1
|
Rizo J, Jaczynska K, Rosenmund C. Evaluation of synaptotagmin-1 action models by all-atom molecular dynamics simulations. FEBS Open Bio 2025. [PMID: 39815397 DOI: 10.1002/2211-5463.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Neurotransmitter release is triggered in microseconds by the two C2 domains of the Ca2+ sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 C2B domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca2+-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca2+-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca2+-binding loops away from the fusion site. To test these models, we performed molecular dynamics simulations of SNARE complexes bridging a vesicle and a flat bilayer, including the synaptotagmin-1 C2 domains in various configurations. Our data do not support the notion that insertion of the synaptotagmin-1 Ca2+-binding loops causes substantial membrane curvature or major perturbations of the lipid bilayers that could facilitate membrane fusion. We observed membrane bridging by the synaptotagmin-1 C2 domains, but such bridging or the presence of the C2 domains near the site of fusion hindered the action of the SNAREs in bringing the membranes together. These results argue against models predicting that synaptotagmin-1 triggers neurotransmitter release by inducing membrane curvature, perturbing bilayers or bridging membranes. Instead, our data support the hypothesis that binding via the primary interface keeps the synaptotagmin-1 C2 domains away from the site of fusion, orienting them such that they trigger release through a remote action.
Collapse
Affiliation(s)
- Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
2
|
Bykhovskaia M. Molecular Dynamics Simulations of the SNARE Complex Interacting with Synaptotagmin, Complexin, and Lipid Bilayers. Methods Mol Biol 2025; 2887:3-16. [PMID: 39806143 DOI: 10.1007/978-1-0716-4314-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Molecular dynamics (MD) simulations enable in silico investigation of the dynamic behavior of proteins and protein complexes. Here, we describe MD simulations of the SNARE bundle forming the complex with the neuronal proteins Synaptotagmin-1 (Syt1) and Complexin (Cpx). Syt1 is the synaptic vesicle (SV) protein that serves as the neuronal calcium sensor and triggers synaptic fusion upon calcium binding, and this process is promoted and accelerated by Cpx. The fusion depends on the Syt1 interactions with the SNARE-Cpx complex and with the lipid bilayer of the presynaptic membrane (PM). The MD simulations of the PM-Syt1-SNARE-Cpx-SV molecular system described here enabled us to investigate how this protein-lipid complex promotes the merging of SV and PM, triggering synaptic fusion.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Departments of Neurology, and Anatomy and Cell Biology, Wayne State University School of Medicine, University Health Center, Detroit, MI, USA.
| |
Collapse
|
3
|
Makke M, Pastor-Ruiz A, Yarzagaray A, Gaya S, Zimmer M, Frisch W, Bruns D. Key determinants of the dual clamp/activator function of Complexin. eLife 2024; 12:RP92438. [PMID: 39585326 PMCID: PMC11589869 DOI: 10.7554/elife.92438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Complexin determines magnitude and kinetics of synchronized secretion, but the underlying molecular mechanisms remained unclear. Here, we show that the hydrophobic face of the amphipathic helix at the C-terminus of Complexin II (CpxII, amino acids 115-134) binds to fusion-promoting SNARE proteins, prevents premature secretion, and allows vesicles to accumulate in a release-ready state in mouse chromaffin cells. Specifically, we demonstrate that an unrelated amphipathic helix functionally substitutes for the C-terminal domain (CTD) of CpxII and that amino acid substitutions on the hydrophobic side compromise the arrest of the pre-fusion intermediate. To facilitate synchronous vesicle fusion, the N-terminal domain (NTD) of CpxII (amino acids 1-27) specifically cooperates with synaptotagmin I (SytI), but not with synaptotagmin VII. Expression of CpxII rescues the slow release kinetics of the Ca2+-binding mutant Syt I R233Q, whereas the N-terminally truncated variant of CpxII further delays it. These results indicate that the CpxII NTD regulates mechanisms which are governed by the forward rate of Ca2+ binding to Syt I. Overall, our results shed new light on key molecular properties of CpxII that hinder premature exocytosis and accelerate synchronous exocytosis.
Collapse
Affiliation(s)
- Mazen Makke
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Alejandro Pastor-Ruiz
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Antonio Yarzagaray
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Surya Gaya
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Michelle Zimmer
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Walentina Frisch
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Dieter Bruns
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| |
Collapse
|
4
|
Toulme E, Murach J, Bärfuss S, Kroll J, Malsam J, Trimbuch T, Herman MA, Söllner TH, Rosenmund C. Mutations of Single Residues in the Complexin N-terminus Exhibit Distinct Phenotypes in Synaptic Vesicle Fusion. J Neurosci 2024; 44:e0076242024. [PMID: 38951039 PMCID: PMC11293444 DOI: 10.1523/jneurosci.0076-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
The release of neurotransmitters (NTs) at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Among those dedicated molecules, the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain proteins that bind soluble N-ethylmaleimide sensitive factor attachment protein receptor complexes, conferring both inhibitory and stimulatory functions. Using systematic mutagenesis and comparing reconstituted in vitro membrane fusion assays with electrophysiology in cultured neurons from mice of either sex, we deciphered the function of the N-terminus of complexin (Cpx) II. The N-terminus (amino acid 1-27) starts with a region enriched in hydrophobic amino acids (1-12), which binds lipids. Mutants maintaining this hydrophobic character retained the stimulatory function of Cpx, whereas exchanges introducing charged residues perturbed both spontaneous and evoked exocytosis. Mutants in the more distal region of the N-terminal domain (amino acid 11-18) showed a spectrum of effects. On the one hand, mutation of residue A12 increased spontaneous release without affecting evoked release. On the other hand, replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release but also impaired evoked release. Most surprising, this substitution reduced the size of the readily releasable pool, a novel function for Cpx at mammalian synapses. Thus, the exact amino acid composition of the Cpx N-terminus fine-tunes the degree of spontaneous and evoked NT release.
Collapse
Affiliation(s)
- Estelle Toulme
- Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, 10117 Berlin, Germany
| | - Jacqueline Murach
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Simon Bärfuss
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Jana Kroll
- Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, 10117 Berlin, Germany
| | - Jörg Malsam
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Thorsten Trimbuch
- Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, 10117 Berlin, Germany
| | - Melissa A Herman
- Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, 10117 Berlin, Germany
| | - Thomas H Söllner
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Christian Rosenmund
- Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, 10117 Berlin, Germany
| |
Collapse
|
5
|
Salazar Lázaro A, Trimbuch T, Vardar G, Rosenmund C. The stability of the primed pool of synaptic vesicles and the clamping of spontaneous neurotransmitter release rely on the integrity of the C-terminal half of the SNARE domain of syntaxin-1A. eLife 2024; 12:RP90775. [PMID: 38512129 PMCID: PMC10957171 DOI: 10.7554/elife.90775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The SNARE proteins are central in membrane fusion and, at the synapse, neurotransmitter release. However, their involvement in the dual regulation of the synchronous release while maintaining a pool of readily releasable vesicles remains unclear. Using a chimeric approach, we performed a systematic analysis of the SNARE domain of STX1A by exchanging the whole SNARE domain or its N- or C-terminus subdomains with those of STX2. We expressed these chimeric constructs in STX1-null hippocampal mouse neurons. Exchanging the C-terminal half of STX1's SNARE domain with that of STX2 resulted in a reduced RRP accompanied by an increased release rate, while inserting the C-terminal half of STX1's SNARE domain into STX2 leads to an enhanced priming and decreased release rate. Additionally, we found that the mechanisms for clamping spontaneous, but not for Ca2+-evoked release, are particularly susceptible to changes in specific residues on the outer surface of the C-terminus of the SNARE domain of STX1A. Particularly, mutations of D231 and R232 affected the fusogenicity of the vesicles. We propose that the C-terminal half of the SNARE domain of STX1A plays a crucial role in the stabilization of the RRP as well as in the clamping of spontaneous synaptic vesicle fusion through the regulation of the energetic landscape for fusion, while it also plays a covert role in the speed and efficacy of Ca2+-evoked release.
Collapse
Affiliation(s)
- Andrea Salazar Lázaro
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Thorsten Trimbuch
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Gülçin Vardar
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Christian Rosenmund
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- NeuroCure Excellence ClusterBerlinGermany
| |
Collapse
|
6
|
Toulme E, Murach J, Bärfuss S, Kroll J, Malsam J, Trimbuch T, Herman MA, Söllner TH, Rosenmund C. Single residues in the complexin N-terminus exhibit distinct phenotypes in synaptic vesicle fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575336. [PMID: 38260673 PMCID: PMC10802614 DOI: 10.1101/2024.01.12.575336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The release of neurotransmitters at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Amongst those dedicated molecules the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain SNARE complex binding proteins which confer both inhibitory and stimulatory functions. Using systematic mutagenesis and combining reconstituted in vitro membrane fusion assays with electrophysiology in neurons, we deciphered the function of the N-terminus of complexin II (Cpx). The N-terminus (amino acid 1 - 27) starts with a region enriched in hydrophobic amino acids (1-12), which can lead to lipid binding. In contrast to mutants which maintain the hydrophobic character and the stimulatory function of Cpx, non-conservative exchanges largely perturbed spontaneous and evoked exocytosis. Mutants in the downstream region (amino acid 11-18) show differential effects. Cpx-A12W increased spontaneous release without affecting evoked release whereas replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release, but also impaired evoked release and surprisingly reduced the size of the readily releasable pool, a novel Cpx function, unanticipated from previous studies. Thus, the exact amino acid composition of the Cpx N-terminus fine tunes the degree of spontaneous and evoked neurotransmitter release. Significance Statement We describe in this work the importance of the N-terminal domain of the small regulatory cytosolic protein complexin in spontaneous and evoked glutamatergic neurotransmitter release at hippocampal mouse neurons. We show using a combination of biochemical, imaging and electrophysiological techniques that the binding of the proximal region of complexin (amino acids 1-10) to lipids is crucial for spontaneous synaptic vesicular release. Furthermore, we identify a single amino acid at position D15 which is structurally important since it not only is involved in spontaneous release but, when mutated, also decreases drastically the readily releasable pool, a function that was never attributed to complexin.
Collapse
|
7
|
Daniel JA, Elizarova S, Shaib AH, Chouaib AA, Magnussen HM, Wang J, Brose N, Rhee J, Tirard M. An intellectual-disability-associated mutation of the transcriptional regulator NACC1 impairs glutamatergic neurotransmission. Front Mol Neurosci 2023; 16:1115880. [PMID: 37533751 PMCID: PMC10393139 DOI: 10.3389/fnmol.2023.1115880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Advances in genome sequencing technologies have favored the identification of rare de novo mutations linked to neurological disorders in humans. Recently, a de novo autosomal dominant mutation in NACC1 was identified (NM_052876.3: c.892C > T, NP_443108.1; p.Arg298Trp), associated with severe neurological symptoms including intellectual disability, microcephaly, and epilepsy. As NACC1 had never before been associated with neurological diseases, we investigated how this mutation might lead to altered brain function. We examined neurotransmission in autaptic glutamatergic mouse neurons expressing the murine homolog of the human mutant NACC1, i.e., Nacc1-R284W. We observed that expression of Nacc1-R284W impaired glutamatergic neurotransmission in a cell-autonomous manner, likely through a dominant negative mechanism. Furthermore, by screening for Nacc1 interaction targets in the brain, we identified SynGAP1, GluK2A, and several SUMO E3 ligases as novel Nacc1 interaction partners. At a biochemical level, Nacc1-R284W exhibited reduced binding to SynGAP1 and GluK2A, and also showed greatly increased SUMOylation. Ablating the SUMOylation of Nacc1-R284W partially restored its interaction with SynGAP1 but did not restore binding to GluK2A. Overall, these data indicate a role for Nacc1 in regulating glutamatergic neurotransmission, which is substantially impaired by the expression of a disease-associated Nacc1 mutant. This study provides the first functional insights into potential deficits in neuronal function in patients expressing the de novo mutant NACC1 protein.
Collapse
Affiliation(s)
- James A. Daniel
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sofia Elizarova
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ali H. Shaib
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Abed A. Chouaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Helge M. Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, United States
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
8
|
Hao T, Feng N, Gong F, Yu Y, Liu J, Ren YX. Complexin-1 regulated assembly of single neuronal SNARE complex revealed by single-molecule optical tweezers. Commun Biol 2023; 6:155. [PMID: 36750663 PMCID: PMC9905088 DOI: 10.1038/s42003-023-04506-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
The dynamic assembly of the Synaptic-soluble N-ethylmaleimide-sensitive factor Attachment REceptor (SNARE) complex is crucial to understand membrane fusion. Traditional ensemble study meets the challenge to dissect the dynamic assembly of the protein complex. Here, we apply minute force on a tethered protein complex through dual-trap optical tweezers and study the folding dynamics of SNARE complex under mechanical force regulated by complexin-1 (CpxI). We reconstruct the clamp and facilitate functions of CpxI in vitro and identify different interplay mechanism of CpxI fragment binding on the SNARE complex. Specially, while the N-terminal domain (NTD) plays a dominant role of the facilitate function, CTD is mainly related to clamping. And the mixture of 1-83aa and CTD of CpxI can efficiently reconstitute the inhibitory signal identical to that the full-length CpxI functions. Our observation identifies the important chaperone role of the CpxI molecule in the dynamic assembly of SNARE complex under mechanical tension, and elucidates the specific function of each fragment of CpxI molecules in the chaperone process.
Collapse
Affiliation(s)
- Tongrui Hao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 200049, China.
| | - Nan Feng
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 200049 China
| | - Fan Gong
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Yang Yu
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiaquan Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031, China.
| | - Yu-Xuan Ren
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Lottermoser JA, Dittman JS. Complexin Membrane Interactions: Implications for Synapse Evolution and Function. J Mol Biol 2023; 435:167774. [PMID: 35931110 PMCID: PMC9807284 DOI: 10.1016/j.jmb.2022.167774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
The molecules and mechanisms behind chemical synaptic transmission have been explored for decades. For several of the core proteins involved in synaptic vesicle fusion, we now have a reasonably detailed grasp of their biochemical, structural, and functional properties. Complexin is one of the key synaptic proteins for which a simple mechanistic understanding is still lacking. Living up to its name, this small protein has been associated with a variety of roles differing between synapses and between species, but little consensus has been reached on its fundamental modes of action. Much attention has been paid to its deeply conserved SNARE-binding properties, while membrane-binding features of complexin and their functional significance have yet to be explored to the same degree. In this review, we summarize the known membrane interactions of the complexin C-terminal domain and their potential relevance to its function, synaptic localization, and evolutionary history.
Collapse
Affiliation(s)
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
10
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Jaczynska K, Esquivies L, Pfuetzner RA, Alten B, Brewer KD, Zhou Q, Kavalali ET, Brunger AT, Rizo J. Analysis of tripartite Synaptotagmin-1-SNARE-complexin-1 complexes in solution. FEBS Open Bio 2023; 13:26-50. [PMID: 36305864 PMCID: PMC9811660 DOI: 10.1002/2211-5463.13503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 01/07/2023] Open
Abstract
Characterizing interactions of Synaptotagmin-1 with the SNARE complex is crucial to understand the mechanism of neurotransmitter release. X-ray crystallography revealed how the Synaptotagmin-1 C2 B domain binds to the SNARE complex through a so-called primary interface and to a complexin-1-SNARE complex through a so-called tripartite interface. Mutagenesis and electrophysiology supported the functional relevance of both interfaces, and extensive additional data validated the primary interface. However, ITC evidence suggesting that binding via the tripartite interface occurs in solution was called into question by subsequent NMR data. Here, we describe joint efforts to address this apparent contradiction. Using the same ITC approach with the same C2 B domain mutant used previously (C2 BKA-Q ) but including ion exchange chromatography to purify it, which is crucial to remove polyacidic contaminants, we were unable to observe the substantial endothermic ITC signal that was previously attributed to binding of this mutant to the complexin-1-SNARE complex through the tripartite interface. We were also unable to detect substantial populations of the tripartite interface in NMR analyses of the ITC samples or in measurements of paramagnetic relaxation effects, despite the high sensitivity of this method to detect weak protein complexes. However, these experiments do not rule out the possibility of very low affinity (KD > 1 mm) binding through this interface. These results emphasize the need to develop methods to characterize the structure of synaptotagmin-1-SNARE complexes between two membranes and to perform further structure-function analyses to establish the physiological relevance of the tripartite interface.
Collapse
Affiliation(s)
- Klaudia Jaczynska
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Luis Esquivies
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Richard A. Pfuetzner
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Baris Alten
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
- Present address:
Department of NeurologyMassachusetts General HospitalBostonMAUSA
- Present address:
Department of NeurologyBrigham and Women's HospitalBostonMAUSA
- Present address:
Harvard Medical SchoolBostonMAUSA
| | - Kyle D. Brewer
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Present address:
ETTA BiotechnologyPalo AltoCAUSA
| | - Qiangjun Zhou
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Ege T. Kavalali
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
| | - Axel T. Brunger
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Josep Rizo
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
12
|
López-Murcia FJ, Reim K, Taschenberger H. Complexins: Ubiquitously Expressed Presynaptic Regulators of SNARE-Mediated Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:255-285. [PMID: 37615870 DOI: 10.1007/978-3-031-34229-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitter release is a spatially and temporally tightly regulated process, which requires assembly and disassembly of SNARE complexes to enable the exocytosis of transmitter-loaded synaptic vesicles (SVs) at presynaptic active zones (AZs). While the requirement for the core SNARE machinery is shared by most membrane fusion processes, SNARE-mediated fusion at AZs is uniquely regulated to allow very rapid Ca2+-triggered SV exocytosis following action potential (AP) arrival. To enable a sub-millisecond time course of AP-triggered SV fusion, synapse-specific accessory SNARE-binding proteins are required in addition to the core fusion machinery. Among the known SNARE regulators specific for Ca2+-triggered SV fusion are complexins, which are almost ubiquitously expressed in neurons. This chapter summarizes the structural features of complexins, models for their molecular interactions with SNAREs, and their roles in SV fusion.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
13
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
14
|
Liang Q, Ofosuhene AP, Kiessling V, Liang B, Kreutzberger AJB, Tamm LK, Cafiso DS. Complexin-1 and synaptotagmin-1 compete for binding sites on membranes containing PtdInsP 2. Biophys J 2022; 121:3370-3380. [PMID: 36016497 PMCID: PMC9515229 DOI: 10.1016/j.bpj.2022.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Complexin-1 is an essential protein for neuronal exocytosis that acts to depress spontaneous fusion events while enhancing evoked neurotransmitter release. In addition to binding soluble N-ethylmaleimide-sensitive factor attachment protein receptors, it is well established that complexin associates with membranes in a manner that depends upon membrane curvature. In the present work, we examine the membrane binding of complexin using electron paramagnetic resonance spectroscopy, fluorescence anisotropy, and total internal reflection fluorescence microscopy. The apparent membrane affinity of complexin is found to strongly depend upon the concentration of protein used in the binding assay, and this is a result of a limited number of binding sites for complexin on the membrane interface. Although both the N- and C-terminal regions of complexin associate with the membrane interface, membrane affinity is driven by its C-terminus. Complexin prefers to bind liquid-disordered membrane phases and shows an enhanced affinity toward membranes containing phosphatidylinositol 4-5-bisphosphate (PI(4,5)P2). In the presence of PI(4,5)P2, complexin is displaced from the membrane surface by proteins that bind to or sequester PI(4,5)P2. In particular, the neuronal calcium sensor synaptotagmin-1 displaces complexin from the membrane but only when PI(4,5)P2 is present. Complexin and synaptotagmin compete on the membrane interface in the presence of PI(4,5)P2, and this interaction may play a role in calcium-triggered exocytosis by displacing complexin from its fusion-inhibiting state.
Collapse
Affiliation(s)
- Qian Liang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Akosua P Ofosuhene
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Alex J B Kreutzberger
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
15
|
Rizo J, David G, Fealey ME, Jaczynska K. On the difficulties of characterizing weak protein interactions that are critical for neurotransmitter release. FEBS Open Bio 2022; 12:1912-1938. [PMID: 35986639 PMCID: PMC9623538 DOI: 10.1002/2211-5463.13473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The mechanism of neurotransmitter release has been extensively characterized, showing that vesicle fusion is mediated by the SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin. This complex is disassembled by N-ethylmaleimide sensitive factor (NSF) and SNAPs to recycle the SNAREs, whereas Munc18-1 and Munc13s organize SNARE complex assembly in an NSF-SNAP-resistant manner. Synaptotagmin-1 acts as the Ca2+ sensor that triggers exocytosis in a tight interplay with the SNAREs and complexins. Here, we review technical aspects associated with investigation of protein interactions underlying these steps, which is hindered because the release machinery is assembled between two membranes and is highly dynamic. Moreover, weak interactions, which are difficult to characterize, play key roles in neurotransmitter release, for instance by lowering energy barriers that need to be overcome in this highly regulated process. We illustrate the crucial role that structural biology has played in uncovering mechanisms underlying neurotransmitter release, but also discuss the importance of considering the limitations of the techniques used, including lessons learned from research in our lab and others. In particular, we emphasize: (a) the promiscuity of some protein sequences, including membrane-binding regions that can mediate irrelevant interactions with proteins in the absence of their native targets; (b) the need to ensure that weak interactions observed in crystal structures are biologically relevant; and (c) the limitations of isothermal titration calorimetry to analyze weak interactions. Finally, we stress that even studies that required re-interpretation often helped to move the field forward by improving our understanding of the system and providing testable hypotheses.
Collapse
Affiliation(s)
- Josep Rizo
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Guillaume David
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Michael E. Fealey
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Klaudia Jaczynska
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
16
|
Platzer K, Sticht H, Bupp C, Ganapathi M, Pereira EM, Le Guyader G, Bilan F, Henderson LB, Lemke JR, Taschenberger H, Brose N, Jamra RA, Wojcik SM. De novo missense variants in
SLC32A1
cause a developmental and epileptic encephalopathy due to impaired
GABAergic
neurotransmission. Ann Neurol 2022; 92:958-973. [DOI: 10.1002/ana.26485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Konrad Platzer
- Institute of Human Genetics University of Leipzig Medical Center Leipzig Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Caleb Bupp
- Spectrum Health Medical Genetics Grand Rapids MI USA
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology Columbia University Medical Center New York NY USA
| | - Elaine M. Pereira
- Department of Pediatrics Columbia University Irving Medical Center New York NY USA
| | - Gwenaël Le Guyader
- Department of Genetics Poitiers University Hospital Center Poitiers Cedex France
| | - Frederic Bilan
- Department of Genetics Poitiers University Hospital Center Poitiers Cedex France
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC) INSERM U1084 University of Poitiers Poitiers France
| | | | - Johannes R. Lemke
- Institute of Human Genetics University of Leipzig Medical Center Leipzig Germany
- Center for Rare Diseases University of Leipzig Medical Center Leipzig Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology Max Planck Institute for Multidisciplinary Sciences City Campus, Göttingen Germany
| | - Nils Brose
- Department of Molecular Neurobiology Max Planck Institute for Multidisciplinary Sciences City Campus, Göttingen Germany
| | - Rami Abou Jamra
- Institute of Human Genetics University of Leipzig Medical Center Leipzig Germany
| | - Sonja M. Wojcik
- Department of Molecular Neurobiology Max Planck Institute for Multidisciplinary Sciences City Campus, Göttingen Germany
| |
Collapse
|
17
|
Rizo J, Sari L, Qi Y, Im W, Lin MM. All-atom molecular dynamics simulations of Synaptotagmin-SNARE-complexin complexes bridging a vesicle and a flat lipid bilayer. eLife 2022; 11:76356. [PMID: 35708237 PMCID: PMC9239685 DOI: 10.7554/elife.76356] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca2+-binding to Synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to Synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of Synaptotagmin-1 and/or complexin-1. Our results need to be interpreted with caution because of the limited simulation times and the absence of key components, but suggest mechanistic features that may control release and help visualize potential states of the primed Synaptotagmin-1-SNARE-complexin-1 complex. The simulations suggest that SNAREs alone induce formation of extended membrane-membrane contact interfaces that may fuse slowly, and that the primed state contains macromolecular assemblies of trans-SNARE complexes bound to the Synaptotagmin-1 C2B domain and complexin-1 in a spring-loaded configuration that prevents premature membrane merger and formation of extended interfaces, but keeps the system ready for fast fusion upon Ca2+ influx.
Collapse
Affiliation(s)
- Josep Rizo
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Levent Sari
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Green Center for Systems Biology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yife Qi
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, United States.,Department of Chemistry, Lehigh University, Bethlehem, United States.,Department of Bioengineering, Lehigh University, Bethlehem, United States.,Department of Computer Science and Engineering, Lehigh University, Bethlehem, United States
| | - Milo M Lin
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Green Center for Systems Biology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
18
|
Abstract
Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
19
|
Pierson J, Shin YK. Stabilization of the SNARE Core by Complexin-1 Facilitates Fusion Pore Expansion. Front Mol Biosci 2022; 8:805000. [PMID: 34970598 PMCID: PMC8712692 DOI: 10.3389/fmolb.2021.805000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
In the neuron, neurotransmitter release is an essential function that must be both consistent and tightly regulated. The continuity of neurotransmitter release is dependent in large part on vesicle recycling. However, the protein factors that dictate the vesicle recycling pathway are elusive. Here, we use a single vesicle-to-supported bilayer fusion assay to investigate complexin-1 (cpx1)’s influence on SNARE-dependent fusion pore expansion. With total internal reflection (TIR) microscopy using a 10 kDa polymer fluorescence probe, we are able to detect the presence of large fusion pores. With cpx1, however, we observe a significant increase of the probability of the formation of large fusion pores. The domain deletion analysis reveals that the SNARE-binding core domain of cpx1 is mainly responsible for its ability to promote the fusion pore expansion. In addition, the results show that cpx1 helps the pore to expand larger, which results in faster release of the polymer probe. Thus, the results demonstrate a reciprocal relationship between event duration and the size of the fusion pore. Based on the data, a hypothetical mechanistic model can be deduced. In this mechanistic model, the cpx1 binding stabilizes the four-helix bundle structure of the SNARE core throughout the fusion pore expansion, whereby the highly curved bilayer within the fusion pore is stabilized by the SNARE pins.
Collapse
Affiliation(s)
- Josh Pierson
- Professor Yeon-Kyun Shin Lab, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Yeon-Kyun Shin
- Professor Yeon-Kyun Shin Lab, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
20
|
White DN, Stowell MHB. Room for Two: The Synaptophysin/Synaptobrevin Complex. Front Synaptic Neurosci 2021; 13:740318. [PMID: 34616284 PMCID: PMC8488437 DOI: 10.3389/fnsyn.2021.740318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Abstract
Synaptic vesicle release is regulated by upwards of 30 proteins at the fusion complex alone, but disruptions in any one of these components can have devastating consequences for neuronal communication. Aberrant molecular responses to calcium signaling at the pre-synaptic terminal dramatically affect vesicle trafficking, docking, fusion, and release. At the organismal level, this is reflected in disorders such as epilepsy, depression, and neurodegeneration. Among the myriad pre-synaptic proteins, perhaps the most functionally mysterious is synaptophysin (SYP). On its own, this vesicular transmembrane protein has been proposed to function as a calcium sensor, a cholesterol-binding protein, and to form ion channels across the phospholipid bilayer. The downstream effects of these functions are largely unknown. The physiological relevance of SYP is readily apparent in its interaction with synaptobrevin (VAMP2), an integral element of the neuronal SNARE complex. SNAREs, soluble NSF attachment protein receptors, comprise a family of proteins essential for vesicle fusion. The complex formed by SYP and VAMP2 is thought to be involved in both trafficking to the pre-synaptic membrane as well as regulation of SNARE complex formation. Recent structural observations specifically implicate the SYP/VAMP2 complex in anchoring the SNARE assembly at the pre-synaptic membrane prior to vesicle fusion. Thus, the SYP/VAMP2 complex appears vital to the form and function of neuronal exocytotic machinery.
Collapse
Affiliation(s)
- Dustin N. White
- MCD Biology, University of Colorado Boulder, Boulder, CO, United States
| | | |
Collapse
|
21
|
Voleti R, Bali S, Guerrero J, Smothers J, Springhower C, Acosta GA, Brewer KD, Albericio F, Rizo J. Evaluation of the tert-butyl group as a probe for NMR studies of macromolecular complexes. JOURNAL OF BIOMOLECULAR NMR 2021; 75:347-363. [PMID: 34505210 PMCID: PMC9482097 DOI: 10.1007/s10858-021-00380-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 05/04/2023]
Abstract
The development of methyl transverse relaxation optimized spectroscopy has greatly facilitated the study of macromolecular assemblies by solution NMR spectroscopy. However, limited sample solubility and stability has hindered application of this technique to ongoing studies of complexes formed on membranes by the neuronal SNAREs that mediate neurotransmitter release and synaptotagmin-1, the Ca2+ sensor that triggers release. Since the 1H NMR signal of a tBu group attached to a large protein or complex can be observed with high sensitivity if the group retains high mobility, we have explored the use of this strategy to analyze presynaptic complexes involved in neurotransmitter release. For this purpose, we attached tBu groups at single cysteines of fragments of synaptotagmin-1, complexin-1 and the neuronal SNAREs by reaction with 5-(tert-butyldisulfaneyl)-2-nitrobenzoic acid (BDSNB), tBu iodoacetamide or tBu acrylate. The tBu resonances of the tagged proteins were generally sharp and intense, although tBu groups attached with BDSNB had a tendency to exhibit somewhat broader resonances that likely result because of the shorter linkage between the tBu and the tagged cysteine. Incorporation of the tagged proteins into complexes on nanodiscs led to severe broadening of the tBu resonances in some cases. However, sharp tBu resonances could readily be observed for some complexes of more than 200 kDa at low micromolar concentrations. Our results show that tagging of proteins with tBu groups provides a powerful approach to study large biomolecular assemblies of limited stability and/or solubility that may be applicable even at nanomolar concentrations.
Collapse
Affiliation(s)
- Rashmi Voleti
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sofia Bali
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jaime Guerrero
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jared Smothers
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charis Springhower
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Alicat Scientific, Tucson, AZ, 85743, USA
| | - Gerardo A Acosta
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08028, Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Kyle D Brewer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08028, Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
22
|
Extreme parsimony in ATP consumption by 20S complexes in the global disassembly of single SNARE complexes. Nat Commun 2021; 12:3206. [PMID: 34050166 PMCID: PMC8163800 DOI: 10.1038/s41467-021-23530-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022] Open
Abstract
Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental and processive motions, but the molecular underpinnings of its remarkable energy efficiency remain largely unknown. Using multiple single-molecule methods, we found remarkable cooperativity in mechanical connection between NSF and the SNARE complex, which prevents dysfunctional 20S complexes that consume ATP without productive disassembly. We also constructed ATP hydrolysis cycle of the 20S complex, in which NSF largely shows randomness in ATP binding but switches to perfect ATP hydrolysis synchronization to induce global SNARE disassembly, minimizing ATP hydrolysis by non-20S complex-forming NSF molecules. These two mechanisms work in concert to concentrate ATP consumption into functional 20S complexes, suggesting evolutionary adaptations by the 20S complex to the energetically expensive mechanical task of SNARE complex disassembly. Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles SNARE complexes in a single unravelling step. Here authors use single-molecule methods to show cooperativity between the NSF and SNARE complex, which prevents ATP consumption without productive disassembly.
Collapse
|
23
|
Complexin Suppresses Spontaneous Exocytosis by Capturing the Membrane-Proximal Regions of VAMP2 and SNAP25. Cell Rep 2021; 32:107926. [PMID: 32698012 PMCID: PMC7116205 DOI: 10.1016/j.celrep.2020.107926] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 02/28/2020] [Accepted: 06/26/2020] [Indexed: 01/29/2023] Open
Abstract
The neuronal protein complexin contains multiple domains that exert clamping and facilitatory functions to tune spontaneous and action potential-triggered synaptic release. We address the clamping mechanism and show that the accessory helix of complexin arrests assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that forms the core machinery of intracellular membrane fusion. In a reconstituted fusion assay, site-and stage-specific photo-cross-linking reveals that, prior to fusion, the complexin accessory helix laterally binds the membrane-proximal C-terminal ends of SNAP25 and VAMP2. Corresponding complexin interface mutants selectively increase spontaneous release of neuro-transmitters in living neurons, implying that the accessory helix suppresses final zippering/assembly of the SNARE four-helix bundle by restraining VAMP2 and SNAP25.
Collapse
|
24
|
Bykhovskaia M. SNARE complex alters the interactions of the Ca 2+ sensor synaptotagmin 1 with lipid bilayers. Biophys J 2021; 120:642-661. [PMID: 33453271 DOI: 10.1016/j.bpj.2020.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Release of neuronal transmitters from nerve terminals is triggered by the molecular Ca2+ sensor synaptotagmin 1 (Syt1). Syt1 is a transmembrane protein attached to the synaptic vesicle (SV), and its cytosolic region comprises two domains, C2A and C2B, which are thought to penetrate into lipid bilayers upon Ca2+ binding. Before fusion, SVs become attached to the presynaptic membrane (PM) by the four-helical SNARE complex, which is thought to bind the C2B domain in vivo. To understand how the interactions of Syt1 with lipid bilayers and the SNARE complex trigger fusion, we performed molecular dynamics (MD) simulations at a microsecond scale. We investigated how the isolated C2 modules and the C2AB tandem of Syt1 interact with membranes mimicking either SV or PM. The simulations showed that the C2AB tandem can either bridge SV and PM or insert into PM with its Ca2+-bound tips and that the latter configuration is more favorable. Surprisingly, C2 domains did not cooperate in penetrating into PM but instead mutually hindered their insertion into the bilayer. To test whether the interaction of Syt1 with lipid bilayers could be affected by the C2B-SNARE attachment, we performed systematic conformational analysis of the C2AB-SNARE complex. Notably, we found that the C2B-SNARE interface precludes the coupling of C2 domains and promotes their insertion into PM. We performed the MD simulations of the prefusion protein complex positioned between the lipid bilayers mimicking PM and SV, and our results demonstrated in silico that the presence of the Ca2+ bound C2AB tandem promotes lipid merging. Altogether, our MD simulations elucidated the role of the Syt1-SNARE interactions in the fusion process and produced the dynamic all-atom model of the prefusion protein-lipid complex.
Collapse
|
25
|
Voleti R, Jaczynska K, Rizo J. Ca 2+-dependent release of synaptotagmin-1 from the SNARE complex on phosphatidylinositol 4,5-bisphosphate-containing membranes. eLife 2020; 9:57154. [PMID: 32808925 PMCID: PMC7498268 DOI: 10.7554/elife.57154] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
The Ca2+ sensor synaptotagmin-1 and the SNARE complex cooperate to trigger neurotransmitter release. Structural studies elucidated three distinct synaptotagmin-1-SNARE complex binding modes involving 'polybasic', 'primary' and 'tripartite' interfaces of synaptotagmin-1. We investigated these interactions using NMR and fluorescence spectroscopy. Synaptotagmin-1 binds to the SNARE complex through the polybasic and primary interfaces in solution. Ca2+-free synaptotagmin-1 binds to SNARE complexes anchored on PIP2-containing nanodiscs. R398Q/R399Q and E295A/Y338W mutations at the primary interface, which strongly impair neurotransmitter release, disrupt and enhance synaptotagmin-1-SNARE complex binding, respectively. Ca2+ induces tight binding of synaptotagmin-1 to PIP2-containing nanodiscs, disrupting synaptotagmin-1-SNARE interactions. Specific effects of mutations in the polybasic region on Ca2+-dependent synaptotagmin-1-PIP2-membrane interactions correlate with their effects on release. Our data suggest that synaptotagmin-1 binds to the SNARE complex through the primary interface and that Ca2+ releases this interaction, inducing PIP2/membrane binding and allowing cooperation between synaptotagmin-1 and the SNAREs in membrane fusion to trigger release.
Collapse
Affiliation(s)
- Rashmi Voleti
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
26
|
Ruiter M, Kádková A, Scheutzow A, Malsam J, Söllner TH, Sørensen JB. An Electrostatic Energy Barrier for SNARE-Dependent Spontaneous and Evoked Synaptic Transmission. Cell Rep 2020; 26:2340-2352.e5. [PMID: 30811985 DOI: 10.1016/j.celrep.2019.01.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/05/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Information transfer across CNS synapses depends on the very low basal vesicle fusion rate and the ability to rapidly upregulate that rate upon Ca2+ influx. We show that local electrostatic repulsion participates in creating an energy barrier, which limits spontaneous synaptic transmission. The barrier amplitude is increased by negative charges and decreased by positive charges on the SNARE-complex surface. Strikingly, the effect of charges on the barrier is additive and this extends to evoked transmission, but with a shallower charge dependence. Action potential-driven synaptic release is equivalent to the abrupt addition of ∼35 positive charges to the fusion machine. Within an electrostatic model for triggering, the Ca2+ sensor synaptotagmin-1 contributes ∼18 charges by binding Ca2+, while also modulating the fusion barrier at rest. Thus, the energy barrier for synaptic vesicle fusion has a large electrostatic component, allowing synaptotagmin-1 to act as an electrostatic switch and modulator to trigger vesicle fusion.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark
| | - Anna Kádková
- Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Scheutzow
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Jörg Malsam
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Thomas H Söllner
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Jakob B Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Ruiter M, Houy S, Engholm-Keller K, Graham ME, Sørensen JB. SNAP-25 phosphorylation at Ser187 is not involved in Ca 2+ or phorbolester-dependent potentiation of synaptic release. Mol Cell Neurosci 2019; 102:103452. [PMID: 31794878 DOI: 10.1016/j.mcn.2019.103452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/13/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022] Open
Abstract
SNAP-25, one of the three SNARE-proteins responsible for synaptic release, can be phosphorylated by Protein Kinase C on Ser-187, close to the fusion pore. In neuroendocrine cells, this phosphorylation event potentiates vesicle recruitment into releasable pools, whereas the consequences of phosphorylation for synaptic release remain unclear. We mutated Ser-187 and expressed two mutants (S187C and S187E) in the context of the SNAP-25B-isoform in SNAP-25 knockout glutamatergic autaptic neurons. Whole-cell patch clamp recordings were performed to assess the effect of Ser-187 phosphorylation on synaptic transmission. Blocking phosphorylation by expressing the S187C mutant did not affect synapse density, basic evoked or spontaneous neurotransmission, the readily-releasable pool size or its Ca2+-independent or Ca2+-dependent replenishment. Furthermore, it did not affect the response to phorbol esters, which activate PKC. Expressing S187C in the context of the SNAP-25A isoform also did not affect synaptic transmission. Strikingly, the - potentially phosphomimetic - mutant S187E reduced spontaneous release and release probability, with the largest effect seen in the SNAP-25B isoform, showing that a negative charge in this position is detrimental for neurotransmission, in agreement with electrostatic fusion triggering. During the course of our experiments, we found that higher SNAP-25B expression levels led to decreased paired pulse potentiation, probably due to higher release probabilities. Under these conditions, the potentiation of evoked EPSCs by phorbol esters was followed by a persistent down-regulation, probably due to a ceiling effect. In conclusion, our results indicate that phosphorylation of Ser-187 in SNAP-25 is not involved in modulation of synaptic release by Ca2+ or phorbol esters.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Kasper Engholm-Keller
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mark E Graham
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark.
| |
Collapse
|
28
|
Courtney NA, Bao H, Briguglio JS, Chapman ER. Synaptotagmin 1 clamps synaptic vesicle fusion in mammalian neurons independent of complexin. Nat Commun 2019; 10:4076. [PMID: 31501440 PMCID: PMC6733930 DOI: 10.1038/s41467-019-12015-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/12/2019] [Indexed: 02/01/2023] Open
Abstract
Synaptic vesicle (SV) exocytosis is mediated by SNARE proteins. Reconstituted SNAREs are constitutively active, so a major focus has been to identify fusion clamps that regulate their activity in synapses: the primary candidates are synaptotagmin (syt) 1 and complexin I/II. Syt1 is a Ca2+ sensor for SV release that binds Ca2+ via tandem C2-domains, C2A and C2B. Here, we first determined whether these C2-domains execute distinct functions. Remarkably, the C2B domain profoundly clamped all forms of SV fusion, despite synchronizing residual evoked release and rescuing the readily-releasable pool. Release was strongly enhanced by an adjacent C2A domain, and by the concurrent binding of complexin to trans-SNARE complexes. Knockdown of complexin had no impact on C2B-mediated clamping of fusion. We postulate that the C2B domain of syt1, independent of complexin, is the molecular clamp that arrests SVs prior to Ca2+-triggered fusion.
Collapse
Affiliation(s)
- Nicholas A Courtney
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Huan Bao
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Joseph S Briguglio
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Edwin R Chapman
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
29
|
Fenske P, Grauel MK, Brockmann MM, Dorrn AL, Trimbuch T, Rosenmund C. Autaptic cultures of human induced neurons as a versatile platform for studying synaptic function and neuronal morphology. Sci Rep 2019; 9:4890. [PMID: 30894602 PMCID: PMC6427022 DOI: 10.1038/s41598-019-41259-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
Recently developed technology to differentiate induced pluripotent stem cells (iPSCs) into human induced neurons (iNs) provides an exciting opportunity to study the function of human neurons. However, functional characterisations of iNs have been hampered by the reliance on mass culturing protocols which do not allow assessment of synaptic release characteristics and neuronal morphology at the individual cell level with quantitative precision. Here, we have developed for the first time a protocol to generate autaptic cultures of iPSC-derived iNs. We show that our method efficiently generates mature, autaptic iNs with robust spontaneous and action potential-driven synaptic transmission. The synaptic responses are sensitive to modulation by metabotropic receptor agonists as well as potentiation by acute phorbol ester application. Finally, we demonstrate loss of evoked and spontaneous release by Unc13A knockdown. This culture system provides a versatile platform allowing for quantitative and integrative assessment of morphophysiological and molecular parameters underlying human synaptic transmission.
Collapse
Affiliation(s)
- Pascal Fenske
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - M Katharina Grauel
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Anja L Dorrn
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany. .,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany. .,Berlin Institute of Health, Anna-Louise-Karsch-Straße 2, 10178, Berlin, Germany.
| |
Collapse
|
30
|
Snead D, Eliezer D. Spectroscopic Characterization of Structure-Function Relationships in the Intrinsically Disordered Protein Complexin. Methods Enzymol 2018; 611:227-286. [PMID: 30471689 DOI: 10.1016/bs.mie.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complexins play a critical role in the regulation of neurotransmission by regulating SNARE-mediated exocytosis of synaptic vesicles. Complexins can exert either a facilitatory or an inhibitory effect on neurotransmitter release, depending on the context, and different complexin domains contribute differently to these opposing roles. Structural characterization of the central helix domain of complexin bound to the assembled SNARE bundle provided key insights into the functional mechanism of this domain of complexin, which is critical for both complexin activities, but many questions remain, particularly regarding the roles and mechanisms of other complexin domains. Recent progress has clarified the structural properties of these additional domains, and has led to various proposals regarding how they contribute to complexin function. This chapter describes spectroscopic approaches used in our laboratory and others, primarily involving circular dichroism and solution-state NMR spectroscopy, to characterize structure within complexins when isolated or when bound to interaction partners. The ability to characterize complexin structure enables structure/function studies employing in vitro or in vivo assays of complexin function. More generally, these types of approaches can be used to study the binding of other intrinsically disordered proteins or protein regions to membrane surfaces or for that matter to other large physiological binding partners.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
31
|
Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension. Nat Commun 2018; 9:3639. [PMID: 30194295 PMCID: PMC6128827 DOI: 10.1038/s41467-018-06122-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/14/2018] [Indexed: 01/10/2023] Open
Abstract
Neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) catalyze synaptic vesicle fusion with presynaptic membranes through the formation of SNARE complexes. Complexin (Cpx) is the only presynaptic protein that tightly binds to SNAREs and regulates membrane fusion, but how it modulates the energy landscape of SNARE complex assembly, especially under mechanical tension on the complex, remains unclear. Here, using magnetic tweezers, we report how Cpx interacts with single SNARE complexes. The effects of Cpx manifest only under high mechanical tensions above 13 pN. Cpx stabilizes the central four-helix bundle of SNARE motifs and, at the same time, prevents the complete zippering of SNAREs by inhibiting linker-domain assembly. These results suggest that Cpx generates a focused clamp for the neuronal SNARE complex in a linker-open conformation. Our results provide a hint as to how Cpx cooperates with neuronal SNAREs to prime synaptic vesicles in preparation for synchronous neurotransmitter release. The SNARE complex enables the fusion of synaptic vesicles with presynaptic membrane via a zippering process that is modulated by the protein complexin, though the precise mechanism remains unclear. Here, the authors used magnetic tweezers to show how complexin prepares a SNARE complex for fusion under mechanical tension.
Collapse
|
32
|
Brunger AT, Leitz J, Zhou Q, Choi UB, Lai Y. Ca 2+-Triggered Synaptic Vesicle Fusion Initiated by Release of Inhibition. Trends Cell Biol 2018; 28:631-645. [PMID: 29706534 PMCID: PMC6056330 DOI: 10.1016/j.tcb.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
Recent structural and functional studies of the synaptic vesicle fusion machinery suggest an inhibited tripartite complex consisting of neuronal soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs), synaptotagmin, and complexin prior to Ca2+-triggered synaptic vesicle fusion. We speculate that Ca2+-triggered fusion commences with the release of inhibition by Ca2+ binding to synaptotagmin C2 domains. Subsequently, fusion is assisted by SNARE complex zippering and by active membrane remodeling properties of synaptotagmin. This additional, inhibitory role of synaptotagmin may be a general principle since other recent studies suggest that Ca2+ binding to extended synaptotagmin C2 domains enables lipid transport by releasing an inhibited state of the system, and that Munc13 may nominally be in an inhibited state, which is released upon Ca2+ binding to one of its C2 domains.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Park Y, Ryu JK. Models of synaptotagmin-1 to trigger Ca 2+ -dependent vesicle fusion. FEBS Lett 2018; 592:3480-3492. [PMID: 30004579 DOI: 10.1002/1873-3468.13193] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022]
Abstract
Vesicles in neurons and neuroendocrine cells store neurotransmitters and peptide hormones, which are released by vesicle fusion in response to Ca2+ -evoking stimuli. Synaptotagmin-1 (Syt1), a Ca2+ sensor, mediates ultrafast exocytosis in neurons and neuroendocrine cells. After vesicle docking, Syt1 has two main groups of binding partners: anionic phospholipids and the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex. The molecular mechanisms by which Syt1 triggers vesicle fusion remain controversial. This Review introduces and summarizes six molecular models of Syt1: (a) Syt1 triggers SNARE unclamping by displacing complexin, (b) Syt1 clamps SNARE zippering, (c) Syt1 causes membrane curvature, (d) membrane bridging by Syt1, (e) Syt1 is a vesicle-plasma membrane distance regulator, and (f) Syt1 undergoes circular oligomerization. We discuss important conditions to test Syt1 activity in vitro and attempt to illustrate the possible roles of Syt1.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Je-Kyung Ryu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, The Netherlands
| |
Collapse
|
34
|
Makke M, Mantero Martinez M, Gaya S, Schwarz Y, Frisch W, Silva-Bermudez L, Jung M, Mohrmann R, Dhara M, Bruns D. A mechanism for exocytotic arrest by the Complexin C-terminus. eLife 2018; 7:38981. [PMID: 30044227 PMCID: PMC6075865 DOI: 10.7554/elife.38981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
ComplexinII (CpxII) inhibits non-synchronized vesicle fusion, but the underlying mechanisms have remained unclear. Here, we provide evidence that the far C-terminal domain (CTD) of CpxII interferes with SNARE assembly, thereby arresting tonic exocytosis. Acute infusion of a CTD-derived peptide into mouse chromaffin cells enhances synchronous release by diminishing premature vesicle fusion like full-length CpxII, indicating a direct, inhibitory function of the CTD that sets the magnitude of the primed vesicle pool. We describe a high degree of structural similarity between the CpxII CTD and the SNAP25-SN1 domain (C-terminal half) and show that the CTD peptide lowers the rate of SDS-resistant SNARE complex formation in vitro. Moreover, corresponding CpxII:SNAP25 chimeras do restore complexin's function and even 'superclamp' tonic secretion. Collectively, these results support a so far unrecognized clamping mechanism wherein the CpxII C-terminus hinders spontaneous SNARE complex assembly, enabling the build-up of a release-ready pool of vesicles for synchronized Ca2+-triggered exocytosis.
Collapse
Affiliation(s)
- Mazen Makke
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Maria Mantero Martinez
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Surya Gaya
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Yvonne Schwarz
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Walentina Frisch
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Lina Silva-Bermudez
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Martin Jung
- Institute for Medical Biochemistry and Molecular Biology, University of Saarland, Homburg, Germany
| | - Ralf Mohrmann
- Institute for Physiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Madhurima Dhara
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Dieter Bruns
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| |
Collapse
|
35
|
Rizo J. Mechanism of neurotransmitter release coming into focus. Protein Sci 2018; 27:1364-1391. [PMID: 29893445 DOI: 10.1002/pro.3445] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N-ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18-1 and Munc13-1 orchestrate SNARE complex formation in an NSF-SNAP-resistant manner by a mechanism whereby Munc18-1 binds to synaptobrevin and to a self-inhibited "closed" conformation of syntaxin-1, thus forming a template to assemble the SNARE complex, and Munc13-1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin-1. Synaptotagmin-1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
36
|
Abstract
This review summarizes current knowledge of synaptic proteins that are central to synaptic vesicle fusion in presynaptic active zones, including SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors), synaptotagmin, complexin, Munc18 (mammalian uncoordinated-18), and Munc13 (mammalian uncoordinated-13), and highlights recent insights in the cooperation of these proteins for neurotransmitter release. Structural and functional studies of the synaptic fusion machinery suggest new molecular models of synaptic vesicle priming and Ca2+-triggered fusion. These studies will be a stepping-stone toward answering the question of how the synaptic vesicle fusion machinery achieves such high speed and sensitivity.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
37
|
Prinslow EA, Brautigam CA, Rizo J. Reconciling isothermal titration calorimetry analyses of interactions between complexin and truncated SNARE complexes. eLife 2017; 6. [PMID: 28880148 PMCID: PMC5589412 DOI: 10.7554/elife.30286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/16/2017] [Indexed: 01/01/2023] Open
Abstract
Neurotransmitter release depends on the SNARE complex formed by syntaxin-1, synaptobrevin and SNAP-25, as well as on complexins, which bind to the SNARE complex and play active and inhibitory roles. A crystal structure of a Complexin-I fragment bearing a so-called 'superclamp' mutation bound to a truncated SNARE complex lacking the C-terminus of the synaptobrevin SNARE motif (SNAREΔ60) suggested that an 'accessory' α-helix of Complexin-I inhibits release by inserting into the C-terminus of the SNARE complex. Previously, isothermal titration calorimetry (ITC) experiments performed in different laboratories yielded apparently discrepant results in support or against the existence of such binding mode in solution (Trimbuch et al., 2014; Krishnakumar et al., 2015). Here, ITC experiments performed to solve these discrepancies now show that the region containing the Complexin-I accessory helix and preceding N-terminal sequences does interact with SNAREΔ60, but the interaction requires the polybasic juxtamembrane region of syntaxin-1 and is not affected by the superclamp mutation within the experimental error of these experiments.
Collapse
Affiliation(s)
- Eric A Prinslow
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
38
|
Interactions Between SNAP-25 and Synaptotagmin-1 Are Involved in Vesicle Priming, Clamping Spontaneous and Stimulating Evoked Neurotransmission. J Neurosci 2017; 36:11865-11880. [PMID: 27881774 DOI: 10.1523/jneurosci.1011-16.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/20/2023] Open
Abstract
Whether interactions between synaptotagmin-1 (syt-1) and the soluble NSF attachment protein receptors (SNAREs) are required during neurotransmission is debated. We examined five SNAP-25 mutations designed to interfere with syt-1 interactions. One mutation, D51/E52/E55A, targeted negative charges within region II of the primary interface (Zhou et al., 2015); two mutations targeted region I (D166A and D166/E170A) and one mutation targeted both (D51/E52/E55/D166A). The final mutation (D186/D193A) targeted C-terminal residues not expected to interact with syt-1. An in vitro assay showed that the region I, region II, and region I+II (D51/E52/E55/D166A) mutants markedly reduced the attachment between syt-1 and t-SNARE-carrying vesicles in the absence of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. In the presence of PI(4,5)P2, vesicle attachment was unaffected by mutation. When expressed in Snap-25-null mouse autaptic neurons, region I mutations reduced the size of the readily releasable pool of vesicles, whereas the region II mutation reduced vesicular release probability. Combining both in the D51/E52/E55/D166A mutation abrogated evoked release. These data point to a division of labor between region I (vesicle priming) and region II (evoked release). Spontaneous release was disinhibited by region I mutations and found to correlate with defective complexin (Cpx) clamping in an in vitro fusion assay, pointing to an interdependent role of synaptotagmin and Cpx in release clamping. Mutation in region II (D51/E52/E55A) also unclamped release, but this effect could be overcome by synaptotagmin overexpression, arguing against an obligatory role in clamping. We conclude that three synaptic release functions of syt-1, vesicle priming, spontaneous release clamping, and evoked release triggering, depend on direct SNARE complex interaction. SIGNIFICANCE STATEMENT The function of synaptotagmin-1 (syt-1):soluble NSF attachment protein receptor (SNARE) interactions during neurotransmission remains unclear. We mutated SNAP-25 within the recently identified region I and region II of the primary synaptotagmin:SNARE interface. Using in vitro assays and rescue experiments in autaptic neurons, we show that interactions within region II of the primary interface are necessary for synchronized calcium-triggered release, whereas region I is involved in vesicle priming. Spontaneous release was disinhibited by region I mutation and found to correlate with defective complexin (Cpx) clamping in vitro, pointing to an interdependent role of synaptotagmin and Cpx in release clamping. Therefore, vesicle priming, clamping spontaneous release, and eliciting evoked release are three different functions of syt-1 that involve different interaction modes with the SNARE complex.
Collapse
|
39
|
Song H, Orr A, Duan M, Merz AJ, Wickner W. Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes. eLife 2017; 6:e26646. [PMID: 28718762 PMCID: PMC5540461 DOI: 10.7554/elife.26646] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
At physiological protein levels, the slow HOPS- and SNARE-dependent fusion which occurs upon complete SNARE zippering is stimulated by Sec17 and Sec18:ATP without requiring ATP hydrolysis. To stimulate, Sec17 needs its central residues which bind the 0-layer of the SNARE complex and its N-terminal apolar loop. Adding a transmembrane anchor to the N-terminus of Sec17 bypasses this requirement for apolarity of the Sec17 loop, suggesting that the loop functions for membrane binding rather than to trigger bilayer rearrangement. In contrast, when complete C-terminal SNARE zippering is prevented, fusion strictly requires Sec18 and Sec17, and the Sec17 apolar loop has functions beyond membrane anchoring. Thus Sec17 and Sec18 act twice in the fusion cycle, binding to trans-SNARE complexes to accelerate fusion, then hydrolyzing ATP to disassemble cis-SNARE complexes.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| | - Mengtong Duan
- Departments of Biochemistry, University of Washington, Seattle, United States
| | - Alexey J Merz
- Departments of Biochemistry, University of Washington, Seattle, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| |
Collapse
|
40
|
Snead D, Lai AL, Wragg RT, Parisotto DA, Ramlall TF, Dittman JS, Freed JH, Eliezer D. Unique Structural Features of Membrane-Bound C-Terminal Domain Motifs Modulate Complexin Inhibitory Function. Front Mol Neurosci 2017; 10:154. [PMID: 28596722 PMCID: PMC5442187 DOI: 10.3389/fnmol.2017.00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
Complexin is a small soluble presynaptic protein that interacts with neuronal SNARE proteins in order to regulate synaptic vesicle exocytosis. While the SNARE-binding central helix of complexin is required for both the inhibition of spontaneous fusion and the facilitation of synchronous fusion, the disordered C-terminal domain (CTD) of complexin is specifically required for its inhibitory function. The CTD of worm complexin binds to membranes via two distinct motifs, one of which undergoes a membrane curvature dependent structural transition that is required for efficient inhibition of neurotransmitter release, but the conformations of the membrane-bound motifs remain poorly characterized. Visualizing these conformations is required to clarify the mechanisms by which complexin membrane interactions regulate its function. Here, we employ optical and magnetic resonance spectroscopy to precisely define the boundaries of the two CTD membrane-binding motifs and to characterize their conformations. We show that the curvature dependent amphipathic helical motif features an irregular element of helical structure, likely a pi-bulge, and that this feature is important for complexin inhibitory function in vivo.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| | - Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, IthacaNY, United States
| | - Rachel T Wragg
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| | - Daniel A Parisotto
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| | - Trudy F Ramlall
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, IthacaNY, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| |
Collapse
|
41
|
Zdanowicz R, Kreutzberger A, Liang B, Kiessling V, Tamm LK, Cafiso DS. Complexin Binding to Membranes and Acceptor t-SNAREs Explains Its Clamping Effect on Fusion. Biophys J 2017; 113:1235-1250. [PMID: 28456331 DOI: 10.1016/j.bpj.2017.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Complexin-1 is a SNARE effector protein that decreases spontaneous neurotransmitter release and enhances evoked release. Complexin binds to the fully assembled four-helical neuronal SNARE core complex as revealed in competing molecular models derived from x-ray crystallography. Presently, it is unclear how complexin binding to the postfusion complex accounts for its effects upon spontaneous and evoked release in vivo. Using a combination of spectroscopic and imaging methods, we characterize in molecular detail how complexin binds to the 1:1 plasma membrane t-SNARE complex of syntaxin-1a and SNAP-25 while simultaneously binding the lipid bilayer at both its N- and C-terminal ends. These interactions are cooperative, and binding to the prefusion acceptor t-SNARE complex is stronger than to the postfusion core complex. This complexin interaction reduces the affinity of synaptobrevin-2 for the 1:1 complex, thereby retarding SNARE assembly and vesicle docking in vitro. The results provide the basis for molecular models that account for the observed clamping effect of complexin beginning with the acceptor t-SNARE complex and the subsequent activation of the clamped complex by Ca2+ and synaptotagmin.
Collapse
Affiliation(s)
- Rafal Zdanowicz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia
| | - Alex Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
42
|
Salpietro V, Lin W, Vedove AD, Storbeck M, Liu Y, Efthymiou S, Manole A, Wiethoff S, Ye Q, Saggar A, McElreavey K, Krishnakumar SS, Pitt M, Bello OD, Rothman JE, Basel‐Vanagaite L, Hubshman MW, Aharoni S, Manzur AY, Wirth B, Houlden H. Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Ann Neurol 2017; 81:597-603. [PMID: 28253535 PMCID: PMC5413866 DOI: 10.1002/ana.24905] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 11/07/2022]
Abstract
We report 2 families with undiagnosed recessive presynaptic congenital myasthenic syndrome (CMS). Whole exome or genome sequencing identified segregating homozygous variants in VAMP1: c.51_64delAGGTGGGGGTCCCC in a Kuwaiti family and c.146G>C in an Israeli family. VAMP1 is crucial for vesicle fusion at presynaptic neuromuscular junction (NMJ). Electrodiagnostic examination showed severely low compound muscle action potentials and presynaptic impairment. We assessed the effect of the nonsense mutation on mRNA levels and evaluated the NMJ transmission in VAMP1lew/lew mice, observing neurophysiological features of presynaptic impairment, similar to the patients. Taken together, our findings highlight VAMP1 homozygous mutations as a cause of presynaptic CMS. Ann Neurol 2017;81:597–603
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Weichun Lin
- Department of NeuroscienceUniversity of Texas Southwestern Medical CenterDallasTX
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine CologneCologneGermany
- Institute for GeneticsUniversity of CologneCologneGermany
| | - Markus Storbeck
- Institute of Human Genetics, Center for Molecular Medicine CologneCologneGermany
- Institute for GeneticsUniversity of CologneCologneGermany
| | - Yun Liu
- Department of NeuroscienceUniversity of Texas Southwestern Medical CenterDallasTX
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Andreea Manole
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Sarah Wiethoff
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Qiaohong Ye
- Department of NeuroscienceUniversity of Texas Southwestern Medical CenterDallasTX
| | - Anand Saggar
- St George's Hospital, National Health Service Foundation TrustLondonUnited Kingdom
| | | | - Shyam S. Krishnakumar
- Department of Cell BiologyYale School of MedicineNew HavenCT
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | | | - Matthew Pitt
- Department of Clinical NeurophysiologyGreat Ormond Street Hospital for Children, National Health Service Foundation TrustLondonUnited Kingdom
| | - Oscar D. Bello
- Department of Cell BiologyYale School of MedicineNew HavenCT
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - James E. Rothman
- Department of Cell BiologyYale School of MedicineNew HavenCT
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Lina Basel‐Vanagaite
- Pediatric Genetics Unit, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
- Raphael Recanati Genetic Institute, Rabin Medical CenterPetach TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Monika Weisz Hubshman
- Pediatric Genetics Unit, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
- Raphael Recanati Genetic Institute, Rabin Medical CenterPetach TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Sharon Aharoni
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Institute of Child Neurology, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | - Adnan Y. Manzur
- Department of Pediatric NeurologyDubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children National Health Service Foundation TrustLondonUnited Kingdom
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine CologneCologneGermany
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
43
|
Han J, Pluhackova K, Böckmann RA. The Multifaceted Role of SNARE Proteins in Membrane Fusion. Front Physiol 2017; 8:5. [PMID: 28163686 PMCID: PMC5247469 DOI: 10.3389/fphys.2017.00005] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/04/2017] [Indexed: 12/28/2022] Open
Abstract
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.
Collapse
Affiliation(s)
- Jing Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China; Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-NürnbergErlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| |
Collapse
|
44
|
C-terminal domain of mammalian complexin-1 localizes to highly curved membranes. Proc Natl Acad Sci U S A 2016; 113:E7590-E7599. [PMID: 27821736 DOI: 10.1073/pnas.1609917113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In presynaptic nerve terminals, complexin regulates spontaneous "mini" neurotransmitter release and activates Ca2+-triggered synchronized neurotransmitter release. We studied the role of the C-terminal domain of mammalian complexin in these processes using single-particle optical imaging and electrophysiology. The C-terminal domain is important for regulating spontaneous release in neuronal cultures and suppressing Ca2+-independent fusion in vitro, but it is not essential for evoked release in neuronal cultures and in vitro. This domain interacts with membranes in a curvature-dependent fashion similar to a previous study with worm complexin [Snead D, Wragg RT, Dittman JS, Eliezer D (2014) Membrane curvature sensing by the C-terminal domain of complexin. Nat Commun 5:4955]. The curvature-sensing value of the C-terminal domain is comparable to that of α-synuclein. Upon replacement of the C-terminal domain with membrane-localizing elements, preferential localization to the synaptic vesicle membrane, but not to the plasma membrane, results in suppression of spontaneous release in neurons. Membrane localization had no measurable effect on evoked postsynaptic currents of AMPA-type glutamate receptors, but mislocalization to the plasma membrane increases both the variability and the mean of the synchronous decay time constant of NMDA-type glutamate receptor evoked postsynaptic currents.
Collapse
|
45
|
Vasin A, Volfson D, Littleton JT, Bykhovskaia M. Interaction of the Complexin Accessory Helix with Synaptobrevin Regulates Spontaneous Fusion. Biophys J 2016; 111:1954-1964. [PMID: 27806277 PMCID: PMC5102999 DOI: 10.1016/j.bpj.2016.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022] Open
Abstract
Neuronal transmitters are released from nerve terminals via the fusion of synaptic vesicles with the plasma membrane. Vesicles attach to membranes via a specialized protein machinery composed of membrane-attached (t-SNARE) and vesicle-attached (v-SNARE) proteins that zipper together to form a coiled-coil SNARE bundle that brings the two fusing membranes into close proximity. Neurotransmitter release may occur either in response to an action potential or through spontaneous fusion. A cytosolic protein, Complexin (Cpx), binds the SNARE complex and restricts spontaneous exocytosis by acting as a fusion clamp. We previously proposed a model in which the interaction between Cpx and the v-SNARE serves as a spring to prevent premature zippering of the SNARE complex, thereby reducing the likelihood of fusion. To test this model, we combined molecular-dynamics (MD) simulations and site-directed mutagenesis of Cpx and SNAREs in Drosophila. MD simulations of the Drosophila Cpx-SNARE complex demonstrated that Cpx's interaction with the v-SNARE promotes unraveling of the v-SNARE off the core SNARE bundle. We investigated clamping properties in the syx3-69 paralytic mutant, which has a single-point mutation in the t-SNARE and displays enhanced spontaneous release. MD simulations demonstrated an altered interaction of Cpx with the SNARE bundle that hindered v-SNARE unraveling by Cpx, thus compromising clamping. We used our model to predict mutations that should enhance the ability of Cpx to prevent full assembly of the SNARE complex. MD simulations predicted that a weakened interaction between the Cpx accessory helix and the v-SNARE would enhance Cpx flexibility and thus promote separation of SNAREs, reducing spontaneous fusion. We generated transgenic Drosophila with mutations in Cpx and the v-SNARE that disrupted a salt bridge between these two proteins. As predicted, both lines demonstrated a selective inhibition in spontaneous release, suggesting that Cpx acts as a fusion clamp that restricts full SNARE zippering.
Collapse
Affiliation(s)
- Alexander Vasin
- Department of Neurology, Wayne State University, Detroit, Michigan
| | - Dina Volfson
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Maria Bykhovskaia
- Department of Neurology, Wayne State University, Detroit, Michigan; Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan.
| |
Collapse
|
46
|
N-terminal domain of complexin independently activates calcium-triggered fusion. Proc Natl Acad Sci U S A 2016; 113:E4698-707. [PMID: 27444020 DOI: 10.1073/pnas.1604348113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complexin activates Ca(2+)-triggered neurotransmitter release and regulates spontaneous release in the presynaptic terminal by cooperating with the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and the Ca(2+)-sensor synaptotagmin. The N-terminal domain of complexin is important for activation, but its molecular mechanism is still poorly understood. Here, we observed that a split pair of N-terminal and central domain fragments of complexin is sufficient to activate Ca(2+)-triggered release using a reconstituted single-vesicle fusion assay, suggesting that the N-terminal domain acts as an independent module within the synaptic fusion machinery. The N-terminal domain can also interact independently with membranes, which is enhanced by a cooperative interaction with the neuronal SNARE complex. We show by mutagenesis that membrane binding of the N-terminal domain is essential for activation of Ca(2+)-triggered fusion. Consistent with the membrane-binding property, the N-terminal domain can be substituted by the influenza virus hemagglutinin fusion peptide, and this chimera also activates Ca(2+)-triggered fusion. Membrane binding of the N-terminal domain of complexin therefore cooperates with the other fusogenic elements of the synaptic fusion machinery during Ca(2+)-triggered release.
Collapse
|
47
|
Kim J, Zhu Y, Shin YK. Preincubation of t-SNAREs with Complexin I Increases Content-Mixing Efficiency. Biochemistry 2016; 55:3667-73. [PMID: 27286417 DOI: 10.1021/acs.biochem.6b00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complexin (Cpx) is a major regulator for Ca(2+)-triggered fast neuroexocytosis which underlies neuronal communication. Many psychiatric and neurological disorders accompany changes in the Cpx expression level, suggesting that abnormal Cpx levels may elicit aberrant cognitive symptoms. To comprehend how the changes in the Cpx level might affect neuronal communication, we investigated Ca(2+)-triggered exocytosis at various Cpx concentrations. Ca(2+)-triggered content-mixing between a single proteoliposome of t-SNARE and another single proteoliposome of v-SNARE plus Ca(2+)-sensor synaptotagmin 1 was examined with total internal reflection microscopy. We find that Cpx enhances Ca(2+)-triggered vesicle fusion with the yield changing from approximately 10% to 70% upon increasing Cpx from 0 to 100 nM. Unexpectedly, however, the fusion efficiency becomes reduced when Cpx is increased further, dropping to 20% in the micromolar range, revealing a bell-shaped dose-response curve. Intriguingly, we find that the rate of vesicle fusion is nearly invariant through the entire range of Cpx concentrations studied, suggesting that a reevaluation of the current Cpx clamping mechanism is necessary. Thus, our results provide insights into how delicately Cpx fine-tunes neuronal communication.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Yicheng Zhu
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Yeon-Kyun Shin
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
48
|
Abstract
Intracellular membrane fusion is mediated in most cases by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). However, the assembly of such complexes in vitro is inefficient, and their uncatalysed disassembly is undetectably slow. Here, we focus on the cellular machinery that orchestrates assembly and disassembly of SNARE complexes, thereby regulating processes ranging from vesicle trafficking to organelle fusion to neurotransmitter release. Rapid progress is being made on many fronts, including the development of more realistic cell-free reconstitutions, the application of single-molecule biophysics, and the elucidation of X-ray and high-resolution electron microscopy structures of the SNARE assembly and disassembly machineries 'in action'.
Collapse
Affiliation(s)
- Richard W Baker
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Present address: Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
49
|
Choi UB, Zhao M, Zhang Y, Lai Y, Brunger AT. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex. eLife 2016; 5. [PMID: 27253060 PMCID: PMC4927292 DOI: 10.7554/elife.16886] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 01/14/2023] Open
Abstract
Complexin regulates spontaneous and activates Ca2+-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. The complexin-1 induced conformation of the ternary SNARE complex may be related to a conformation that is juxtaposing the synaptic vesicle and plasma membranes. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release. DOI:http://dx.doi.org/10.7554/eLife.16886.001 Nerve cells communicate via electrical signals that travel at high speeds. However, these signals cannot pass across the gaps – called synapses – that separate one nerve cell from the next. Instead, signals pass between nerve cells via molecules called neurotransmitters that are released from the membrane of the first cell and recognized by receptors in the membrane of the next. Prior to being released, neurotransmitters are packaged inside bubble-like structures called vesicles. The synaptic vesicles must fuse with the cell membrane in order to release their contents into the synaptic cleft. Proteins called SNAREs work together with other proteins to allow this membrane fusion to occur rapidly after the electrical signal arrives. Complexin is a synaptic protein that binds tightly to a complex of SNARE proteins to regulate membrane fusion. This protein activates the quick release of neurotransmitters, which is triggered by an increase in calcium ions as the electrical signal reachess the synapse. Complexin also regulates a different type of neurotransmitter release, which is known as “spontaneous release”. The complexin protein is made up of different regions, each of which is required for one or more of the protein’s activities. However, it is not clear how these regions, or domains, interact with SNAREs and other proteins to enable complexin to perform these roles. Choi et al. have now investigated whether the different activities of mammalian complexin are related to the structure that it adopts when it interacts with the SNARE complex. Complexes of SNARE proteins were assembled with one of the SNARE proteins tethered to a surface for imaging. Next, a light-based imaging technique called single molecule Förster resonance energy transfer (or FRET) was used to monitor how complexin interacts with the SNARE complex. This technique allows individual proteins that have been labeled with fluorescent markers to be followed under a microscope and can show how they interact in real-time. Using this approach, Choi et al. showed that complexin could adopt two different shapes or conformations when it binds to the SNARE complex. In one, complexin interacted closely with the SNARE complex so that it made part of the complex change shape. In the other, complexin was able to bridge two SNARE complexes. Complexin can therefore interact with SNARE complexes in different ways by using different regions of the protein. These findings provide insight into how complexin may regulate membrane fusion via the SNARE complex. In the future, single molecule FRET could be used to study other proteins found at synapses and understand the other steps that regulate the release of neurotransmitters. DOI:http://dx.doi.org/10.7554/eLife.16886.002
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Minglei Zhao
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Yunxiang Zhang
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
50
|
Trimbuch T, Rosenmund C. Should I stop or should I go? The role of complexin in neurotransmitter release. Nat Rev Neurosci 2016; 17:118-25. [PMID: 26806630 DOI: 10.1038/nrn.2015.16] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
When it comes to fusion with the neuronal cell membrane, does a synaptic vesicle have a choice whether to stop or to go? Recent work suggests that complexin, a tiny protein found within the synaptic terminal, contributes to the mechanism through which this choice is made. How complexin plays this consulting part and which synaptic vesicle proteins it interacts with remain open questions. Indeed, studies in mice and flies have led to the proposal of different models of complexin function. We suggest that understanding the modular nature of complexin will help us to unpick its role in synaptic vesicle release.
Collapse
Affiliation(s)
- Thorsten Trimbuch
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Christian Rosenmund
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|