1
|
Doktorova M, Daum S, Reagle TR, Cannon HI, Ebenhan J, Neudorf S, Han B, Sharma S, Kasson P, Levental KR, Bacia K, Kenworthy AK, Levental I. Caveolin assemblies displace one bilayer leaflet to organize and bend membranes. Proc Natl Acad Sci U S A 2025; 122:e2417024122. [PMID: 40359049 DOI: 10.1073/pnas.2417024122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Caveolin is a monotopic integral membrane protein, widely expressed in metazoans and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active, intercalating into lipid monolayers of various compositions. CAV1-8S can also incorporate into preformed bilayers, but only upon removal of phospholipids from the outer-facing leaflet. Atomistic and coarse-grained simulations of biomimetic bilayers support this "leaflet replacement" model and also reveal that CAV1-8S accumulates 40 to 70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Solna 171 65, Sweden
| | - Sebastian Daum
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Tyler R Reagle
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Hannah I Cannon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Jan Ebenhan
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Sarah Neudorf
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Bing Han
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Satyan Sharma
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 752 37, Sweden
| | - Peter Kasson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 752 37, Sweden
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Kirsten Bacia
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
2
|
MacAinsh M, Muhammedkutty FNK, Prasad R, Zhou HX. Membrane Association of Intrinsically Disordered Proteins. Annu Rev Biophys 2025; 54:275-302. [PMID: 39952269 PMCID: PMC12055482 DOI: 10.1146/annurev-biophys-070124-092816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
It is now clear that membrane association of intrinsically disordered proteins or intrinsically disordered regions regulates many cellular processes, such as membrane targeting of Src family kinases and ion channel gating. Residue-specific characterization by nuclear magnetic resonance spectroscopy, molecular dynamics simulations, and other techniques has shown that polybasic motifs and amphipathic helices are the main drivers of membrane association; sequence-based prediction of residue-specific membrane association propensity has become possible. Membrane association facilitates protein-protein interactions and protein aggregation-these effects are due to reduced dimensionality but are similar to those afforded by condensate formation via liquid-liquid phase separation (LLPS). LLPS at the membrane surface provides a powerful means for recruiting and clustering proteins, as well as for membrane remodeling.
Collapse
Affiliation(s)
- Matthew MacAinsh
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
| | | | - Ramesh Prasad
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
- Department of Physics, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
3
|
Doktorova M, Daum S, Reagle TR, Cannon HI, Ebenhan J, Neudorf S, Han B, Sharma S, Kasson P, Levental KR, Bacia K, Kenworthy AK, Levental I. Caveolin assemblies displace one bilayer leaflet to organize and bend membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.28.610209. [PMID: 39257813 PMCID: PMC11383982 DOI: 10.1101/2024.08.28.610209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Caveolin is a monotopic integral membrane protein, widely expressed in metazoa and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active, intercalating into lipid monolayers of various compositions. CAV1-8S can also incorporate into preformed bilayers, but only upon removal of phospholipids from the outer-facing leaflet. Atomistic and coarse-grained simulations of biomimetic bilayers support this 'leaflet replacement' model and also reveal that CAV1-8S accumulates 40-70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sebastian Daum
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Tyler R. Reagle
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Hannah I. Cannon
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Jan Ebenhan
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Sarah Neudorf
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Bing Han
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Satyan Sharma
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Peter Kasson
- Department of Cell and Molecular Biology, Uppsala University, Sweden
- Departments of Chemistry and Biochemistry and Biomedical Engineering, Georgia Institute of Technology, USA
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Kirsten Bacia
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| |
Collapse
|
4
|
Lalchand P, Ashley DD, Pan X. Biomolecular condensates at the plasma membrane: Insights into plant cell signaling. CURRENT OPINION IN PLANT BIOLOGY 2025; 84:102697. [PMID: 39999604 DOI: 10.1016/j.pbi.2025.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Biomolecular condensates, often formed through liquid-liquid phase separation (LLPS), are increasingly recognized as a critical mechanism for cellular compartmentalization across diverse biological systems. Although traditionally considered membrane-less entities, recent discoveries highlight their dynamic interactions with membranes, where they regulate various processes, including signal transduction. Signaling lipids are observed in condensates. Despite these advancements, our understanding of such condensates in plant biology remains limited. This review highlights recent studies involving membrane-associated condensates in plants, focusing particularly on their interactions with the plasma membrane (PM) and their potential roles in PM-based signaling.
Collapse
Affiliation(s)
- Punita Lalchand
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4 Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5 Canada
| | - Didier-Deschamps Ashley
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4 Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5 Canada
| | - Xue Pan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4 Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5 Canada.
| |
Collapse
|
5
|
Naghilou A, Evers TMJ, Armbruster O, Satarifard V, Mashaghi A. Synthesis and Characterization of Phase-Separated Extracellular Condensates in Interactions with Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644961. [PMID: 40196562 PMCID: PMC11974749 DOI: 10.1101/2025.03.24.644961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Biomolecular condensates formed through liquid-liquid phase separation play key roles in intracellular organization and signaling, yet their function in extracellular environments remains largely unexplored. Here, we establish a model using heparan sulfate, a key component of the extracellular matrix, to study extracellular condensate-cell interactions. We demonstrate that heparan sulfate can form condensates with a positively charged counterpart in serum-containing solutions, mimicking the complexity of extracellular fluid, and supporting cell viability. We observe that these condensates adhere to cell membranes and remain stable, enabling a versatile platform for examining extracellular condensate dynamics and quantifying their rheological properties as well as their adhesion forces with cellular surfaces. Our findings and methodology open new avenues for understanding the organizational roles of condensates beyond cellular boundaries.
Collapse
|
6
|
Holland J, Nott TJ, Aarts DGAL. Intrinsic hydrophobicity of IDP-based biomolecular condensates drives their partial drying on membrane surfaces. J Chem Phys 2025; 162:115101. [PMID: 40094245 PMCID: PMC11919390 DOI: 10.1063/5.0253522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
The localization of biomolecular condensates to intracellular membrane surfaces has emerged as an important feature of sub-cellular organization. In this work, we study the wetting behavior of biomolecular condensates on various substrates. We use confocal microscopy to measure the contact angles of model condensates formed by intrinsically disordered protein Ddx4N. We show the importance of taking optical aberrations into account, as these impact apparent contact angle measurements. Ddx4N condensates are seen to partially dry (contact angles above 90°) a model membrane, with little dependence on the magnitude of charge on, or tyrosine content of, Ddx4N. Further contact angle measurements on surfaces of varying hydrophilicity reveal a preference of Ddx4N condensates for hydrophobic surfaces, suggesting an intrinsic repulsion between protein condensates and hydrophilic membrane surfaces. This observation is in line with previous studies relating protein adsorption to surface hydrophilicity. Our work advances the understanding of the molecular details governing the localization of biomolecular condensates.
Collapse
Affiliation(s)
- J. Holland
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - T. J. Nott
- Department of Chemistry, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - D. G. A. L. Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
7
|
Kim S, Okafor KK, Tabuchi R, Briones C, Lee IH. Phase Separation Clustering of Poly Ubiquitin Cargos on Ternary Mixture Lipid Membranes by Synthetically Cross-Linked Ubiquitin Binder Peptides. Biochemistry 2025; 64:1212-1221. [PMID: 40007487 PMCID: PMC11924212 DOI: 10.1021/acs.biochem.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Ubiquitylation is involved in various physiological processes, such as signaling and vesicle trafficking, whereas ubiquitin (UB) is considered an important clinical target. The polymeric addition of UB enables cargo molecules to be recognized specifically by multivalent binding interactions with UB-binding proteins, which results in various downstream processes. Recently, protein condensate formation by ubiquitylated proteins has been reported in many independent UB processes, suggesting its potential role in governing the spatial organization of ubiquitylated cargo proteins. We created modular polymeric UB binding motifs and polymeric UB cargos by synthetic bioconjugation and protein purification. Giant unilamellar vesicles with lipid raft composition were prepared to reconstitute the polymeric UB cargo organization on the membranes. Fluorescence imaging was used to observe the outcome. The polymeric UB cargos clustered on the membranes by forming a phase separation codomain during the interaction with the multivalent UB-binding conjugate. This phase separation was valence-dependent and strongly correlated with its potent ability to form protein condensate droplets in solution. Multivalent UB binding interactions exhibited a general trend toward the formation of phase-separated condensates and the resulting condensates were either in a liquid-like or solid-like state depending on the conditions and interactions. This suggests that the polymeric UB cargos on the plasma and endosomal membranes may use codomain phase separation to assist in the clustering of UB cargos on the membranes for cargo sorting. Our findings also indicate that such phase behavior model systems can be created by a modular synthetic approach that can potentially be used to further engineer biomimetic interactions in vitro.
Collapse
Affiliation(s)
- Soojung Kim
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Kamsy K. Okafor
- Department
of Biology, Montclair State University, Montclair, New Jersey 07043, United States
| | - Rina Tabuchi
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Cedric Briones
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Il-Hyung Lee
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
8
|
Wan Y, Hudson R, Smith J, Forman-Kay JD, Ditlev JA. Protein interactions, calcium, phosphorylation, and cholesterol modulate CFTR cluster formation on membranes. Proc Natl Acad Sci U S A 2025; 122:e2424470122. [PMID: 40063811 PMCID: PMC11929494 DOI: 10.1073/pnas.2424470122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 03/25/2025] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel whose dysfunction leads to intracellular accumulation of chloride ions, dehydration of cell surfaces, and subsequent damage to airway and ductal organs. Beyond its function as a chloride channel, interactions between CFTR, epithelium sodium channel, and solute carrier (SLC) transporter family membrane proteins and cytoplasmic proteins, including calmodulin and Na+/H+ exchanger regulatory factor-1 (NHERF-1), coregulate ion homeostasis. CFTR has also been observed to form mesoscale membrane clusters. However, the contributions of multivalent protein and lipid interactions to cluster formation are not well understood. Using a combination of computational modeling and biochemical reconstitution assays, we demonstrate that multivalent interactions with CFTR protein binding partners, calcium, and membrane cholesterol can induce mesoscale CFTR cluster formation on model membranes. Phosphorylation of the intracellular domains of CFTR also promotes mesoscale cluster formation in the absence of calcium, indicating that multiple mechanisms can contribute to CFTR cluster formation. Our findings reveal that coupling of multivalent protein and lipid interactions promotes CFTR cluster formation consistent with membrane-associated biological phase separation.
Collapse
Affiliation(s)
- Yimei Wan
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Rhea Hudson
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jordyn Smith
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jonathon A. Ditlev
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Program in Cell and Systems Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
9
|
Cao M, Zhang X, Wang X, Zhao D, Shi M, Zou J, Li L, Jiang H. An Overview of Liquid-Liquid Phase Separation and Its Mechanisms in Sepsis. J Inflamm Res 2025; 18:3969-3980. [PMID: 40125078 PMCID: PMC11927582 DOI: 10.2147/jir.s513098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Sepsis is a systemic inflammatory response syndrome triggered by the invasion of bacteria or pathogenic microorganisms into the human body, which may lead to a variety of serious complications and pose a serious threat to the patient's life and health. Liquid-liquid phase separation (LLPS) is a biomolecular process in which different biomolecules, such as proteins and nucleic acids, form liquid condensates through interactions, and these condensates play key roles in cellular physiological processes. LLPS may affect the development of sepsis through several pathways, such as modulation of inflammatory factors, immune responses, and cell death, by altering the function or activity of biomolecules, which, in turn, affect the cellular response to infection and inflammation. In this paper, we first discuss the mechanism of phase separation, then summarize the studies of LLPS in sepsis, and finally propose the potential application of LLPS in sepsis treatment strategies, while pointing out the limitations of the existing studies and the directions for future research.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Xinyi Zhang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Xiaohan Wang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Danyang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| |
Collapse
|
10
|
Sanfeliu-Cerdán N, Krieg M. The mechanobiology of biomolecular condensates. BIOPHYSICS REVIEWS 2025; 6:011310. [PMID: 40160200 PMCID: PMC11952833 DOI: 10.1063/5.0236610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
The central goal of mechanobiology is to understand how the mechanical forces and material properties of organelles, cells, and tissues influence biological processes and functions. Since the first description of biomolecular condensates, it was hypothesized that they obtain material properties that are tuned to their functions inside cells. Thus, they represent an intriguing playground for mechanobiology. The idea that biomolecular condensates exhibit diverse and adaptive material properties highlights the need to understand how different material states respond to external forces and whether these responses are linked to their physiological roles within the cell. For example, liquids buffer and dissipate, while solids store and transmit mechanical stress, and the relaxation time of a viscoelastic material can act as a mechanical frequency filter. Hence, a liquid-solid transition of a condensate in the force transmission pathway can determine how mechanical signals are transduced within and in-between cells, affecting differentiation, neuronal network dynamics, and behavior to external stimuli. Here, we first review our current understanding of the molecular drivers and how rigidity phase transitions are set forth in the complex cellular environment. We will then summarize the technical advancements that were necessary to obtain insights into the rich and fascinating mechanobiology of condensates, and finally, we will highlight recent examples of physiological liquid-solid transitions and their connection to specific cellular functions. Our goal is to provide a comprehensive summary of the field on how cells harness and regulate condensate mechanics to achieve specific functions.
Collapse
Affiliation(s)
- Neus Sanfeliu-Cerdán
- ICFO - Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael Krieg
- ICFO - Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
11
|
Hess N, Joseph JA. Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function. Trends Biochem Sci 2025; 50:206-223. [PMID: 39827079 DOI: 10.1016/j.tibs.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates are membraneless organelles that concentrate proteins and nucleic acids. One of the primary components of condensates is multidomain proteins, whose domains can be broadly classified as structured and disordered. While structured protein domains are ubiquitous within biomolecular condensates, the physical ramifications of their unique properties have been relatively underexplored. Therefore, this review synthesizes current literature pertaining to structured protein domains within the context of condensates. We examine how the propensity of structured domains for high interaction specificity and low conformational heterogeneity contributes to the formation, material properties, and functions of biomolecular condensates. Finally, we propose unanswered questions on the behavior of structured protein domains within condensates, the answers of which will contribute to a more complete understanding of condensate biophysics.
Collapse
Affiliation(s)
- Nathaniel Hess
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
12
|
Nesterov SV, Ilyinsky NS, Fonin AV, Uversky VN. Signal Transduction by Phase Separation-Unnoticed Revolution in Molecular Biology. J Mol Recognit 2025; 38:e70003. [PMID: 39965630 DOI: 10.1002/jmr.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Recent scientific findings highlight the crucial role of liquid-liquid phase separation (LLPS) in the compartmentalization of enzyme systems. A synthesis of the extant data indicates that lipid rafts and condensates formed by phase separation are also implicated in signal transduction, including participation in recognized receptor systems. The intrinsically disordered nature of many membrane-binding proteins, coupled with their propensity for LLPS, provides condensate formation, which can bind to or form on the membranes. Moreover, condensates can form simultaneously on both sides of the membrane at lipid raft regions facilitating signal transmission across the membrane. The finding that LLPS plays a direct role in cell signaling, especially in well-defined transmembrane signaling pathways, represents a substantial, yet largely unrecognized, advancement in understanding of intracellular signal transduction mechanisms.
Collapse
Affiliation(s)
- Semen V Nesterov
- Kurchatov Complex of NBICS-Technologies, National Research Center Kurchatov Institute, Moscow, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia
| | - Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
13
|
Pei G, Lyons H, Li P, Sabari BR. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol 2025; 26:213-236. [PMID: 39516712 DOI: 10.1038/s41580-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1-10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100-1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain-ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1-10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.
Collapse
Affiliation(s)
- Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Xie Z, Angioletti-Uberti S, Dobnikar J, Frenkel D, Curk T. Receptor clustering tunes and sharpens the selectivity of multivalent binding. Proc Natl Acad Sci U S A 2025; 122:e2417159122. [PMID: 39951501 PMCID: PMC11848318 DOI: 10.1073/pnas.2417159122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/11/2025] [Indexed: 02/16/2025] Open
Abstract
The immune system exploits a wide range of strategies to combine sensitivity with selectivity for optimal response. We propose a generic physical mechanism that allows tuning the location and steepness of the response threshold of cellular processes activated by multivalent binding. The mechanism is based on the possibility to modulate the attraction between membrane receptors. We use theory and simulations to show how tuning interreceptor attraction can enhance or suppress the binding of multivalent ligand-coated particles to surfaces. The changes in the interreceptor attraction less than the thermal energy kBT can selectively switch the receptor-clustering and activation on or off in an almost step-wise fashion, which we explain by near-critical receptor density fluctuations. We also show that the same mechanism can efficiently regulate the onset of endocytosis for, e.g., drug delivery vehicles.
Collapse
Affiliation(s)
- Zhaoping Xie
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | | | - Jure Dobnikar
- Chinese Academy of Sciences Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325011, China
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Tine Curk
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
15
|
Curtis BN, Vogt EJD, Edelmaier C, Gladfelter AS. Lipid packing and local geometry influence septin curvature sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637894. [PMID: 39990479 PMCID: PMC11844530 DOI: 10.1101/2025.02.12.637894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Septins assemble into scaffolds that direct cell growth and morphology that are often localized to the plasma membrane. While septins preferentially bind convex membranes via amphipathic helices, their assembly on varied geometries in cells suggests additional localization cues. We tested the hypothesis that lipid composition directs septin assembly through lipid packing properties. Lipid mixtures varying in lipid packing were designed by molecular dynamics simulations and incorporated onto supported lipid bilayers to measure septin adsorption in vitro. Septins strongly favor loosely-packed, disordered lipid bilayers but additional geometry cues act in conjunction with this membrane property. Introducing tighter lipid packing in cells disrupted septin structures in a curvature dependent manner, specifically limiting septin assembly and retention along flat regions of the plasma membrane. This work demonstrates that packing defects and geometry jointly regulate septin localization and highlights how multiple membrane properties are integrated to control organization of the septin cytoskeleton. Summary Localization of the septin cytoskeleton is controlled by regulatory factors, membrane curvature, and charge. In this study, changes to lipid composition that modulate lipid packing defects are found to impact septin assemblies in vitro and in cells.
Collapse
|
16
|
Cao Z, Yang Y, Zhang S, Zhang T, Lü P, Chen K. Liquid-liquid phase separation in viral infection: From the occurrence and function to treatment potentials. Colloids Surf B Biointerfaces 2025; 246:114385. [PMID: 39561518 DOI: 10.1016/j.colsurfb.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Liquid-liquid phase separation (LLPS) of biomacromolecules, as a widespread cellular functional mechanism, is closely related to life processes, and is also commonly present in the lifecycle of viruses. Viral infection often leads to the recombination and redistribution of intracellular components to form biomacromolecule condensates assembled from viral replication-related proteins and intracellular components, which plays an important role in the process of viral infection. In this review, the key and influencing factors of LLPS are generalized, which mainly depend on various molecular interactions and environmental conditions in solution. Meanwhile, some examples of viruses utilizing LLPS are summarized, which are conducive to further understanding the subtle and complex biological regulatory processes between phase condensation and viruses. Finally, some representative antiviral drugs targeting phase separation that have been discovered are also outlined. In conclusion, in-depth study of the role of LLPS in viral infection is helpful to understand the mechanisms of virus-related diseases from a new perspective, and also provide a new therapeutic strategy for future treatments.
Collapse
Affiliation(s)
- Zhaoxiao Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Simeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Tiancheng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
17
|
Kannan S, Kasberg W, Ernandez LR, Audhya A, Robertson GA. A privileged ER compartment for post-translational heteromeric assembly of an ion channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635714. [PMID: 39975268 PMCID: PMC11838338 DOI: 10.1101/2025.01.30.635714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mechanisms underlying heterotypic subunit assembly of ion channels and other oligomeric assemblies are poorly understood. In the human heart, heteromeric assembly of two isoforms encoded by the human ether-à-go-go related gene (hERG) is essential for the normal function of cardiac IKr in ventricular repolarization, with loss of hERG1b contributing to arrhythmias associated with long QT-syndrome. While hERG1a homomers traffic efficiently to the plasma membrane, hERG1b homomers are retained in the endoplasmic reticulum (ER). When expressed together, the two subunits avidly associate during biogenesis. Seeking rules specifying heteromeric association, we characterized the fate of hERG1b proteins using confocal and superresolution imaging in fixed and live HeLa cells. We found hERG1b sequestered in punctate intracellular structures when expressed alone in HeLa cells. These puncta, driven by an N-terminal "RXR" ER retention signal and phase separation, are distinct from other membranous compartments and proteasomal degradation pathways. The puncta represent a privileged ER sub-compartment distinct from that of ER-retained, type 2 (hERG-based) LQTS mutant proteins, which were rapidly degraded by the proteasome. Introducing hERG1a to cells with preformed hERG1b puncta dissolved these puncta by rescuing extant hERG1b. Rescue occurs by association of fully translated hERG1b with 1a, a surprising finding given previous studies demonstrating cotranslational heteromeric association. We propose that sequestration limits potentially deleterious surface expression of hERG1b homomeric channels while preserving hERG1b for an alternative mode of heteromeric hERG1a/1b channel assembly post-translationally. These findings reveal a surprising versatility of biosynthetic pathways promoting heteromeric assembly.
Collapse
Affiliation(s)
- Sudharsan Kannan
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706
| | - Liliana R. Ernandez
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706
| | - Gail A. Robertson
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
18
|
Ko SH, Cho KA, Li X, Ran Q, Liu Z, Chen L. GPX modulation promotes regenerative axonal fusion and functional recovery after injury through PSR-1 condensation. Nat Commun 2025; 16:1079. [PMID: 39870634 PMCID: PMC11772683 DOI: 10.1038/s41467-025-56382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
Axonal fusion represents an efficient way to recover function after nerve injury. However, how axonal fusion is induced and regulated remains largely unknown. We discover that ferroptosis signaling can promote axonal fusion and functional recovery in C. elegans in a dose-sensitive manner. Ferroptosis-induced lipid peroxidation enhances injury-triggered phosphatidylserine exposure (PS) to promote axonal fusion through PS receptor (PSR-1) and EFF-1 fusogen. Axon injury induces PSR-1 condensate formation and disruption of PSR-1 condensation inhibits axonal fusion. Extending these findings to mammalian nerve repair, we show that loss of Glutathione peroxidase 4 (GPX4), a crucial suppressor of ferroptosis, promotes functional recovery after sciatic nerve injury. Applying ferroptosis inducers to mouse sciatic nerves retains nerve innervation and significantly enhances functional restoration after nerve transection and resuture without affecting axon regeneration. Our study reveals an evolutionarily conserved function of lipid peroxidation in promoting axonal fusion, providing insights for developing therapeutic strategies for nerve injury.
Collapse
Affiliation(s)
- Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Kyung-Ah Cho
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xin Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Qitao Ran
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
19
|
Li W, Shi X, Tan C, Jiang Z, Li M, Ji Z, Zhou J, Luo M, Fan Z, Ding Z, Fang Y, Sun J, Ding J, Lu H, Ma W, Xie W, Su W. Plasma membrane-associated ARAF condensates fuel RAS-related cancer drug resistance. Nat Chem Biol 2025:10.1038/s41589-024-01826-8. [PMID: 39870764 DOI: 10.1038/s41589-024-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/11/2024] [Indexed: 01/29/2025]
Abstract
RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation. The disordered N-terminal sequence of ARAF drives self-assembly, forming ARAF-RAS condensates tethered to the plasma membrane. These structures concentrate active RAS locally, impeding NF1-mediated negative regulation of RAS, thereby fostering receptor tyrosine kinase (RTK)-triggered RAS activation. In RAS-mutant tumors, loss of the ARAF N terminus sensitizes tumor cells to pan-RAF inhibition. In hormone-sensitive cancers, increased ARAF condensates drive endocrine therapy resistance, whereas ARAF depletion reverses RTK-dependent resistance. Our findings delineate ARAF-RAS protein condensates as distinct subcellular structures sustaining RAS activity and facilitating oncogenic RAS signaling. Targeting ARAF-RAS condensation may offer a strategy to overcome drug resistance in both wild-type and mutant ARAF-mediated scenarios.
Collapse
Affiliation(s)
- Wen Li
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaoxian Shi
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Caiwei Tan
- Zhejiang University College of Pharmaceutical Sciences, Hangzhou, China
| | - Zhaodi Jiang
- The National Institute of Biological Sciences and Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Mingyi Li
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiheng Ji
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhou
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mengxin Luo
- Zhejiang University College of Pharmaceutical Sciences, Hangzhou, China
| | - Zuyan Fan
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhifan Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Fang
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun Sun
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junjun Ding
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Huasong Lu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weirui Ma
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wei Xie
- Zhejiang University College of Pharmaceutical Sciences, Hangzhou, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wenjing Su
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Gogte K, Mamashli F, Herrera MG, Kriegler S, Bader V, Kamps J, Grover P, Winter R, Winklhofer KF, Tatzelt J. Topological confinement by a membrane anchor suppresses phase separation into protein aggregates: Implications for prion diseases. Proc Natl Acad Sci U S A 2025; 122:e2415250121. [PMID: 39739794 PMCID: PMC11725851 DOI: 10.1073/pnas.2415250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/14/2024] [Indexed: 01/02/2025] Open
Abstract
Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation. Inherited prion diseases in humans and neurodegeneration in transgenic mice are linked to the expression of anchorless prion protein (PrP), suggesting that the C-terminal glycosylphosphatidylinositol (GPI) anchor of native PrP impedes spontaneous formation of neurotoxic and infectious PrP species. Combining unique in vitro and in vivo approaches, we demonstrate that anchoring to membranes prevents LLPS and spontaneous aggregation of PrP. Upon release from the membrane, PrP undergoes a conformational transition to detergent-insoluble aggregates. Our study demonstrates an essential role of the GPI anchor in preventing spontaneous misfolding of PrPC and provides a mechanistic basis for inherited prion diseases associated with anchorless PrP.
Collapse
Affiliation(s)
- Kalpshree Gogte
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum44801, Germany
| | - Fatemeh Mamashli
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum44801, Germany
| | - Maria Georgina Herrera
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum44801, Germany
| | - Simon Kriegler
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund44227, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum44801, Germany
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum44801, Germany
| | - Prerna Grover
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum44801, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund44227, Germany
- Cluster of Excellence RESOLV, Bochum44801, Germany
| | - Konstanze F. Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum44801, Germany
- Cluster of Excellence RESOLV, Bochum44801, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum44801, Germany
- Cluster of Excellence RESOLV, Bochum44801, Germany
| |
Collapse
|
21
|
Xu P, Schumacher D, Liu C, Harms A, Dickmanns M, Beck F, Plitzko JM, Baumeister W, Søgaard-Andersen L. In situ architecture of a nucleoid-associated biomolecular co-condensate that regulates bacterial cell division. Proc Natl Acad Sci U S A 2025; 122:e2419610121. [PMID: 39739804 PMCID: PMC11725790 DOI: 10.1073/pnas.2419610121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 01/02/2025] Open
Abstract
In most bacteria, cell division depends on the tubulin-homolog FtsZ that polymerizes in a GTP-dependent manner to form the cytokinetic Z-ring at the future division site. Subsequently, the Z-ring recruits, directly or indirectly, all other proteins of the divisome complex that executes cytokinesis. A critical step in this process is the precise positioning of the Z-ring at the future division site. While the divisome proteins are generally conserved, the regulatory systems that position the Z-ring are more diverse. However, these systems have in common that they modulate FtsZ polymerization. In Myxococcus, PomX, PomY, and PomZ form precisely one MDa-sized, nonstoichiometric, nucleoid-associated assembly that spatiotemporally guides Z-ring formation. Here, using cryo-correlative light and electron microscopy together with in situ cryoelectron tomography, we determine the PomXYZ assembly's architecture at close-to-live conditions. PomX forms a porous meshwork of randomly intertwined filaments. Templated by this meshwork, the phase-separating PomY protein forms a biomolecular condensate that compacts and bends the PomX filaments, resulting in the formation of a selective PomXYZ co-condensate that is associated to the nucleoid by PomZ. These studies reveal a hitherto undescribed supramolecular structure and provide a framework for understanding how a nonstoichiometric co-condensate forms, maintains number control, and nucleates GTP-dependent FtsZ polymerization to precisely regulate cell division.
Collapse
Affiliation(s)
- Peng Xu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| | - Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
| | - Chuan Liu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| | - Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
| | - Marcel Dickmanns
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| | - Florian Beck
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| | - Jürgen M. Plitzko
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
| |
Collapse
|
22
|
Bartoš L, Lund M, Vácha R. Enhanced diffusion through multivalency. SOFT MATTER 2025; 21:179-185. [PMID: 39628400 PMCID: PMC11615653 DOI: 10.1039/d4sm00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024]
Abstract
The diffusion of macromolecules, nanoparticles, viruses, and bacteria is essential for targeting hosts or cellular destinations. While these entities can bind to receptors and ligands on host surfaces, the impact of multiple binding sites-referred to as multivalency-on diffusion along strands or surfaces is poorly understood. Through numerical simulations, we have discovered a significant acceleration in diffusion for particles with increasing valency, while maintaining the same overall affinity to the host surface. This acceleration arises from the redistribution of the binding affinity of the particle across multiple binding ligands. As a result, particles that are immobilized when monovalent can achieve near-unrestricted diffusion upon becoming multivalent. Additionally, we demonstrate that the diffusion of multivalent particles with a rigid ligand distribution can be modulated by patterned host receptors. These findings provide insights into the complex diffusion mechanisms of multivalent particles and biological entities, and offer new strategies for designing advanced nanoparticle systems with tailored diffusion properties, thereby enhancing their effectiveness in applications such as drug delivery and diagnostics.
Collapse
Affiliation(s)
- Ladislav Bartoš
- CEITEC - Central European Institute of Technology, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Mikael Lund
- Division of Computational Chemistry, Lund University, Sweden.
- LINXS Institute of Advanced Neutron and X-ray Science, Lund University, Sweden
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
23
|
Mallis RJ, Brazin KN, Duke‐Cohan JS, Akitsu A, Stephens HM, Chang‐Gonzalez AC, Masi DJ, Kirkpatrick EH, Holliday EL, Feng Y, Zienkiewicz KJ, Lee JJ, Cinella V, Uberoy KI, Tan K, Wagner G, Arthanari H, Hwang W, Lang MJ, Reinherz EL. Biophysical and Structural Features of αβT-Cell Receptor Mechanosensing: A Paradigmatic Shift in Understanding T-Cell Activation. Immunol Rev 2025; 329:e13432. [PMID: 39745432 PMCID: PMC11744257 DOI: 10.1111/imr.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 01/21/2025]
Abstract
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination. Under load, the αβTCR undergoes reversible structural transitions involving partial unfolding of its clonotypic immunoglobulin-like (Ig) domains and coupled rearrangements of associated CD3 subunits and structural elements. We postulate that transitions provide critical energy to initiate the signaling cascade via induction of αβTCR quaternary structural rearrangements, associated membrane perturbations, exposure of CD3 ITAMs to phosphorylation by non-receptor tyrosine kinases, and phase separation of signaling molecules. Understanding force-mediated signaling by the αβTCR clarifies long-standing questions regarding αβTCR antigen recognition, specificity and affinity, providing a basis for continued investigation. Future directions include examining atomistic mechanisms of αβTCR signal initiation, performance quality, tissue compliance adaptability, and T-cell memory fate. The mechanotransduction paradigm will foster improved rational design of T-cell based vaccines, CAR-Ts, and adoptive therapies.
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan S. Duke‐Cohan
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Aoi Akitsu
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Hanna M. Stephens
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Daniel J. Masi
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Evan H. Kirkpatrick
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Elizabeth L. Holliday
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Yinnian Feng
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Vincenzo Cinella
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kaveri I. Uberoy
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kemin Tan
- Structural Biology Center, X‐Ray Science Division, Advanced Photon SourceArgonne National LaboratoryLemontIllinoisUSA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Wonmuk Hwang
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Materials Science and EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Physics and AstronomyTexas A&M UniversityCollege StationTexasUSA
- Center for AI and Natural SciencesKorea Institute for Advanced StudySeoulRepublic of Korea
| | - Matthew J. Lang
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
24
|
Liu YT, Cao LY, Sun ZJ. The emerging roles of liquid-liquid phase separation in tumor immunity. Int Immunopharmacol 2024; 143:113212. [PMID: 39353387 DOI: 10.1016/j.intimp.2024.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in tumor immunotherapy, particularly PD-1 targeted therapy, have shown significant promise, marking major progress in tumor treatment approaches. Despite this, the development of resistance to therapy and mechanisms of immune evasion by tumors pose considerable obstacles to the broad application of immunotherapy. This necessitates a deeper exploration of complex immune signaling pathways integral to tumor immunity. This review aims to critically analyze the role of liquid-liquid phase separation (LLPS) within tumor immunity, specifically its impact on immune signaling pathways and its potential to foster the development of novel cancer therapies. LLPS, a biophysical process newly recognized for its ability to spontaneously segregate and organize biomacromolecules into liquid-like condensates through weak multivalent interactions, offers a novel perspective on the formation of signaling clusters and the functionality of immune molecules. The review delves into the micromolecular mechanisms behind the creation of signaling condensates via LLPS and reviews recent progress in adjusting signaling pathways pertinent to tumor immunity, including the T cell receptor (TCR), B cell receptor (BCR), immune checkpoints, and innate immune pathways such as the cGAS-STING pathway, stress granules, and the ADP-heptose-ALPK1 signaling axis. Furthermore, it considers the prospects of utilizing LLPS to generate groundbreaking cancer therapies capable of navigating past current treatment barriers. Through an extensive examination of LLPS's impact on tumor immunity, the review seeks to highlight novel therapeutic strategies and address the challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lin-Yu Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
25
|
Li M, Huang W, Duan L, Sun F. Control Intracellular Protein Condensates with Light. ACS Synth Biol 2024; 13:3799-3811. [PMID: 39622001 DOI: 10.1021/acssynbio.4c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Protein phase transitions are gaining traction among biologists for their wide-ranging roles in biological regulation. However, achieving precise control over these phenomena in vivo remains a formidable task. Optogenetic techniques present us with a potential means to control protein phase behavior with spatiotemporal precision. This review delves into the design of optogenetic tools, particularly those aimed at manipulating protein phase transitions in complex biological systems. We begin by discussing the pivotal roles of subcellular phase transitions in physiological and pathological processes. Subsequently, we offer a thorough examination of the evolution of optogenetic tools and their applications in regulating these protein phase behaviors. Furthermore, we highlight the tailored design of optogenetic tools for controlling protein phase transitions and the construction of synthetic condensates using these innovative techniques. In the long run, the development of optogenetic tools not only holds the potential to elucidate the roles of protein phase transitions in various physiological processes but also to antagonize pathological ones to reinstate cellular homeostasis, thus bringing about novel therapeutic strategies. The integration of optogenetic techniques into the study of protein phase transitions represents a significant step forward in our understanding and manipulation of biology at the subcellular level.
Collapse
Affiliation(s)
- Manjia Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Weiqi Huang
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518036, China
- Research Institute of Tsinghua, Pearl River Delta, Guangzhou 510530, China
| |
Collapse
|
26
|
Wiegand T, Liu J, Vogeley L, LuValle-Burke I, Geisler J, Fritsch AW, Hyman AA, Grill SW. Actin polymerization counteracts prewetting of N-WASP on supported lipid bilayers. Proc Natl Acad Sci U S A 2024; 121:e2407497121. [PMID: 39630867 PMCID: PMC11648614 DOI: 10.1073/pnas.2407497121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024] Open
Abstract
Cortical condensates, transient punctate-like structures rich in actin and the actin nucleation pathway member Neural Wiskott-Aldrich syndrome protein (N-WASP), form during activation of the actin cortex in the Caenorhabditis elegans oocyte. Their emergence and spontaneous dissolution is linked to a phase separation process driven by chemical kinetics. However, the mechanisms that drive the onset of cortical condensate formation near membranes remain unexplored. Here, using a reconstituted phase separation assay of cortical condensate proteins, we demonstrate that the key component, N-WASP, can collectively undergo surface condensation on supported lipid bilayers via a prewetting transition. Actin partitions into the condensates, where it polymerizes and counteracts the N-WASP prewetting transition. Taken together, the dynamics of condensate-assisted cortex formation appear to be controlled by a balance between surface-assisted condensate formation and polymer-driven condensate dissolution. This opens perspectives for understanding how the formation of complex intracellular structures is affected and controlled by phase separation.
Collapse
Affiliation(s)
- Tina Wiegand
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
| | - Jinghui Liu
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Lutz Vogeley
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
| | - Isabel LuValle-Burke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
| | - Jan Geisler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Max Planck School Matter to Life, Heidelberg69120, Germany
| | - Anatol W. Fritsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden01307, Germany
| | - Stephan W. Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden01307, Germany
| |
Collapse
|
27
|
Yang W, Wang Y, Liu G, Wang Y, Wu C. TPM4 condensates glycolytic enzymes and facilitates actin reorganization under hyperosmotic stress. Cell Discov 2024; 10:120. [PMID: 39622827 PMCID: PMC11612400 DOI: 10.1038/s41421-024-00744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/20/2024] [Indexed: 12/06/2024] Open
Abstract
Actin homeostasis is fundamental for cell structure and consumes a large portion of cellular ATP. It has been documented in the literature that certain glycolytic enzymes can interact with actin, indicating an intricate interplay between the cytoskeleton and cellular metabolism. Here we report that hyperosmotic stress triggers actin severing and subsequent phase separation of the actin-binding protein tropomyosin 4 (TPM4). TPM4 condensates recruit glycolytic enzymes such as HK2, PFKM, and PKM2, while wetting actin filaments. Notably, the condensates of TPM4 and glycolytic enzymes are enriched of NADH and ATP, suggestive of their functional importance in cell metabolism. At cellular level, actin filament assembly is enhanced upon hyperosmotic stress and TPM4 condensation, while depletion of TPM4 impairs osmolarity-induced actin reorganization. At tissue level, colocalized condensates of TPM4 and glycolytic enzymes are observed in renal tissues subjected to hyperosmotic stress. Together, our findings suggest that stress-induced actin perturbation may act on TPM4 to organize glycolytic hubs that tether energy production to cytoskeletal reorganization.
Collapse
Affiliation(s)
- Wenzhong Yang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Yuan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Yan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- International Cancer Institute, Peking University, Beijing, China.
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China.
| |
Collapse
|
28
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 PMCID: PMC11967910 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
29
|
Kim J, Lawley SD, Kim J. A reaction network model of microscale liquid-liquid phase separation reveals effects of spatial dimension. J Chem Phys 2024; 161:204110. [PMID: 39601287 DOI: 10.1063/5.0235456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Proteins can form droplets via liquid-liquid phase separation (LLPS) in cells. Recent experiments demonstrate that LLPS is qualitatively different on two-dimensional (2D) surfaces compared to three-dimensional (3D) solutions. In this paper, we use mathematical modeling to investigate the causes of the discrepancies between LLPS in 2D and 3D. We model the number of proteins and droplets inducing LLPS by continuous-time Markov chains and use chemical reaction network theory to analyze the model. To reflect the influence of space dimension, droplet formation and dissociation rates are determined using the first hitting times of diffusing proteins. We first show that our stochastic model reproduces the appropriate phase diagram and is consistent with the relevant thermodynamic constraints. After further analyzing the model, we find that it predicts that the space dimension induces qualitatively different features of LLPS, which are consistent with recent experiments. While it has been claimed that the differences between 2D and 3D LLPS stem mainly from different diffusion coefficients, our analysis is independent of the diffusion coefficients of the proteins since we use the stationary model behavior. Our results thus give new hypotheses about how space dimension affects LLPS.
Collapse
Affiliation(s)
- Jinyoung Kim
- Department of Mathematics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jinsu Kim
- Department of Mathematics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
30
|
Mukherjee S, Schäfer LV. Heterogeneous Slowdown of Dynamics in the Condensate of an Intrinsically Disordered Protein. J Phys Chem Lett 2024; 15:11244-11251. [PMID: 39486437 PMCID: PMC11571228 DOI: 10.1021/acs.jpclett.4c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
The high concentration of proteins and other biological macromolecules inside biomolecular condensates leads to dense and confined environments, which can affect the dynamic ensembles and the time scales of the conformational transitions. Here, we use atomistic molecular dynamics (MD) simulations of the intrinsically disordered low complexity domain (LCD) of the human fused in sarcoma (FUS) RNA-binding protein to study how self-crowding inside a condensate affects the dynamic motions of the protein. We found a heterogeneous retardation of the protein dynamics in the condensate with respect to the dilute phase, with large-amplitude motions being strongly slowed by up to 2 orders of magnitude, whereas small-scale motions, such as local backbone fluctuations and side-chain rotations, are less affected. The results support the notion of a liquid-like character of the condensates and show that different protein motions respond differently to the environment.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
31
|
Lee Y, Yuan F, Cabriales JL, Stachowiak JC. Transmembrane coupling accelerates the growth of liquid-like protein condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622512. [PMID: 39574691 PMCID: PMC11580992 DOI: 10.1101/2024.11.07.622512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Timely and precise assembly of protein complexes on membrane surfaces is essential to the physiology of living cells. Recently, protein phase separation has been observed at cellular membranes, suggesting it may play a role in the assembly of protein complexes. Inspired by these findings, we observed that protein condensates on one side of a planar suspended membrane spontaneously colocalized with those on the opposite side. How might this phenomenon contribute to the assembly of stable transmembrane complexes? To address this question, we examined the diffusion and growth of protein condensates on both sides of membranes. Our results reveal that transmembrane coupling of protein condensates on opposite sides of the membrane slows down condensate diffusion while accelerating condensate growth. How can the rate of condensate growth increase simultaneously with a decrease in the rate of condensate diffusion? We provide insights into these seemingly contradictory observations by distinguishing between diffusion-limited and coupling-driven growth processes. While transmembrane coupling slows down diffusion, it also locally concentrates condensates within a confined area. This confinement increases the probability of condensate coalescence and thereby enhances the overall rate of growth for coupled condensates, substantially surpassing the growth rate for uncoupled condensates. These findings suggest that transmembrane coupling could play a role in the assembly of diverse membrane-bound structures by promoting the localization and growth of protein complexes on both membrane surfaces. This phenomenon could help to explain the efficient assembly of transmembrane structures in diverse cellular contexts. Significance Protein assemblies that span biological membranes are critical to cellular physiology. In the past decade, liquid-like protein condensates, which are flexible, multivalent protein assemblies, have been discovered on diverse membrane surfaces. Recently, we observed that protein condensates on opposite sides of a membrane spontaneously colocalize to form coupled, transmembrane complexes. Interestingly, while transmembrane coupling slows down the diffusion of membrane-bound condensates, it substantially accelerates their growth by strongly localizing interactions between them. These findings suggest that transmembrane coupling of protein condensates may play a role in promoting the robust assembly of membrane-bound protein complexes in crowded, complex cellular environments.
Collapse
Affiliation(s)
- Yohan Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Jerry L. Cabriales
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
32
|
Kim N, Yun H, Lee H, Yoo JY. Interplay between membranes and biomolecular condensates in the regulation of membrane-associated cellular processes. Exp Mol Med 2024; 56:2357-2364. [PMID: 39482532 PMCID: PMC11612285 DOI: 10.1038/s12276-024-01337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Liquid‒liquid phase separation (LLPS) has emerged as a key mechanism for organizing cellular spaces independent of membranes. Biomolecular condensates, which assemble through LLPS, exhibit distinctive liquid droplet-like behavior and can exchange constituents with their surroundings. The regulation of condensate phases, including transitions from a liquid state to gel or irreversible aggregates, is important for their physiological functions and for controlling pathological progression, as observed in neurodegenerative diseases and cancer. While early studies on biomolecular condensates focused primarily on those in fluidic environments such as the cytosol, recent discoveries have revealed their existence in close proximity to, on, or even comprising membranes. The aim of this review is to provide an overview of the properties of membrane-associated condensates in a cellular context and their biological functions in relation to membranes.
Collapse
Affiliation(s)
- Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Hyeri Yun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hojin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
33
|
Rivas G, Minton AP. Surfaces as frameworks for intracellular organization. Trends Biochem Sci 2024; 49:942-954. [PMID: 39375067 DOI: 10.1016/j.tibs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 10/09/2024]
Abstract
A large fraction of soluble protein within the interior of living cells may reversibly associate with structural elements, including proteinaceous fibers and phospholipid membranes. In this opinion, we present theoretical and experimental evidence that many of these associations are due to nonspecific attraction between the protein and the surface of the fiber or membrane, and that such associations may lead to substantial changes in the association state of the adsorbed proteins, the biological function of the adsorbed proteins, and the distribution of these proteins between the many microenvironments existing within the cell.
Collapse
Affiliation(s)
- Germán Rivas
- CIB Margarita Salas - Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
34
|
Linne C, Heemskerk E, Zwanikken JW, Kraft DJ, Laan L. Optimality and cooperativity in superselective surface binding by multivalent DNA nanostars. SOFT MATTER 2024; 20:8515-8523. [PMID: 39417240 PMCID: PMC11484159 DOI: 10.1039/d4sm00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Weak multivalent interactions govern a large variety of biological processes like cell-cell adhesion and virus-host interactions. These systems distinguish sharply between surfaces based on receptor density, known as superselectivity. Present experimental studies typically involve tens or hundreds of interactions, resulting in a high entropic contribution leading to high selectivities. However, if, and if so how, systems with few ligands, such as multi-domain proteins and bacteriophages binding to their host, show superselective behavior is an open question. Here, we address this question with a multivalent experimental model system based on star shaped branched DNA nanostructures (DNA nanostars) with each branch featuring a single stranded overhang that binds to complementary receptors on a target surface. Each DNA nanostar possesses a fluorophore, to directly visualize DNA nanostar surface adsorption by total internal reflection fluorescence microscopy (TIRFM). We observe that DNA nanostars can bind superselectively to surfaces and bind optimally at a valency of three, for a given binding strength and concentration. We explain this optimum by extending the current theory with interactions between DNA nanostar binding sites (ligands). Our results add to the understanding of multivalent interactions, by identifying cooperative mechanisms that lead to optimal selectivity, and providing quantitative values for the relevant parameters. These findings inspire additional design rules which improve future work on selective targeting in directed drug delivery.
Collapse
Affiliation(s)
- Christine Linne
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands.
| | - Eva Heemskerk
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
| | - Jos W Zwanikken
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands.
| | - Liedewij Laan
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
35
|
Yu H, Wang W. Modulation of heteromeric glycine receptor function through high concentration clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618879. [PMID: 39464082 PMCID: PMC11507885 DOI: 10.1101/2024.10.17.618879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Ion channels are targeted by many drugs for treating neurological, musculoskeletal, renal and other diseases. These drugs bind to and alter the function of individual channels to achieve desired therapeutic effects. However, many ion channels function in high concentration clusters in their native environment. It is unclear if and how clustering modulates ion channel function. Human heteromeric glycine receptors (GlyRs) are the major inhibitory neurotransmitter receptors in the spinal cord and are active targets for developing chronic pain medications. We show that the α2β heteromeric GlyR assembles with the master postsynaptic scaffolding gephyrin (GPHN) into micron-sized clustered at the plasma membrane after heterologous expression. The inhibitory trans- synaptic adhesion protein neuroligin-2 (NL2) further increases both the cluster sizes and GlyR concentration. The apparent glycine affinity increases monotonically as a function of GlyR concentration but not with cluster size. We also show that ligand re-binding to adjacent GlyRs alters kinetics but not chemical equilibrium. A positively charged N- terminus sequence of the GlyR β subunit was further identified essential for glycine affinity modulation through clustering. Taken together, we propose a mechanism where clustering enhances local electrostatic potential, which in turn concentrates ions and ligands, modulating the function of GlyR. This mechanism is likely universal across ion channel clusters found ubiquitously in biology and provides new perspectives in possible pharmaceutical development.
Collapse
|
36
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
37
|
Zhu M, Xu H, Jin Y, Kong X, Xu B, Liu Y, Yu H. Synaptotagmin-1 undergoes phase separation to regulate its calcium-sensitive oligomerization. J Cell Biol 2024; 223:e202311191. [PMID: 38980206 PMCID: PMC11232894 DOI: 10.1083/jcb.202311191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a calcium sensor that regulates synaptic vesicle fusion in synchronous neurotransmitter release. Syt1 interacts with negatively charged lipids and the SNARE complex to control the fusion event. However, it remains incompletely understood how Syt1 mediates Ca2+-trigged synaptic vesicle fusion. Here, we discovered that Syt1 undergoes liquid-liquid phase separation (LLPS) to form condensates both in vitro and in living cells. Syt1 condensates play a role in vesicle attachment to the PM and efficiently recruit SNAREs and complexin, which may facilitate the downstream synaptic vesicle fusion. We observed that Syt1 condensates undergo a liquid-to-gel-like phase transition, reflecting the formation of Syt1 oligomers. The phase transition can be blocked or reversed by Ca2+, confirming the essential role of Ca2+ in Syt1 oligomer disassembly. Finally, we showed that the Syt1 mutations causing Syt1-associated neurodevelopmental disorder impair the Ca2+-driven phase transition. These findings reveal that Syt1 undergoes LLPS and a Ca2+-sensitive phase transition, providing new insights into Syt1-mediated vesicle fusion.
Collapse
Affiliation(s)
- Min Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yulei Jin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoxu Kong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bingkuan Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
38
|
Santamaria A, Hutin S, Doucet CM, Zubieta C, Milhiet PE, Costa L. Quantifying surface tension and viscosity in biomolecular condensates by FRAP-ID. Biophys J 2024; 123:3366-3374. [PMID: 39113361 PMCID: PMC11480758 DOI: 10.1016/j.bpj.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Many proteins with intrinsically disordered regions undergo liquid-liquid phase separation under specific conditions in vitro and in vivo. These complex biopolymers form a metastable phase with distinct mechanical properties defining the timescale of their biological functions. However, determining these properties is nontrivial, even in vitro, and often requires multiple techniques. Here we report the measurement of both viscosity and surface tension of biomolecular condensates via correlative fluorescence microscopy and atomic force microscopy (AFM) in a single experiment (fluorescence recovery after probe-induced dewetting, FRAP-ID). Upon surface tension evaluation via regular AFM-force spectroscopy, controlled AFM indentations induce dry spots in fluorescent condensates on a glass coverslip. The subsequent rewetting exhibits a contact line velocity that is used to quantify the condensed-phase viscosity. Therefore, in contrast with fluorescence recovery after photobleaching (FRAP), where molecular diffusion is observed, in FRAP-ID fluorescence recovery is obtained through fluid rewetting and the subsequent morphological relaxation. We show that the latter can be used to cross-validate viscosity values determined during the rewetting regime. Making use of fluid mechanics, FRAP-ID is a valuable tool to evaluate the mechanical properties that govern the dynamics of biomolecular condensates and determine how these properties impact the temporal aspects of condensate functionality.
Collapse
Affiliation(s)
- Andreas Santamaria
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Stephanie Hutin
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble, France
| | - Christine M Doucet
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble, France
| | - Pierre-Emmanuel Milhiet
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Luca Costa
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France.
| |
Collapse
|
39
|
Kettel P, Marosits L, Spinetti E, Rechberger M, Giannini C, Radler P, Niedermoser I, Fischer I, Versteeg GA, Loose M, Covino R, Karagöz GE. Disordered regions in the IRE1α ER lumenal domain mediate its stress-induced clustering. EMBO J 2024; 43:4668-4698. [PMID: 39232130 PMCID: PMC11480506 DOI: 10.1038/s44318-024-00207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Conserved signaling cascades monitor protein-folding homeostasis to ensure proper cellular function. One of the evolutionary conserved key players is IRE1, which maintains endoplasmic reticulum (ER) homeostasis through the unfolded protein response (UPR). Upon accumulation of misfolded proteins in the ER, IRE1 forms clusters on the ER membrane to initiate UPR signaling. What regulates IRE1 cluster formation is not fully understood. Here, we show that the ER lumenal domain (LD) of human IRE1α forms biomolecular condensates in vitro. IRE1α LD condensates were stabilized both by binding to unfolded polypeptides as well as by tethering to model membranes, suggesting their role in assembling IRE1α into signaling-competent stable clusters. Molecular dynamics simulations indicated that weak multivalent interactions drive IRE1α LD clustering. Mutagenesis experiments identified disordered regions in IRE1α LD to control its clustering in vitro and in cells. Importantly, dysregulated clustering of IRE1α mutants led to defects in IRE1α signaling. Our results revealed that disordered regions in IRE1α LD control its clustering and suggest their role as a common strategy in regulating protein assembly on membranes.
Collapse
Affiliation(s)
- Paulina Kettel
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laura Marosits
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Elena Spinetti
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- Institute of Biophysics, Goethe University, Frankfurt, Germany
| | | | - Caterina Giannini
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Philipp Radler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Isabell Niedermoser
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
| | - Gijs A Versteeg
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Zhao T, Yang X, Duan G, Chen J, He K, Chen Y, Luo S. Phosphorylation-regulated phase separation of syndecan-4 and syntenin promotes the biogenesis of exosomes. Cell Prolif 2024; 57:e13645. [PMID: 38601993 PMCID: PMC11471451 DOI: 10.1111/cpr.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The biogenesis of exosomes that mediate cell-to-cell communication by transporting numerous biomolecules to neighbouring cells is an essential cellular process. The interaction between the transmembrane protein syndecan-4 (SDC4) and cytosolic protein syntenin plays a key role in the biogenesis of exosomes. However, how the relatively weak binding of syntenin to SDC4 efficiently enables syntenin sorting for packaging into exosomes remains unclear. Here, we demonstrate for the first time that SDC4 can undergo liquid-liquid phase separation (LLPS) to form condensates both in vitro and in the cell membrane and that, the SDC4 cytoplasmic domain (SDC4-CD) is a key contributor to this process. The phase separation of SDC4 greatly enhances the recruitment of syntenin to the plasma membrane (PM) despite the weak SDC4-syntenin interaction, facilitating syntenin sorting for inclusion in exosomes. Interestingly, phosphorylation at the only serine (179) in the SDC4-CD (Ser179) disrupts SDC4 LLPS, and inhibited phosphorylation or dephosphorylation restores the SDC4 LLPS to promote its recruitment of syntenin to the PM and syntenin inclusion into exosomes. This research reveals a novel phosphorylation-regulated phase separation property of SDC4 in the PM through which SDC4 efficiently recruits cytosolic syntenin and facilitates the biogenesis of exosomes, providing potential intervention targets for exosome-mediated biomedical events.
Collapse
Affiliation(s)
- Tian Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Xiaolan Yang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Guangfei Duan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Jialin Chen
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Kefeng He
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua UniversityBeijingChina
| | - Shi‐Zhong Luo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
41
|
Prikhodko IV, Guria GT. The method for assessing the specificity of developing CAR therapies. BIOPHYSICAL REPORTS 2024; 4:100172. [PMID: 39025235 PMCID: PMC11344002 DOI: 10.1016/j.bpr.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The effectiveness of antitumor chimeric antigen receptor (CAR) therapy mainly dealt with an elevated sensitivity of CAR cells to target cells. However, CAR therapies are associated with nonspecific side effects: on-target off-tumor toxicity. Sensitivity and specificity of CAR cells are the most important properties of the recognition process of target cells among other cells. Current developments are mainly concentrated on exploring molecular biology methods for designing CAR cells with the highest sensitivity, while the problem of the CAR cell specificity is rarely considered. For the assessment of CAR cell specificity, we suggest that, in addition to an elevated level of CAR-antigen affinity, the ability of CARs for clustering should be taken into account. We assume that the CAR cell cytotoxicity is determined by CAR clustering. The latter is treated within the framework of nucleation theory. The master equation for the probability of CAR cell cytotoxicity is derived. The size of a critical CAR cluster is found to be one of two most essential parameters. The conditions for necessary sensitivity and sufficient specificity are explored. Relevant parametric diagrams are derived. Possible applications of the method for assessing the specificity of developing CAR therapies are discussed.
Collapse
Affiliation(s)
- Ivan V Prikhodko
- Laboratory for Mathematical Modelling of Biological Processes, National Medical Research Center for Hematology, Moscow, Russia
| | - Georgy Th Guria
- Laboratory for Mathematical Modelling of Biological Processes, National Medical Research Center for Hematology, Moscow, Russia; Chair of the Living Systems Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
42
|
Paul S, Mondal S, Shenogina I, Cui Q. The molecular basis for the increased stability of the FUS-LC fibril at the anionic membrane- and air-water interfaces. Chem Sci 2024; 15:13788-13799. [PMID: 39211498 PMCID: PMC11352777 DOI: 10.1039/d4sc02295e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Self-organization of biomolecules can lead to the formation of liquid droplets, hydrogels, and irreversible aggregates that bear immense significance in biology and diseases. Despite the considerable number of studies conducted on biomolecular condensation in bulk solution, there is still a lack of understanding of how different surfaces regulate the condensation process. In this context, recent studies showed that, in contrast to zwitterionic lipid membranes, anionic membranes promoted the production of liquid droplets of FUsed in Sarcoma Low Complexity domain (FUS-LC) despite exhibiting no specific protein-lipid interactions. Moreover, the air-water interface led to a solid fibril-like aggregate of FUS-LC. The molecular mechanism of condensation/aggregation of proteins in response to surfaces of various charged states or levels of hydrophobicity remains to be better elucidated. Here, we provide initial insights into this question by investigating the stability of a small β fibril state of FUS-LC in bulk solution vs. membrane- and air-water interfaces. We perform multiple independent molecular dynamics simulations with distinct starting conformations for each system to demonstrate the statistical significance of our findings. Our study demonstrates the stability of the FUS-LC fibril in the presence of anionic membranes on the μs timescale while the fibril falls apart in bulk solution. We observe that a zwitterionic membrane does not enhance the stability of the fibril and 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) has a higher propensity to stabilize the fibril than dioleoylphosphatidylglycerol (DOPG), in qualitative agreement with experiments. We further show that the fibril becomes more stable at the air-water interface. We pinpoint interfacial solvation at the membrane- and air-water interfaces as a key factor that contributes to the stabilization of the peptide assembly.
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Chemistry, Boston University 590 Commonwealth Avenue Massachusetts-02215 USA
| | - Sayantan Mondal
- Department of Chemistry, Boston University 590 Commonwealth Avenue Massachusetts-02215 USA
| | - Irina Shenogina
- Department of Physics, University of Illinois Urbana-Champaign USA
| | - Qiang Cui
- Department of Chemistry, Boston University 590 Commonwealth Avenue Massachusetts-02215 USA
- Departments of Physics, and Biomedical Engineering, Boston University Massachusetts-02215 USA
| |
Collapse
|
43
|
Bagheri Y, Rouches M, Machta B, Veatch SL. Prewetting couples membrane and protein phase transitions to greatly enhance coexistence in models and cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609758. [PMID: 39253471 PMCID: PMC11383005 DOI: 10.1101/2024.08.26.609758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Both membranes and biopolymers can individually separate into coexisting liquid phases. Here we explore biopolymer prewetting at membranes, a phase transition that emerges when these two thermodynamic systems are coupled. In reconstitution, we couple short poly-L-Lysine and poly-L-Glutamic Acid polyelectrolytes to membranes of saturated lipids, unsaturated lipids, and cholesterol, and detect coexisting prewet and dry surface phases well outside of the region of coexistence for each individual system. Notability, polyelectrolyte prewetting is highly sensitive to membrane lipid composition, occurring at 10 fold lower polymer concentration in a membrane close to its phase transition compared to one without a phase transition. In cells, protein prewetting is achieved using an optogenetic tool that enables titration of condensing proteins and tethering to the plasma membrane inner leaflet. Here we show that protein prewetting occurs for conditions well outside those where proteins condense in the cytoplasm, and that the stability of prewet domains is sensitive to perturbations of plasma membrane composition and structure. Our work presents an example of how thermodynamic phase transitions can impact cellular structure outside their individual coexistence regions, suggesting new possible roles for phase-separation-prone systems in cell biology.
Collapse
Affiliation(s)
- Yousef Bagheri
- Program in Biophysics, University of Michigan, Ann Arbor, MI USA
| | - Mason Rouches
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT USA
| | | | - Sarah L. Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
44
|
Qiu J, Lai C, Yuan Z, Hu J, Wu J, Liu C, Xu K. Utilizing Liquid-liquid phase separation-related lncRNAs to predict the prognosis and treatment response of PCa. Discov Oncol 2024; 15:352. [PMID: 39150479 PMCID: PMC11329450 DOI: 10.1007/s12672-024-01226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Studies have indicated a close association between genes linked to liquid-liquid phase separation (LLPS) and the progression of prostate cancer (PCa). However, the interplay among long non-coding RNAs (lncRNAs) linked to LLPS in PCa remains elusive. Therefore, we constructed a prediction model based on LLPS-related LncRNA in PCa to explore its relationship with the prognosis and drug treatment of PCa. METHODS We obtained clinical and sequencing data from TCGA and LLPS genes from the Phase Separation Protein Database. By analyzing the differential expression of LLPS-related genes and lncRNAs in prostate cancer, and using Poisson correlation, we identified LLPS-related lncRNAs. Prognostic LLPS-lncRNAs were found through prognostic correlation analysis and included in a Cox model to compute regression coefficients. Patients were scored and divided into high- and low-risk groups. Independent prognostic factors were integrated into a prognostic nomogram with risk and Gleason scores. We also conducted drug sensitivity analyses, GSEA, and validated the impact of key lncRNAs through functional experiments. RESULTS Our study identified five LLPS-associated lncRNAs that are of prognostic importance. And found notable disparities in biochemical recurrence rates and survival outcomes between these risk groups, with the low-risk cohort exhibiting superior prognostic indicators. Moreover, our prediction nomogram demonstrated robust predictive accuracy and significant clinical utility. Furthermore, our model exhibited promising capabilities in forecasting patient sensitivity to various conventional therapeutic drugs, thereby highlighting its potential in personalized treatment strategies. GSEA showed that these lncRNAs may influence PCa prognosis and sensitivity to therapeutic agents by affecting pathways such as cell cycle. Knockdown of AC009812.4 could inhibit the ability of PCa cells to proliferate, migrate and invade, and compare to paracancerous tissue, AC009812.4 in PCa tissue has significantly higher expression. CONCLUSION Our research uncovers the prognostic significance of lncRNAs associated with LLPS in PCa and established a model exhibiting excellent predictive accuracy for prognosis. Those lncRNAs may influence progress of PCa as well as sensitivity to therapy drugs through pathways such as cell cycle.
Collapse
Affiliation(s)
- Jiangping Qiu
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.1 Zhanqian Heng'er Road, Dongchong Town, Shanwei City, 516621, Guangdong, China
| | - Cong Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Zhihan Yuan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Jintao Hu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Jiang Wu
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.1 Zhanqian Heng'er Road, Dongchong Town, Shanwei City, 516621, Guangdong, China.
| | - Cheng Liu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510000, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510000, Guangdong, China.
| | - Kewei Xu
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.1 Zhanqian Heng'er Road, Dongchong Town, Shanwei City, 516621, Guangdong, China.
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510000, Guangdong, China.
- Sun Yat-Sen University School of Medicine, Sun Yat-Sen University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
45
|
Sasazawa M, Tomares DT, Childers WS, Saurabh S. Biomolecular condensates as stress sensors and modulators of bacterial signaling. PLoS Pathog 2024; 20:e1012413. [PMID: 39146259 PMCID: PMC11326607 DOI: 10.1371/journal.ppat.1012413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Microbes exhibit remarkable adaptability to environmental fluctuations. Signaling mechanisms, such as two-component systems and secondary messengers, have long been recognized as critical for sensing and responding to environmental cues. However, recent research has illuminated the potential of a physical adaptation mechanism in signaling-phase separation, which may represent a ubiquitous mechanism for compartmentalizing biochemistry within the cytoplasm in the context of bacteria that frequently lack membrane-bound organelles. This review considers the broader prospect that phase separation may play critical roles as rapid stress sensing and response mechanisms within pathogens. It is well established that weak multivalent interactions between disordered regions, coiled-coils, and other structured domains can form condensates via phase separation and be regulated by specific environmental parameters in some cases. The process of phase separation itself acts as a responsive sensor, influenced by changes in protein concentration, posttranslational modifications, temperature, salts, pH, and oxidative stresses. This environmentally triggered phase separation can, in turn, regulate the functions of recruited biomolecules, providing a rapid response to stressful conditions. As examples, we describe biochemical pathways organized by condensates that are essential for cell physiology and exhibit signaling features. These include proteins that organize and modify the chromosome (Dps, Hu, SSB), regulate the decay, and modification of RNA (RNase E, Hfq, Rho, RNA polymerase), those involved in signal transduction (PopZ, PodJ, and SpmX) and stress response (aggresomes and polyphosphate granules). We also summarize the potential of proteins within pathogens to function as condensates and the potential and challenges in targeting biomolecular condensates for next-generation antimicrobial therapeutics. Together, this review illuminates the emerging significance of biomolecular condensates in microbial signaling, stress responses, and regulation of cell physiology and provides a framework for microbiologists to consider the function of biomolecular condensates in microbial adaptation and response to diverse environmental conditions.
Collapse
Affiliation(s)
- Moeka Sasazawa
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Saumya Saurabh
- Department of Chemistry, New York University, New York, New York, United States of America
| |
Collapse
|
46
|
Kusumi A, Tsunoyama TA, Suzuki KGN, Fujiwara TK, Aladag A. Transient, nano-scale, liquid-like molecular assemblies coming of age. Curr Opin Cell Biol 2024; 89:102394. [PMID: 38963953 DOI: 10.1016/j.ceb.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
This review examines the dynamic mechanisms underlying cellular signaling, communication, and adhesion via transient, nano-scale, liquid-like molecular assemblies on the plasma membrane (PM). Traditional views posit that stable, solid-like molecular complexes perform these functions. However, advanced imaging reveals that many signaling and scaffolding proteins only briefly reside in these molecular complexes and that micron-scale protein assemblies on the PM, including cell adhesion structures and synapses, are likely made of archipelagoes of nanoliquid protein islands. Borrowing the concept of liquid-liquid phase separation to form micron-scale biocondensates, we propose that these nano-scale oligomers and assemblies are enabled by multiple weak but specific molecular interactions often involving intrinsically disordered regions. The signals from individual nanoliquid signaling complexes would occur as pulses. Single-molecule imaging emerges as a crucial technique for characterizing these transient nanoliquid assemblies on the PM, suggesting a shift toward a model where the fluidity of interactions underpins signal regulation and integration.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Amine Aladag
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
47
|
Ravindran R, Michnick SW. Biomolecular condensates as drivers of membrane trafficking and remodelling. Curr Opin Cell Biol 2024; 89:102393. [PMID: 38936257 DOI: 10.1016/j.ceb.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Membrane remodelling is essential for the trafficking of macromolecules throughout the cell, a process that regulates various aspects of cellular health and pathology. Recent studies implicate the role of biomolecular condensates in regulating multiple steps of the membrane trafficking pathway including but not limited to the organization of the trafficking machinery, dynamic remodeling of membranes, spatial and functional regulation, and response to cellular signals. The implicated proteins contain key structural elements, most notably prion-like domains within intrinsically disordered regions that are necessary for biomolecular condensate formation at fusion sites in processes like endocytic assembly, autophagy, organelle biosynthesis and synaptic vesicle fusion. Experimental and theoretical advances in the field continue to demonstrate that protein condensates can perform mechanical work, the implications of which can be extrapolated to diverse areas of membrane biology.
Collapse
Affiliation(s)
- Rini Ravindran
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
48
|
Liu P, Liu S, Dalal V, Lane J, Gessaroli E, Forte E, Gallon L, Jin J. Evaluation of Methodologies in Anti-nephrin Autoantibody Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605154. [PMID: 39211159 PMCID: PMC11360973 DOI: 10.1101/2024.07.25.605154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent studies discovered the prominent presence of anti-nephrin autoantibodies in minimal change disease, steroid-sensitive nephrotic syndrome and/or post-transplant recurrent focal segmental glomerulosclerosis (FSGS). However, widely different, and often unconventional autoantibody detection methods were used among these studies, making it challenging to assess the pathogenic role for the antibodies. Here we examined methods of conventional ELISA, magnetic on-beads ELISA, immunoprecipitation-immunoblotting (IP-IB), and cell- and tissue-based antibody assays with 127 plasma samples of kidney and non-kidney diseases. On the antigen side, we compared commercially available recombinant human nephrin extracelluar domain (ECD) produced from human or mouse cell lines, as well as lab-made full length, ECD, and series of ECD truncates for measuring autoantibody reactivity and specificity. Surprisingly, different assay methods and different antigen preparations led to observation of assay-specific false-positive and false-negative results. In general, a set of tests that combines magnetic beads-enhanced ELISA, followed by IP-IB, and epitope mapping showed the most robust results for anti-nephrin autoantibodies, detected in two primary FSGS patients among all cases tested. It is interesting to note that cell/tissue-based results, also supported by antigen truncation studies, clearly suggest steric hindrance of reactive epitopes, as in full length nephrin that forms compact self-associated complexes. In conclusion, anti-nephrin positivity is rare among the tested patients (2/127), including those with FSGS (2/42), and autoantibody results can be affected by the choice of detection methods.
Collapse
|
49
|
Chattaraj A, Shakhnovich EI. Multi-condensate state as a functional strategy to optimize the cell signaling output. Nat Commun 2024; 15:6268. [PMID: 39054333 PMCID: PMC11272944 DOI: 10.1038/s41467-024-50489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
The existence of multiple biomolecular condensates inside living cells is a peculiar phenomenon not compatible with the predictions of equilibrium statistical mechanics. In this work, we address the problem of multiple condensates state (MCS) from a functional perspective. We combine Langevin dynamics, reaction-diffusion simulation, and dynamical systems theory to demonstrate that MCS can indeed be a function optimization strategy. Using Arp2/3 mediated actin nucleation pathway as an example, we show that actin polymerization is maximum at an optimal number of condensates. For a fixed amount of Arp2/3, MCS produces a greater response compared to its single condensate counterpart. Our analysis reveals the functional significance of the condensate size distribution which can be mapped to the recent experimental findings. Given the spatial heterogeneity within condensates and non-linear nature of intracellular networks, we envision MCS to be a generic functional solution, so that structures of network motifs may have evolved to accommodate such configurations.
Collapse
Affiliation(s)
- Aniruddha Chattaraj
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
50
|
Wu M, Marchando P, Meyer K, Tang Z, Woolfson DN, Weiner OD. The WAVE complex forms linear arrays at negative membrane curvature to instruct lamellipodia formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.600855. [PMID: 39026726 PMCID: PMC11257481 DOI: 10.1101/2024.07.08.600855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cells generate a wide range of actin-based membrane protrusions for various cell behaviors. These protrusions are organized by different actin nucleation promoting factors. For example, N-WASP controls finger-like filopodia, whereas the WAVE complex controls sheet-like lamellipodia. These different membrane morphologies likely reflect different patterns of nucleator self-organization. N-WASP phase separation has been successfully studied through biochemical reconstitutions, but how the WAVE complex self-organizes to instruct lamellipodia is unknown. Because WAVE complex self-organization has proven refractory to cell-free studies, we leverage in vivo biochemical approaches to investigate WAVE complex organization within its native cellular context. With single molecule tracking and molecular counting, we show that the WAVE complex forms highly regular multilayered linear arrays at the plasma membrane that are reminiscent of a microtubule-like organization. Similar to the organization of microtubule protofilaments in a curved array, membrane curvature is both necessary and sufficient for formation of these WAVE complex linear arrays, though actin polymerization is not. This dependency on negative membrane curvature could explain both the templating of lamellipodia and their emergent behaviors, including barrier avoidance. Our data uncover the key biophysical properties of mesoscale WAVE complex patterning and highlight an integral relationship between NPF self-organization and cell morphogenesis.
Collapse
Affiliation(s)
- Muziyue Wu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute,University of California San Francisco, San Francisco, CA, USA
| | - Paul Marchando
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Kirstin Meyer
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute,University of California San Francisco, San Francisco, CA, USA
| | - Ziqi Tang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, UK
- Bristol BioDesign Institute, University of Bristol, Bristol, UK
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute,University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|