1
|
Park S, Noblett N, Pitts L, Colavita A, Wehman AM, Jin Y, Chisholm AD. Dopey-dependent regulation of extracellular vesicles maintains neuronal morphology. Curr Biol 2024; 34:4920-4933.e11. [PMID: 39378880 PMCID: PMC11537831 DOI: 10.1016/j.cub.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Mature neurons maintain their distinctive morphology for extended periods in adult life. Compared to developmental neurite outgrowth, axon guidance, and target selection, relatively little is known of mechanisms that maintain the morphology of mature neurons. Loss of function in C. elegans dip-2, a member of the conserved lipid metabolic regulator Dip2 family, results in progressive overgrowth of neurites in adults. We find that dip-2 mutants display specific genetic interactions with sax-2, the C. elegans ortholog of Drosophila Furry and mammalian FRY. Combined loss of dip-2 and sax-2 results in failure to maintain neuronal morphology and elevated release of neuronal extracellular vesicles (EVs). By screening for suppressors of dip-2(0) sax-2(0) double mutant defects, we identified gain-of-function (gf) mutations in the conserved Dopey family protein PAD-1 and its associated phospholipid flippase TAT-5/ATP9A that restore normal neuronal morphology and normal levels of EV release to dip-2(0) sax-2(0) double mutants. Neuron-specific knockdown suggests that PAD-1(gf) can act cell autonomously in neurons. PAD-1(gf) displays increased association with the plasma membrane in oocytes and inhibits EV release in multiple cell types. Our findings uncover a novel functional network of DIP-2, SAX-2, PAD-1, and TAT-5 that maintains neuronal morphology and modulates EV release.
Collapse
Affiliation(s)
- Seungmee Park
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathaniel Noblett
- Neuroscience Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Lauren Pitts
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Antonio Colavita
- Neuroscience Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Andrew D Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Ouzounidis VR, Green M, van Capelle CDC, Gebhardt C, Crellin H, Finlayson C, Prevo B, Cheerambathur DK. The outer kinetochore components KNL-1 and Ndc80 complex regulate axon and neuronal cell body positioning in the C. elegans nervous system. Mol Biol Cell 2024; 35:ar83. [PMID: 38656792 PMCID: PMC11238089 DOI: 10.1091/mbc.e23-08-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The KMN (Knl1/Mis12/Ndc80) network at the kinetochore, primarily known for its role in chromosome segregation, has been shown to be repurposed during neurodevelopment. Here, we investigate the underlying neuronal mechanism and show that the KMN network promotes the proper axonal organization within the C. elegans head nervous system. Postmitotic degradation of KNL-1, which acts as a scaffold for signaling and has microtubule-binding activities at the kinetochore, led to disorganized ganglia and aberrant placement and organization of axons in the nerve ring - an interconnected axonal network. Through gene-replacement approaches, we demonstrate that the signaling motifs within KNL-1, responsible for recruiting protein phosphatase 1, and activating the spindle assembly checkpoint are required for neurodevelopment. Interestingly, while the microtubule-binding activity is crucial to KMN's neuronal function, microtubule dynamics and organization were unaffected in the absence of KNL-1. Instead, the NDC-80 microtubule-binding mutant displayed notable defects in axon bundling during nerve ring formation, indicating its role in facilitating axon-axon contacts. Overall, these findings provide evidence for a noncanonical role for the KMN network in shaping the structure and connectivity of the nervous system in C. elegans during brain development.
Collapse
Affiliation(s)
- Vasileios R. Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mattie Green
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte de Ceuninck van Capelle
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Clara Gebhardt
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Helena Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Cameron Finlayson
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K. Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
3
|
Park S, Noblett N, Pitts L, Colavita A, Wehman AM, Jin Y, Chisholm AD. Dopey-dependent regulation of extracellular vesicles maintains neuronal morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.591898. [PMID: 38766017 PMCID: PMC11100700 DOI: 10.1101/2024.05.07.591898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mature neurons maintain their distinctive morphology for extended periods in adult life. Compared to developmental neurite outgrowth, axon guidance, and target selection, relatively little is known of mechanisms that maintain mature neuron morphology. Loss of function in C. elegans DIP-2, a member of the conserved lipid metabolic regulator Dip2 family, results in progressive overgrowth of neurites in adults. We find that dip-2 mutants display specific genetic interactions with sax-2, the C. elegans ortholog of Drosophila Furry and mammalian FRY. Combined loss of DIP-2 and SAX-2 results in severe disruption of neuronal morphology maintenance accompanied by increased release of neuronal extracellular vesicles (EVs). By screening for suppressors of dip-2 sax-2 double mutant defects we identified gain-of-function (gf) mutations in the conserved Dopey family protein PAD-1 and its associated phospholipid flippase TAT-5/ATP9A. In dip-2 sax-2 double mutants carrying either pad-1(gf) or tat-5(gf) mutation, EV release is reduced and neuronal morphology across multiple neuron types is restored to largely normal. PAD-1(gf) acts cell autonomously in neurons. The domain containing pad-1(gf) is essential for PAD-1 function, and PAD-1(gf) protein displays increased association with the plasma membrane and inhibits EV release. Our findings uncover a novel functional network of DIP-2, SAX-2, PAD-1, and TAT-5 that maintains morphology of neurons and other types of cells, shedding light on the mechanistic basis of neurological disorders involving human orthologs of these genes.
Collapse
Affiliation(s)
- Seungmee Park
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathaniel Noblett
- Neuroscience Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren Pitts
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Antonio Colavita
- Neuroscience Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Gao Z, Huang E, Wang W, Xu L, Xu W, Zheng T, Rui M. Patronin regulates presynaptic microtubule organization and neuromuscular junction development in Drosophila. iScience 2024; 27:108944. [PMID: 38318379 PMCID: PMC10839449 DOI: 10.1016/j.isci.2024.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Synapses are fundamental components of the animal nervous system. Synaptic cytoskeleton is essential for maintaining proper neuronal development and wiring. Perturbations in neuronal microtubules (MTs) are correlated with numerous neuropsychiatric disorders. Despite discovering multiple synaptic MT regulators, the importance of MT stability, and particularly the polarity of MT in synaptic function, is still under investigation. Here, we identify Patronin, an MT minus-end-binding protein, for its essential role in presynaptic regulation of MT organization and neuromuscular junction (NMJ) development. Analyses indicate that Patronin regulates synaptic development independent of Klp10A. Subsequent research elucidates that it is short stop (Shot), a member of the Spectraplakin family of large cytoskeletal linker molecules, works synergistically with Patronin to govern NMJ development. We further raise the possibility that normal synaptic MT polarity contributes to proper NMJ morphology. Overall, this study demonstrates an unprecedented role of Patronin, and a potential involvement of MT polarity in synaptic development.
Collapse
Affiliation(s)
- Ziyang Gao
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Erqian Huang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wanting Wang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Lizhong Xu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wanyue Xu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Ting Zheng
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Menglong Rui
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Gujar MR, Gao Y, Teng X, Ding WY, Lin J, Tan YS, Chew LY, Toyama Y, Wang H. Patronin/CAMSAP promotes reactivation and regeneration of Drosophila quiescent neural stem cells. EMBO Rep 2023; 24:e56624. [PMID: 37440685 PMCID: PMC10481672 DOI: 10.15252/embr.202256624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (qNSCs) extend a primary protrusion that is enriched in acentrosomal microtubules and can be regenerated upon injury. Arf1 promotes microtubule growth, reactivation (exit from quiescence), and regeneration of qNSC protrusions upon injury. However, how Arf1 is regulated in qNSCs remains elusive. Here, we show that the microtubule minus-end binding protein Patronin/CAMSAP promotes acentrosomal microtubule growth and quiescent NSC reactivation. Patronin is important for the localization of Arf1 at Golgi and physically associates with Arf1, preferentially with its GDP-bound form. Patronin is also required for the regeneration of qNSC protrusion, likely via the regulation of microtubule growth. Finally, Patronin functions upstream of Arf1 and its effector Msps/XMAP215 to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings reveal a novel link between Patronin/CAMSAP and Arf1 in the regulation of microtubule growth and NSC reactivation. A similar mechanism might apply to various microtubule-dependent systems in mammals.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Yang Gao
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Xiang Teng
- Mechanobiology InstituteSingaporeSingapore
| | - Wei Yung Ding
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Liang Yuh Chew
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Present address:
Temasek LifeSciences LaboratorySingaporeSingapore
| | - Yusuke Toyama
- Mechanobiology InstituteSingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering ProgrammeNational University of SingaporeSingaporeSingapore
| |
Collapse
|
6
|
Verdile V, Riccioni V, Guerra M, Ferrante G, Sette C, Valle C, Ferri A, Paronetto MP. An impaired splicing program underlies differentiation defects in hSOD1 G93A neural progenitor cells. Cell Mol Life Sci 2023; 80:236. [PMID: 37524863 PMCID: PMC11072603 DOI: 10.1007/s00018-023-04893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult devastating neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), resulting in progressive paralysis and death. Genetic animal models of ALS have highlighted dysregulation of synaptic structure and function as a pathogenic feature of ALS-onset and progression. Alternative pre-mRNA splicing (AS), which allows expansion of the coding power of genomes by generating multiple transcript isoforms from each gene, is widely associated with synapse formation and functional specification. Deciphering the link between aberrant splicing regulation and pathogenic features of ALS could pave the ground for novel therapeutic opportunities. Herein, we found that neural progenitor cells (NPCs) derived from the hSOD1G93A mouse model of ALS displayed increased proliferation and propensity to differentiate into neurons. In parallel, hSOD1G93A NPCs showed impaired splicing patterns in synaptic genes, which could contribute to the observed phenotype. Remarkably, master splicing regulators of the switch from stemness to neural differentiation are de-regulated in hSOD1G93A NPCs, thus impacting the differentiation program. Our data indicate that hSOD1G93A mutation impacts on neurogenesis by increasing the NPC pool in the developing mouse cortex and affecting their intrinsic properties, through the establishment of a specific splicing program.
Collapse
Affiliation(s)
- Veronica Verdile
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Veronica Riccioni
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Marika Guerra
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Gabriele Ferrante
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Cristiana Valle
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), 00133, Rome, Italy
| | - Alberto Ferri
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), 00133, Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy.
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
7
|
Synaptic branch stability is mediated by non-enzymatic functions of MEC-17/αTAT1 and ATAT-2. Sci Rep 2022; 12:14003. [PMID: 35977998 PMCID: PMC9385713 DOI: 10.1038/s41598-022-18333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
Microtubules are fundamental elements of neuronal structure and function. They are dynamic structures formed from protofilament chains of α- and β-tubulin heterodimers. Acetylation of the lysine 40 (K40) residue of α-tubulin protects microtubules from mechanical stresses by imparting structural elasticity. The enzyme responsible for this acetylation event is MEC-17/αTAT1. Despite its functional importance, however, the consequences of altered MEC-17/αTAT1 levels on neuronal structure and function are incompletely defined. Here we demonstrate that overexpression or loss of MEC-17, or of its functional paralogue ATAT-2, causes a delay in synaptic branch extension, and defective synaptogenesis in the mechanosensory neurons of Caenorhabditis elegans. Strikingly, by adulthood, the synaptic branches in these animals are lost, while the main axon shaft remains mostly intact. We show that MEC-17 and ATAT-2 regulate the stability of the synaptic branches largely independently from their acetyltransferase domains. Genetic analyses reveals novel interactions between both mec-17 and atat-2 with the focal adhesion gene zyx-1/Zyxin, which has previously been implicated in actin remodelling. Together, our results reveal new, acetylation-independent roles for MEC-17 and ATAT-2 in the development and maintenance of neuronal architecture.
Collapse
|
8
|
Balseiro-Gómez S, Park J, Yue Y, Ding C, Shao L, Ҫetinkaya S, Kuzoian C, Hammarlund M, Verhey KJ, Yogev S. Neurexin and frizzled intercept axonal transport at microtubule minus ends to control synapse formation. Dev Cell 2022; 57:1802-1816.e4. [PMID: 35809561 PMCID: PMC9378695 DOI: 10.1016/j.devcel.2022.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 02/01/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023]
Abstract
Synapse formation is locally determined by transmembrane proteins, yet synaptic material is synthesized remotely and undergoes processive transport in axons. How local synaptogenic signals intercept synaptic cargo in transport to promote its delivery and synapse formation is unknown. We found that the control of synaptic cargo delivery at microtubule (MT) minus ends mediates pro- and anti-synaptogenic activities of presynaptic neurexin and frizzled in C. elegans and identified the atypical kinesin VAB-8/KIF26 as a key molecule in this process. VAB-8/KIF26 levels at synaptic MT minus ends are controlled by frizzled and neurexin; loss of VAB-8 mimics neurexin mutants or frizzled hyperactivation, and its overexpression can rescue synapse loss in these backgrounds. VAB-8/KIF26 is required for the synaptic localization of other minus-end proteins and promotes the pausing of retrograde transport to allow delivery to synapses. Consistently, reducing retrograde transport rescues synapse loss in vab-8 and neurexin mutants. These results uncover a mechanistic link between synaptogenic signaling and axonal transport.
Collapse
Affiliation(s)
- Santiago Balseiro-Gómez
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Junhyun Park
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chen Ding
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Lin Shao
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Selim Ҫetinkaya
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Caroline Kuzoian
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Marc Hammarlund
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.
| |
Collapse
|
9
|
Imasaki T, Kikkawa S, Niwa S, Saijo-Hamano Y, Shigematsu H, Aoyama K, Mitsuoka K, Shimizu T, Aoki M, Sakamoto A, Tomabechi Y, Sakai N, Shirouzu M, Taguchi S, Yamagishi Y, Setsu T, Sakihama Y, Nitta E, Takeichi M, Nitta R. CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre through phase separation. eLife 2022; 11:77365. [PMID: 35762204 PMCID: PMC9239687 DOI: 10.7554/elife.77365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubules are dynamic polymers consisting of αβ-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αβ-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αβ-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules. Cells are able to hold their shape thanks to tube-like structures called microtubules that are made of hundreds of tubulin proteins. Microtubules are responsible for maintaining the uneven distribution of molecules throughout the cell, a phenomenon known as polarity that allows cells to differentiate into different types with various roles. A protein complex called the γ-tubulin ring complex (γ-TuRC) is necessary for microtubules to form. This protein helps bind the tubulin proteins together and stabilises microtubules. However, recent research has found that in highly polarized cells such as neurons, which have highly specialised regions, microtubules can form without γ-TuRC. Searching for the proteins that could be filling in for γ-TuRC in these cells some evidence has suggested that a group known as CAMSAPs may be involved, but it is not known how. To characterize the role of CAMSAPs, Imasaki, Kikkawa et al. studied how one of these proteins, CAMSAP2, interacts with tubulins. To do this, they reconstituted both CAMSAP2 and tubulins using recombinant biotechnology and mixed them in solution. These experiments showed that CAMSAP2 can help form microtubules by bringing together their constituent proteins so that they can bind to each other more easily. Once microtubules start to form, CAMSAP2 continues to bind to them, stabilizing them and enabling them to grow to full size. These results shed light on how polarity is established in cells such as neurons, muscle cells, and epithelial cells. Additionally, the ability to observe intermediate structures during microtubule formation can provide insights into the processes that these structures are involved in.
Collapse
Affiliation(s)
- Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,JST, PRESTO, Saitama, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Yumiko Saijo-Hamano
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Shigematsu
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Kazuhiro Aoyama
- Materials and Structural Analysis, Thermo Fisher Scientific, Tokyo, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Takahiro Shimizu
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Aoki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Ayako Sakamoto
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yuri Tomabechi
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Naoki Sakai
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Shinya Taguchi
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yosuke Yamagishi
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomiyoshi Setsu
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Sakihama
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| |
Collapse
|
10
|
Vineethakumari C, Lüders J. Microtubule Anchoring: Attaching Dynamic Polymers to Cellular Structures. Front Cell Dev Biol 2022; 10:867870. [PMID: 35309944 PMCID: PMC8927778 DOI: 10.3389/fcell.2022.867870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 01/01/2023] Open
Abstract
Microtubules are dynamic, filamentous polymers composed of α- and β-tubulin. Arrays of microtubules that have a specific polarity and distribution mediate essential processes such as intracellular transport and mitotic chromosome segregation. Microtubule arrays are generated with the help of microtubule organizing centers (MTOC). MTOCs typically combine two principal activities, the de novo formation of microtubules, termed nucleation, and the immobilization of one of the two ends of microtubules, termed anchoring. Nucleation is mediated by the γ-tubulin ring complex (γTuRC), which, in cooperation with its recruitment and activation factors, provides a template for α- and β-tubulin assembly, facilitating formation of microtubule polymer. In contrast, the molecules and mechanisms that anchor newly formed microtubules at MTOCs are less well characterized. Here we discuss the mechanistic challenges underlying microtubule anchoring, how this is linked with the molecular activities of known and proposed anchoring factors, and what consequences defective microtubule anchoring has at the cellular and organismal level.
Collapse
|
11
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
12
|
Zhang H, Wang H, Shen X, Jia X, Yu S, Qiu X, Wang Y, Du J, Yan J, He J. The landscape of regulatory genes in brain-wide neuronal phenotypes of a vertebrate brain. eLife 2021; 10:68224. [PMID: 34895465 PMCID: PMC8769648 DOI: 10.7554/elife.68224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022] Open
Abstract
Multidimensional landscapes of regulatory genes in neuronal phenotypes at whole-brain levels in the vertebrate remain elusive. We generated single-cell transcriptomes of ~67,000 region- and neurotransmitter/neuromodulator-identifiable cells from larval zebrafish brains. Hierarchical clustering based on effector gene profiles ('terminal features') distinguished major brain cell types. Sister clusters at hierarchical termini displayed similar terminal features. It was further verified by a population-level statistical method. Intriguingly, glutamatergic/GABAergic sister clusters mostly expressed distinct transcription factor (TF) profiles ('convergent pattern'), whereas neuromodulator-type sister clusters predominantly expressed the same TF profiles ('matched pattern'). Interestingly, glutamatergic/GABAergic clusters with similar TF profiles could also display different terminal features ('divergent pattern'). It led us to identify a library of RNA-binding proteins that differentially marked divergent pair clusters, suggesting the post-transcriptional regulation of neuron diversification. Thus, our findings reveal multidimensional landscapes of transcriptional and post-transcriptional regulators in whole-brain neuronal phenotypes in the zebrafish brain.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Xiaoyu Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Xinling Jia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Xiaoying Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Yufan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina,School of Future Technology, University of Chinese Academy of SciencesBeijingChina
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina,School of Future Technology, University of Chinese Academy of SciencesBeijingChina
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| |
Collapse
|
13
|
Tauopathy-associated tau modifications selectively impact neurodegeneration and mitophagy in a novel C. elegans single-copy transgenic model. Mol Neurodegener 2020; 15:65. [PMID: 33168053 PMCID: PMC7654055 DOI: 10.1186/s13024-020-00410-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background A defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer’s disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear. Methods Human 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E, to mimic phosphorylation of a commonly observed pathological epitope, and K274/281Q, to mimic disease-associated lysine acetylation – collectively referred as “PTM-mimetics” – as well as a T231A phosphoablation mutant. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age. Genetically-encoded fluorescent biosensors were expressed in touch neurons and used to measure neuronal morphology, mitochondrial morphology, mitophagy, and macro autophagy. Results Unlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and neuronal morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage neuronal mitophagy in response to mitochondrial stress. Conclusions Limiting the expression of tau results in a genetic model where modifications that mimic pathologic tauopathy-associated PTMs contribute to cryptic, stress-inducible phenotypes that evolve with age. These findings and their relationship to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD. Supplementary information The online version contains supplementary material available at 10.1186/s13024-020-00410-7.
Collapse
|
14
|
Preuss F, Chatterjee D, Mathea S, Shrestha S, St-Germain J, Saha M, Kannan N, Raught B, Rottapel R, Knapp S. Nucleotide Binding, Evolutionary Insights, and Interaction Partners of the Pseudokinase Unc-51-like Kinase 4. Structure 2020; 28:1184-1196.e6. [PMID: 32814032 DOI: 10.1016/j.str.2020.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 07/29/2020] [Indexed: 01/11/2023]
Abstract
Unc-51-like kinase 4 (ULK4) is a pseudokinase that has been linked to the development of several diseases. Even though sequence motifs required for ATP binding in kinases are lacking, ULK4 still tightly binds ATP and the presence of the co-factor is required for structural stability of ULK4. Here, we present a high-resolution structure of a ULK4-ATPγS complex revealing a highly unusual ATP binding mode in which the lack of the canonical VAIK motif lysine is compensated by K39, located N-terminal to αC. Evolutionary analysis suggests that degradation of active site motifs in metazoan ULK4 has co-occurred with an ULK4-specific activation loop, which stabilizes the C helix. In addition, cellular interaction studies using BioID and biochemical validation data revealed high confidence interactors of the pseudokinase and armadillo repeat domains. Many of the identified ULK4 interaction partners were centrosomal and tubulin-associated proteins and several active kinases suggesting interesting regulatory roles for ULK4.
Collapse
Affiliation(s)
- Franziska Preuss
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Deep Chatterjee
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Safal Shrestha
- Institute of Bioinformatics & Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Manipa Saha
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Natarajan Kannan
- Institute of Bioinformatics & Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada; Departments of Medicine, Immunology and Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada; Division of Rheumatology, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Vasudevan A, Koushika SP. Molecular mechanisms governing axonal transport: a C. elegans perspective. J Neurogenet 2020; 34:282-297. [PMID: 33030066 DOI: 10.1080/01677063.2020.1823385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axonal transport is integral for maintaining neuronal form and function, and defects in axonal transport have been correlated with several neurological diseases, making it a subject of extensive research over the past several years. The anterograde and retrograde transport machineries are crucial for the delivery and distribution of several cytoskeletal elements, growth factors, organelles and other synaptic cargo. Molecular motors and the neuronal cytoskeleton function as effectors for multiple neuronal processes such as axon outgrowth and synapse formation. This review examines the molecular mechanisms governing axonal transport, specifically highlighting the contribution of studies conducted in C. elegans, which has proved to be a tractable model system in which to identify both novel and conserved regulatory mechanisms of axonal transport.
Collapse
Affiliation(s)
- Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
16
|
cnd-1/NeuroD1 Functions with the Homeobox Gene ceh-5/Vax2 and Hox Gene ceh-13/labial To Specify Aspects of RME and DD Neuron Fate in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:3071-3085. [PMID: 32601060 PMCID: PMC7466980 DOI: 10.1534/g3.120.401515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Identifying the mechanisms behind neuronal fate specification are key to understanding normal neural development in addition to neurodevelopmental disorders such as autism and schizophrenia. In vivo cell fate specification is difficult to study in vertebrates. However, the nematode Caenorhabditis elegans, with its invariant cell lineage and simple nervous system of 302 neurons, is an ideal organism to explore the earliest stages of neural development. We used a comparative transcriptome approach to examine the role of cnd-1/NeuroD1 in C. elegans nervous system development and function. This basic helix-loop-helix transcription factor is deeply conserved across phyla and plays a crucial role in cell fate specification in both the vertebrate nervous system and pancreas. We find that cnd-1 controls expression of ceh-5, a Vax2-like homeobox class transcription factor, in the RME head motorneurons and PVQ tail interneurons. We also show that cnd-1 functions redundantly with the Hox gene ceh-13/labial in defining the fate of DD1 and DD2 embryonic ventral nerve cord motorneurons. These data highlight the utility of comparative transcriptomes for identifying transcription factor targets and understanding gene regulatory networks.
Collapse
|
17
|
CAMSAP1 breaks the homeostatic microtubule network to instruct neuronal polarity. Proc Natl Acad Sci U S A 2020; 117:22193-22203. [PMID: 32839317 DOI: 10.1073/pnas.1913177117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The establishment of axon/dendrite polarity is fundamental for neurons to integrate into functional circuits, and this process is critically dependent on microtubules (MTs). In the early stages of the establishment process, MTs in axons change dramatically with the morphological building of neurons; however, how the MT network changes are triggered is unclear. Here we show that CAMSAP1 plays a decisive role in the neuronal axon identification process by regulating the number of MTs. Neurons lacking CAMSAP1 form a multiple axon phenotype in vitro, while the multipolar-bipolar transition and radial migration are blocked in vivo. We demonstrate that the polarity regulator MARK2 kinase phosphorylates CAMSAP1 and affects its ability to bind to MTs, which in turn changes the protection of MT minus-ends and also triggers asymmetric distribution of MTs. Our results indicate that the polarized MT network in neurons is a decisive factor in establishing axon/dendritic polarity and is initially triggered by polarized signals.
Collapse
|
18
|
Jin Y, Zheng B. Multitasking: Dual Leucine Zipper-Bearing Kinases in Neuronal Development and Stress Management. Annu Rev Cell Dev Biol 2020; 35:501-521. [PMID: 31590586 DOI: 10.1146/annurev-cellbio-100617-062644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.
Collapse
Affiliation(s)
- Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; .,VA San Diego Healthcare System, San Diego, California 92161, USA
| |
Collapse
|
19
|
Manjarrez JR, Mailler R. Stress and timing associated with Caenorhabditis elegans immobilization methods. Heliyon 2020; 6:e04263. [PMID: 32671240 PMCID: PMC7339059 DOI: 10.1016/j.heliyon.2020.e04263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Caenorhabditis elegans is a model organism used to study gene, protein, and cell influence on function and behavior. These studies frequently require C. elegans to be immobilized for imaging or laser ablation experiments. There are a number of known techniques for immobilizing worms, but to our knowledge, there are no comprehensive studies of the various agents in common use today. New method This study determines the relationship between concentration, immobilization time, exposure time, and recovery likelihood for several immobilization agents. The agents used in this study are 1-Phenoxy-2-propanol, levamisole, sodium azide, polystyrene beads, and environmental cold shock. These tests are conducted using a humidified chamber to keep chemical concentrations consistent. Each of these agents is also tested to determine if they exhibit stress-related after effects using the gcs-1, daf-16, hsp-4, hif-1, hsp-16.2, and tmem-135 stress reporters. Results We present a range of quick mount immobilization and recovery conditions for each agent tested. This study shows that, under controlled conditions, 1-Phenoxy-2-propanol shows significant stress from the daf-16 reporter. While 1-Phenoxy-2-propanol and sodium azide both create stress related after effects with long term recovery in the case of the hsp-16.2 reporter. Comparison with existing method(s) This study shows that commonly used concentrations of immobilizing agents are ineffective when evaporation is prevented. Conclusions To improve reproducibility of results it is essential to use consistent concentrations of immobilizing agents. It is also critically important to account for stress-related after effects elicited by immobilization agents when designing any experiment.
Collapse
Affiliation(s)
| | - Roger Mailler
- University of Tulsa, 800 S. Tucker Dr., Tulsa, OK, 74104, USA
| |
Collapse
|
20
|
Lüders J. Nucleating microtubules in neurons: Challenges and solutions. Dev Neurobiol 2020; 81:273-283. [PMID: 32324945 DOI: 10.1002/dneu.22751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/08/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022]
Abstract
The highly polarized morphology of neurons is crucial for their function and involves formation of two distinct types of cellular extensions, the axonal and dendritic compartments. An important effector required for the morphogenesis and maintenance and thus the identity of axons and dendrites is the microtubule cytoskeleton. Microtubules in axons and dendrites are arranged with distinct polarities, to allow motor-dependent, compartment-specific sorting of cargo. Despite the importance of the microtubule cytoskeleton in neurons, the molecular mechanisms that generate the intricate compartment-specific microtubule configurations remain largely obscure. Work in other cell types has identified microtubule nucleation, the de novo formation of microtubules, and its spatio-temporal regulation as essential for the proper organization of the microtubule cytoskeleton. Whereas regulation of microtubule nucleation usually involves microtubule organizing centers such as the centrosome, neurons seem to rely largely on decentralized nucleation mechanisms. In this review, I will discuss recent advances in deciphering nucleation mechanisms in neurons, how they contribute to the arrangement of microtubules with specific polarities, and how this affects neuron morphogenesis. While this work has shed some light on these important processes, we are far from a comprehensive understanding. Thus, to provide a coherent model, my discussion will include both well-established mechanisms and mechanisms with more limited supporting data. Finally, I will also highlight important outstanding questions for future investigation.
Collapse
Affiliation(s)
- Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
21
|
Microtubule Minus-End Binding Protein CAMSAP2 and Kinesin-14 Motor KIFC3 Control Dendritic Microtubule Organization. Curr Biol 2020; 30:899-908.e6. [PMID: 32084403 PMCID: PMC7063570 DOI: 10.1016/j.cub.2019.12.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022]
Abstract
Neuronal dendrites are characterized by an anti-parallel microtubule organization. The mixed oriented microtubules promote dendrite development and facilitate polarized cargo trafficking; however, the mechanism that regulates dendritic microtubule organization is still unclear. Here, we found that the kinesin-14 motor KIFC3 is important for organizing dendritic microtubules and to control dendrite development. The kinesin-14 motor proteins (Drosophila melanogaster Ncd, Saccharomyces cerevisiae Kar3, Saccharomyces pombe Pkl1, and Xenopus laevis XCTK2) are characterized by a C-terminal motor domain and are well described to organize the spindle microtubule during mitosis using an additional microtubule binding site in the N terminus [1-4]. In mammals, there are three kinesin-14 members, KIFC1, KIFC2, and KIFC3. It was recently shown that KIFC1 is important for organizing axonal microtubules in neurons, a process that depends on the two microtubule-interacting domains [5]. Unlike KIFC1, KIFC2 and KIFC3 lack the N-terminal microtubule binding domain and only have one microtubule-interacting domain, the motor domain [6, 7]. Thus, in order to regulate microtubule-microtubule crosslinking or sliding, KIFC2 and KIFC3 need to interact with additional microtubule binding proteins to connect two microtubules. We found that KIFC3 has a dendrite-specific distribution and interacts with microtubule minus-end binding protein CAMSAP2. Depletion of KIFC3 or CAMSAP2 results in increased microtubule dynamics during dendritic development. We propose a model in which CAMSAP2 anchors KIFC3 at microtubule minus ends and immobilizes microtubule arrays in dendrites.
Collapse
|
22
|
An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior. PLoS Genet 2019; 15:e1008488. [PMID: 31805042 PMCID: PMC6894750 DOI: 10.1371/journal.pgen.1008488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022] Open
Abstract
Common and rare variants of the CACNA1C voltage-gated calcium channel gene have been associated with autism and other neurodevelopmental disorders including schizophrenia, bipolar disorder and ADHD. However, little is known about how CACNA1C variants affect cellular processes to alter neurodevelopment. The Timothy syndrome mutation is a rare de novo gain-of-function variant in CACNA1C that causes autism with high penetrance, providing a powerful avenue into investigating the role of CACNA1C variants in neurodevelopmental disorders. Here, we use egl-19, the C. elegans homolog of CACNA1C, to investigate the role of voltage-gated calcium channels in autism. We show that an egl-19(gof) mutation that is equivalent to the Timothy syndrome mutation can alter axon targeting and affect behavior in C. elegans. We find that wildtype egl-19 negatively regulates axon termination. The egl-19(gof) mutation represses axon termination to cause axon targeting defects that lead to the misplacement of electrical synapses and alterations in habituation to light touch. Moreover, genetic interactions indicate that the egl-19(gof) mutation functions with genes that promote selective autophagy to cause defects in axon termination and behavior. These results reveal a novel genetic mechanism whereby a de novo mutation in CACNA1C can drive alterations in circuit formation and behavior. Autism is a disorder that affects neuronal development, leading to alterations in cognition and behavior. Imaging studies have revealed alterations in axonal connectivity as a key feature of autism. However, the underlying perturbations in cell biology that drive these alterations remain largely unknown. To address this issue, we have taken advantage of the Timothy syndrome mutation, a variant in a voltage-gated calcium channel that has the unusual property of causing autism with high penetrance. We identify a role for wild-type voltage-gated calcium channels in regulating axon targeting in C. elegans. Moreover, we find that two different versions of the Timothy syndrome mutation disrupt axon targeting. Our results suggest that the Timothy syndrome mutations disrupt axon targeting and behavior by interacting with genes that promote selective autophagy, the process through which cellular components are selected for degradation. These results reveal a mechanism through which variants in voltage-gated calcium channels can cause the disruptions in axonal connectivity that underlie autism.
Collapse
|
23
|
Atherton J, Luo Y, Xiang S, Yang C, Rai A, Jiang K, Stangier M, Vemu A, Cook AD, Wang S, Roll-Mecak A, Steinmetz MO, Akhmanova A, Baldus M, Moores CA. Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nat Commun 2019; 10:5236. [PMID: 31748546 PMCID: PMC6868217 DOI: 10.1038/s41467-019-13247-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
CAMSAP/Patronins regulate microtubule minus-end dynamics. Their end specificity is mediated by their CKK domains, which we proposed recognise specific tubulin conformations found at minus ends. To critically test this idea, we compared the human CAMSAP1 CKK domain (HsCKK) with a CKK domain from Naegleria gruberi (NgCKK), which lacks minus-end specificity. Here we report near-atomic cryo-electron microscopy structures of HsCKK- and NgCKK-microtubule complexes, which show that these CKK domains share the same protein fold, bind at the intradimer interprotofilament tubulin junction, but exhibit different footprints on microtubules. NMR experiments show that both HsCKK and NgCKK are remarkably rigid. However, whereas NgCKK binding does not alter the microtubule architecture, HsCKK remodels its microtubule interaction site and changes the underlying polymer structure because the tubulin lattice conformation is not optimal for its binding. Thus, in contrast to many MAPs, the HsCKK domain can differentiate subtly specific tubulin conformations to enable microtubule minus-end recognition.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, UK.
| | - Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Shengqi Xiang
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- MOE Key Lab for biomolecular Condensates & Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
| | - Chao Yang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Kai Jiang
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China
| | - Marcel Stangier
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, PSI, Switzerland
| | - Annapurna Vemu
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Alexander D Cook
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, UK
| | - Su Wang
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, UK
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
- Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, PSI, Switzerland
- University of Basel, Biozentrum, CH-4056, Basel, Switzerland
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, UK.
| |
Collapse
|
24
|
Broihier HT. Expecto Patronin for slow and persistent minus end microtubule growth in dendrites. J Cell Biol 2019; 218:2084-2085. [PMID: 31189609 PMCID: PMC6605785 DOI: 10.1083/jcb.201906038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Microtubule plus ends are highly dynamic in neurons, while minus ends are often capped and stable. In this issue, Feng et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201810155) demonstrate that in dendrites, free minus ends undergo slow and processive growth mediated by the minus end-binding protein Patronin.
Collapse
Affiliation(s)
- Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
25
|
Abstract
Microtubules are cytoskeletal filaments essential for numerous aspects of cell physiology. They are polarized polymeric tubes with a fast growing plus end and a slow growing minus end. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge on the dynamics and organization of microtubule minus ends. Several factors, including the γ-tubulin ring complex, CAMSAP/Patronin, ASPM/Asp, SPIRAL2 (in plants) and the KANSL complex recognize microtubule minus ends and regulate their nucleation, stability and interactions with partners, such as microtubule severing enzymes, microtubule depolymerases and protein scaffolds. Together with minus-end-directed motors, these microtubule minus-end targeting proteins (-TIPs) also control the formation of microtubule-organizing centers, such as centrosomes and spindle poles, and mediate microtubule attachment to cellular membrane structures, including the cell cortex, Golgi complex and the cell nucleus. Structural and functional studies are starting to reveal the molecular mechanisms by which dynamic -TIP networks control microtubule minus ends.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland .,University of Basel, Biozentrum, CH-4056 Basel, Switzerland
| |
Collapse
|
26
|
Feng C, Thyagarajan P, Shorey M, Seebold DY, Weiner AT, Albertson RM, Rao KS, Sagasti A, Goetschius DJ, Rolls MM. Patronin-mediated minus end growth is required for dendritic microtubule polarity. J Cell Biol 2019; 218:2309-2328. [PMID: 31076454 PMCID: PMC6605808 DOI: 10.1083/jcb.201810155] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Feng et al. describe persistent neuronal microtubule minus end growth that depends on the CAMSAP protein Patronin and is needed for dendritic minus-end-out polarity. Microtubule minus ends are thought to be stable in cells. Surprisingly, in Drosophila and zebrafish neurons, we observed persistent minus end growth, with runs lasting over 10 min. In Drosophila, extended minus end growth depended on Patronin, and Patronin reduction disrupted dendritic minus-end-out polarity. In fly dendrites, microtubule nucleation sites localize at dendrite branch points. Therefore, we hypothesized minus end growth might be particularly important beyond branch points. Distal dendrites have mixed polarity, and reduction of Patronin lowered the number of minus-end-out microtubules. More strikingly, extra Patronin made terminal dendrites almost completely minus-end-out, indicating low Patronin normally limits minus-end-out microtubules. To determine whether minus end growth populated new dendrites with microtubules, we analyzed dendrite development and regeneration. Minus ends extended into growing dendrites in the presence of Patronin. In sum, our data suggest that Patronin facilitates sustained microtubule minus end growth, which is critical for populating dendrites with minus-end-out microtubules.
Collapse
Affiliation(s)
- Chengye Feng
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Pankajam Thyagarajan
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Dylan Y Seebold
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alexis T Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Richard M Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Kavitha S Rao
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alvaro Sagasti
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Daniel J Goetschius
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
27
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
28
|
Xu A, Zhang Z, Ko SH, Fisher AL, Liu Z, Chen L. Microtubule regulators act in the nervous system to modulate fat metabolism and longevity through DAF-16 in C. elegans. Aging Cell 2019; 18:e12884. [PMID: 30638295 PMCID: PMC6413656 DOI: 10.1111/acel.12884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022] Open
Abstract
Microtubule (MT) regulation is involved in both neuronal function and the maintenance of neuronal structure, and MT dysregulation appears to be a general downstream indicator and effector of age‐related neurodegeneration. But the role of MTs in natural aging is largely unknown. Here, we demonstrate a role of MT regulators in regulating longevity. We find that loss of EFA‐6, a modulator of MT dynamics, can delay both neuronal aging and extend the lifespan of C. elegans. Through the use of genetic mutants affecting other MT‐regulating genes in C. elegans, we find that loss of MT stabilizing genes (including ptrn‐1 and ptl‐1) shortens lifespan, while loss of MT destabilizing gene hdac‐6 extends lifespan. Via the use of tissue‐specific transgenes, we further show that these MT regulators can act in the nervous system to modulate lifespan. Through RNA‐seq analyses, we found that genes involved in lipid metabolism were differentially expressed in MT regulator mutants, and via the use of Nile Red and Oil Red O staining, we show that the MT regulator mutants have altered fat storage. We further find that the increased fat storage and extended lifespan of the long‐lived MT regulator mutants are dependent on the DAF‐16/FOXO transcription factor. Our results suggest that neuronal MT status might affect organismal aging through DAF‐16‐regulated changes in fat metabolism, and therefore, MT‐based therapies might represent a novel intervention to promote healthy aging.
Collapse
Affiliation(s)
- Aiping Xu
- Barshop Institute for Longevity and Aging Studies; San Antonio Texas
- Department of Cell Systems and Anatomy; UTHSCSA; San Antonio Texas
| | - Zhao Zhang
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| | - Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies; San Antonio Texas
- Department of Cell Systems and Anatomy; UTHSCSA; San Antonio Texas
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| | - Alfred L. Fisher
- Center for Healthy Aging; UTHSCSA; San Antonio Texas
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine; UTHSCSA; San Antonio Texas
- GRECC, South Texas VA Healthcare System; San Antonio Texas
| | - Zhijie Liu
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies; San Antonio Texas
- Department of Cell Systems and Anatomy; UTHSCSA; San Antonio Texas
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| |
Collapse
|
29
|
Wang Y, Rui M, Tang Q, Bu S, Yu F. Patronin governs minus-end-out orientation of dendritic microtubules to promote dendrite pruning in Drosophila. eLife 2019; 8:39964. [PMID: 30920370 PMCID: PMC6438692 DOI: 10.7554/elife.39964] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/08/2019] [Indexed: 01/09/2023] Open
Abstract
Class IV ddaC neurons specifically prune larval dendrites without affecting axons during Drosophila metamorphosis. ddaCs distribute the minus ends of microtubules (MTs) to dendrites but the plus ends to axons. However, a requirement of MT minus-end-binding proteins in dendrite-specific pruning remains completely unknown. Here, we identified Patronin, a minus-end-binding protein, for its crucial and dose-sensitive role in ddaC dendrite pruning. The CKK domain is important for Patronin’s function in dendrite pruning. Moreover, we show that both patronin knockdown and overexpression resulted in a drastic decrease of MT minus ends and a concomitant increase of plus-end-out MTs in ddaC dendrites, suggesting that Patronin stabilizes dendritic minus-end-out MTs. Consistently, attenuation of Klp10A MT depolymerase in patronin mutant neurons significantly restored minus-end-out MTs in dendrites and thereby rescued dendrite-pruning defects. Thus, our study demonstrates that Patronin orients minus-end-out MT arrays in dendrites to promote dendrite-specific pruning mainly through antagonizing Klp10A activity. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that minor issues remain unresolved (see decision letter).
Collapse
Affiliation(s)
- Yan Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Menglong Rui
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Quan Tang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Kelliher MT, Saunders HA, Wildonger J. Microtubule control of functional architecture in neurons. Curr Opin Neurobiol 2019; 57:39-45. [PMID: 30738328 DOI: 10.1016/j.conb.2019.01.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/20/2023]
Abstract
Neurons are exquisitely polarized cells whose structure and function relies on microtubules. Microtubules in signal-receiving dendrites and signal-sending axons differ in their organization and microtubule-associated proteins. These differences, coupled with microtubule post-translational modifications, combine to locally regulate intracellular transport, morphology, and function. Recent discoveries provide new insight into the regulation of non-centrosomal microtubule arrays in neurons, the relationship between microtubule acetylation and mechanosensation, and the spatial patterning of microtubules that regulates motor activity and cargo delivery in axons and dendrites. Together, these new studies bring us closer to understanding how microtubule function is locally tuned to match the specialized tasks associated with signal reception and transmission.
Collapse
Affiliation(s)
- Michael T Kelliher
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Harriet Aj Saunders
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
31
|
Zhang M, Ergin V, Lin L, Stork C, Chen L, Zheng S. Axonogenesis Is Coordinated by Neuron-Specific Alternative Splicing Programming and Splicing Regulator PTBP2. Neuron 2019; 101:690-706.e10. [PMID: 30733148 DOI: 10.1016/j.neuron.2019.01.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
How a neuron acquires an axon is a fundamental question. Piecemeal identification of many axonogenesis-related genes has been done, but coordinated regulation is unknown. Through unbiased transcriptome profiling of immature primary cortical neurons during early axon formation, we discovered an association between axonogenesis and neuron-specific alternative splicing. Known axonogenesis genes exhibit little expression alternation but widespread splicing changes. Axonogenesis-associated splicing is governed by RNA binding protein PTBP2, which is enriched in neurons and peaks around axonogenesis in the brain. Cortical depletion of PTBP2 prematurely induces axonogenesis-associated splicing, causes imbalanced expression of axonogenesis-associated isoforms, and specifically affects axon formation in vitro and in vivo. PTBP2-controlled axonogenesis-associated Shtn1 splicing determines SHTN1's capacity to regulate actin interaction, polymerization, and axon growth. Precocious Shtn1 isoform switch contributes to disorganized axon formation of Ptbp2-/- neurons. We conclude that PTBP2-orchestrated alternative splicing programming is required for robust generation of a single axon in mammals.
Collapse
Affiliation(s)
- Min Zhang
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Volkan Ergin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Lin Lin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Cheryl Stork
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Liang Chen
- Department of Biological Sciences, Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA; Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
32
|
Borgen MA, Giles AC, Wang D, Grill B. Synapse maintenance is impacted by ATAT-2 tubulin acetyltransferase activity and the RPM-1 signaling hub. eLife 2019; 8:44040. [PMID: 30652969 PMCID: PMC6355192 DOI: 10.7554/elife.44040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Synapse formation is comprised of target cell recognition, synapse assembly, and synapse maintenance. Maintaining established synaptic connections is essential for generating functional circuitry and synapse instability is a hallmark of neurodegenerative disease. While many molecules impact synapse formation generally, we know little about molecules that affect synapse maintenance in vivo. Using genetics and developmental time course analysis in C.elegans, we show that the α-tubulin acetyltransferase ATAT-2 and the signaling hub RPM-1 are required presynaptically to maintain stable synapses. Importantly, the enzymatic acetyltransferase activity of ATAT-2 is required for synapse maintenance. Our analysis revealed that RPM-1 is a hub in a genetic network composed of ATAT-2, PTRN-1 and DLK-1. In this network, ATAT-2 functions independent of the DLK-1 MAPK and likely acts downstream of RPM-1. Thus, our study reveals an important role for tubulin acetyltransferase activity in presynaptic maintenance, which occurs via the RPM-1/ATAT-2 pathway.
Collapse
Affiliation(s)
- Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
33
|
Abstract
Each neuron forms a single axon and multiple dendrites, and this configuration is important for wiring the brain. How only a single axon extends from a neuron, however, remains unknown. This study demonstrates that CAMSAP3, a protein that binds the minus-end of microtubules, preferentially localizes along axons in hippocampal neurons. Remarkably, mutations of CAMSAP3 lead to production of multiple axons in these neurons. In attempts to uncover mechanisms underlying this abnormal axon extension, the authors found that CAMSAP3-anchored microtubules escape from acetylation, a process mediated by α-tubulin acetyltransferase-1, and depletion of this enzyme abolishes abnormal axon formation in CAMSAP3 mutants. These findings reveal that CAMSAP3 controls microtubule dynamics, preventing tubulin acetylation; this mechanism is required for single-axon formation. The molecular mechanisms that guide each neuron to become polarized, forming a single axon and multiple dendrites, remain unknown. Here we show that CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a protein that regulates the minus-end dynamics of microtubules, plays a key role in maintaining neuronal polarity. In mouse hippocampal neurons, CAMSAP3 was enriched in axons. Although axonal microtubules were generally acetylated, CAMSAP3 was preferentially localized along a less-acetylated fraction of the microtubules. CAMSAP3-mutated neurons often exhibited supernumerary axons, along with an increased number of neurites having nocodazole-resistant/acetylated microtubules compared with wild-type neurons. Analysis using cell lines showed that CAMSAP3 depletion promoted tubulin acetylation, and conversely, mild overexpression of CAMSAP3 inhibited it, suggesting that CAMSAP3 works to retain nonacetylated microtubules. In contrast, CAMSAP2, a protein related to CAMSAP3, was detected along all neurites, and its loss did not affect neuronal polarity, nor did it cause increased tubulin acetylation. Depletion of α-tubulin acetyltransferase-1 (αTAT1), the key enzyme for tubulin acetylation, abolished CAMSAP3 loss-dependent multiple-axon formation. These observations suggest that CAMSAP3 sustains a nonacetylated pool of microtubules in axons, interfering with the action of αTAT1, and this process is important to maintain neuronal polarity.
Collapse
|
34
|
Asghari Adib E, Smithson LJ, Collins CA. An axonal stress response pathway: degenerative and regenerative signaling by DLK. Curr Opin Neurobiol 2018; 53:110-119. [PMID: 30053694 DOI: 10.1016/j.conb.2018.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 02/08/2023]
Abstract
Signaling through the dual leucine zipper-bearing kinase (DLK) is required for injured neurons to initiate new axonal growth; however, activation of this kinase also leads to neuronal degeneration and death in multiple models of injury and neurodegenerative diseases. This has spurred current consideration of DLK as a candidate therapeutic target, and raises a vital question: in what context is DLK a friend or foe to neurons? Here, we review our current understanding of DLK's function and mechanisms in regulating both regenerative and degenerative responses to axonal damage and stress in the nervous system.
Collapse
Affiliation(s)
- Elham Asghari Adib
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Laura J Smithson
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Catherine A Collins
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
35
|
Gong T, Yan Y, Zhang J, Liu S, Liu H, Gao J, Zhou X, Chen J, Shi A. PTRN-1/CAMSAP promotes CYK-1/formin-dependent actin polymerization during endocytic recycling. EMBO J 2018; 37:embj.201798556. [PMID: 29567645 DOI: 10.15252/embj.201798556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/18/2018] [Accepted: 02/27/2018] [Indexed: 01/01/2023] Open
Abstract
Cargo sorting and membrane carrier initiation in recycling endosomes require appropriately coordinated actin dynamics. However, the mechanism underlying the regulation of actin organization during recycling transport remains elusive. Here we report that the loss of PTRN-1/CAMSAP stalled actin exchange and diminished the cytosolic actin structures. Furthermore, we found that PTRN-1 is required for the recycling of clathrin-independent cargo hTAC-GFP The N-terminal calponin homology (CH) domain and central coiled-coils (CC) region of PTRN-1 can synergistically sustain the flow of hTAC-GFP We identified CYK-1/formin as a binding partner of PTRN-1. The N-terminal GTPase-binding domain (GBD) of CYK-1 serves as the binding interface for the PTRN-1 CH domain. The presence of the PTRN-1 CH domain promoted CYK-1-mediated actin polymerization, which suggests that the PTRN-1-CH:CYK-1-GBD interaction efficiently relieves autoinhibitory interactions within CYK-1. As expected, the overexpression of the CYK-1 formin homology domain 2 (FH2) substantially restored actin structures and partially suppressed the hTAC-GFP overaccumulation phenotype in ptrn-1 mutants. We conclude that the PTRN-1 CH domain is required to stimulate CYK-1 to facilitate actin dynamics during endocytic recycling.
Collapse
Affiliation(s)
- Ting Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China .,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
36
|
Abstract
The contribution of microtubule tip dynamics to the assembly and function of plant microtubule arrays remains poorly understood. Here, we report that the Arabidopsis SPIRAL2 (SPR2) protein modulates the dynamics of the acentrosomal cortical microtubule plus and minus ends in an opposing manner. Live imaging of a functional SPR2-mRuby fusion protein revealed that SPR2 shows both microtubule plus- and minus-end tracking activity in addition to localization at microtubule intersections and along the lattice. Analysis of microtubule dynamics showed that cortical microtubule plus ends rarely undergo catastrophe in the spr2-2 knockout mutant compared to wild-type. In contrast, cortical microtubule minus ends in spr2-2 depolymerized at a much faster rate than in wild-type. Destabilization of the minus ends in spr2-2 caused a significant decrease in the lifetime of microtubule crossovers, which dramatically reduced the microtubule-severing frequency and inhibited light-induced microtubule array reorientation. Using in vitro reconstitution experiments combined with single-molecule imaging, we found that recombinant SPR2-GFP intrinsically localizes to microtubule minus ends, where it binds stably and inhibits their dynamics. Together, our data establish SPR2 as a new type of microtubule tip regulator that governs the length and lifetime of microtubules.
Collapse
Affiliation(s)
- Yuanwei Fan
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Graham M Burkart
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
37
|
Crawley O, Giles AC, Desbois M, Kashyap S, Birnbaum R, Grill B. A MIG-15/JNK-1 MAP kinase cascade opposes RPM-1 signaling in synapse formation and learning. PLoS Genet 2017; 13:e1007095. [PMID: 29228003 PMCID: PMC5754208 DOI: 10.1371/journal.pgen.1007095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 01/04/2018] [Accepted: 11/01/2017] [Indexed: 12/18/2022] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon termination defects, in the mechanosensory neurons of rpm-1 mutants. This pathway includes: MIG-15 (MAP4K), NSY-1 (MAP3K), JKK-1 (MAP2K) and JNK-1 (MAPK). Transgenic overexpression of kinases in the MIG-15/JNK-1 pathway is sufficient to impair synapse formation in wild-type animals. The MIG-15/JNK-1 pathway functions cell autonomously in the mechanosensory neurons, and these kinases localize to presynaptic terminals providing further evidence of a role in synapse development. Loss of MIG-15/JNK-1 signaling also suppresses defects in habituation to repeated mechanical stimuli in rpm-1 mutants, a behavioral deficit that is likely to arise from impaired glutamatergic synapse formation. Interestingly, habituation results are consistent with the MIG-15/JNK-1 pathway functioning as a parallel opposing pathway to RPM-1. These findings indicate the MIG-15/JNK-1 pathway can restrict both glutamatergic synapse formation and short-term learning.
Collapse
Affiliation(s)
- Oliver Crawley
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Andrew C. Giles
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Muriel Desbois
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Sudhanva Kashyap
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Rayna Birnbaum
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
38
|
|
39
|
Atherton J, Jiang K, Stangier MM, Luo Y, Hua S, Houben K, van Hooff JJ, Joseph AP, Scarabelli G, Grant BJ, Roberts AJ, Topf M, Steinmetz MO, Baldus M, Moores CA, Akhmanova A. A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nat Struct Mol Biol 2017; 24:931-943. [PMID: 28991265 PMCID: PMC6134180 DOI: 10.1038/nsmb.3483] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
Abstract
CAMSAP and Patronin family members regulate microtubule minus-end stability and localization and thus organize noncentrosomal microtubule networks, which are essential for cell division, polarization and differentiation. Here, we found that the CAMSAP C-terminal CKK domain is widely present among eukaryotes and autonomously recognizes microtubule minus ends. Through a combination of structural approaches, we uncovered how mammalian CKK binds between two tubulin dimers at the interprotofilament interface on the outer microtubule surface. In vitro reconstitution assays combined with high-resolution fluorescence microscopy and cryo-electron tomography suggested that CKK preferentially associates with the transition zone between curved protofilaments and the regular microtubule lattice. We propose that minus-end-specific features of the interprotofilament interface at this site serve as the basis for CKK's minus-end preference. The steric clash between microtubule-bound CKK and kinesin motors explains how CKK protects microtubule minus ends against kinesin-13-induced depolymerization and thus controls the stability of free microtubule minus ends.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Kai Jiang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marcel M. Stangier
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Shasha Hua
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Klaartje Houben
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Jolien J.E. van Hooff
- Hubrecht Institute, Utrecht, the Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Agnel-Praveen Joseph
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Guido Scarabelli
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Barry J. Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anthony J. Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
- University of Basel, Biozentrum, Basel, Switzerland
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Carolyn A. Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
40
|
Borgen MA, Wang D, Grill B. RPM-1 regulates axon termination by affecting growth cone collapse and microtubule stability. Development 2017; 144:4658-4672. [PMID: 29084805 DOI: 10.1242/dev.154187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/21/2017] [Indexed: 12/14/2022]
Abstract
Axon termination is essential for efficient and accurate nervous system construction. At present, relatively little is known about how growth cone collapse occurs prior to axon termination in vivo Using the mechanosensory neurons of C. elegans, we found collapse prior to axon termination is protracted, with the growth cone transitioning from a dynamic to a static state. Growth cone collapse prior to termination is facilitated by the signaling hub RPM-1. Given the prominence of the cytoskeleton in growth cone collapse, we assessed the relationship between RPM-1 and regulators of actin dynamics and microtubule stability. Our results reveal several important findings about how axon termination is orchestrated: (1) RPM-1 functions in parallel to RHO-1 and CRMP/UNC-33, but is suppressed by the Rac isoform MIG-2; (2) RPM-1 opposes the function of microtubule stabilizers, including tubulin acetyltransferases; and (3) genetic epistasis suggests the microtubule-stabilizing protein Tau/PTL-1 potentially inhibits RPM-1. These findings provide insight into how growth cone collapse is regulated during axon termination in vivo, and suggest that RPM-1 signaling destabilizes microtubules to facilitate growth cone collapse and axon termination.
Collapse
Affiliation(s)
- Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| |
Collapse
|
41
|
Dent EW. Of microtubules and memory: implications for microtubule dynamics in dendrites and spines. Mol Biol Cell 2017; 28:1-8. [PMID: 28035040 PMCID: PMC5221613 DOI: 10.1091/mbc.e15-11-0769] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/25/2022] Open
Abstract
Microtubules (MTs) are cytoskeletal polymers composed of repeating subunits of tubulin that are ubiquitously expressed in eukaryotic cells. They undergo a stochastic process of polymerization and depolymerization from their plus ends termed dynamic instability. MT dynamics is an ongoing process in all cell types and has been the target for the development of several useful anticancer drugs, which compromise rapidly dividing cells. Recent studies also suggest that MT dynamics may be particularly important in neurons, which develop a highly polarized morphology, consisting of a single axon and multiple dendrites that persist throughout adulthood. MTs are especially dynamic in dendrites and have recently been shown to polymerize directly into dendritic spines, the postsynaptic compartment of excitatory neurons in the CNS. These transient polymerization events into dendritic spines have been demonstrated to play important roles in synaptic plasticity in cultured neurons. Recent studies also suggest that MT dynamics in the adult brain function in the essential process of learning and memory and may be compromised in degenerative diseases, such as Alzheimer's disease. This raises the possibility of targeting MT dynamics in the design of new therapeutic agents.
Collapse
Affiliation(s)
- Erik W Dent
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
42
|
Li J, Zhang YV, Asghari Adib E, Stanchev DT, Xiong X, Klinedinst S, Soppina P, Jahn TR, Hume RI, Rasse TM, Collins CA. Restraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104. eLife 2017; 6:e24271. [PMID: 28925357 PMCID: PMC5605197 DOI: 10.7554/elife.24271] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/11/2017] [Indexed: 12/19/2022] Open
Abstract
The kinesin-3 family member Unc-104/KIF1A is required for axonal transport of many presynaptic components to synapses, and mutation of this gene results in synaptic dysfunction in mice, flies and worms. Our studies at the Drosophila neuromuscular junction indicate that many synaptic defects in unc-104-null mutants are mediated independently of Unc-104's transport function, via the Wallenda (Wnd)/DLK MAP kinase axonal damage signaling pathway. Wnd signaling becomes activated when Unc-104's function is disrupted, and leads to impairment of synaptic structure and function by restraining the expression level of active zone (AZ) and synaptic vesicle (SV) components. This action concomitantly suppresses the buildup of synaptic proteins in neuronal cell bodies, hence may play an adaptive role to stresses that impair axonal transport. Wnd signaling also becomes activated when pre-synaptic proteins are over-expressed, suggesting the existence of a feedback circuit to match synaptic protein levels to the transport capacity of the axon.
Collapse
Affiliation(s)
- Jiaxing Li
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Yao V Zhang
- Junior Research Group Synaptic PlasticityHertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Graduate School of Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
| | - Elham Asghari Adib
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Doychin T Stanchev
- Junior Research Group Synaptic PlasticityHertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Graduate School of Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
| | - Xin Xiong
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Susan Klinedinst
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Pushpanjali Soppina
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Thomas Robert Jahn
- CHS Research Group Proteostasis in Neurodegenerative DiseaseDKFZ Deutsches KrebsforschungszentrumHeidelbergGermany
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Tobias M Rasse
- Junior Research Group Synaptic PlasticityHertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
- CHS Research Group Proteostasis in Neurodegenerative DiseaseDKFZ Deutsches KrebsforschungszentrumHeidelbergGermany
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
43
|
Microtubule Organization Determines Axonal Transport Dynamics. Neuron 2017; 92:449-460. [PMID: 27764672 DOI: 10.1016/j.neuron.2016.09.036] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022]
Abstract
Axonal microtubule (MT) arrays are the major cytoskeleton substrate for cargo transport. How MT organization, i.e., polymer length, number, and minus-end spacing, is regulated and how it impinges on axonal transport are unclear. We describe a method for analyzing neuronal MT organization using light microscopy. This method circumvents the need for electron microscopy reconstructions and is compatible with live imaging of cargo transport and MT dynamics. Examination of a C. elegans motor neuron revealed how age, MT-associated proteins, and signaling pathways control MT length, minus-end spacing, and coverage. In turn, MT organization determines axonal transport progression: cargoes pause at polymer termini, suggesting that switching MT tracks is rate limiting for efficient transport. Cargo run length is set by MT length, and higher MT coverage correlates with shorter pauses. These results uncover the principles and mechanisms of neuronal MT organization and its regulation of axonal cargo transport.
Collapse
|
44
|
Nashchekin D, Fernandes AR, St Johnston D. Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis. Dev Cell 2017; 38:61-72. [PMID: 27404359 PMCID: PMC4943857 DOI: 10.1016/j.devcel.2016.06.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/03/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
Noncentrosomal microtubules play an important role in polarizing differentiated cells, but little is known about how these microtubules are organized. Here we identify the spectraplakin, Short stop (Shot), as the cortical anchor for noncentrosomal microtubule organizing centers (ncMTOCs) in the Drosophila oocyte. Shot interacts with the cortex through its actin-binding domain and recruits the microtubule minus-end-binding protein, Patronin, to form cortical ncMTOCs. Shot/Patronin foci do not co-localize with γ-tubulin, suggesting that they do not nucleate new microtubules. Instead, they capture and stabilize existing microtubule minus ends, which then template new microtubule growth. Shot/Patronin foci are excluded from the oocyte posterior by the Par-1 polarity kinase to generate the polarized microtubule network that localizes axis determinants. Both proteins also accumulate apically in epithelial cells, where they are required for the formation of apical-basal microtubule arrays. Thus, Shot/Patronin ncMTOCs may provide a general mechanism for organizing noncentrosomal microtubules in differentiated cells. The Drosophila spectraplakin, Shot, recruits Patronin to form noncentrosomal MTOCs The actin-binding domain of Shot anchors the ncMTOCs to the oocyte cortex Par-1 excludes Shot from the posterior cortex to define the anterior-posterior axis Shot/Patronin ncMTOCs lack γ-tubulin and grow MTs from stabilized minus-end stumps
Collapse
Affiliation(s)
- Dmitry Nashchekin
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK
| | - Artur Ribeiro Fernandes
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
45
|
Local inhibition of microtubule dynamics by dynein is required for neuronal cargo distribution. Nat Commun 2017; 8:15063. [PMID: 28406181 PMCID: PMC5399302 DOI: 10.1038/ncomms15063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Abnormal axonal transport is associated with neuronal disease. We identified a role for DHC-1, the C. elegans dynein heavy chain, in maintaining neuronal cargo distribution. Surprisingly, this does not involve dynein's role as a retrograde motor in cargo transport, hinging instead on its ability to inhibit microtubule (MT) dynamics. Neuronal MTs are highly static, yet the mechanisms and functional significance of this property are not well understood. In disease-mimicking dhc-1 alleles, excessive MT growth and collapse occur at the dendrite tip, resulting in the formation of aberrant MT loops. These unstable MTs act as cargo traps, leading to ectopic accumulations of cargo and reduced availability of cargo at normal locations. Our data suggest that an anchored dynein pool interacts with plus-end-out MTs to stabilize MTs and allow efficient retrograde transport. These results identify functional significance for neuronal MT stability and suggest a mechanism for cellular dysfunction in dynein-linked disease.
Collapse
|
46
|
Xu Y, Quinn CC. Transition between synaptic branch formation and synaptogenesis is regulated by the lin-4 microRNA. Dev Biol 2016; 420:60-66. [PMID: 27746167 PMCID: PMC5841448 DOI: 10.1016/j.ydbio.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
Abstract
Axonal branch formation and synaptogenesis are sequential events that are required for the establishment of neuronal connectivity. However, little is known about how the transition between these two events is regulated. Here, we report that the lin-4 microRNA can regulate the transition between branch formation and synaptogenesis in the PLM axon of C. elegans. The PLM axon grows a collateral branch during the early L1 stage and undergoes synaptogenesis during the late L1 stage. Loss of the lin-4 microRNA disrupts synaptogenesis during the late L1 stage, suggesting that lin-4 promotes synaptogenesis. Conversely, the target of lin-4, the LIN-14 transcription factor, promotes PLM branch formation and inhibits synaptogenesis during the early L1 stage. Moreover, we present genetic evidence suggesting that synaptic vesicle transport is required for PLM branch formation and that the role of LIN-14 is to promote transport of synaptic vesicles to the region of future branch growth. These observations provide a novel mechanism whereby lin-4 promotes the transition from branch formation to synaptogenesis by repressing the branch-promoting and synaptogenesis-inhibiting activities of LIN-14.
Collapse
Affiliation(s)
- Yan Xu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Christopher C Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| |
Collapse
|
47
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
48
|
Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat Commun 2016; 7:12187. [PMID: 27405868 PMCID: PMC4947180 DOI: 10.1038/ncomms12187] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Neurons display a highly polarized microtubule network that mediates trafficking throughout the extensive cytoplasm and is crucial for neuronal differentiation and function. In newborn migrating neurons, the microtubule network is organized by the centrosome. During neuron maturation, however, the centrosome gradually loses this activity, and how microtubules are organized in more mature neurons remains poorly understood. Here, we demonstrate that microtubule organization in post-mitotic neurons strongly depends on non-centrosomal nucleation mediated by augmin and by the nucleator γTuRC. Disruption of either complex not only reduces microtubule density but also microtubule bundling. These microtubule defects impair neurite formation, interfere with axon specification and growth, and disrupt axonal trafficking. In axons augmin does not merely mediate nucleation of microtubules but ensures their uniform plus end-out orientation. Thus, the augmin-γTuRC module, initially identified in mitotic cells, may be commonly used to generate and maintain microtubule configurations with specific polarity. In mature neurons the centrosome no longer functions as the main microtubule organizer and it is unclear how ordered microtubule arrays are assembled. Here, the authors show that in post-mitotic neurons this process depends on non-centrosomal nucleation mediated by the protein complex augmin and the nucleator gamma-TuRC.
Collapse
|
49
|
Quintin S, Gally C, Labouesse M. Noncentrosomal microtubules in C. elegans epithelia. Genesis 2016; 54:229-42. [PMID: 26789944 DOI: 10.1002/dvg.22921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/12/2022]
Abstract
The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of noncentrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions.
Collapse
Affiliation(s)
- Sophie Quintin
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Michel Labouesse
- Université Pierre Et Marie Curie, IBPS, CNRS UMR7622, 7 Quai St-Bernard, Paris, 75005, France
| |
Collapse
|
50
|
Gerdts J, Summers DW, Milbrandt J, DiAntonio A. Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism. Neuron 2016; 89:449-60. [PMID: 26844829 PMCID: PMC4742785 DOI: 10.1016/j.neuron.2015.12.023] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wallerian axon degeneration is a form of programmed subcellular death that promotes axon breakdown in disease and injury. Active degeneration requires SARM1 and MAP kinases, including DLK, while the NAD+ synthetic enzyme NMNAT2 prevents degeneration. New studies reveal that these pathways cooperate in a locally mediated axon destruction program, with NAD+ metabolism playing a central role. Here, we review the biology of Wallerian-type axon degeneration and discuss the most recent findings, with special emphasis on critical signaling events and their potential as therapeutic targets for axonopathy.
Collapse
Affiliation(s)
- Josiah Gerdts
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel W Summers
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|