surgery for non-palpable lesions. Results Out of 155 patients, 81 (52.3%) underwent US-guided BCS, while 74 (47.7%) underwent wire-guided BCS. Both groups had similar tumor characteristics and achieved rates of negative surgical margins (69 (92%) versus 53 (93%)). There was no significant difference in intraoperative re-excision rates between the two groups (24 (32%) versus 19 (33.3%); p=8.71). Additionally, the rate of repeat BCS/mastectomy after initial surgery was comparable (6 (8%) versus 4 (7%); p=1.000). Conclusions Ultrasound-guided BCS demonstrates comparable efficacy to wire-guided BCS for non-palpable breast lesions. Both techniques provide similar surgical outcomes, with the potential additional benefits of ultrasound-guided BCS for the patient and in the management of healthcare resources.
Collapse
Affiliation(s)
- João Mendes
- Surgery, Unidade Local de Saúde do Médio Ave, Santo Tirso, PRT
| | - Ana Cláudia Soares
- Surgery, Hospital de Santo Espírito da Ilha Terceira, Angra do Heroísmo, PRT
| | - Mariana Peyroteo
- Surgical Oncology, Instituto Português de Oncologia do Porto Francisco Gentil (IPO-Porto), Porto, PRT
| | - Rita Canotilho
- Surgical Oncology, Instituto Português de Oncologia do Porto Francisco Gentil (IPO-Porto), Porto, PRT
| | - Cátia Ribeiro
- Surgical Oncology, Instituto Português de Oncologia do Porto Francisco Gentil (IPO-Porto), Porto, PRT
| | - Joaquim Abreu de Sousa
- Surgical Oncology, Instituto Português de Oncologia do Porto Francisco Gentil (IPO-Porto), Porto, PRT
| |
Collapse
|
8
|
Omweri JM, Saini S, Houson HA, Tekin V, Pyles JM, Parker CC, Lapi SE. Development of 52Mn Labeled Trastuzumab for Extended Time Point PET Imaging of HER2. Mol Imaging Biol 2024; 26:858-868. [PMID: 39192059 PMCID: PMC11436409 DOI: 10.1007/s11307-024-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE Due to their long circulation time in the blood, monoclonal antibodies (mAbs) such as trastuzumab, are usually radiolabeled with long-lived positron emitters for the development of agents for Positron Emission Tomography (PET) imaging. Manganese-52 (52Mn, t1/2 = 5.6 d, β+ = 29.6%, E(βave) = 242 keV) is suitable for imaging at longer time points providing a complementary technique to Zirconium-89 (89Zr, t1/2 = 3.3 d, β+ = 22.7%, E(βave) = 396 keV)) because of its long half-life and low positron energy. To exploit these properties, we aimed to investigate suitable bifunctional chelators that could be readily conjugated to antibodies and labeled with 52Mn under mild conditions using trastuzumab as a proof-of-concept. PROCEDURES Trastuzumab was incubated with S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 1-Oxa-4,7,10-tetraazacyclododecane-5-S-(4-isothiocyantobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A), and 3,6,9,15-tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA) at a tenfold molar excess. The immunoconjugates were purified, combined with [52Mn]MnCl2 at different ratios, and the labeling efficiency was assessed by iTLC. The immunoreactive fraction of the radiocomplex was determined through a Lindmo assay. Cell studies were conducted in HER2 + (BT474) and HER2- (MDA-MB-468) cell lines followed by in vivo studies. RESULTS Trastuzumab-Oxo-DO3A was labeled within 30 min at 37 °C with a radiochemical yield (RCY) of 90 ± 1.5% and with the highest specific activity of the chelators investigated of 16.64 MBq/nmol. The labeled compound was purified with a resulting radiochemical purity of > 98% and retained a 67 ± 1.2% immunoreactivity. DOTA and PCTA immunoconjugates resulted in < 50 ± 2.5% (RCY) with similar specific activity. Mouse serum stability studies of [52Mn]Mn-Oxo-DO3A-trastuzumab showed 95% intact complex for over 5 days. Cell uptake studies showed higher uptake in HER2 + (12.51 ± 0.83% /mg) cells compared to HER2- (0.85 ± 0.10%/mg) cells. PET images of mice bearing BT474 tumors showed high tumor uptake that was consistent with the biodistribution (42.02 ± 2.16%ID/g, 14 d) compared to MDA-MB-468 tumors (2.20 ± 0.80%ID/g, 14 d). Additionally, both models exhibited low bone uptake of < 1% ID/g. CONCLUSION The bifunctional chelator p-SCN-Bn-Oxo-DO3A is promising for the development of 52Mn radiopharmaceuticals as it was easily conjugated, radiolabeled at mild conditions, and illustrated stability for a prolonged duration both in vitro and in vivo. High-quality PET/CT images of [52Mn]Mn-Oxo-DO3A-trastuzumab were obtained 14 d post-injection. This study illustrates the potential of [52Mn]Mn-Oxo-DO3A for the evaluation of antibodies using PET imaging.
Collapse
Affiliation(s)
- James M Omweri
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Shefali Saini
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Volkan Tekin
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Jennifer M Pyles
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Candace C Parker
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Suzanne E Lapi
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA.
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA.
| |
Collapse
|
9
|
Aslan C, Maralbashi S, Shekari N, Javadian M, Shomali N, Kazemi T. Differential effects of docosahexaenoic acid (DHA) and linoleic acid (LA) on miR-101 and miR-342 tumor suppressor microRNAs in Taxol-treated HER2-positive breast cancer cells. Clin Nutr ESPEN 2024; 63:502-507. [PMID: 39047867 DOI: 10.1016/j.clnesp.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 05/14/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND & AIMS Docosahexaenoic acid (DHA) and linoleic acid (LA) have been shown to exhibit anti-proliferative effects against breast cancer cells. However, the mechanisms underlying these effects are not yet fully understood. One potential mechanism is through the regulation of microRNAs (miRs), which are known to play a crucial role in breast cancer development and progression. This study aimed to investigate the expression of miR-342 and miR-101 as tumor-suppressor miRs in the human HER-2 positive breast cancer cell line BT-474 after treatment with DHA, LA, alone or in combination with Taxol, a standard chemotherapy agent. METHODS The human breast cancer cell line BT-474 was cultured, and the IC50 for Taxol was determined using the MTT assay. Cells were then cultured and treated for 24 h with 100 μM DHA and 50 μM LA, alone or in combination with the respective IC50 of Taxol. Cells were harvested, and miRNA extraction and cDNA synthesis were performed using standard methods. Expression levels of miRs were analyzed using quantitative real-time PCR (qRT-PCR), and results were normalized against U6 snRNA expression levels. RESULTS The Taxol IC50 for BT-474 cells was 19 nM. According to the data obtained from our study, it was observed that Taxol treatment resulted in the down-regulation of both miR-101 and miR-342 (3.69 (p < 0.0001) and 1.88 fold, (p < 0.0001) respectively). In addition, DHA, LA and DHA + LA caused up-regulation of miR-101 (0.11, 0.05, 0.03 fold (p < 0.0001) respectively) but not miR-342 (decreased by 1.93 (p < 0.0001), 2.89 (p < 0.0001) and 1.19 fold (p = 0.0029) respectively). Notably, treatment with DHA, LA and DHA + LA was able to restore the down-regulated expression of miR-101 (0.25 (p < 0.0001), 0.05 (p = 0.0012) and 0.06 fold (p < 0.0001) respectively) during Taxol treatment. CONCLUSION Our study demonstrates that DHA and LA can effectively compensate for the reduced expression of miR-101 during Taxol treatment. These findings suggest that dietary fatty acids may play a critical role in modulating the anti-cancer effects of chemotherapy agents. Future studies are needed to investigate the functional aspects of dietary fatty acids on breast cancer development and progression.
Collapse
Affiliation(s)
- Cynthia Aslan
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Maralbashi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Najibeh Shekari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Javadian
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Robles-Hernández JSL, Medina DI, Aguirre-Hurtado K, Bosquez M, Salcedo R, Miralrio A. AI-assisted models to predict chemotherapy drugs modified with C 60 fullerene derivatives. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1170-1188. [PMID: 39319207 PMCID: PMC11420546 DOI: 10.3762/bjnano.15.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Employing quantitative structure-activity relationship (QSAR)/ quantitative structure-property relationship (QSPR) models, this study explores the application of fullerene derivatives as nanocarriers for breast cancer chemotherapy drugs. Isolated drugs and two drug-fullerene complexes (i.e., drug-pristine C60 fullerene and drug-carboxyfullerene C60-COOH) were investigated with the protein CXCR7 as the molecular docking target. The research involved over 30 drugs and employed Pearson's hard-soft acid-base theory and common QSAR/QSPR descriptors to build predictive models for the docking scores. Energetic descriptors were computed using quantum chemistry at the density functional-based tight binding DFTB3 level. The results indicate that drug-fullerene complexes interact more with CXCR7 than isolated drugs. Specific binding sites were identified, with varying locations for each drug complex. Predictive models, developed using multiple linear regression and IBM Watson artificial intelligence (AI), achieved mean absolute percentage errors below 12%, driven by AI-identified key variables. The predictive models included mainly quantitative descriptors collected from datasets as well as computed ones. In addition, a water-soluble fullerene was used to compare results obtained by DFTB3 with a conventional density functional theory approach. These findings promise to enhance breast cancer chemotherapy by leveraging fullerene-based drug nanocarriers.
Collapse
Affiliation(s)
| | - Dora Iliana Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Katerin Aguirre-Hurtado
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Marlene Bosquez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Alan Miralrio
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| |
Collapse
|
11
|
Kettana KM, El-Haggar SM, Alm El-Din MA, El-Afify DR. Possible protective effect of rosuvastatin in chemotherapy-induced cardiotoxicity in HER2 positive breast cancer patients: a randomized controlled trial. Med Oncol 2024; 41:196. [PMID: 38977536 PMCID: PMC11230999 DOI: 10.1007/s12032-024-02426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Cardiotoxicity is a side effect of chemotherapy in human epidermal growth factor receptor 2 (HER2) positive breast cancer patients receiving both anthracyclines and trastuzumab. We looked for a possible protective effect of rosuvastatin against chemotherapy-induced cardiotoxicity. Methods: 50 newly diagnosed HER2 positive breast cancer patients were randomly allocated into two groups: 25patients in each. Group 1(control group) received doxorubicin for 4 cycles (3 months) followed by trastuzumab adjuvant therapy. Group 2 (treatment group) received doxorubicin for 4 cycles (3 months) followed by trastuzumab adjuvant therapy and 20 mg of oral rosuvastatin 24 h before the first cycle of chemotherapy and once daily for the rest of the follow-up period (6 months). Transthoracic echocardiography was done, and blood samples were collected for patients 24 h before the initiation of therapy, after 3 months and after 6 months to assess serum levels of high sensitivity cardiac troponin I (hs-cTnI), Myeloperoxidase (MPO), Interleukin-6 (IL-6) and Alanine aminotransferase (ALT). The study was retrospectively registered in Clinical Trials.gov in April 2022. Its ID is NCT05338723. Compared to control group, Rosuvastatin-treated group had a significantly lower decline in LVEF after 3 months and after 6 months. They had significantly lower Hs-cTnI and IL-6 after 3 months and after 6 months, and significantly lower MPO after 6 months. Four patients in control group experienced cardiotoxicity while no one in rosuvastatin-treated group. Rosuvastatin attenuated cardiotoxicity, so it is a promising protective agent against chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Khlood M Kettana
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed A Alm El-Din
- Clinical Oncology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia R El-Afify
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Park C, Kim K, Kim Y, Zhu R, Hain L, Seferovic H, Kim MH, Woo HJ, Hwang H, Lee SH, Kim S, Lee JE, Hinterdorfer P, Ko K, Park S, Oh YJ. Plant-Derived Anti-Human Epidermal Growth Factor Receptor 2 Antibody Suppresses Trastuzumab-Resistant Breast Cancer with Enhanced Nanoscale Binding. ACS NANO 2024; 18:16126-16140. [PMID: 38764224 PMCID: PMC11210341 DOI: 10.1021/acsnano.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Traditional monoclonal antibodies such as Trastuzumab encounter limitations when treating Human Epidermal Growth Factor Receptor 2 (HER2)-positive breast cancer, particularly in cases that develop resistance. This study introduces plant-derived anti-HER2 variable fragments of camelid heavy chain domain (VHH) fragment crystallizable region (Fc) KEDL(K) antibody as a potent alternative for overcoming these limitations. A variety of biophysical techniques, in vitro assays, and in vivo experiments uncover the antibody's nanoscale binding dynamics with transmembrane HER2 on living cells. Single-molecule force spectroscopy reveals the rapid formation of two robust bonds, exhibiting approximately 50 pN force resistance and bond lifetimes in the second range. The antibody demonstrates a specific affinity for HER2-positive breast cancer cells, including those that are Trastuzumab-resistant. Moreover, in immune-deficient mice, the plant-derived anti-HER2 VHH-FcK antibody exhibits superior antitumor activity, especially against tumors that are resistant to Trastuzumab. These findings underscore the plant-derived antibody's potential as an impactful immunotherapeutic strategy for treating Trastuzumab-resistant HER2-positive breast cancer.
Collapse
Affiliation(s)
- Chanyong Park
- School
of Mechanical Engineering, Sungkyunkwan
University, Suwon 16419, Korea
| | - Kibum Kim
- Department
of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Yerin Kim
- Department
of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Rong Zhu
- Department
of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Lisa Hain
- Department
of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Hannah Seferovic
- Department
of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Min-Hyeok Kim
- School
of Mechanical Engineering, Sungkyunkwan
University, Suwon 16419, Korea
| | - Hyun Joo Woo
- Major
of Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hyunju Hwang
- Department
of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Seung Ho Lee
- Major
of Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Sangmin Kim
- Department
of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jeong Eon Lee
- Division
of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Peter Hinterdorfer
- Department
of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Kisung Ko
- Department
of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Sungsu Park
- School
of Mechanical Engineering, Sungkyunkwan
University, Suwon 16419, Korea
| | - Yoo Jin Oh
- Department
of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria
| |
Collapse
|
13
|
Yan S, Ji J, Zhang Z, Imam M, Chen H, Zhang D, Wang J. Targeting the crosstalk between estrogen receptors and membrane growth factor receptors in breast cancer treatment: Advances and opportunities. Biomed Pharmacother 2024; 175:116615. [PMID: 38663101 DOI: 10.1016/j.biopha.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Estrogens play a critical role in the initiation and progression of breast cancer. Estrogen receptor (ER)α, ERβ, and G protein-coupled estrogen receptor are the primary receptors for estrogen in breast cancer. These receptors are mainly activated by binding with estrogens. The crosstalk between ERs and membrane growth factor receptors creates additional pathways that amplify the effects of their ligands and promote tumor growth. This crosstalk may cause endocrine therapy resistance in ERα-positive breast cancer. Furthermore, this may explain the resistance to anti-human epidermal growth factor receptor-2 (HER2) treatment in ERα-/HER2-positive breast cancer and chemotherapy resistance in triple-negative breast cancer. Accordingly, it is necessary to understand the complex crosstalk between ERs and growth factor receptors. In this review, we delineate the crosstalk between ERs and membrane growth factor receptors in breast cancer. Moreover, this review highlights the current progress in clinical treatment and discusses how pharmaceuticals target the crosstalk. Lastly, we discuss the current challenges and propose potential solutions regarding the implications of targeting crosstalk via pharmacological inhibition. Overall, the present review provides a landscape of the crosstalk between ERs and membrane growth factor receptors in breast cancer, along with valuable insights for future studies and clinical treatments using a chemotherapy-sparing regimen to improve patient quality of life.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Jiale Ji
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Zhijie Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Murshid Imam
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Hong Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Duo Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jinpeng Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| |
Collapse
|
14
|
Gu S, Liu Y, Huang Y, Lin W, Li K. Comparative efficacy and safety of targeted therapy and immunotherapy for HER2-positive breast cancer: a systematic review and network meta-analyses. Front Oncol 2024; 14:1331055. [PMID: 38634057 PMCID: PMC11021689 DOI: 10.3389/fonc.2024.1331055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Background In recent years, novel therapies targeting specific molecular pathways and immunotherapies have exhibited promising outcomes for treating human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Our work aimed to assess the effectiveness and safety of these emerging treatment regimens for this disease. Material and methods We systematically searched databases including PubMed, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials their inception to August 2023 to identify relevant randomized controlled trials (RCTs). The quality of eligible RCTs was evaluated with the Cochrane risk-of-bias tool, version 2 (RoB2). Investigated outcomes encompassed progression-free survival (PFS), overall survival (OS), disease-free survival (DFS), pathologic complete remission (pCR), and adverse events (AEs). They were expressed as hazard ratio (HR) with 95% conference intervals (CI) or risk ratio (RR) with 95% CI. Results Our analysis identified a total of 28 RCTs suitable for inclusion in the NMA. Regarding the PFS, all these treatment regimens exhibited comparable effectiveness. In terms of OS, Capecitabine+Trastuzumab, Lapatinib+Trastuzumab and Pyrotinib+Capecitabine exhibited better effect compared to other treatments. Regarding pCR and AEs, all these treatment regimens exhibited comparable effectiveness, especially Lapatinib+Trastuzumab and Pyrotinib+Capecitabine. Conclusion Our study highlights the prominent role of targeted therapies and immunotherapies in treating HER2-positive breast cancer. The efficacy of trastuzumab-containing regimens was superior to other treatment options, while maintaining a comparable safety profile. Based on these findings, trastuzumab-containing regimens emerge as a preferable and recommended choice in clinical practice for managing HER2-positive breast cancer. Systematic Review Registration PROSPERO, identifier CRD42023414348.
Collapse
Affiliation(s)
- Suyu Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yuting Liu
- Department of Eighth Internal Medicine, Shenyang Traditional Chinese Medicine Hospital, Shenyang, China
| | - Yufan Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Wenzheng Lin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ke Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Vo TH, EL-Sherbieny Abdelaal E, Jordan E, O'Donovan O, McNeela EA, Mehta JP, Rani S. miRNAs as biomarkers of therapeutic response to HER2-targeted treatment in breast cancer: A systematic review. Biochem Biophys Rep 2024; 37:101588. [PMID: 38088952 PMCID: PMC10711031 DOI: 10.1016/j.bbrep.2023.101588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/19/2023] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is the most common type of lethal cancer in women globally. Women have a 1 in 8 chance of developing breast cancer in their lifetime. Among the four primary molecular subtypes (luminal A, luminal B, HER2+, and triple-negative), HER2+ accounts for 20-25 % of all breast cancer and is rather aggressive. Although the treatment outcome of HER2+ breast cancer patients has been significantly improved with anti-HER2 agents, primary and acquired drug resistance present substantial clinical issues, limiting the benefits of HER2-targeted treatment. MicroRNAs (miRNAs) play a central role in regulating acquired drug resistance. miRNA are single-stranded, non-coding RNAs of around 20-25 nucleotides, known for essential roles in regulating gene expression at the post-transcriptional level. Increasing evidence has demonstrated that miRNA-mediated alteration of gene expression is associated with tumorigenesis, metastasis, and tumor response to treatment. Comprehensive knowledge of miRNAs as potential markers of drug response can help provide valuable guidance for treatment prognosis and personalized medicine for breast cancer patients.
Collapse
Affiliation(s)
- Thanh Hoa Vo
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | | | - Emmet Jordan
- Department of Oncology, University Hospital Waterford, Dunmore Road, X91 ER8E, Waterford, Ireland
| | - Orla O'Donovan
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Edel A. McNeela
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Jai Prakash Mehta
- Department of Applied Science, South East Technological University, Kilkenny Road, R93 V960, Carlow, Ireland
| | - Sweta Rani
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| |
Collapse
|
16
|
Chai M, Li L, Wu H, Liu Y, Yi Z, Yu H. Lung toxicity induced by anti-HER2 antibody - drug conjugates for breast cancer. Crit Rev Oncol Hematol 2024; 195:104274. [PMID: 38295890 DOI: 10.1016/j.critrevonc.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) serves as both a prognostic indicator and a therapeutic target for breast cancer. Therefore, anti-HER2 therapy plays a crucial role in the treatment of HER2-positive cancer. Antibody-drug conjugates (ADCs) are composed of a monoclonal antibody, a chemical linker and a payload, wherein their aim is to reduce the toxicity associated with chemotherapy drugs by utilizing specific antibodies. Among the anti-HER2 ADCs currently approved for clinical use, trastuzumab emtansine(T-DM1) and trastuzumab deruxtecan (T-Dxd) have demonstrated remarkable efficacy in treating HER2-positive breast cancer. However, it is essential to emphasize the occurrence of lung toxicity during the treatment process, which can be life-threatening. In this review, we provide an overview of the new epidemiological features associated with interstitial lung disease (ILD) related to anti-HER2 ADCs in breast cancer. We also summarize the potential pathogenesis and explore the diagnosis and treatment strategies within this field.
Collapse
Affiliation(s)
- Mengting Chai
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Li Li
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huachao Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yue Liu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zongbi Yi
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
17
|
Xu D, Wu J, Yu J, Yang Y, Wen X, Yang J, Wei H, Xu X, Li Y, Yang L, Wang L, Wang Y, Ma W, Li N. A historical controlled study of domestic trastuzumab and pertuzumab in combination with docetaxel for the neoadjuvant treatment of early HER2-positive breast cancer. Front Oncol 2024; 14:1281643. [PMID: 38406813 PMCID: PMC10884175 DOI: 10.3389/fonc.2024.1281643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Background HER2-positive molecular breast cancer subtypes are characterized by high aggressiveness and malignancy, and their metastasis and mortality rates are among the highest of all types of breast cancer. The use of anti-HER2-targeted agents in neoadjuvant therapy has significantly improved the prognosis of patients with HER2-positive breast cancer. In this study, we investigated the efficacy and safety of a neoadjuvant Chinese THP regimen (docetaxel, trastuzumab biosimilar TQB211 plus the pertuzumab biosimilar TQB2440 or pertuzumab) for ER/PR-negative and HER2-positive breast cancer in China. Method All enrolled patients received the THP regimen (T: docetaxel 75 mg/m2 per cycle; H: trastuzumab biosimilar TQB211 8 mg/kg in the first cycle and 6 mg/kg maintenance dose in cycles 2 to 4; P: pertuzumab biosimilar TQB2440 or pertuzumab 840 mg in the first cycle, maintenance dose 420 mg in cycles 2 to 4) every 3 weeks for 4 cycles. The biosimilar TQB2440 pertuzumab and pertuzumab were randomly assigned to patients. Docetaxel, TQB211, and TQB2440 were all developed by Chiatai Tianqing. The primary endpoint was the complete pathological response (pCR) in the breast, and the secondary endpoint was cardiac safety. Results Of the 28 eligible patients, 19 (67.9%) achieved tpCR. The tpCR rate was higher than in the NeoSphere trial (pCR63.2%) and the PEONY study (tpCR52.5%). The adverse events that occurred most frequently were leukopenia and neutropenia, with incidence rates of 82.1% and 75.0%, respectively. Of these, grade 3 leukopenia and neutropenia occupied 46.4% and 35.7%. Other grade 3 or higher adverse events were bone marrow suppression (7.1%), lymphopenia (3.6%), and anemia (3.6%). There were no events of heart failure in patients and no patient died during the neoadjuvant phase. Conclusion Domestic dual-target HP has a more satisfactory efficacy and safety in the neoadjuvant phase of treatment. Clinical trial registration https://clinicaltrials.gov/study/NCT05985187, NCT05985187.
Collapse
Affiliation(s)
- Dongdong Xu
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Jiang Wu
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Jing Yu
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Yuqing Yang
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Xinxin Wen
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Jixin Yang
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Hongliang Wei
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Xiaolong Xu
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Yike Li
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Liu Yang
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Lei Wang
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| | - Yijia Wang
- Department of Psychology, Colorado College, Colorado Springs, CO, United States
| | - Wen Ma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Nanlin Li
- Department of Thyroid Breast & Vascular Surgery, Xi’jing Hospital, Air Force Medical University (AFMU), Xi’an, China
| |
Collapse
|
18
|
Ge A, He Q, Zhao D, Li Y, Chen J, Deng Y, Xiang W, Fan H, Wu S, Li Y, Liu L, Wang Y. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. J Cell Mol Med 2024; 28:e18044. [PMID: 38140764 PMCID: PMC10805512 DOI: 10.1111/jcmm.18044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide and its incidence increases with age, posing a significant threat to women's health globally. Due to the clinical heterogeneity of breast cancer, the majority of patients develop drug resistance and metastasis following treatment. Ferroptosis, a form of programmed cell death dependent on iron, is characterized by the accumulation of lipid peroxides, elevated levels of iron ions and lipid peroxidation. The underlying mechanisms and signalling pathways associated with ferroptosis are intricate and interconnected, involving various proteins and enzymes such as the cystine/glutamate antiporter, glutathione peroxidase 4, ferroptosis inhibitor 1 and dihydroorotate dehydrogenase. Consequently, emerging research suggests that ferroptosis may offer a novel target for breast cancer treatment; however, the mechanisms of ferroptosis in breast cancer urgently require resolution. Additionally, certain natural compounds have been reported to induce ferroptosis, thereby interfering with breast cancer. Therefore, this review not only discusses the molecular mechanisms of multiple signalling pathways that mediate ferroptosis in breast cancer (including metastasis, invasion and proliferation) but also elaborates on the mechanisms by which natural compounds induce ferroptosis in breast cancer. Furthermore, this review summarizes potential compound types that may serve as ferroptosis inducers in future tumour cells, providing lead compounds for the development of ferroptosis-inducing agents. Last, this review proposes the potential synergy of combining natural compounds with traditional breast cancer drugs in the treatment of breast cancer, thereby suggesting future directions and offering new insights.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Qi He
- People's Hospital of Ningxiang CityNingxiangChina
| | - Da Zhao
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Yuwei Li
- Hunan University of Science and TechnologyXiangtanChina
| | - Junpeng Chen
- Hunan University of Science and TechnologyXiangtanChina
| | - Ying Deng
- People's Hospital of Ningxiang CityNingxiangChina
| | - Wang Xiang
- The First People's Hospital Changde CityChangdeChina
| | - Hongqiao Fan
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Shiting Wu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yan Li
- People's Hospital of Ningxiang CityNingxiangChina
| | - Lifang Liu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yue Wang
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| |
Collapse
|
19
|
Yoshino R, Yoshida N, Ujiie N, Nakatsubo M, Tanino M, Kitada M. The Add-On Effect of Fluorouracil, Epirubicin, and Cyclophosphamide Regimens for Neoadjuvant Chemotherapy in Human Epidermal Receptor 2 (HER2)-Positive Breast Cancer: A Single-Center Retrospective Study. Cureus 2023; 15:e48255. [PMID: 38054134 PMCID: PMC10694781 DOI: 10.7759/cureus.48255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The addition of pertuzumab to trastuzumab in neoadjuvant chemotherapy (NAC) for anti-human epidermal receptor 2 (HER2) positive breast cancer has shown a significant improvement in the pathologic complete response (pCR) rate. However, the add-on effect of an anthracycline-based regimen (standard-of-care regimen) remains unclear. In this retrospective, observational study, participants received pertuzumab combination therapy as NAC for HER2-positive primary breast cancer. METHODS This study was conducted from January 1, 2020, to December 31, 2022. Patients who had not received at least three courses of pertuzumab owing to adverse events or those who had received preoperative radiotherapy were excluded. RESULTS The pCR rate was 35.3% (12/34 patients). The pCR group had a significantly higher percentage of histopathologic grade III (1/11 patients, p=0.030) and a significantly higher percentage of hormone receptor-negative patients (7/12 patients, p=0.015) than the non-pCR group. The non-pCR group had a significantly higher incidence of vascular invasion than the pCR group (7/22 patients, p=0.036). Menopausal status, stage, and ki-67 values were not significantly different between the two groups. CONCLUSIONS This study suggests an unlikely add-on effect of an anthracycline-based regimen for NAC in HER2-positive breast cancer. Moreover, our results support that the pCR rate is high in patients with hormone receptor-negative, HER2-positive breast cancer.
Collapse
Affiliation(s)
- Ryusei Yoshino
- Thoracic Surgery and Breast Surgery, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Nana Yoshida
- Thoracic Surgery and Breast Surgery, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Nanami Ujiie
- Thoracic Surgery and Breast Surgery, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Masaki Nakatsubo
- Thoracic Surgery and Breast Surgery, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Mishie Tanino
- Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Masahiro Kitada
- Thoracic Surgery and Breast Surgery, Asahikawa Medical University Hospital, Asahikawa, JPN
| |
Collapse
|
20
|
Kotepui K, Kotepui M, Majima HJ, Tangpong J. Association between NDRG1 protein expression and aggressive features of breast cancer: a systematic review and meta-analysis. BMC Cancer 2023; 23:1003. [PMID: 37858101 PMCID: PMC10585795 DOI: 10.1186/s12885-023-11517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND N-myc downstream-regulated gene-1 (NDRG1) is well-described as a potent metastasis suppressor, but its role in human breast cancer remains controversial and unclear. Therefore, the present study utilized a systematic review and meta-analysis approach to synthesize the association between NDRG1 protein expression and the aggressive characteristics of breast cancer. METHODS The protocol for the systematic review and meta-analysis was registered on the PROSPERO website (CRD42023414814). Relevant articles were searched for in PubMed, Scopus, Embase, MEDLINE, and Ovid between March 30, 2023, and May 5, 2023. The included studies were critically evaluated using the Joanna Briggs Institute critical appraisal tools. The results from individual studies were qualitatively synthesized using textual narrative synthesis. Using a random-effects model, the pooled log odds ratio of effect estimate was used to look at the link between NDRG1 protein expression and aggressive features of breast cancer, such as tumor grade, tumor stage, metastasis to the axillary lymph nodes, and hormonal receptor status. RESULTS A total of 1423 articles were retrieved from the electronic database search, and six studies that met the eligibility criteria were included for synthesis. There was an association between the expression of NDRG1 protein and the status of the axillary lymph nodes (P = 0.01, log Odds Ratio (OR): 0.59, 95% Confidence Interval (CI): 0.13-1.05, I2: 24.24%, 292 breast cancer cases with positive axillary lymph nodes and 229 breast cancer cases with negative axillary lymph nodes, 4 studies). NDRG1 protein expression and human epidermal growth factor receptor 2 (Her2) status were found to have a negative relationship (P = 0.01, log OR: -0.76, 95% CI: -1.32-(-0.20), I2: 32.42%, 197 breast cancer cases with Her2 positive and 272 breast cancer cases with Her2 negative, 3 studies). No correlation was found between NDRG1 protein expression and tumor grade (P = 0.10), estrogen receptor (ER) status (P = 0.57), or progesterone receptor (PR) status (P = 0.41). CONCLUSION The study concluded that increased NDRG1 protein expression was associated with increased metastasis of the tumor to the axillary lymph node. Additionally, increased NDRG1 protein expression was observed in Her2-negative breast cancer, suggesting its role in both less aggressive and more aggressive behavior depending on breast cancer subtypes. Based on the findings of the meta-analysis, an increase in NDRG1 protein expression was associated with aggressive characteristics of breast cancer.
Collapse
Affiliation(s)
- Kwuntida Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Hideyuki J Majima
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
21
|
Zhao Z, Cao Q, Zhu M, Wang C, Lu X. Causal relationships between serum matrix metalloproteinases and estrogen receptor-negative breast cancer: a bidirectional mendelian randomization study. Sci Rep 2023; 13:7849. [PMID: 37188722 DOI: 10.1038/s41598-023-34200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
To better clarify the causal effects between matrix metalloproteinases (MMPs) and estrogen-receptor (ER)-negative breast cancer (BC), we investigated the bidirectional causal relationship between MMPs and ER-negative BC by mendelian randomization (MR) analysis. Summary statistic data of five MMPs were extracted from European participants in 13 cohorts. Data of ER-negative BC collected from one of genome-wide association studies of European ancestry was used as experimental datasets and another four ER-negative BC datasets were used as validation sets. Inverse variance weighted method was used for main MR analysis and sensitivity analysis was also conducted. Serum level of MMP-1 has negative effect on ER-negative BC (odds ratio = 0.92, P = 0.0008) but the latter one was not the cause of the former one, which was supported by validation sets. No bidirectional causal effect was detected between the other four types of MMPs and ER-negative BC (P > 0.05). Sensitivity analysis indicated robustness of the above results without remarkable bias. To conclude, serum MMP-1 may be a protective factor against ER-negative BC. No reciprocal causality was found between the other kinds of MMPs and ER-negative BC. MMP-1 was indicated as a biomarker for risk of ER-negative BC.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Qing Cao
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Ming Zhu
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Chaonan Wang
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xin Lu
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
22
|
Cheng X, Huang Z, Pan A, Long D. ORLNC1 Suppresses Cell Growth in HER2-Positive Breast Cancer via miRNA-296 Sponging. Curr Mol Med 2023; 23:289-299. [PMID: 35658886 DOI: 10.2174/1566524022666220603113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Accumulating research has demonstrated that aberrant levels of long noncoding RNAs (LncRNAs) are related to cancer progression. The effects of ORLNC1 in HER2+ breast cancer have yet to be explored. METHODS Real-time PCR was used to examine the expression of LncRNA ORLNC1 in HER+ breast cancer. CCK-8, wound healing and cell invasion assays were used to examine the effect of LncRNA ORLNC1 on HER+ breast cancer cells. Luciferase reporter assay was utilized to determine the regulatory relationship between LncRNA ORLNC1 and miR-296. Western blotting was used to measure the expression of PTEN. Xenograft mouse model was used to examine the effect of LncRNA ORLNC1 on tumor progression in vivo. RESULTS In this study, our findings revealed downregulation of ORLNC1 in HER2+ breast cancer specimens and cell lines. Low levels of ORLNC1 were related to poor prognosis and advanced cancer stage. Using gain- and loss-of-function assays, the ability of these tumor cells to proliferate was found to be inhibited by ORLNC1 in vitro and in vivo. Further analyses revealed that miR-296/PTEN axis is directly targeted by ORLNC1. Consequently, over-expression of miR-296 efficiently abrogated the upregulation of PTEN induced by ORLNC1, suggesting that ORLNC1 positively regulates PTEN expression by competitively binding to miR-296. CONCLUSION Our results indicate that lncRNA ORLNC1 acts as a tumor suppressor by regulating the miR-296/PTEN axis in HER2+ breast cancer.
Collapse
Affiliation(s)
- Xueyuan Cheng
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi, 536000, China
| | - Zhong Huang
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi, 536000, China
| | - Anchao Pan
- Department of Gastrointestinal Surgery, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, China
| | - Di Long
- Department of Gastrointestinal Surgery, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, China
| |
Collapse
|
23
|
Tang L, Li Z, Jiang L, Shu X, Xu Y, Liu S. Efficacy evaluation of neoadjuvant chemotherapy in patients with HER2-low expression breast cancer: A real-world retrospective study. Front Oncol 2022; 12:999716. [PMID: 36605428 PMCID: PMC9810386 DOI: 10.3389/fonc.2022.999716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To characterize the clinicopathological features and evaluate the neoadjuvant chemotherapy (NACT) efficacy of patients with human epidermal growth factor receptor 2 (HER2)-low breast cancer. METHODS A total of 905 breast cancer patients who received 4 cycles of thrice-weekly standard NACT in the First Affiliated Hospital of Chongqing Medical University were retrospectively enrolled, including 685 cases with HER2-low expression and 220 cases with HER2-negative expression. Clinicopathological features were compared between patients with HER2-negative and HER2-low expression. Univariate and multivariate logistic regression analyses were used to find the independent factors of achieving a pathological complete response (pCR) after NACT. RESULTS There were significant differences in stage_N (P = 0.014), histological grade (P = 0.001), estrogen receptor (ER) status (P < 0.001), progesterone receptor (PgR) status (P < 0.001), NACT regimens (P = 0.032) and NACT efficacy (P = 0.037) between patients with HER2-negative and HER2-low expression breast cancer. In subgroup analysis, histological grade (P = 0.032), ER (P = 0.002), Ki-67 (P < 0.001) and HER2 status (P = 0.025) were independent predictors of achieving a pCR in ER-positive breast cancer. And the nomogram for pCR in ER-positive breast cancer showed great discriminatory ability with an AUC of 0.795. The calibration curve also showed that the predictive ability of the nomogram was a good fit to actual observations. Then, in the analysis of ER-negative breast cancer, only stage_N (P = 0.001) and Ki-67 (P = 0.018) were independent influencing factors of achieving a pCR in ER-negative breast cancer. CONCLUSION HER2-low breast cancer was a different disease from HER2-negative breast cancer in clinicopathological features. Moreover, the NACT efficacy of HER2-low breast cancer patients was poorer.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengchun Liu
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
25
|
Zhang C, Zhang Y, Liang M, Shi X, Jun Y, Fan L, Yang K, Wang F, Li W, Zhu R. Near-infrared upconversion multimodal nanoparticles for targeted radionuclide therapy of breast cancer lymphatic metastases. Front Immunol 2022; 13:1063678. [PMID: 36532036 PMCID: PMC9751193 DOI: 10.3389/fimmu.2022.1063678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
The theranostics of lymph node metastasis has always been one of the major obstacles to defeating breast cancer and an important decisive factor in the prognosis of patients. Herein, we design NaGdF4:Yb,Tm@NaLuF4 upconversion nanoparticles with PEG and anti-HER2 monoclonal antibody (trastuzumab, Herceptin) (NP-mAb), the delivery of NP-mAb through the lymphatic system allows for effective targeting and accumulation in lymphatic metastasis. Combination of radionuclides 68Ga and 177Lu could be chelated by the bisphosphate groups of NP-mAb. The obtained nanoprobe (NP-mAb) and nanonuclear drug (68Ga-NP-mAb or 177Lu-NP-mAb) exhibited excellent stability and show high accumulation and prolong retention in the lymph node metastasis after intratumoral injection into the foot pad by near-infrared fluorescence (NIRF), single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. Utilizing the β-rays released by 177Lu, 177Lu-NP-mAb could not only decrease the incidence of lymph node metastasis, but also significantly decrease the volumes of lymph node metastasis. Additionally, 177Lu-NP-mAb induce no obvious toxicity to treated mice through blood routine, liver and kidney function assay. Therefore, nanoprobe and nanonuclear drug we designed could be acted as excellent theranostics agents for lymph node metastasis, providing potential alternatives diagnose and treatment option for lymph node metastasis.
Collapse
Affiliation(s)
- Chuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China,Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yujuan Zhang
- Department of Pathology, Experimental Center of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Maolin Liang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Xiumin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China,Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Jun
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Longfei Fan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Ran Zhu, ; Wei Li,
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China,*Correspondence: Ran Zhu, ; Wei Li,
| |
Collapse
|
26
|
Qiao Z, Xing Y, Zhang Q, Tang Y, Feng R, Pang W. Tamoxifen resistance-related ceRNA network for breast cancer. Front Cell Dev Biol 2022; 10:1023079. [PMID: 36506097 PMCID: PMC9733938 DOI: 10.3389/fcell.2022.1023079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Tamoxifen (TMX) is one of the most widely used drugs to treat breast cancer (BC). However, acquired drug resistance is still a major obstacle to its application, rendering it crucial to explore the mechanisms of TMX resistance in BC. This aims of this study were to identify the mechanisms of TMX resistance and construct ceRNA regulatory networks in breast cancer. Methods: GEO2R was used to screen for differentially expressed mRNAs (DEmRNAs) leading to drug resistance in BC cells. MiRTarbase and miRNet were used to predict miRNAs and lncRNAs upstream, and the competing endogenous RNA (ceRNA) regulatory network of BC cell resistance was constructed by starBase. We used the Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA) to analyze the expression and prognostic differences of genes in the ceRNA network with core axis, and qRT-PCR was used to further verify the above conclusions. Results: We found that 21 DEmRNAs were upregulated and 43 DEmRNA downregulated in drug-resistant BC cells. DEmRNAs were noticeably enriched in pathways relevant to cancer. We then constructed a protein-protein interaction (PPI) network based on the STRING database and defined 10 top-ranked hub genes among the upregulated and downregulated DEmRNAs. The 20 DEmRNAs were predicted to obtain 113 upstream miRNAs and 501 lncRNAs. Among them, 7 mRNAs, 22 lncRNAs, and 11 miRNAs were used to structure the ceRNA regulatory network of drug resistance in BC cells. 4 mRNAs, 4 lncRNAs, and 3 miRNAs were detected by GEPIA and the Kaplan-Meier plotter to be significantly associated with BC expression and prognosis. The differential expression of the genes in BC cells was confirmed by qRT-PCR. Conclusion: The ceRNA regulatory network of TMX-resistant BC was successfully constructed and confirmed. This will provide an important resource for finding therapeutic targets for TMX resistance, where the discovery of candidate conventional mechanisms can aid clinical decision-making. In addition, this resource will help discover the mechanisms behind this type of resistance.
Collapse
Affiliation(s)
- Zipeng Qiao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Yu Xing
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Qingquan Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Yongjun Tang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Ruifa Feng
- The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China,*Correspondence: Ruifa Feng, ; Weiyi Pang,
| | - Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China,School of Humanities and Management, Guilin Medical University, Guilin, Guangxi, China,*Correspondence: Ruifa Feng, ; Weiyi Pang,
| |
Collapse
|
27
|
Akinnusi PA, Olubode SO, Adebesin AO, Nana TA, Shodehinde SA. Discovery of Promising Inhibitors of Epidermal Growth Factor Receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2), Estrogen Receptor (ER), and Phosphatidylinositol-3-kinase a (PI3Ka) for Personalized Breast Cancer Treatment. Cancer Inform 2022; 21:11769351221127862. [PMID: 36213305 PMCID: PMC9536107 DOI: 10.1177/11769351221127862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the rapid developments and advancements to improve treatments, Breast cancer remains one of the deadliest health challenges and the most frequently diagnosed tumor. One of the major problems with treatment is the unique difference that each cancerous cell exhibits. As a result, treatment of breast cancer has now become more personalized based on the specific features of the tumor such as overexpression of growth factor receptors (Epidermal growth factor receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2)), hormone receptors (Human Estrogen receptor alpha (ER)) and kinases involved in pivotal signaling associated with growth (Phosphatidylinositol 3-kinase (PI3K)). Several chemotherapeutic agents have been developed to curb the menace, but the associated adverse drug effects cannot be overlooked. To this end, this study employed a molecular modeling approach to identify novel compounds of natural origin that can potentially antagonize the receptors (mentioned above) associated with the pathophysiology of breast cancer and at the same time pose very little or no side effects. The results of the molecular model of biological interactions between a library of 118 anthocyanins and the binding pockets of the protein targets identified 5 compounds (Pelargonin, Delphinidin 3-O-rutinoside, Malvin, Cyanidin-3-(6-acetylglucoside), and Peonidin 3-O-rutinoside) with good binding affinities to the protein targets. Further MM-GBSA calculations returned high binding energies. The specific molecular interactions between the compounds and the targets were analyzed and reported herein. Also, all the compounds exhibited good pharmacokinetic profiles and are therefore recommended for further analyses as they could be explored as new treatment options for a broad range and personalized breast cancer treatments.
Collapse
Affiliation(s)
- Precious A Akinnusi
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria,Precious A Akinnusi, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo 342111, Nigeria.
| | - Samuel O Olubode
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Ayomide O Adebesin
- Department of Biochemistry, Cancer Genomics Lab, Covenant University, Ota, Nigeria
| | | | | |
Collapse
|
28
|
de Abreu Pereira D, Sandim V, Fernandes TFB, Almeida VH, Rocha MR, do Amaral RJFC, Rossi MID, Kalume DE, Zingali RB. Proteomic Analysis of HCC-1954 and MCF-7 Cell Lines Highlights Crosstalk between αv and β1 Integrins, E-Cadherin and HER-2. Int J Mol Sci 2022; 23:ijms231710194. [PMID: 36077593 PMCID: PMC9456615 DOI: 10.3390/ijms231710194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/04/2022] [Accepted: 08/28/2022] [Indexed: 01/13/2023] Open
Abstract
Overexpression of human epidermal growth factor receptor-2 (HER-2) occurs in 20% of all breast cancer subtypes, especially those that present the worst prognostic outcome through a very invasive and aggressive tumour. HCC-1954 (HER-2+) is a highly invasive, metastatic cell line, whereas MCF-7 is mildly aggressive and non-invasive. We investigated membrane proteins from both cell lines that could have a pivotal biological significance in metastasis. Membrane protein enrichment for HCC-1954 and MCF-7 proteomic analysis was performed. The samples were analysed and quantified by mass spectrometry. High abundance membrane proteins were confirmed by Western blot, immunofluorescence, and flow cytometry. Protein interaction prediction and correlations with the Cancer Genome Atlas (TCGA) patient data were conducted by bioinformatic analysis. In addition, β1 integrin expression was analysed by Western blot in cells upon trastuzumab treatment. The comparison between HCC-1954 and MCF-7 membrane-enriched proteins revealed that proteins involved in cytoskeleton organisation, such as HER-2, αv and β1 integrins, E-cadherin, and CD166 were more abundant in HCC-1954. β1 integrin membrane expression was higher in the HCC-1954 cell line resistant after trastuzumab treatment. TCGA data analysis showed a trend toward a positive correlation between HER-2 and β1 integrin in HER-2+ breast cancer patients. Differences in protein profile and abundance reflected distinctive capabilities for aggressiveness and invasiveness between HCC-1954 and MCF-7 cell line phenotypes. The higher membrane β1 integrin expression after trastuzumab treatment in the HCC-1954 cell line emphasised the need for investigating the contribution of β1 integrin modulation and its effect on the mechanism of trastuzumab resistance.
Collapse
Affiliation(s)
- Denise de Abreu Pereira
- Programa de Oncobiologia Celular e Molecular (POCM), Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro 20231-050, Brazil
- Unidade de Espectrometria de Massas e Proteômica (UEMP), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Vanessa Sandim
- Unidade de Espectrometria de Massas e Proteômica (UEMP), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Hemostase e Venenos (LABHEMOVEN), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Thais F. B. Fernandes
- Programa de Oncobiologia Celular e Molecular (POCM), Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro 20231-050, Brazil
| | - Vitor Hugo Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Murilo Ramos Rocha
- Programa de Oncobiologia Celular e Molecular (POCM), Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro 20231-050, Brazil
| | - Ronaldo J. F. C. do Amaral
- Laboratório de Proliferação e Diferenciação Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Maria Isabel D. Rossi
- Instituto de Ciências Biomédicas e Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Dário Eluan Kalume
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMed), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Russolina B. Zingali
- Unidade de Espectrometria de Massas e Proteômica (UEMP), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Hemostase e Venenos (LABHEMOVEN), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence:
| |
Collapse
|
29
|
Human Blood Serum Inhibits Ductal Carcinoma Cells BT474 Growth and Modulates Effect of HER2 Inhibition. Biomedicines 2022; 10:biomedicines10081914. [PMID: 36009461 PMCID: PMC9405390 DOI: 10.3390/biomedicines10081914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Trastuzumab, a HER2-targeted antibody, is widely used for targeted therapy of HER2-positive breast cancer (BC) patients; yet, not all of them respond to this treatment. We investigated here whether trastuzumab activity on the growth of HER2-overexpressing BT474 cells may interfere with human peripheral blood endogenous factors. Among 33 individual BC patient blood samples supplemented to the media, BT474 sensitivity to trastuzumab varied up to 14 times. In the absence of trastuzumab, human peripheral blood serum samples could inhibit growth of BT474, and this effect varied ~10 times for 50 individual samples. In turn, the epidermal growth factor (EGF) suppressed the trastuzumab effect on BT474 cell growth. Trastuzumab treatment increased the proportion of BT474 cells in the G0/G1 phases of cell cycle, while simultaneous addition of EGF decreased it, yet not to the control level. We used RNA sequencing profiling of gene expression to elucidate the molecular mechanisms involved in EGF- and human-sera-mediated attenuation of the trastuzumab effect on BT474 cell growth. Bioinformatic analysis of the molecular profiles suggested that trastuzumab acts similarly to the inhibition of PI3K/Akt/mTOR signaling axis, and the mechanism of EGF suppression of trastuzumab activity may be associated with parallel activation of PKC and transcriptional factors ETV1-ETV5.
Collapse
|
30
|
Değirmenci NS, Uslu M, Kırbaş OK, Şahin F, Önay Uçar E. Lapatinib loaded exosomes as a drug delivery system in breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Incidence of adverse events with therapies targeting HER2-positive metastatic breast cancer: a literature review. Breast Cancer Res Treat 2022; 194:1-11. [PMID: 35587323 DOI: 10.1007/s10549-021-06469-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/27/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-targeted therapies improve survival for patients with HER2-positive breast cancer but carry risks of hematologic, cardiopulmonary, gastro-hepatobiliary, and other adverse events (AEs). In this review, we describe published AE incidences for HER2-targeted therapies for metastatic breast cancer (mBC). METHODS We searched PubMed and Embase to identify studies on HER2-targeted therapies in HER2-positive mBC, reporting on AEs of special interest, and published between January 1, 2009, and February 6, 2020. Treatment regimens were categorized into mutually exclusive therapy-based categories, with primary therapy determined by worldwide approval date. RESULTS One hundred and fifty-three included articles assessed a combined 29,238 patients treated with the following therapy-based regimens: trastuzumab or biosimilars (78 studies), lapatinib (40), T-DM1 (ado-trastuzumab emtansine) (20), pertuzumab (14), neratinib (8), MM-302 (1), T-DXd (2), tucatinib (3), and pyrotinib (3). While direct comparisons of AE incidence are not warranted owing to study heterogeneity, proportions of patients experiencing any Grade 3 + AE ranged across therapy-based regimens from 39.4% (lapatinib) to 66.3% (neratinib). The most common hematologic AE of special interest, of any grade and regardless of causality, was leukopenia/white blood cells decreased [21.4% (T-DXd)-46.2% (pyrotinib)]. Cardiopulmonary AEs of special interest included interstitial lung disease [2.7% (trastuzumab)-5.2% (T-DXd)], pneumonitis [0.2% (lapatinib)-7.4% (trastuzumab)], and decreased ejection fraction [1% (T-DXd)-13.6% (trastuzumab)]. Gastro-hepatobiliary AEs of special interest included nausea [33.9% (trastuzumab)-78.3% (T-DXd)], vomiting [19.2% (T-DM1)-48.2% (T-DXd)], diarrhea [19.6% (T-DM1)-96.9% (pyrotinib)], and hepatotoxicity [5.9% (lapatinib)-53.6% (T-DM1)]. CONCLUSION Differing AE profiles for anti-HER2 therapies should be considered when assessing benefit-risk profile for treatment options.
Collapse
|
32
|
Wang L, Chen H, Wang F, Zhang X. The development of peptide-drug conjugates (PDCs) strategies for paclitaxel. Expert Opin Drug Deliv 2022; 19:147-161. [PMID: 35130795 DOI: 10.1080/17425247.2022.2039621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Paclitaxel is a powerful and effective anti-tumor drug with wide clinical application. However, there are still some limitations, including poor water solubility, low specificity, and susceptibility to drug resistance. The peptide-drug conjugates (PDCs) represent a rising class of therapeutic drugs, which combines small-molecule chemotherapeutic drugs with highly flexible peptides through a cleavable or non-cleavable linker. When this strategy is applied, the therapeutic effects of paclitaxel can be improved. AREAS COVERED In this review, we discuss the application of the PDCs strategy in paclitaxel, including two parts: the tumor targeting peptide-paclitaxel conjugates and the cell penetrating peptide-paclitaxel conjugates. EXPERT OPINION Combining drugs with multifunctional peptides covalently is an effective strategy for delivering paclitaxel to tumors. Depending on different functional peptides, conjugates can increase the water solubility of paclitaxel, tumor permeability of paclitaxel, the accumulation of paclitaxel in tumor tissues, and enhance the antitumor effect of paclitaxel. In addition, due to the change of cell entry mechanism, partial conjugates can restore the therapeutic activity of paclitaxel against resistant tumors. Notably, in order to better translate into the clinical field in the future, more research should be conducted to ensure the safety and effectiveness of peptide-paclitaxel conjugates.
Collapse
Affiliation(s)
- Longkun Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan 250012, People's Republic of China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
33
|
Han Y, Azuma K, Watanabe S, Semba K, Nakayama J. Metastatic profiling of HER2-positive breast cancer cell lines in xenograft models. Clin Exp Metastasis 2022; 39:467-477. [PMID: 35103869 DOI: 10.1007/s10585-022-10150-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023]
Abstract
Most studies on breast cancer metastasis have been performed using triple-negative breast cancer cells; thus, subtype-dependent metastatic ability of breast cancer is poorly understood. In this research, we performed intravenous injection (IVI) and intra-caudal arterial injections using nine human epidermal growth factor receptor-2 (HER2)-positive breast cancer cell lines for evaluating their metastatic abilities. Our results showed that MDA-MB-453, UACC-893, and HCC-202 had strong bone metastatic abilities, whereas HCC-2218 and HCC-1419 did not show bone metastasis. HER2-positive cell lines could hardly metastasize to the lung through IVI. From the genomic analysis, gene signatures were extracted according to the breast cancer subtypes and their metastatic preferences. The UACC-893 cell line was identified as a useful model for the metastasis study of HER2-positive breast cancer. Combined with our previous result on brain metastasis ability, we provide a characteristic metastasis profile of HER2-positive breast cancer cell lines in this study.
Collapse
Affiliation(s)
- Yuxuan Han
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kazushi Azuma
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
34
|
Characteristics, clinical differences and outcomes of breast cancer patients with negative or low HER2 expression. Clin Breast Cancer 2022; 22:391-397. [DOI: 10.1016/j.clbc.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
|
35
|
Nag S, Varghese R, Soman N, Karsiya J, Bafna N. Fam-trastuzumab deruxtecan-nxki (Enhertu ®): A narrative drug review. CANCER RESEARCH, STATISTICS, AND TREATMENT 2022. [DOI: 10.4103/crst.crst_302_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
36
|
Chiu CF, Fu RH, Hsu SH, Yu YH(A, Yang SF, Tsao TCY, Chang KB, Yeh CA, Tang CM, Huang SC, Hung HS. Delivery Capacity and Anticancer Ability of the Berberine-Loaded Gold Nanoparticles to Promote the Apoptosis Effect in Breast Cancer. Cancers (Basel) 2021; 13:cancers13215317. [PMID: 34771481 PMCID: PMC8582582 DOI: 10.3390/cancers13215317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary In this research, we aimed to evaluate the biological effects of physically gold nanoparticle-collagen nanocarrier incorporated with alkaloid berberine (Au-Col-BB) on non-transformed bovine aortic endothelial cells (BAEC) and Her-2 breast cancer cell lines through in vitro and in vivo assessments. Au-Col-BB showed better cytotoxicity, as well as significantly induced cell apoptosis in Her-2 cancer cells compared with normal cells (non-transformed BAEC). Further, Au-Col-BB also demonstrated better anti-cancer capacity for inhibiting cell growth in Her-2 tumor-bearing mice. In brief, we confirmed that the Au-Col-BB nanocarrier could be a potential nanodrug for increasing the efficiency of specific therapeutic effects in breast cancer disease. Abstract Gold nanoparticles (AuNPs) were fabricated with biocompatible collagen (Col) and then conjugated with berberine (BB), denoted as Au-Col-BB, to investigate the endocytic mechanisms in Her-2 breast cancer cell line and in bovine aortic endothelial cells (BAEC). Owing to the superior biocompatibility, tunable physicochemical properties, and potential functionalization with biomolecules, AuNPs have been well studied as carriers of biomolecules for diseases and cancer therapeutics. Composites of AuNPs with biopolymer, such as fibronectin or Col, have been revealed to increase cell proliferation, migration, and differentiation. BB is a natural compound with impressive health benefits, such as lowering blood sugar and reducing weight. In addition, BB can inhibit cell proliferation by modulating cell cycle progress and autophagy, and induce cell apoptosis in vivo and in vitro. In the current research, BB was conjugated on the Col-AuNP composite (“Au-Col”). The UV-Visible spectroscopy and infrared spectroscopy confirmed the conjugation of BB on Au-Col. The particle size of the Au-Col-BB conjugate was about 227 nm, determined by dynamic light scattering. Furthermore, Au-Col-BB was less cytotoxic to BAEC vs. Her-2 cell line in terms of MTT assay and cell cycle behavior. Au-Col-BB, compared to Au-Col, showed greater cell uptake capacity and potential cellular transportation by BAEC and Her-2 using the fluorescence-conjugated Au-Col-BB. In addition, the clathrin-mediated endocytosis and cell autophagy seemed to be the favorite endocytic mechanism for the internalization of Au-Col-BB by BAEC and Her-2. Au-Col-BB significantly inhibited cell migration in Her-2, but not in BAEC. Moreover, apoptotic cascade proteins, such as Bax and p21, were expressed in Her-2 after the treatment of Au-Col-BB. The tumor suppression was examined in a model of xenograft mice treated with Au-Col-BB nanovehicles. Results demonstrated that the tumor weight was remarkably reduced by the treatment of Au-Col-BB. Altogether, the promising findings of Au-Col-BB nanocarrier on Her-2 breast cancer cell line suggest that Au-Col-BB may be a good candidate of anticancer drug for the treatment of human breast cancer.
Collapse
Affiliation(s)
- Chen-Feng Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-F.C.); (S.-F.Y.)
- Division of Chest, Department of Internal Medicine, Feng Yuan Hospital, Ministry of Health and Welfare, Taichung 42055, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (R.-H.F.); (K.-B.C.); (C.-A.Y.); (S.-C.H.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Yang-Hao (Alex) Yu
- Changhua Hospital, Ministry of Health & Welfare, Changhua 51341, Taiwan;
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-F.C.); (S.-F.Y.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Thomas Chang-Yao Tsao
- Division of Chest, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (R.-H.F.); (K.-B.C.); (C.-A.Y.); (S.-C.H.)
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (R.-H.F.); (K.-B.C.); (C.-A.Y.); (S.-C.H.)
| | - Cheng-Ming Tang
- Collage of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Sheng-Chu Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (R.-H.F.); (K.-B.C.); (C.-A.Y.); (S.-C.H.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (R.-H.F.); (K.-B.C.); (C.-A.Y.); (S.-C.H.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 7827); Fax: +886-4-22333641
| |
Collapse
|
37
|
Celikkin N, Presutti D, Maiullari F, Fornetti E, Agarwal T, Paradiso A, Volpi M, Święszkowski W, Bearzi C, Barbetta A, Zhang YS, Gargioli C, Rizzi R, Costantini M. Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Front Bioeng Biotechnol 2021; 9:732130. [PMID: 34604190 PMCID: PMC8481890 DOI: 10.3389/fbioe.2021.732130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An in-depth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress. In this review, we discuss the contribution of two state-of-the-art technologies-namely biofabrication and organ-on-a-chip-in a selection of biomedical research areas. We start by providing an overview of these technologies and their capacities in fabricating advanced in vitro tissue/organ models. We then analyze their impact on addressing a range of current biomedical challenges. Ultimately, we speculate about their future developments by integrating these technologies with other cutting-edge research fields such as artificial intelligence and big data analysis.
Collapse
Affiliation(s)
- Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
| | | | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, MA, United States
| | - Cesare Gargioli
- Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
38
|
Yu X, Lin Q, Liu F, Yang F, Mao J, Chen X. LncRNA TMPO-AS1 facilitates the proliferation and metastasis of NSCLC cells by up-regulating ERBB2 via sponging miR-204-3p. Int J Immunopathol Pharmacol 2021; 34:2058738420958947. [PMID: 32969763 PMCID: PMC7520928 DOI: 10.1177/2058738420958947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: This study aims at probing into the expression and biological function of long non-coding RNA (lncRNA) TMPO-AS1 in non-small cell lung cancer (NSCLC), and exploring its regulatory role for miR-204-3p and erb-b2 receptor tyrosine kinase 2 (ERBB2). Methods: In this study, paired NSCLC samples were collected, and the expression levels of TMPO-AS1, miR-204-3p and ERBB2 were examined by quantitative real-time polymerase chain reaction (qRT-PCR); proliferative ability and colony formation ability were detected by CCK-8 assay and plate colony formation assay, respectively; flow cytometry was performed to detect the effect of TMPO-AS1 on apoptosis; Transwell assay was used to detect the changes of migration and invasion; qRT-PCR and Western blot were utilised to analyse the changes of miR-204-3p and ERBB2 regulated by TMPO-AS1; luciferase reporter gene assay and RNA immunoprecipitation assay were employed to determine the regulatory relationship between TMPO-AS1 and miR-204-3p. Results: We demonstrated that TMPO-AS1 was significantly up-regulated in cancerous tissues of NSCLC samples, and positively correlated with the expression of ERBB2, while negatively correlated with miR-204-3p. After transfection of TMPO-AS1 shRNAs into NSCLC cells, the malignant phenotypes of NSCLC cells were significantly inhibited, while overexpression of TMPO-AS1 had opposite effects; TMPO-AS1 was also demonstrated to regulate the expression of miR-204-3p by sponging it, and indirectly modulate the expression of ERBB2. Conclusion: Collectively, we conclude that TMPO-AS1 has the potential to be the ‘ceRNA’ to regulate the expression of ERBB2 by sponging miR-204-3p in NSCLC.
Collapse
Affiliation(s)
- Xiaobo Yu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Lin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fabing Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fu Yang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Mao
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Chen
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Liegmann AS, Heselmeyer-Haddad K, Lischka A, Hirsch D, Chen WD, Torres I, Gemoll T, Rody A, Thorns C, Gertz EM, Alkemade H, Hu Y, Habermann JK, Ried T. Single Cell Genetic Profiling of Tumors of Breast Cancer Patients Aged 50 Years and Older Reveals Enormous Intratumor Heterogeneity Independent of Individual Prognosis. Cancers (Basel) 2021; 13:3366. [PMID: 34282768 PMCID: PMC8267950 DOI: 10.3390/cancers13133366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Older breast cancer patients are underrepresented in cancer research even though the majority (81.4%) of women dying of breast cancer are 55 years and older. Here we study a common phenomenon observed in breast cancer which is a large inter- and intratumor heterogeneity; this poses a tremendous clinical challenge, for example with respect to treatment stratification. To further elucidate genomic instability and tumor heterogeneity in older patients, we analyzed the genetic aberration profiles of 39 breast cancer patients aged 50 years and older (median 67 years) with either short (median 2.4 years) or long survival (median 19 years). The analysis was based on copy number enumeration of eight breast cancer-associated genes using multiplex interphase fluorescence in situ hybridization (miFISH) of single cells, and by targeted next-generation sequencing of 563 cancer-related genes. RESULTS We detected enormous inter- and intratumor heterogeneity, yet maintenance of common cancer gene mutations and breast cancer specific chromosomal gains and losses. The gain of COX2 was most common (72%), followed by MYC (69%); losses were most prevalent for CDH1 (74%) and TP53 (69%). The degree of intratumor heterogeneity did not correlate with disease outcome. Comparing the miFISH results of diploid with aneuploid tumor samples significant differences were found: aneuploid tumors showed significantly higher average signal numbers, copy number alterations (CNAs) and instability indices. Mutations in PIKC3A were mostly restricted to luminal A tumors. Furthermore, a significant co-occurrence of CNAs of DBC2/MYC, HER2/DBC2 and HER2/TP53 and mutual exclusivity of CNAs of HER2 and PIK3CA mutations and CNAs of CCND1 and PIK3CA mutations were revealed. CONCLUSION Our results provide a comprehensive picture of genome instability profiles with a large variety of inter- and intratumor heterogeneity in breast cancer patients aged 50 years and older. In most cases, the distribution of chromosomal aneuploidies was consistent with previous results; however, striking exceptions, such as tumors driven by exclusive loss of chromosomes, were identified.
Collapse
Affiliation(s)
- Anna-Sophie Liegmann
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Kerstin Heselmeyer-Haddad
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Annette Lischka
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
| | - Daniela Hirsch
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Wei-Dong Chen
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Irianna Torres
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Timo Gemoll
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
| | - Achim Rody
- Department of Gynecology and Obstetrics, Campus Lübeck, University Hospital of Schleswig-Holstein, 23562 Lübeck, Germany;
| | - Christoph Thorns
- Institute of Pathology, Marienkrankenhaus Hamburg, 22087 Hamburg, Germany;
- Institute of Pathology, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Edward Michael Gertz
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Hendrik Alkemade
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
| | - Yue Hu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Jens K. Habermann
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| |
Collapse
|
40
|
Berland L, Kim L, Abousaway O, Mines A, Mishra S, Clark L, Hofman P, Rashidian M. Nanobodies for Medical Imaging: About Ready for Prime Time? Biomolecules 2021; 11:637. [PMID: 33925941 PMCID: PMC8146371 DOI: 10.3390/biom11050637] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Recent advances in medical treatments have been revolutionary in shaping the management and treatment landscape of patients, notably cancer patients. Over the last decade, patients with diverse forms of locally advanced or metastatic cancer, such as melanoma, lung cancers, and many blood-borne malignancies, have seen their life expectancies increasing significantly. Notwithstanding these encouraging results, the present-day struggle with these treatments concerns patients who remain largely unresponsive, as well as those who experience severely toxic side effects. Gaining deeper insight into the cellular and molecular mechanisms underlying these variable responses will bring us closer to developing more effective therapeutics. To assess these mechanisms, non-invasive imaging techniques provide valuable whole-body information with precise targeting. An example of such is immuno-PET (Positron Emission Tomography), which employs radiolabeled antibodies to detect specific molecules of interest. Nanobodies, as the smallest derived antibody fragments, boast ideal characteristics for this purpose and have thus been used extensively in preclinical models and, more recently, in clinical early-stage studies as well. Their merit stems from their high affinity and specificity towards a target, among other factors. Furthermore, their small size (~14 kDa) allows them to easily disperse through the bloodstream and reach tissues in a reliable and uniform manner. In this review, we will discuss the powerful imaging potential of nanobodies, primarily through the lens of imaging malignant tumors but also touching upon their capability to image a broader variety of nonmalignant diseases.
Collapse
Affiliation(s)
- Léa Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
| | - Lauren Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Chemistry and Bioengineering, Harvard University, Cambridge, MA 02138, USA
| | - Omar Abousaway
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Andrea Mines
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Center Hospital, 06100 Nice, France
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Huang Z, Chen L, Wang Y, Fu L, Lv R. Molecular markers, pathology, and ultrasound features of invasive breast cancer. Clin Imaging 2021; 79:85-93. [PMID: 33895560 DOI: 10.1016/j.clinimag.2021.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Ultrasound is commonly used in breast cancer screening and diagnosis. The use of ultrasound features to predict the subtypes of invasive breast cancer is of great clinical significance, since it facilitates a fast and early diagnosis and treatment. The correlation between breast lesion ultrasound features and the breast cancer subtypes requires further investigation. METHODS 388 patients with invasive breast cancer were retrospectively analyzed by two sonographers. The tumor size, shape, margin, echogenicity, echotexture, posterior echo attenuation microcalcification, and blood vessel density were recorded. The correlation between the tumor ER, PR, HER2, and Ki67 status, the molecular subtypes, and the ultrasound features was analyzed using the chi-square test, Fisher's exact test, and multiple logistic regression. RESULTS ER and PR positivity were correlated with a low histologic grade, lymph node metastasis, and smaller-sized tumors. A hyperechoic or a mixed echogenicity was rare in the tumors of all groups but was enriched in the ER and PR tumors (9.57% and 7.64%, respectively, p < 0.01). A high percentage of posterior echo attenuation was found in the Ki67 low (53.94%) and ER+ (51.28%) tumors. Furthermore, heterogeneous and microcalcifications were enriched in HER2-positive tumors. In terms of the molecular subtypes, the luminal A subtype group had the lowest lymph node positivity and the smallest primary tumor size. The luminal B subtype had the lowest percentage of hyperechoic or mixed tumors. The HER2 subtype was positively correlated with microcalcification. Finally, TNBC showed the highest percentage of hyperechoic or mixed tumors and the lowest percentage of posterior echo attenuation and microcalcification. CONCLUSION Tumor pathologic and ultrasound features were correlated with invasive breast tumor molecular marker positivity and its molecular subtypes.
Collapse
Affiliation(s)
- Zhifang Huang
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, China
| | - Li Chen
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, China
| | - Yong Wang
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, China.
| | - Lina Fu
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, China
| | - Renhua Lv
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, China
| |
Collapse
|
42
|
Degu A, Yussuf A. Treatment outcomes among human epidermal growth factor receptor 2 positive breast cancer patients: A systematic review. J Oncol Pharm Pract 2021; 27:1468-1476. [PMID: 33789525 DOI: 10.1177/10781552211005530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND The incidence of human epidermal growth factor receptor 2 (HER 2) positive breast cancers is rapidly rising worldwide. Although there have been many studies on HER 2 breast cancer treatment and management in recent years, there is a lack of comprehensive reports on the treatment outcomes and disparities within the available literature. Hence, this review aimed to determine the treatment outcomes and their associated factors among patients with HER2-positive breast cancer. METHODS A computer-based systematic literature search was conducted using PubMed, EMBASE, and Google scholar databases of articles published from 2000 to 2020. The following key terms (HER 2 positive breast cancer, predictor, determinant, associated factor) and Medical Subject Headings (MeSH) terms (breast neoplasms, treatment outcome, and risk factors) were used to search the English language published articles. RESULTS In most studies, trastuzumab was the most commonly used treatment regimen used in combination with chemotherapeutic agents. Generally, most of the studies (15 studies) showed that the overall survival outcome was relatively higher after treatment among HER2 positive breast cancer patients. Nonetheless, two studies showed that the absence of significant change in the overall survival despite adequate treatment was given to the study participants. In addition, three studies demonstrated a partial response after treating HER2-positive breast cancer patients. CONCLUSION Generally, the overall survival outcome was relatively higher after treatment among HER2 positive breast cancer patients. The addition of trastuzumab in most of the studies has shown improvement in the overall survival and the disease-free survival rate of the study patients.
Collapse
Affiliation(s)
- Amsalu Degu
- School of Pharmacy and Health Sciences, 54663United States International University-Africa, Nairobi, Kenya
| | - Asha Yussuf
- School of Pharmacy and Health Sciences, 54663United States International University-Africa, Nairobi, Kenya
| |
Collapse
|
43
|
Xu M, Wang Y, Wang HC. Adjuvant concomitant treatment with traditional Chinese medicines in patients receiving chemotherapy for HER2-Positive breast cancer: A pilot randomized controlled trial. Complement Ther Clin Pract 2021; 43:101373. [PMID: 33773170 DOI: 10.1016/j.ctcp.2021.101373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
This study aimed to evaluate the impact of Chinese medicine on controlling cancer and easing adverse events in patients with HER2-positive breast cancer. We recruited consecutive HER2-positive breast cancer patients who underwent radical mastectomy from January 2015 to January 2019. Patients were randomly assigned to receive chemotherapy plus Chinese medicine or chemotherapy alone. The left ventricular global longitudinal strain was better in the experimental group (P < 0.01). The reduction in white blood cells was more significant in the control group (P < 0.01). Hepatic function in the experimental group was better than that in control group after chemotherapy (P < 0.01). In addition, the scores of symptom dimensions for pain, diarrhea, and hair loss were better in the experimental group than in the control group after chemotherapy (P < 0.01). For patients with HER2-positive breast cancer, personalization of traditional Chinese medicine can not only enhance the anti-cancer function of chemotherapy but also ease serious adverse effects.
Collapse
Affiliation(s)
- Meng Xu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, Anhui, China
| | - Yong Wang
- Tumor Department of Anhui Provincial Hospital 17 Lu Jiang Rd, Hefei, 230001, Anhui, China; Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, Anhui, China
| | - Hua-Cheng Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, Anhui, China.
| |
Collapse
|
44
|
Samavarchi Tehrani S, Gharibi S, Movahedpour A, Goodarzi G, Jamali Z, Khatami SH, Maniati M, Ranjbar M, Shabaninejad Z, Savardashtaki A, Taheri-Anganeh M. Design and evaluation of scFv-RTX-A as a novel immunotoxin for breast cancer treatment: an in silico approach. J Immunoassay Immunochem 2021; 42:19-33. [PMID: 32845824 DOI: 10.1080/15321819.2020.1812640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer (BC) patients. Hence, immunotherapy is a proper treatment option for HER2-positive BC patients. Accumulating evidence has indicated that immunotoxin therapy is a novel approach to improve the potency of targeted therapy. Immunotoxins are antibodies or antibody fragments coupled with a toxin. We designed an immunotoxin. The physicochemical properties were evaluated using ProtParam servers and secondary structure was examined by PROSO II and GORV. Using I-TASSER, a 3D model was built and refined by GalaxyRefine. The model was validated using PROCHECK and RAMPAGE. To predict immunotoxin allergenicity and mRNA stability, AlgPred server and RNAfold were used. Furthermore, the immunotoxin and HER2 were docked by ZDOCK. The scFv+RTX-A could be a non-allergenic and stable chimeric protein, and the secondary structure of its components did not alter, and this protein had a proper 3D structure that might have stable mRNA structure which could bind to HER2. Given the fact that the designed immunotoxin was a non-allergenic and stable chimeric protein and that it could bind with high affinity to HER2 receptors, we proposed that this chimeric protein could be a useful candidate for HER-2 positive BC patients.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Gharibi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Zeinab Jamali
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Ranjbar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Research Institute on Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
45
|
Chantada-Vázquez MDP, Castro López A, García-Vence M, Acea-Nebril B, Bravo SB, Núñez C. Protein Corona Gold Nanoparticles Fingerprinting Reveals a Profile of Blood Coagulation Proteins in the Serum of HER2-Overexpressing Breast Cancer Patients. Int J Mol Sci 2020; 21:ijms21228449. [PMID: 33182810 PMCID: PMC7696934 DOI: 10.3390/ijms21228449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is a molecularly heterogeneous disease that encompasses five major molecular subtypes (luminal A (LA), luminal B HER2 negative (LB-), luminal B HER2 positive (LB+), HER2 positive (HER2+) and triple negative breast cancer (TNBC)). BC treatment mainly depends on the identification of the specific subtype. Despite the correct identification, therapies could fail in some patients. Thus, further insights into the genetic and molecular status of the different BC subtypes could be very useful to improve the response of BC patients to the range of available therapies. In this way, we used gold nanoparticles (AuNPs, 12.96 ± 0.72 nm) as a scavenging tool in combination with Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) to quantitatively analyze the serum proteome alterations in the different breast cancer intrinsic subtypes. The differentially regulated proteins specific of each subtype were further analyzed with the bioinformatic tools STRING and PANTHER to identify the major molecular function, biological processes, cellular origin, protein class and biological pathways altered due to the heterogeneity in proteome of the different BC subtypes. Importantly, a profile of blood coagulation proteins was identified in the serum of HER2-overexpressing BC patients.
Collapse
Affiliation(s)
- María del Pilar Chantada-Vázquez
- Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
| | - Antonio Castro López
- Breast Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - María García-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
| | - Benigno Acea-Nebril
- Department of Surgery, Breast Unit, Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain;
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Correspondence: (S.B.B.); (C.N.)
| | - Cristina Núñez
- Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence: (S.B.B.); (C.N.)
| |
Collapse
|
46
|
Sharifi M, Hasan A, Attar F, Taghizadeh A, Falahati M. Development of point-of-care nanobiosensors for breast cancers diagnosis. Talanta 2020; 217:121091. [DOI: 10.1016/j.talanta.2020.121091] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
|
47
|
Wu G, Yan Y, Zhou Y, Duan Y, Zeng S, Wang X, Lin W, Ou C, Zhou J, Xu Z. Sulforaphane: Expected to Become a Novel Antitumor Compound. Oncol Res 2020; 28:439-446. [PMID: 32111265 PMCID: PMC7851526 DOI: 10.3727/096504020x15828892654385] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural products are becoming increasingly popular in a variety of traditional, complementary, and alternative systems due to their potency and slight side effects. Natural compounds have been shown to be effective against many human diseases, especially cancers. Sulforaphane (SFE) is a traditional Chinese herbal medicine. In recent years, an increasing number of studies have been conducted to evaluate the antitumor effect of SFE. The roles of SFE in cancers are mainly through the regulation of potential biomarkers to activate or inhibit related signaling pathways. SFE has exhibited promising inhibitory effects on breast cancer, lung cancer, liver cancer, and other malignant tumors. In this review, we summarized the reports on the activity and functional mechanisms of SFE in cancer treatment and explored the efficacy and toxicity of SFE.
Collapse
Affiliation(s)
- Geting Wu
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yuanliang Yan
- †Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yangying Zhou
- §Department of Oncology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yumei Duan
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Shuangshuang Zeng
- †Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiang Wang
- †Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei Lin
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Chunlin Ou
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jianhua Zhou
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhijie Xu
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
48
|
Ferraro MG, Piccolo M, Misso G, Maione F, Montesarchio D, Caraglia M, Paduano L, Santamaria R, Irace C. Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems. Cells 2020; 9:E1412. [PMID: 32517101 PMCID: PMC7349411 DOI: 10.3390/cells9061412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review we have showcased the preclinical development of original amphiphilic nanomaterials designed for ruthenium-based anticancer treatments, to be placed within the current metallodrugs approach leading over the past decade to advanced multitarget agents endowed with limited toxicity and resistance. This strategy could allow for new options for breast cancer (BC) interventions, including the triple-negative subtype (TNBC) with poor therapeutic alternatives. BC is currently the second most widespread cancer and the primary cause of cancer death in women. Hence, the availability of novel chemotherapeutic weapons is a basic requirement to fight BC subtypes. Anticancer drugs based on ruthenium are among the most explored and advanced next-generation metallotherapeutics, with NAMI-A and KP1019 as two iconic ruthenium complexes having undergone clinical trials. In addition, many nanomaterial Ru complexes have been recently conceived and developed into anticancer drugs demonstrating attractive properties. In this field, we focused on the evaluation of a Ru(III) complex-named AziRu-incorporated into a suite of both zwitterionic and cationic nucleolipid nanosystems, which proved to be very effective for the in vivo targeting of breast cancer cells (BBC). Mechanisms of action have been widely explored in the context of preclinical evaluations in vitro, highlighting a multitarget action on cell death pathways which are typically deregulated in neoplasms onset and progression. Moreover, being AziRu inspired by the well-known NAMI-A complex, information on non-nanostructured Ru-based anticancer agents have been included in a precise manner.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| |
Collapse
|
49
|
Noratto G, Layosa MA, Lage NN, Atienza L, Ivanov I, Mertens-Talcott SU, Chew BP. Antitumor potential of dark sweet cherry sweet (Prunus avium) phenolics in suppressing xenograft tumor growth of MDA-MB-453 breast cancer cells. J Nutr Biochem 2020; 84:108437. [PMID: 32615370 DOI: 10.1016/j.jnutbio.2020.108437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
This study investigated in vivo the antitumor activity of dark sweet cherry (DSC) whole extracted phenolics (WE) and fractions enriched in anthocyanins (ACN) or proanthocyanidins (PCA) in athymic mice xenografted with MDA-MB-453 breast cancer cells. Mice were gavaged with WE, ACN or PCA extracts (150 mg/kg body weight/day) for 36 days. Results showed that tumor growth was suppressed at similar levels by WE, ACN and PCA compared to control group (C) without signs of toxicity or significant changes in mRNA oncogenic biomarkers in tumors or mRNA invasive biomarker in distant organs. Tumor protein analyses showed that WE, ACN and PCA induced at similar levels the stress-regulated ERK1/2 phosphorylation, known to be linked to apoptosis induction. However, ACN showed enhanced antitumor activity through down-regulation of total oncogenic and stress-related Akt, STAT3, p38, JNK and NF-kB proteins. In addition, immunohistochemistry analysis of Ki-67 revealed inhibition of tumor cell proliferation with potency WE ≥ ACN ≥ PCA. Differential quantitative proteomic high-resolution nano-HPLC tandem mass spectrometry analysis of tumors from ACN and C groups revealed the identity of 66 proteins associated with poor breast cancer prognosis that were expressed only in C group (61 proteins) or differentially up-regulated (P<.05) in C group (5 proteins). These findings revealed ACN-targeted proteins associated to tumor growth and invasion and the potential of DSC ACN for breast cancer treatment. Results lead to a follow-up study with highly immunodeficient mice/invasive cell line subtype and advanced tumor development to validate the anti-invasive activity of DSC anthocyanins.
Collapse
Affiliation(s)
- Giuliana Noratto
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA.
| | - Marjorie A Layosa
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Laguna, Philippines
| | - Nara N Lage
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Research Center in Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Liezl Atienza
- Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Laguna, Philippines
| | - Ivan Ivanov
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | | | - Boon P Chew
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
50
|
Fu R, Tong JS. miR-126 reduces trastuzumab resistance by targeting PIK3R2 and regulating AKT/mTOR pathway in breast cancer cells. J Cell Mol Med 2020; 24:7600-7608. [PMID: 32410348 PMCID: PMC7339158 DOI: 10.1111/jcmm.15396] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells.
Collapse
Affiliation(s)
- Rao Fu
- College of Chemical Engineering, Northeast Electric Power University, Jilin city, China
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|