1
|
Versoza CJ, Lloret-Villas A, Jensen JD, Pfeifer SP. A Pedigree-Based Map of Crossovers and Noncrossovers in Aye-Ayes (Daubentonia madagascariensis). Genome Biol Evol 2025; 17:evaf072. [PMID: 40242950 PMCID: PMC12079367 DOI: 10.1093/gbe/evaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
Gaining a better understanding of the rates and patterns of meiotic recombination is crucial for improving evolutionary genomic modeling, with applications ranging from demographic to selective inference. Although previous research has provided important insights into the landscape of crossovers in humans and other haplorrhines, our understanding of both the considerably more common outcome of recombination (i.e. noncrossovers) as well as the landscapes in more distantly related primates (i.e. strepsirrhines) remains limited owing to difficulties associated with both the identification of noncrossover tracts as well as species sampling. Thus, in order to elucidate recombination patterns in this understudied branch of the primate clade, we here characterize crossover and noncrossover landscapes in aye-ayes utilizing whole-genome sequencing data from six three-generation pedigrees and three two-generation multi-sibling families, and in so doing provide novel insights into this important evolutionary process shaping genomic diversity in one of the world's most critically endangered primate species.
Collapse
Affiliation(s)
- Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Audald Lloret-Villas
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
2
|
Shpak M, Lawrence KN, Pool JE. The Precision and Power of Population Branch Statistics in Identifying the Genomic Signatures of Local Adaptation. Genome Biol Evol 2025; 17:evaf080. [PMID: 40326284 PMCID: PMC12095133 DOI: 10.1093/gbe/evaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 04/21/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025] Open
Abstract
Population branch statistics, which estimate the degree of genetic differentiation along a focal population's lineage, have been used as an alternative to FST-based genome-wide scans for identifying loci associated with local selective sweeps. Beyond the population branch statistic (PBS), the normalized PBSn1 adjusts focal branch length with respect to outgroup branch lengths at the same locus, whereas population branch excess (PBE) incorporates median branch lengths at other loci. PBSn1 and PBE were proposed to be more specific to local selective sweeps as opposed to geographically ubiquitous selection. However, the accuracy and statistical power of branch statistics have not been systematically assessed. To do so, we simulate genomes in representative large and small populations with varying proportions of sites evolving under genetic drift or (approximated) background selection, with local selective sweeps or geographically parallel selective sweeps. We then assess the probability that local selective sweep loci are correctly identified as outliers by FST and by each of the branch statistics. We find that branch statistics consistently outperform FST at identifying local sweeps. Particularly when parallel sweeps are introduced, PBSn1 and PBE correctly identify local sweeps among their top outliers more frequently than PBS. Additionally, we evaluate versions of these statistics based on maximal site differentiation within a window, finding that site-based PBE and PBSn1 are particularly effective at identifying local soft sweeps. These results validate the greater specificity of the rescaled branch statistics PBE and PBSn1 to detect population-specific positive selection, supporting their use in genomic studies focused on local adaptation.
Collapse
Affiliation(s)
- Max Shpak
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - Kadee N Lawrence
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
3
|
Porubsky D, Dashnow H, Sasani TA, Logsdon GA, Hallast P, Noyes MD, Kronenberg ZN, Mokveld T, Koundinya N, Nolan C, Steely CJ, Guarracino A, Dolzhenko E, Harvey WT, Rowell WJ, Grigorev K, Nicholas TJ, Goldberg ME, Oshima KK, Lin J, Ebert P, Watkins WS, Leung TY, Hanlon VCT, McGee S, Pedersen BS, Happ HC, Jeong H, Munson KM, Hoekzema K, Chan DD, Wang Y, Knuth J, Garcia GH, Fanslow C, Lambert C, Lee C, Smith JD, Levy S, Mason CE, Garrison E, Lansdorp PM, Neklason DW, Jorde LB, Quinlan AR, Eberle MA, Eichler EE. Human de novo mutation rates from a four-generation pedigree reference. Nature 2025:10.1038/s41586-025-08922-2. [PMID: 40269156 DOI: 10.1038/s41586-025-08922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Understanding the human de novo mutation (DNM) rate requires complete sequence information1. Here using five complementary short-read and long-read sequencing technologies, we phased and assembled more than 95% of each diploid human genome in a four-generation, twenty-eight-member family (CEPH 1463). We estimate 98-206 DNMs per transmission, including 74.5 de novo single-nucleotide variants, 7.4 non-tandem repeat indels, 65.3 de novo indels or structural variants originating from tandem repeats, and 4.4 centromeric DNMs. Among male individuals, we find 12.4 de novo Y chromosome events per generation. Short tandem repeats and variable-number tandem repeats are the most mutable, with 32 loci exhibiting recurrent mutation through the generations. We accurately assemble 288 centromeres and six Y chromosomes across the generations and demonstrate that the DNM rate varies by an order of magnitude depending on repeat content, length and sequence identity. We show a strong paternal bias (75-81%) for all forms of germline DNM, yet we estimate that 16% of de novo single-nucleotide variants are postzygotic in origin with no paternal bias, including early germline mosaic mutations. We place all this variation in the context of a high-resolution recombination map (~3.4 kb breakpoint resolution) and find no correlation between meiotic crossover and de novo structural variants. These near-telomere-to-telomere familial genomes provide a truth set to understand the most fundamental processes underlying human genetic variation.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas A Sasani
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Michelle D Noyes
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Nidhi Koundinya
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Cody J Steely
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Andrea Guarracino
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Kirill Grigorev
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Thomas J Nicholas
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Michael E Goldberg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Keisuke K Oshima
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiadong Lin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter Ebert
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - W Scott Watkins
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Tiffany Y Leung
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Vincent C T Hanlon
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sean McGee
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Hannah C Happ
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Altos Labs, San Diego, CA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel D Chan
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yanni Wang
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Jordan Knuth
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Gage H Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Erik Garrison
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah W Neklason
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Prentout D, Bykova D, Hoge C, Hooper DM, McDiarmid CS, Wu F, Griffith SC, de Manuel M, Przeworski M. Germline mutation rates and fine-scale recombination parameters in zebra finch. PLoS Genet 2025; 21:e1011661. [PMID: 40233115 PMCID: PMC12047795 DOI: 10.1371/journal.pgen.1011661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/02/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
Most of our understanding of the fundamental processes of mutation and recombination stems from a handful of disparate model organisms and pedigree studies of mammals, with little known about other vertebrates. To gain a broader comparative perspective, we focused on the zebra finch (Taeniopygia castanotis), which, like other birds, differs from mammals in its karyotype (which includes many micro-chromosomes), in the mechanism by which recombination is directed to the genome, and in aspects of ontogenesis. We collected genome sequences from three generation pedigrees that provide information about 80 meioses, inferring 202 single-point de novo mutations, 1,088 crossovers, and 275 non-crossovers. On that basis, we estimated a sex-averaged mutation rate of 5.0 × 10-9 per base pair per generation, on par with mammals that have a similar generation time (~2-3 years). Also as in mammals, we found a paternal germline mutation bias at later stages of gametogenesis (of 1.7:1) but no discernible difference between sexes in early development. Examining recombination patterns, we found that the sex-averaged crossover rate on macro-chromosomes is 0.93 cM/Mb, with a pronounced enrichment of crossovers near telomeres. In contrast, non-crossover rates are more uniformly distributed. On micro-chromosomes, sex-averaged crossover rates are substantially higher (3.96 cM/Mb), in accordance with crossover homeostasis, and both crossover and non-crossover events are more uniformly distributed. At a finer scale, recombination events overlap CpG islands more often than expected by chance, as expected in the absence of PRDM9. Estimates of the degree of GC-biased gene conversion (59%), the mean non-crossover conversion tract length (~32 bp), and the non-crossover-to-crossover ratio (5.4:1) are all comparable to those reported in primates and mice. Therefore, properties of germline mutation and recombination resolutions remain similar over large phylogenetic distances.
Collapse
Affiliation(s)
- Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Daria Bykova
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Carla Hoge
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Daniel M. Hooper
- Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of Natural History, New York, New York, United States of America
| | - Callum S. McDiarmid
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Felix Wu
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Simon C. Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marc de Manuel
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| |
Collapse
|
5
|
Palsson G, Hardarson MT, Jonsson H, Steinthorsdottir V, Stefansson OA, Eggertsson HP, Gudjonsson SA, Olason PI, Gylfason A, Masson G, Thorsteinsdottir U, Sulem P, Helgason A, Gudbjartsson DF, Halldorsson BV, Stefansson K. Complete human recombination maps. Nature 2025; 639:700-707. [PMID: 39843742 PMCID: PMC11922761 DOI: 10.1038/s41586-024-08450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025]
Abstract
Human recombination maps are a valuable resource for association and linkage studies and crucial for many inferences of population history and natural selection. Existing maps1-5 are based solely on cross-over (CO) recombination, omitting non-cross-overs (NCOs)-the more common form of recombination6-owing to the difficulty in detecting them. Using whole-genome sequence data in families, we estimate the number of NCOs transmitted from parent to offspring and derive complete, sex-specific recombination maps including both NCOs and COs. Mothers have fewer but longer NCOs than fathers, and oocytes accumulate NCOs in a non-regulated fashion with maternal age. Recombination, primarily NCO, is responsible for 1.8% (95% confidence interval: 1.3-2.3) and 11.3% (95% confidence interval: 9.0-13.6) of paternal and maternal de novo mutations, respectively, and may drive the increase in de novo mutations with maternal age. NCOs are substantially more prominent than COs in centromeres, possibly to avoid large-scale genomic changes that may cause aneuploidy. Our results demonstrate that NCOs highlight to a much greater extent than COs the differences in the meiotic process between the sexes, in which maternal NCOs may reflect the safeguarding of oocytes from infancy until ovulation.
Collapse
Affiliation(s)
| | - Marteinn T Hardarson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavík, Iceland
| | | | | | | | | | | | | | | | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Agnar Helgason
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- School of Technology, Reykjavik University, Reykjavík, Iceland.
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
6
|
Browning SR, Browning BL. Estimating gene conversion rates from population data using multi-individual identity by descent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639693. [PMID: 40060563 PMCID: PMC11888280 DOI: 10.1101/2025.02.22.639693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In humans, homologous gene conversions occur at a higher rate than crossovers, however gene conversion tracts are small and often unobservable. As a result, estimating gene conversion rates is more difficult than estimating crossover rates. We present a method for multi-individual identity-by-descent (IBD) inference that allows for mismatches due to genotype error and gene conversion. We use the inferred IBD to detect alleles that have changed due to gene conversion in the recent past. We analyze data from the TOPMed and UK Biobank studies to estimate autosome-wide maps of gene conversion rates. For 10 kb, 100kb, and 1 Mb windows, the correlation between our TOPMed gene conversion map and the deCODE sex-averaged crossover map ranges from 0.56 to 0.67. We find that the strongest gene conversion hotspots typically die back to the baseline gene conversion rate within 1 kb. In 100 kb and 1 Mb windows, our estimated gene conversion map has higher correlation than the deCODE sex-averaged crossover map with PRDM9 binding enrichment (0.34 vs 0.29 for 100 kb windows and 0.52 vs 0.34 for 1 Mb windows), suggesting that the effect of PRDM9 is greater on gene conversion than on crossover recombination. Our TOPMed gene conversion maps are constructed from 55-fold more observed allele conversions than the recently published deCODE gene conversion maps. Our map provides sex-averaged estimates for 10 kb, 100 kb, and 1 Mb windows, whereas the deCODE gene conversion maps provide sex-specific estimates for 3 Mb windows.
Collapse
Affiliation(s)
- Sharon R. Browning
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Brian L. Browning
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Prentout D, Bykova D, Hoge C, Hooper DM, McDiarmid CS, Wu F, Griffith SC, de Manuel M, Przeworski M. Mutation and recombination parameters in zebra finch are similar to those in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.05.611523. [PMID: 39282267 PMCID: PMC11398497 DOI: 10.1101/2024.09.05.611523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Most of our understanding of the fundamental processes of mutation and recombination stems from a handful of disparate model organisms and pedigree studies of mammals, with little known about other vertebrates. To gain a broader comparative perspective, we focused on the zebra finch (Taeniopygia castanotis), which, like other birds, differs from mammals in its karyotype (which includes many micro-chromosomes), in the mechanism by which recombination is directed to the genome, and in aspects of ontogenesis. We collected genome sequences from three generation pedigrees that provide information about 80 meioses, inferring 202 single-point de novo mutations, 1,174 crossovers, and 275 non-crossovers. On that basis, we estimated a sex-averaged mutation rate of 5.0 × 10-9 per base pair per generation, on par with mammals that have a similar generation time (~2-3 years). Also as in mammals, we found a paternal germline mutation bias at later stages of gametogenesis (of 1.7:1) but no discernible difference between sexes in early development. Examining recombination patterns, we found that the sex-averaged crossover rate on macro-chromosomes (1.05 cM/Mb) is again similar to values observed in mammals, as is the spatial distribution of crossovers, with a pronounced enrichment near telomeres. In contrast, non-crossover rates are more uniformly distributed. On micro-chromosomes, sex-averaged crossover rates are substantially higher (4.21 cM/Mb), as expected from crossover homeostasis, and both crossover and non-crossover events are more uniformly distributed. At a finer scale, recombination events overlap CpG islands more often than expected by chance, as expected in the absence of PRDM9. Despite differences in the mechanism by which recombination events are specified and the presence of many micro-chromosomes, estimates of the degree of GC-biased gene conversion (59%), the mean non-crossover conversion tract length (~32 bp), and the non-crossover-to-crossover ratio (5.4:1) are all comparable to those reported in primates and mice. The similarity of mutation and recombination properties in zebra finch to those in mammals suggest that they are conserved by natural selection.
Collapse
Affiliation(s)
| | - Daria Bykova
- Dept. of Biological Sciences, Columbia University
| | - Carla Hoge
- Dept. of Biological Sciences, Columbia University
| | - Daniel M. Hooper
- Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of Natural History, New York, New York, USA
| | - Callum S. McDiarmid
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Felix Wu
- Dept. of Systems Biology, Columbia University
| | - Simon C. Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | - Molly Przeworski
- Dept. of Biological Sciences, Columbia University
- Dept. of Systems Biology, Columbia University
| |
Collapse
|
8
|
Charmouh AP, Porsborg PS, Hansen LT, Besenbacher S, Boeg Winge S, Almstrup K, Hobolth A, Bataillon T, Schierup MH. Estimating Gene Conversion Tract Length and Rate From PacBio HiFi Data. Mol Biol Evol 2025; 42:msaf019. [PMID: 39982809 PMCID: PMC11844249 DOI: 10.1093/molbev/msaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/23/2025] Open
Abstract
Gene conversions are broadly defined as the transfer of genetic material from a "donor" to an "acceptor" sequence and can happen both in meiosis and mitosis. They are a subset of noncrossover (NCO) events and, like crossover (CO) events, gene conversion can generate new combinations of alleles and counteract mutation load by reverting germline mutations through GC-biased gene conversion. Estimating gene conversion rate and the distribution of gene conversion tract lengths remains challenging. We present a new method for estimating tract length, rate, and detection probability of NCO events directly in HiFi PacBio long read data. The method can be used to make inference from sequencing of gametes from a single individual. The method is unbiased even under low single nucleotide variant (SNV) densities and does not necessitate any demographic or evolutionary assumptions. We test the accuracy and robustness of our method using simulated datasets where we vary length of tracts, number of tracts, the genomic SNV density, and levels of correlation between SNV density and NCO event position. Our simulations show that under low SNV densities, like those found in humans, only a minute fraction (∼2%) of NCO events are expected to become visible as gene conversions by moving at least 1 SNV. We finally illustrate our method by applying it to PacBio sequencing data from human sperm.
Collapse
Affiliation(s)
- Anders Poulsen Charmouh
- Bioinformatics Research Centre, Aarhus University, University City 81, DK-8000 Aarhus C, Denmark
| | - Peter Sørud Porsborg
- Bioinformatics Research Centre, Aarhus University, University City 81, DK-8000 Aarhus C, Denmark
| | - Lasse Thorup Hansen
- Department of Mathematics, Aarhus University, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
| | - Søren Besenbacher
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Sofia Boeg Winge
- Department of Growth and Reproduction, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Asger Hobolth
- Department of Mathematics, Aarhus University, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, University City 81, DK-8000 Aarhus C, Denmark
| | - Mikkel Heide Schierup
- Bioinformatics Research Centre, Aarhus University, University City 81, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Masaki N, Browning SR. Mean gene conversion tract length in humans estimated to be 459 bp from UK Biobank sequence data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630818. [PMID: 39868294 PMCID: PMC11761487 DOI: 10.1101/2024.12.30.630818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Non-crossover gene conversion is a type of meiotic recombination characterized by the non-reciprocal transfer of genetic material between homologous chromosomes. Gene conversions are thought to occur within relatively short tracts of DNA, estimated to be in the order of 100-1,000 bp in humans. However, the number of observable gene conversion tracts per study has so far been limited by the use of pedigree or sperm-typing data to detect gene conversion events. In this study, we propose a statistical method to estimate the mean length of gene conversion tracts in humans. Our method can handle a large number of gene conversion tracts, leading to more precise estimates of the mean tract length. We apply our method to gene conversion tracts detected in whole autosome sequence data from the UK Biobank using clusters of identity-by-descent segments. From this dataset, we estimate the mean gene conversion tract length in humans to be 459 bp (95% CI: [457, 461]). Stratifying detected gene conversion tracts by whether they overlapped with a recombination hotspot, we estimate the mean gene conversion tract length to be 418 bp (95% CI: [416, 420]) and 492 bp (95% CI: [489, 494]) respectively, for tracts that overlap and do not overlap with a recombination hotspot.
Collapse
Affiliation(s)
- Nobuaki Masaki
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Sharon R. Browning
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Versoza CJ, Lloret-Villas A, Jensen JD, Pfeifer SP. A pedigree-based map of crossovers and non-crossovers in aye-ayes ( Daubentonia madagascariensis). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622675. [PMID: 39605366 PMCID: PMC11601232 DOI: 10.1101/2024.11.08.622675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Gaining a better understanding of rates and patterns of meiotic recombination is crucial for improving evolutionary genomic modelling, with applications ranging from demographic to selective inference. Although previous research has provided important insights into the landscape of crossovers in humans and other haplorrhines, our understanding of both the considerably more common outcome of recombination (i.e., non-crossovers) as well as the landscapes in more distantly-related primates (i.e., strepsirrhines) remains limited owing to difficulties associated with both the identification of non-crossover tracts as well as species sampling. Thus, in order to elucidate recombination patterns in this under-studied branch of the primate clade, we here characterize crossover and non-crossover landscapes in aye-ayes utilizing whole-genome sequencing data from six three-generation pedigrees as well as three two-generation multi-sibling families, and in so doing provide novel insights into this important evolutionary process shaping genomic diversity in one of the world's most critically endangered primate species.
Collapse
Affiliation(s)
- Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Audald Lloret-Villas
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D. Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
11
|
Qiu Y, Kang YM, Korfmann C, Pouyet F, Eckford A, Palazzo AF. The GC-content at the 5' ends of human protein-coding genes is undergoing mutational decay. Genome Biol 2024; 25:219. [PMID: 39138526 PMCID: PMC11323403 DOI: 10.1186/s13059-024-03364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND In vertebrates, most protein-coding genes have a peak of GC-content near their 5' transcriptional start site (TSS). This feature promotes both the efficient nuclear export and translation of mRNAs. Despite the importance of GC-content for RNA metabolism, its general features, origin, and maintenance remain mysterious. We investigate the evolutionary forces shaping GC-content at the transcriptional start site (TSS) of genes through both comparative genomic analysis of nucleotide substitution rates between different species and by examining human de novo mutations. RESULTS Our data suggests that GC-peaks at TSSs were present in the last common ancestor of amniotes, and likely that of vertebrates. We observe that in apes and rodents, where recombination is directed away from TSSs by PRDM9, GC-content at the 5' end of protein-coding gene is currently undergoing mutational decay. In canids, which lack PRDM9 and perform recombination at TSSs, GC-content at the 5' end of protein-coding is increasing. We show that these patterns extend into the 5' end of the open reading frame, thus impacting synonymous codon position choices. CONCLUSIONS Our results indicate that the dynamics of this GC-peak in amniotes is largely shaped by historic patterns of recombination. Since decay of GC-content towards the mutation rate equilibrium is the default state for non-functional DNA, the observed decrease in GC-content at TSSs in apes and rodents indicates that the GC-peak is not being maintained by selection on most protein-coding genes in those species.
Collapse
Affiliation(s)
- Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G1M1, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G1M1, Canada
| | - Christopher Korfmann
- Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, M3J1P3, Canada
| | - Fanny Pouyet
- Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Andrew Eckford
- Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, M3J1P3, Canada
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G1M1, Canada.
| |
Collapse
|
12
|
Schweiger R, Lee S, Zhou C, Yang TP, Smith K, Li S, Sanghvi R, Neville M, Mitchell E, Nessa A, Wadge S, Small KS, Campbell PJ, Sudmant PH, Rahbari R, Durbin R. Insights into non-crossover recombination from long-read sperm sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602249. [PMID: 39005338 PMCID: PMC11245106 DOI: 10.1101/2024.07.05.602249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Meiotic recombination is a fundamental process that generates genetic diversity by creating new combinations of existing alleles. Although human crossovers have been studied at the pedigree, population and single-cell level, the more frequent non-crossover events that lead to gene conversion are harder to study, particularly at the individual level. Here we show that single high-fidelity long sequencing reads from sperm can capture both crossovers and non-crossovers, allowing effectively arbitrary sample sizes for analysis from one male. Using fifteen sperm samples from thirteen donors we demonstrate variation between and within donors for the rates of different types of recombination. Intriguingly, we observe a tendency for non-crossover gene conversions to occur upstream of nearby PRDM9 binding sites, whereas crossover locations have a slight downstream bias. We further provide evidence for two distinct non-crossover processes. One gives rise to the vast majority of non-crossovers with mean conversion tract length under 50bp, which we suggest is an outcome of standard PRDM9-induced meiotic recombination. In contrast ~2% of non-crossovers have much longer mean tract length, and potentially originate from the same process as complex events with more than two haplotype switches, which is not associated with PRDM9 binding sites and is also seen in somatic cells.
Collapse
Affiliation(s)
- Regev Schweiger
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom
| | - Sangjin Lee
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Chenxi Zhou
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom
| | - Tsun-Po Yang
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Katie Smith
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Stacy Li
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Rashesh Sanghvi
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matthew Neville
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Emily Mitchell
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Ayrun Nessa
- Kings College London, Department of Twin Research & Genetic Epidemiology, London, United Kingdom
| | - Sam Wadge
- Kings College London, Department of Twin Research & Genetic Epidemiology, London, United Kingdom
| | - Kerrin S Small
- Kings College London, Department of Twin Research & Genetic Epidemiology, London, United Kingdom
| | - Peter J Campbell
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, USA
| | - Raheleh Rahbari
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
13
|
Joseph J, Prentout D, Laverré A, Tricou T, Duret L. High prevalence of PRDM9-independent recombination hotspots in placental mammals. Proc Natl Acad Sci U S A 2024; 121:e2401973121. [PMID: 38809707 PMCID: PMC11161765 DOI: 10.1073/pnas.2401973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.
Collapse
Affiliation(s)
- Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexandre Laverré
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
- Swiss Institute of Bioinformatics, LausanneCH-1015, Switzerland
| | - Théo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| |
Collapse
|
14
|
Shpak M, Lawrence KN, Pool JE. The Precision and Power of Population Branch Statistics in Identifying the Genomic Signatures of Local Adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594139. [PMID: 38798330 PMCID: PMC11118325 DOI: 10.1101/2024.05.14.594139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Population branch statistics, which estimate the branch lengths of focal populations with respect to two outgroups, have been used as an alternative to FST-based genome-wide scans for identifying loci associated with local selective sweeps. In addition to the original population branch statistic (PBS), there are subsequently proposed branch rescalings: normalized population branch statistic (PBSn1), which adjusts focal branch length with respect to outgroup branch lengths at the same locus, and population branch excess (PBE), which also incorporates median branch lengths at other loci. PBSn1 and PBE have been proposed to be less sensitive to allele frequency divergence generated by background selection or geographically ubiquitous positive selection rather than local selective sweeps. However, the accuracy and statistical power of branch statistics have not been systematically assessed. To do so, we simulate genomes in representative large and small populations with varying proportions of sites evolving under genetic drift or background selection (approximated using variable N e ), local selective sweeps, and geographically parallel selective sweeps. We then assess the probability that local selective sweep loci are correctly identified as outliers by FST and by each of the branch statistics. We find that branch statistics consistently outperform FST at identifying local sweeps. When background selection and/or parallel sweeps are introduced, PBSn1 and especially PBE correctly identify local sweeps among their top outliers at a higher frequency than PBS. These results validate the greater specificity of rescaled branch statistics such as PBE to detect population-specific positive selection, supporting their use in genomic studies focused on local adaptation.
Collapse
Affiliation(s)
- Max Shpak
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - Kadee N. Lawrence
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
15
|
Qiao Y, Jewett EM, McManus KF, Freyman WA, Curran JE, Williams-Blangero S, Blangero J, The 23andMe Research Team, Williams AL. Reconstructing parent genomes using siblings and other relatives. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593578. [PMID: 38798596 PMCID: PMC11118276 DOI: 10.1101/2024.05.10.593578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reconstructing the DNA of ancestors from their descendants has the potential to empower phenotypic analyses (including association and genetic nurture studies), improve pedigree reconstruction, and shed light on the ancestral population and phenotypes of ancestors. We developed HAPI-RECAP, a method that reconstructs the DNA of parents from full siblings and their relatives. This tool leverages HAPI2's output, a new phasing approach that applies to siblings (and optionally one or both parents) and reliably infers parent haplotypes but does not link the ungenotyped parents' DNA across chromosomes or between segments flanking ambiguities. By combining IBD between the reconstructed parents and the relatives, HAPI-RECAP resolves the source parent of these segments. Moreover, the method exploits crossovers the children inherited and sex-specific genetic maps to infer the reconstructed parents' sexes. We validated these methods on research participants from both 23andMe, Inc. and the San Antonio Mexican American Family Studies. Given data for one parent, HAPI2 reconstructs large fractions of the missing parent's DNA, between 77.6% and 99.97% among all families, and 90.3% on average in three- and four-child families. When reconstructing both parents, HAPI-RECAP inferred between 33.2% and 96.6% of the parents' genotypes, averaging 70.6% in four-child families. Reconstructed genotypes have average error rates < 10-3, or comparable to those from direct genotyping. HAPI-RECAP inferred the parent sexes 100% correctly given IBD-linked segments and can also reconstruct parents without any IBD. As datasets grow in size, more families will be implicitly collected; HAPI-RECAP holds promise to enable high quality parent genotype reconstruction.
Collapse
Affiliation(s)
- Ying Qiao
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | | | - Amy L. Williams
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- 23andMe, Inc., Sunnyvale, CA 94086, USA
| |
Collapse
|
16
|
Browning SR, Browning BL. Biobank-scale inference of multi-individual identity by descent and gene conversion. Am J Hum Genet 2024; 111:691-700. [PMID: 38513668 PMCID: PMC11023918 DOI: 10.1016/j.ajhg.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
We present a method for efficiently identifying clusters of identical-by-descent haplotypes in biobank-scale sequence data. Our multi-individual approach enables much more computationally efficient inference of identity by descent (IBD) than approaches that infer pairwise IBD segments and provides locus-specific IBD clusters rather than IBD segments. Our method's computation time, memory requirements, and output size scale linearly with the number of individuals in the dataset. We also present a method for using multi-individual IBD to detect alleles changed by gene conversion. Application of our methods to the autosomal sequence data for 125,361 White British individuals in the UK Biobank detects more than 9 million converted alleles. This is 2,900 times more alleles changed by gene conversion than were detected in a previous analysis of familial data. We estimate that more than 250,000 sequenced probands and a much larger number of additional genomes from multi-generational family members would be required to find a similar number of alleles changed by gene conversion using a family-based approach. Our IBD clustering method is implemented in the open-source ibd-cluster software package.
Collapse
Affiliation(s)
- Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | - Brian L Browning
- Department of Biostatistics, University of Washington, Seattle, WA, USA; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Versoza CJ, Weiss S, Johal R, La Rosa B, Jensen JD, Pfeifer SP. Novel Insights into the Landscape of Crossover and Noncrossover Events in Rhesus Macaques (Macaca mulatta). Genome Biol Evol 2024; 16:evad223. [PMID: 38051960 PMCID: PMC10773715 DOI: 10.1093/gbe/evad223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Meiotic recombination landscapes differ greatly between distantly and closely related taxa, populations, individuals, sexes, and even within genomes; however, the factors driving this variation are yet to be well elucidated. Here, we directly estimate contemporary crossover rates and, for the first time, noncrossover rates in rhesus macaques (Macaca mulatta) from four three-generation pedigrees comprising 32 individuals. We further compare these results with historical, demography-aware, linkage disequilibrium-based recombination rate estimates. From paternal meioses in the pedigrees, 165 crossover events with a median resolution of 22.3 kb were observed, corresponding to a male autosomal map length of 2,357 cM-approximately 15% longer than an existing linkage map based on human microsatellite loci. In addition, 85 noncrossover events with a mean tract length of 155 bp were identified-similar to the tract lengths observed in the only other two primates in which noncrossovers have been studied to date, humans and baboons. Consistent with observations in other placental mammals with PRDM9-directed recombination, crossover (and to a lesser extent noncrossover) events in rhesus macaques clustered in intergenic regions and toward the chromosomal ends in males-a pattern in broad agreement with the historical, sex-averaged recombination rate estimates-and evidence of GC-biased gene conversion was observed at noncrossover sites.
Collapse
Affiliation(s)
- Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Sarah Weiss
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ravneet Johal
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bruno La Rosa
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
18
|
Schrider DR. Allelic gene conversion softens selective sweeps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570141. [PMID: 38106127 PMCID: PMC10723294 DOI: 10.1101/2023.12.05.570141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The prominence of positive selection, in which beneficial mutations are favored by natural selection and rapidly increase in frequency, is a subject of intense debate. Positive selection can result in selective sweeps, in which the haplotype(s) bearing the adaptive allele "sweep" through the population, thereby removing much of the genetic diversity from the region surrounding the target of selection. Two models of selective sweeps have been proposed: classical sweeps, or "hard sweeps", in which a single copy of the adaptive allele sweeps to fixation, and "soft sweeps", in which multiple distinct copies of the adaptive allele leave descendants after the sweep. Soft sweeps can be the outcome of recurrent mutation to the adaptive allele, or the presence of standing genetic variation consisting of multiple copies of the adaptive allele prior to the onset of selection. Importantly, soft sweeps will be common when populations can rapidly adapt to novel selective pressures, either because of a high mutation rate or because adaptive alleles are already present. The prevalence of soft sweeps is especially controversial, and it has been noted that selection on standing variation or recurrent mutations may not always produce soft sweeps. Here, we show that the inverse is true: selection on single-origin de novo mutations may often result in an outcome that is indistinguishable from a soft sweep. This is made possible by allelic gene conversion, which "softens" hard sweeps by copying the adaptive allele onto multiple genetic backgrounds, a process we refer to as a "pseudo-soft" sweep. We carried out a simulation study examining the impact of gene conversion on sweeps from a single de novo variant in models of human, Drosophila, and Arabidopsis populations. The fraction of simulations in which gene conversion had produced multiple haplotypes with the adaptive allele upon fixation was appreciable. Indeed, under realistic demographic histories and gene conversion rates, even if selection always acts on a single-origin mutation, sweeps involving multiple haplotypes are more likely than hard sweeps in large populations, especially when selection is not extremely strong. Thus, even when the mutation rate is low or there is no standing variation, hard sweeps are expected to be the exception rather than the rule in large populations. These results also imply that the presence of signatures of soft sweeps does not necessarily mean that adaptation has been especially rapid or is not mutation limited.
Collapse
Affiliation(s)
- Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
19
|
Hinch R, Donnelly P, Hinch AG. Meiotic DNA breaks drive multifaceted mutagenesis in the human germ line. Science 2023; 382:eadh2531. [PMID: 38033082 PMCID: PMC7615360 DOI: 10.1126/science.adh2531] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/29/2023] [Indexed: 12/02/2023]
Abstract
Meiotic recombination commences with hundreds of programmed DNA breaks; however, the degree to which they are accurately repaired remains poorly understood. We report that meiotic break repair is eightfold more mutagenic for single-base substitutions than was previously understood, leading to de novo mutation in one in four sperm and one in 12 eggs. Its impact on indels and structural variants is even higher, with 100- to 1300-fold increases in rates per break. We uncovered new mutational signatures and footprints relative to break sites, which implicate unexpected biochemical processes and error-prone DNA repair mechanisms, including translesion synthesis and end joining in meiotic break repair. We provide evidence that these mechanisms drive mutagenesis in human germ lines and lead to disruption of hundreds of genes genome wide.
Collapse
Affiliation(s)
- Robert Hinch
- Big Data Institute, University of Oxford; Oxford, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford; Oxford, UK
- Genomics plc; Oxford, UK
| | | |
Collapse
|
20
|
Browning SR, Browning BL. Biobank-scale inference of multi-individual identity by descent and gene conversion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565574. [PMID: 37961601 PMCID: PMC10635131 DOI: 10.1101/2023.11.03.565574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We present a method for efficiently identifying clusters of identical-by-descent haplotypes in biobank-scale sequence data. Our multi-individual approach enables much more efficient collection and storage of identity by descent (IBD) information than approaches that detect and store pairwise IBD segments. Our method's computation time, memory requirements, and output size scale linearly with the number of individuals in the dataset. We also present a method for using multi-individual IBD to detect alleles changed by gene conversion. Application of our methods to the autosomal sequence data for 125,361 White British individuals in the UK Biobank detects more than 9 million converted alleles. This is 2900 times more alleles changed by gene conversion than were detected in a previous analysis of familial data. We estimate that more than 250,000 sequenced probands and a much larger number of additional genomes from multi-generational family members would be required to find a similar number of alleles changed by gene conversion using a family-based approach.
Collapse
Affiliation(s)
| | - Brian L. Browning
- Department of Biostatistics, University of Washington, Seattle, WA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
21
|
Nait Saada J, Tsangalidou Z, Stricker M, Palamara PF. Inference of Coalescence Times and Variant Ages Using Convolutional Neural Networks. Mol Biol Evol 2023; 40:msad211. [PMID: 37738175 PMCID: PMC10581698 DOI: 10.1093/molbev/msad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
Accurate inference of the time to the most recent common ancestor (TMRCA) between pairs of individuals and of the age of genomic variants is key in several population genetic analyses. We developed a likelihood-free approach, called CoalNN, which uses a convolutional neural network to predict pairwise TMRCAs and allele ages from sequencing or SNP array data. CoalNN is trained through simulation and can be adapted to varying parameters, such as demographic history, using transfer learning. Across several simulated scenarios, CoalNN matched or outperformed the accuracy of model-based approaches for pairwise TMRCA and allele age prediction. We applied CoalNN to settings for which model-based approaches are under-developed and performed analyses to gain insights into the set of features it uses to perform TMRCA prediction. We next used CoalNN to analyze 2,504 samples from 26 populations in the 1,000 Genome Project data set, inferring the age of ∼80 million variants. We observed substantial variation across populations and for variants predicted to be pathogenic, reflecting heterogeneous demographic histories and the action of negative selection. We used CoalNN's predicted allele ages to construct genome-wide annotations capturing the signature of past negative selection. We performed LD-score regression analysis of heritability using summary association statistics from 63 independent complex traits and diseases (average N=314k), observing increased annotation-specific effects on heritability compared to a previous allele age annotation. These results highlight the effectiveness of using likelihood-free, simulation-trained models to infer properties of gene genealogies in large genomic data sets.
Collapse
Affiliation(s)
| | | | | | - Pier Francesco Palamara
- Department of Statistics, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Vollger MR, Dishuck PC, Harvey WT, DeWitt WS, Guitart X, Goldberg ME, Rozanski AN, Lucas J, Asri M, Munson KM, Lewis AP, Hoekzema K, Logsdon GA, Porubsky D, Paten B, Harris K, Hsieh P, Eichler EE. Increased mutation and gene conversion within human segmental duplications. Nature 2023; 617:325-334. [PMID: 37165237 PMCID: PMC10172114 DOI: 10.1038/s41586-023-05895-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/28/2023] [Indexed: 05/12/2023]
Abstract
Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data1,2. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions3,4. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences5,6.
Collapse
Affiliation(s)
- Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - William S DeWitt
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Xavi Guitart
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael E Goldberg
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Allison N Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Julian Lucas
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Mobin Asri
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
23
|
Johri P, Pfeifer SP, Jensen JD. Developing an evolutionary baseline model for humans: jointly inferring purifying selection with population history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536488. [PMID: 37090533 PMCID: PMC10120674 DOI: 10.1101/2023.04.11.536488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Building evolutionarily appropriate baseline models for natural populations is not only important for answering fundamental questions in population genetics - including quantifying the relative contributions of adaptive vs. non-adaptive processes - but it is also essential for identifying candidate loci experiencing relatively rare and episodic forms of selection ( e.g., positive or balancing selection). Here, a baseline model was developed for a human population of West African ancestry, the Yoruba, comprising processes constantly operating on the genome ( i.e. , purifying and background selection, population size changes, recombination rate heterogeneity, and gene conversion). Specifically, to perform joint inference of selective effects with demography, an approximate Bayesian approach was employed that utilizes the decay of background selection effects around functional elements, taking into account genomic architecture. This approach inferred a recent 6-fold population growth together with a distribution of fitness effects that is skewed towards effectively neutral mutations. Importantly, these results further suggest that, while strong and/or frequent recurrent positive selection is inconsistent with observed data, weak to moderate positive selection is consistent but unidentifiable if rare.
Collapse
|
24
|
Estimating the genome-wide mutation rate from thousands of unrelated individuals. Am J Hum Genet 2022; 109:2178-2184. [PMID: 36370709 PMCID: PMC9748258 DOI: 10.1016/j.ajhg.2022.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/15/2022] [Indexed: 11/13/2022] Open
Abstract
We provide a method for estimating the genome-wide mutation rate from sequence data on unrelated individuals by using segments of identity by descent (IBD). The length of an IBD segment indicates the time to shared ancestor of the segment, and mutations that have occurred since the shared ancestor result in discordances between the two IBD haplotypes. Previous methods for IBD-based estimation of mutation rate have required the use of family data for accurate phasing of the genotypes. This has limited the scope of application of IBD-based mutation rate estimation. Here, we develop an IBD-based method for mutation rate estimation from population data, and we apply it to whole-genome sequence data on 4,166 European American individuals from the TOPMed Framingham Heart Study, 2,996 European American individuals from the TOPMed My Life, Our Future study, and 1,586 African American individuals from the TOPMed Hypertension Genetic Epidemiology Network study. Although mutation rates may differ between populations as a result of genetic factors, demographic factors such as average parental age, and environmental exposures, our results are consistent with equal genome-wide average mutation rates across these three populations. Our overall estimate of the average genome-wide mutation rate per 108 base pairs per generation for single-nucleotide variants is 1.24 (95% CI 1.18-1.33).
Collapse
|
25
|
Lee B, Cyrill SL, Lee W, Melchiotti R, Andiappan AK, Poidinger M, Rötzschke O. Analysis of archaic human haplotypes suggests that 5hmC acts as an epigenetic guide for NCO recombination. BMC Biol 2022; 20:173. [PMID: 35927700 PMCID: PMC9354366 DOI: 10.1186/s12915-022-01353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Non-crossover (NCO) refers to a mechanism of homologous recombination in which short tracks of DNA are copied between homologue chromatids. The allelic changes are typically restricted to one or few SNPs, which potentially allow for the gradual adaptation and maturation of haplotypes. It is assumed to be a stochastic process but the analysis of archaic and modern human haplotypes revealed a striking variability in local NCO recombination rates. Methods NCO recombination rates of 1.9 million archaic SNPs shared with Denisovan hominids were defined by a linkage study and correlated with functional and genomic annotations as well as ChIP-Seq data from modern humans. Results We detected a strong correlation between NCO recombination rates and the function of the respective region: low NCO rates were evident in introns and quiescent intergenic regions but high rates in splice sites, exons, 5′- and 3′-UTRs, as well as CpG islands. Correlations with ChIP-Seq data from ENCODE and other public sources further identified epigenetic modifications that associated directly with these recombination events. A particularly strong association was observed for 5-hydroxymethylcytosine marks (5hmC), which were enriched in virtually all of the functional regions associated with elevated NCO rates, including CpG islands and ‘poised’ bivalent regions. Conclusion Our results suggest that 5hmC marks may guide the NCO machinery specifically towards functionally relevant regions and, as an intermediate of oxidative demethylation, may open a pathway for environmental influence by specifically targeting recently opened gene loci. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01353-9.
Collapse
Affiliation(s)
- Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Samantha Leeanne Cyrill
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Cold Spring Harbor Laboratory, One Bungtown Road, NY, 11724, Cold Spring Harbor, USA
| | - Wendy Lee
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Rossella Melchiotti
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, 3052, Australia
| | - Olaf Rötzschke
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.
| |
Collapse
|
26
|
Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish. Nat Ecol Evol 2022; 6:1354-1366. [PMID: 35817827 PMCID: PMC9439954 DOI: 10.1038/s41559-022-01813-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/25/2022] [Indexed: 12/21/2022]
Abstract
Triploids are rare in nature because of difficulties in meiotic and gametogenic processes, especially in vertebrates. The Carassius complex of cyprinid teleosts contains sexual tetraploid crucian carp/goldfish (C. auratus) and unisexual hexaploid gibel carp/Prussian carp (C. gibelio) lineages, providing a valuable model for studying the evolution and maintenance mechanism of unisexual polyploids in vertebrates. Here we sequence the genomes of the two species and assemble their haplotypes, which contain two subgenomes (A and B), to the chromosome level. Sequencing coverage analysis reveals that C. gibelio is an amphitriploid (AAABBB) with two triploid sets of chromosomes; each set is derived from a different ancestor. Resequencing data from different strains of C. gibelio show that unisexual reproduction has been maintained for over 0.82 million years. Comparative genomics show intensive expansion and alterations of meiotic cell cycle-related genes and an oocyte-specific histone variant. Cytological assays indicate that C. gibelio produces unreduced oocytes by an alternative ameiotic pathway; however, sporadic homologous recombination and a high rate of gene conversion also exist in C. gibelio. These genomic changes might have facilitated purging deleterious mutations and maintaining genome stability in this unisexual amphitriploid fish. Overall, the current results provide novel insights into the evolutionary mechanisms of the reproductive success in unisexual polyploid vertebrates. Genome sequencing and haplotype assembly of two cyprinid teleosts, a sexual tetraploid and an unisexual hexaploid, reveal insights into the evolutionary mechanisms underpinning the reproductive success of unisexual polyploid vertebrates.
Collapse
|
27
|
Ho AT, Hurst LD. Unusual mammalian usage of TGA stop codons reveals that sequence conservation need not imply purifying selection. PLoS Biol 2022; 20:e3001588. [PMID: 35550630 PMCID: PMC9129041 DOI: 10.1371/journal.pbio.3001588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
The assumption that conservation of sequence implies the action of purifying selection is central to diverse methodologies to infer functional importance. GC-biased gene conversion (gBGC), a meiotic mismatch repair bias strongly favouring GC over AT, can in principle mimic the action of selection, this being thought to be especially important in mammals. As mutation is GC→AT biased, to demonstrate that gBGC does indeed cause false signals requires evidence that an AT-rich residue is selectively optimal compared to its more GC-rich allele, while showing also that the GC-rich alternative is conserved. We propose that mammalian stop codon evolution provides a robust test case. Although in most taxa TAA is the optimal stop codon, TGA is both abundant and conserved in mammalian genomes. We show that this mammalian exceptionalism is well explained by gBGC mimicking purifying selection and that TAA is the selectively optimal codon. Supportive of gBGC, we observe (i) TGA usage trends are consistent at the focal stop codon and elsewhere (in UTR sequences); (ii) that higher TGA usage and higher TAA→TGA substitution rates are predicted by a high recombination rate; and (iii) across species the difference in TAA <-> TGA substitution rates between GC-rich and GC-poor genes is largest in genomes that possess higher between-gene GC variation. TAA optimality is supported both by enrichment in highly expressed genes and trends associated with effective population size. High TGA usage and high TAA→TGA rates in mammals are thus consistent with gBGC’s predicted ability to “drive” deleterious mutations and supports the hypothesis that sequence conservation need not be indicative of purifying selection. A general trend for GC-rich trinucleotides to reside at frequencies far above their mutational equilibrium in high recombining domains supports the generality of these results.
Collapse
Affiliation(s)
- Alexander Thomas Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- * E-mail:
| | | |
Collapse
|
28
|
Wall JD, Robinson JA, Cox LA. High-Resolution Estimates of Crossover and Noncrossover Recombination from a Captive Baboon Colony. Genome Biol Evol 2022; 14:evac040. [PMID: 35325119 PMCID: PMC9048888 DOI: 10.1093/gbe/evac040] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Homologous recombination has been extensively studied in humans and a handful of model organisms. Much less is known about recombination in other species, including nonhuman primates. Here, we present a study of crossovers (COs) and noncrossover (NCO) recombination in olive baboons (Papio anubis) from two pedigrees containing a total of 20 paternal and 17 maternal meioses, and compare these results to linkage disequilibrium (LD) based recombination estimates from 36 unrelated olive baboons. We demonstrate how COs, combined with LD-based recombination estimates, can be used to identify genome assembly errors. We also quantify sex-specific differences in recombination rates, including elevated male CO and reduced female CO rates near telomeres. Finally, we add to the increasing body of evidence suggesting that while most NCO recombination tracts in mammals are short (e.g., <500 bp), there is a non-negligible fraction of longer (e.g., >1 kb) NCO tracts. For NCO tracts shorter than 10 kb, we fit a mixture of two (truncated) geometric distributions model to the NCO tract length distribution and estimate that >99% of all NCO tracts are very short (mean 24 bp), but the remaining tracts can be quite long (mean 4.3 kb). A single geometric distribution model for NCO tract lengths is incompatible with the data, suggesting that LD-based methods for estimating NCO recombination rates that make this assumption may need to be modified.
Collapse
Affiliation(s)
- Jeffrey D. Wall
- Institute for Human Genetics, University of California San Francisco, USA
| | | | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| |
Collapse
|
29
|
Matschiner M, Barth JMI, Tørresen OK, Star B, Baalsrud HT, Brieuc MSO, Pampoulie C, Bradbury I, Jakobsen KS, Jentoft S. Supergene origin and maintenance in Atlantic cod. Nat Ecol Evol 2022; 6:469-481. [PMID: 35177802 PMCID: PMC8986531 DOI: 10.1038/s41559-022-01661-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Supergenes are sets of genes that are inherited as a single marker and encode complex phenotypes through their joint action. They are identified in an increasing number of organisms, yet their origins and evolution remain enigmatic. In Atlantic cod, four megabase-scale supergenes have been identified and linked to migratory lifestyle and environmental adaptations. Here we investigate the origin and maintenance of these four supergenes through analysis of whole-genome-sequencing data, including a new long-read-based genome assembly for a non-migratory Atlantic cod individual. We corroborate the finding that chromosomal inversions underlie all four supergenes, and we show that they originated at different times between 0.40 and 1.66 million years ago. We reveal gene flux between supergene haplotypes where migratory and stationary Atlantic cod co-occur and conclude that this gene flux is driven by gene conversion, on the basis of an increase in GC content in exchanged sites. Additionally, we find evidence for double crossover between supergene haplotypes, leading to the exchange of an ~275 kilobase fragment with genes potentially involved in adaptation to low salinity in the Baltic Sea. Our results suggest that supergenes can be maintained over long timescales in the same way as hybridizing species, through the selective purging of introduced genetic variation. Atlantic cod carries four supergenes linked to migratory lifestyle and environmental adaptations. Using whole-genome sequencing, the authors show that the genome inversions that underlie the supergenes originated at different times and show gene flux between supergene haplotypes.
Collapse
Affiliation(s)
- Michael Matschiner
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway. .,Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland. .,Natural History Museum, University of Oslo, Oslo, Norway.
| | - Julia Maria Isis Barth
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Ole Kristian Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Helle Tessand Baalsrud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marine Servane Ono Brieuc
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Ian Bradbury
- Fisheries and Oceans Canada, St John's, Newfoundland and Labrador, Canada
| | - Kjetill Sigurd Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
30
|
Vecchyo DOD, Lohmueller KE, Novembre J. Haplotype-based inference of the distribution of fitness effects. Genetics 2022; 220:6501446. [PMID: 35100400 PMCID: PMC8982047 DOI: 10.1093/genetics/iyac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/18/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Recent genome sequencing studies with large sample sizes in humans have discovered a vast quantity of low-frequency variants, providing an important source of information to analyze how selection is acting on human genetic variation. In order to estimate the strength of natural selection acting on low-frequency variants, we have developed a likelihood-based method that uses the lengths of pairwise identity-by-state between haplotypes carrying low-frequency variants. We show that in some non-equilibrium populations (such as those that have had recent population expansions) it is possible to distinguish between positive or negative selection acting on a set of variants. With our new framework, one can infer a fixed selection intensity acting on a set of variants at a particular frequency, or a distribution of selection coefficients for standing variants and new mutations. We show an application of our method to the UK10K phased haplotype dataset of individuals.
Collapse
Affiliation(s)
- Diego Ortega-Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, 76230, México
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, 90095, United States of America
| | - Kirk E Lohmueller
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, 90095, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, 90095, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, 90095, United States of America
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, 60637, United States of America
| |
Collapse
|
31
|
Grunwald HA, Weitzel AJ, Cooper KL. Applications of and considerations for using CRISPR-Cas9-mediated gene conversion systems in rodents. Nat Protoc 2022; 17:3-14. [PMID: 34949863 DOI: 10.1038/s41596-021-00646-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023]
Abstract
Genetic elements that are inherited at super-Mendelian frequencies could be used in a 'gene drive' to spread an allele to high prevalence in a population with the goal of eliminating invasive species or disease vectors. We recently demonstrated that the gene conversion mechanism underlying a CRISPR-Cas9-mediated gene drive is feasible in mice. Although substantial technical hurdles remain, overcoming these could lead to strategies that might decrease the spread of rodent-borne Lyme disease or eliminate invasive populations of mice and rats that devastate island ecology. Perhaps more immediately achievable at moderate gene conversion efficiency, applications in a laboratory setting could produce complex genotypes that reduce the time and cost in both dollars and animal lives compared with Mendelian inheritance strategies. Here, we discuss what we have learned from early efforts to achieve CRISPR-Cas9-mediated gene conversion, potential for broader applications in the laboratory, current limitations, and plans for optimizing this potentially powerful technology.
Collapse
Affiliation(s)
- Hannah A Grunwald
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Alexander J Weitzel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Janko K, Bartoš O, Kočí J, Roslein J, Drdová EJ, Kotusz J, Eisner J, Mokrejš M, Štefková-Kašparová E. Genome Fractionation and Loss of Heterozygosity in Hybrids and Polyploids: Mechanisms, Consequences for Selection, and Link to Gene Function. Mol Biol Evol 2021; 38:5255-5274. [PMID: 34410426 PMCID: PMC8662595 DOI: 10.1093/molbev/msab249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hybridization and genome duplication have played crucial roles in the evolution of many animal and plant taxa. The subgenomes of parental species undergo considerable changes in hybrids and polyploids, which often selectively eliminate segments of one subgenome. However, the mechanisms underlying these changes are not well understood, particularly when the hybridization is linked with asexual reproduction that opens up unexpected evolutionary pathways. To elucidate this problem, we compared published cytogenetic and RNAseq data with exome sequences of asexual diploid and polyploid hybrids between three fish species; Cobitis elongatoides, C. taenia, and C. tanaitica. Clonal genomes remained generally static at chromosome-scale levels but their heterozygosity gradually deteriorated at the level of individual genes owing to allelic deletions and conversions. Interestingly, the impact of both processes varies among animals and genomic regions depending on ploidy level and the properties of affected genes. Namely, polyploids were more tolerant to deletions than diploid asexuals where conversions prevailed, and genomic restructuring events accumulated preferentially in genes characterized by high transcription levels and GC-content, strong purifying selection and specific functions like interacting with intracellular membranes. Although hybrids were phenotypically more similar to C. taenia, we found that they preferentially retained C. elongatoides alleles. This demonstrates that favored subgenome is not necessarily the transcriptionally dominant one. This study demonstrated that subgenomes in asexual hybrids and polyploids evolve under a complex interplay of selection and several molecular mechanisms whose efficiency depends on the organism's ploidy level, as well as functional properties and parental ancestry of the genomic region.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Oldřich Bartoš
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Kočí
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Roslein
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Edita Janková Drdová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kotusz
- Museum of Natural History, University of Wroclaw, Wroclaw, Poland
| | - Jan Eisner
- Department of Mathematics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Martin Mokrejš
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- IT4Innovations, VŠB—Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Eva Štefková-Kašparová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Breeding, FAFNR, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
33
|
Lucena-Perez M, Kleinman-Ruiz D, Marmesat E, Saveljev AP, Schmidt K, Godoy JA. Bottleneck-associated changes in the genomic landscape of genetic diversity in wild lynx populations. Evol Appl 2021; 14:2664-2679. [PMID: 34815746 PMCID: PMC8591332 DOI: 10.1111/eva.13302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023] Open
Abstract
Demographic bottlenecks generally reduce genetic diversity through more intense genetic drift, but their net effect may vary along the genome due to the random nature of genetic drift and to local effects of recombination, mutation, and selection. Here, we analyzed the changes in genetic diversity following a bottleneck by comparing whole-genome diversity patterns in populations with and without severe recent documented declines of Iberian (Lynx pardinus, n = 31) and Eurasian lynx (Lynx lynx, n = 29). As expected, overall genomic diversity correlated negatively with bottleneck intensity and/or duration. Correlations of genetic diversity with divergence, chromosome size, gene or functional site content, GC content, or recombination were observed in nonbottlenecked populations, but were weaker in bottlenecked populations. Also, functional features under intense purifying selection and the X chromosome showed an increase in the observed density of variants, even resulting in higher θ W diversity than in nonbottlenecked populations. Increased diversity seems to be related to both a higher mutational input in those regions creating a large collection of low-frequency variants, a few of which increase in frequency during the bottleneck to the point they become detectable with our limited sample, and the reduced efficacy of purifying selection, which affects not only protein structure and function but also the regulation of gene expression. The results of this study alert to the possible reduction of fitness and adaptive potential associated with the genomic erosion in regulatory elements. Further, the detection of a gain of diversity in ultra-conserved elements can be used as a sensitive and easy-to-apply signature of genetic erosion in wild populations.
Collapse
Affiliation(s)
- Maria Lucena-Perez
- Departamento de Ecología Integrativa Estación Biológica de Doñana (CSIC) Sevilla Spain
| | - Daniel Kleinman-Ruiz
- Departamento de Ecología Integrativa Estación Biológica de Doñana (CSIC) Sevilla Spain
- Departamento de Genética Facultad de Biología Universidad Complutense Madrid Spain
| | - Elena Marmesat
- Departamento de Ecología Integrativa Estación Biológica de Doñana (CSIC) Sevilla Spain
| | - Alexander P Saveljev
- Department of Animal Ecology Russian Research Institute of Game Management and Fur Farming Kirov Russia
| | - Krzysztof Schmidt
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | - José A Godoy
- Departamento de Ecología Integrativa Estación Biológica de Doñana (CSIC) Sevilla Spain
| |
Collapse
|
34
|
Jackson EK, Bellott DW, Skaletsky H, Page DC. GC-biased gene conversion in X-chromosome palindromes conserved in human, chimpanzee, and rhesus macaque. G3 GENES|GENOMES|GENETICS 2021; 11:6317831. [PMID: 34849781 PMCID: PMC8981503 DOI: 10.1093/g3journal/jkab224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022]
Abstract
Gene conversion is GC-biased across a wide range of taxa. Large palindromes on mammalian
sex chromosomes undergo frequent gene conversion that maintains arm-to-arm sequence
identity greater than 99%, which may increase their susceptibility to the effects of
GC-biased gene conversion. Here, we demonstrate a striking history of GC-biased gene
conversion in 12 palindromes conserved on the X chromosomes of human, chimpanzee, and
rhesus macaque. Primate X-chromosome palindrome arms have significantly higher GC content
than flanking single-copy sequences. Nucleotide replacements that occurred in human and
chimpanzee palindrome arms over the past 7 million years are one-and-a-half times as
GC-rich as the ancestral bases they replaced. Using simulations, we show that our observed
pattern of nucleotide replacements is consistent with GC-biased gene conversion with a
magnitude of 70%, similar to previously reported values based on analyses of human
meioses. However, GC-biased gene conversion since the divergence of human and rhesus
macaque explains only a fraction of the observed difference in GC content between
palindrome arms and flanking sequence, suggesting that palindromes are older than 29
million years and/or had elevated GC content at the time of their formation. This work
supports a greater than 2:1 preference for GC bases over AT bases during gene conversion
and demonstrates that the evolution and composition of mammalian sex chromosome
palindromes is strongly influenced by GC-biased gene conversion.
Collapse
Affiliation(s)
- Emily K Jackson
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Helen Skaletsky
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Wang RJ, Radivojac P, Hahn MW. Distinct error rates for reference and nonreference genotypes estimated by pedigree analysis. Genetics 2021; 217:1-10. [PMID: 33683359 DOI: 10.1093/genetics/iyaa014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
Errors in genotype calling can have perverse effects on genetic analyses, confounding association studies, and obscuring rare variants. Analyses now routinely incorporate error rates to control for spurious findings. However, reliable estimates of the error rate can be difficult to obtain because of their variance between studies. Most studies also report only a single estimate of the error rate even though genotypes can be miscalled in more than one way. Here, we report a method for estimating the rates at which different types of genotyping errors occur at biallelic loci using pedigree information. Our method identifies potential genotyping errors by exploiting instances where the haplotypic phase has not been faithfully transmitted. The expected frequency of inconsistent phase depends on the combination of genotypes in a pedigree and the probability of miscalling each genotype. We develop a model that uses the differences in these frequencies to estimate rates for different types of genotype error. Simulations show that our method accurately estimates these error rates in a variety of scenarios. We apply this method to a dataset from the whole-genome sequencing of owl monkeys (Aotus nancymaae) in three-generation pedigrees. We find significant differences between estimates for different types of genotyping error, with the most common being homozygous reference sites miscalled as heterozygous and vice versa. The approach we describe is applicable to any set of genotypes where haplotypic phase can reliably be called and should prove useful in helping to control for false discoveries.
Collapse
Affiliation(s)
- Richard J Wang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
36
|
Gergelits V, Parvanov E, Simecek P, Forejt J. Chromosome-wide characterization of meiotic noncrossovers (gene conversions) in mouse hybrids. Genetics 2021; 217:1-14. [PMID: 33683354 DOI: 10.1093/genetics/iyaa013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 01/16/2023] Open
Abstract
During meiosis, the recombination-initiating DNA double-strand breaks (DSBs) are repaired by crossovers or noncrossovers (gene conversions). While crossovers are easily detectable, noncrossover identification is hampered by the small size of their converted tracts and the necessity of sequence polymorphism. We report identification and characterization of a mouse chromosome-wide set of noncrossovers by next-generation sequencing of 10 mouse intersubspecific chromosome substitution strains. Based on 94 identified noncrossovers, we determined the mean length of a conversion tract to be 32 bp. The spatial chromosome-wide distribution of noncrossovers and crossovers significantly differed, although both sets overlapped the known hotspots of PRDM9-directed histone methylation and DNA DSBs, thus supporting their origin in the standard DSB repair pathway. A significant deficit of noncrossovers descending from asymmetric DSBs proved their proposed adverse effect on meiotic recombination and pointed to sister chromatids as an alternative template for their repair. The finding has implications for the molecular mechanism of hybrid sterility in mice from crosses between closely related Mus musculus musculus and Mus musculus domesticus subspecies.
Collapse
Affiliation(s)
- Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, CZ-12000 Prague, Czech Republic
| | - Emil Parvanov
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| | - Petr Simecek
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| |
Collapse
|
37
|
Bergman J, Schierup MH. Population dynamics of GC-changing mutations in humans and great apes. Genetics 2021; 218:6291657. [PMID: 34081117 DOI: 10.1093/genetics/iyab083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 11/14/2022] Open
Abstract
The nucleotide composition of the genome is a balance between origin and fixation rates of different mutations. For example, it is well-known that transitions occur more frequently than transversions, particularly at CpG sites. Differences in fixation rates of mutation types are less explored. Specifically, recombination-associated GC-biased gene conversion (gBGC) may differentially impact GC-changing mutations, due to differences in their genomic distributions and efficiency of mismatch repair mechanisms. Given that recombination evolves rapidly across species, we explore gBGC of different mutation types across human populations and great ape species. We report a stronger correlation between segregating GC frequency and recombination for transitions than for transversions. Notably, CpG transitions are most strongly affected by gBGC in humans and chimpanzees. We show that the overall strength of gBGC is generally correlated with effective population sizes in humans, with some notable exceptions, such as a stronger effect of gBGC on non-CpG transitions in populations of European descent. Furthermore, species of the Gorilla and Pongo genus have a greatly reduced gBGC effect on CpG sites. We also study the dependence of gBGC dynamics on flanking nucleotides and show that some mutation types evolve in opposition to the gBGC expectation, likely due to hypermutability of specific nucleotide contexts. Our results highlight the importance of different gBGC dynamics experienced by GC-changing mutations and their impact on nucleotide composition evolution.
Collapse
Affiliation(s)
- Juraj Bergman
- Bioinformatics Research Institute, Aarhus University, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
38
|
Abstract
Recombination increases the local GC-content in genomic regions through GC-biased gene conversion (gBGC). The recent discovery of a large genomic region with extreme GC-content in the fat sand rat Psammomys obesus provides a model to study the effects of gBGC on chromosome evolution. Here, we compare the GC-content and GC-to-AT substitution patterns across protein-coding genes of four gerbil species and two murine rodents (mouse and rat). We find that the known high-GC region is present in all the gerbils, and is characterized by high substitution rates for all mutational categories (AT-to-GC, GC-to-AT, and GC-conservative) both at synonymous and nonsynonymous sites. A higher AT-to-GC than GC-to-AT rate is consistent with the high GC-content. Additionally, we find more than 300 genes outside the known region with outlying values of AT-to-GC synonymous substitution rates in gerbils. Of these, over 30% are organized into at least 17 large clusters observable at the megabase-scale. The unusual GC-skewed substitution pattern suggests the evolution of genomic regions with very high recombination rates in the gerbil lineage, which can lead to a runaway increase in GC-content. Our results imply that rapid evolution of GC-content is possible in mammals, with gerbil species providing a powerful model to study the mechanisms of gBGC.
Collapse
Affiliation(s)
- Rodrigo Pracana
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - John F Mulley
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | | |
Collapse
|
39
|
Browning SR, Browning BL. Probabilistic Estimation of Identity by Descent Segment Endpoints and Detection of Recent Selection. Am J Hum Genet 2020; 107:895-910. [PMID: 33053335 PMCID: PMC7553009 DOI: 10.1016/j.ajhg.2020.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Most methods for fast detection of identity by descent (IBD) segments report identity by state segments without any quantification of the uncertainty in the endpoints and lengths of the IBD segments. We present a method for determining the posterior probability distribution of IBD segment endpoints. Our approach accounts for genotype errors, recent mutations, and gene conversions which disrupt DNA sequence identity within IBD segments, and it can be applied to large cohorts with whole-genome sequence or SNP array data. We find that our method's estimates of uncertainty are well calibrated for homogeneous samples. We quantify endpoint uncertainty for 77.7 billion IBD segments from 408,883 individuals of white British ancestry in the UK Biobank, and we use these IBD segments to find regions showing evidence of recent natural selection. We show that many spurious selection signals are eliminated by the use of unbiased estimates of IBD segment endpoints and a pedigree-based genetic map. Eleven of the twelve regions with the greatest evidence for recent selection in our scan have been identified as selected in previous analyses using different approaches. Our computationally efficient method for quantifying IBD segment endpoint uncertainty is implemented in the open source ibd-ends software package.
Collapse
Affiliation(s)
- Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| | - Brian L Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
40
|
Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations. PLoS One 2020; 15:e0232167. [PMID: 32353016 PMCID: PMC7192473 DOI: 10.1371/journal.pone.0232167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
We examined seventy million well-characterized human mutations, and their impact on G+C-compositional dynamics, in order to understand the formation and maintenance of major genomic nucleotide sequence patterns. Among novel mutations, those that change a strong (S) base pair G:C/C:G to a weak (W) pair A:T/T:A occur at nearly twice the frequency of the opposite mutations. Such imbalance puts strong downward pressure on overall GC-content. However, along protracted paths to fixation, S→W mutations are much less likely to propagate than W→S mutations. The magnitude of relative propagation disadvantages for S→W mutations is inexplicable by any currently-accepted model. This fact forced us to re-examine the quantitative features of Biased Gene Conversion (BGC) theory. Revised parameters of BGC that, per average individual, convert 7–14 W base pairs into S pairs, would account for the S-content turnover differences between new and old mutations, and make BGC an instrumental force for nucleotide dynamics and evolution. BGC should thus be considered seriously in both theories and biomedical practice. In particular, BGC should be taken into account during allele imputations, where missing SNP alleles are computationally predicted based on the information about several neighboring alleles. Finally, we analyzed the effect of neighboring nucleotide context on the mutation frequencies, dynamics, and GC-composition turnover. For this purpose, we examined genomic regions having extremely biased nucleotide compositions (enriched for S-, W-, purine/pyrimidine strand asymmetry, or AC/GT-strand asymmetry). It was found that point mutations in these regions preferentially degrade the nucleotide inhomogeneities, decreasing the sequence biases. Degradation of sequence bias is highest for novel mutations, and considerably lower for older mutations (those widespread across populations). Besides BGC, there may be additional, still uncharacterized molecular mechanisms that either preserve genomic regions with biased nucleotide compositions from mutational degradation or fail to degrade such inhomogeneities in specific chromosomal regions.
Collapse
|
41
|
Seidman DN, Shenoy SA, Kim M, Babu R, Woods IG, Dyer TD, Lehman DM, Curran JE, Duggirala R, Blangero J, Williams AL. Rapid, Phase-free Detection of Long Identity-by-Descent Segments Enables Effective Relationship Classification. Am J Hum Genet 2020; 106:453-466. [PMID: 32197076 PMCID: PMC7118564 DOI: 10.1016/j.ajhg.2020.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/18/2020] [Indexed: 01/29/2023] Open
Abstract
Identity-by-descent (IBD) segments are a useful tool for applications ranging from demographic inference to relationship classification, but most detection methods rely on phasing information and therefore require substantial computation time. As genetic datasets grow, methods for inferring IBD segments that scale well will be critical. We developed IBIS, an IBD detector that locates long regions of allele sharing between unphased individuals, and benchmarked it with Refined IBD, GERMLINE, and TRUFFLE on 3,000 simulated individuals. Phasing these with Beagle 5 takes 4.3 CPU days, followed by either Refined IBD or GERMLINE segment detection in 2.9 or 1.1 h, respectively. By comparison, IBIS finishes in 6.8 min or 7.8 min with IBD2 functionality enabled: speedups of 805-946× including phasing time. TRUFFLE takes 2.6 h, corresponding to IBIS speedups of 20.2-23.3×. IBIS is also accurate, inferring ≥7 cM IBD segments at quality comparable to Refined IBD and GERMLINE. With these segments, IBIS classifies first through third degree relatives in real Mexican American samples at rates meeting or exceeding other methods tested and identifies fourth through sixth degree pairs at rates within 0.0%-2.0% of the top method. While allele frequency-based approaches that do not detect segments can infer relationship degrees faster than IBIS, the fastest are biased in admixed samples, with KING inferring 30.8% fewer fifth degree Mexican American relatives correctly compared with IBIS. Finally, we ran IBIS on chromosome 2 of the UK Biobank dataset and estimate its runtime on the autosomes to be 3.3 days parallelized across 128 cores.
Collapse
Affiliation(s)
- Daniel N Seidman
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Sushila A Shenoy
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Minsoo Kim
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ramya Babu
- Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
| | - Ian G Woods
- Department of Biology, Ithaca College, Ithaca, NY 14850, USA
| | - Thomas D Dyer
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Donna M Lehman
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Amy L Williams
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
42
|
Zhou Y, Browning SR, Browning BL. A Fast and Simple Method for Detecting Identity-by-Descent Segments in Large-Scale Data. Am J Hum Genet 2020; 106:426-437. [PMID: 32169169 PMCID: PMC7118582 DOI: 10.1016/j.ajhg.2020.02.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
Segments of identity by descent (IBD) are used in many genetic analyses. We present a method for detecting identical-by-descent haplotype segments in phased genotype data. Our method, called hap-IBD, combines a compressed representation of haplotype data, the positional Burrows-Wheeler transform, and multi-threaded execution to produce very fast analysis times. An attractive feature of hap-IBD is its simplicity: the input parameters clearly and precisely define the IBD segments that are reported, so that program correctness can be confirmed by users. We evaluate hap-IBD and four state-of-the-art IBD segment detection methods (GERMLINE, iLASH, RaPID, and TRUFFLE) using UK Biobank chromosome 20 data and simulated sequence data. We show that hap-IBD detects IBD segments faster and more accurately than competing methods, and that hap-IBD is the only method that can rapidly and accurately detect short 2-4 centiMorgan (cM) IBD segments in the full UK Biobank data. Analysis of 485,346 UK Biobank samples through the use of hap-IBD with 12 computational threads detects 231.5 billion autosomal IBD segments with length ≥2 cM in 24.4 h.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Brian L Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Caballero M, Seidman DN, Qiao Y, Sannerud J, Dyer TD, Lehman DM, Curran JE, Duggirala R, Blangero J, Carmi S, Williams AL. Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives. PLoS Genet 2019; 15:e1007979. [PMID: 31860654 PMCID: PMC6944377 DOI: 10.1371/journal.pgen.1007979] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/06/2020] [Accepted: 12/05/2019] [Indexed: 11/19/2022] Open
Abstract
Simulations of close relatives and identical by descent (IBD) segments are common in genetic studies, yet most past efforts have utilized sex averaged genetic maps and ignored crossover interference, thus omitting features known to affect the breakpoints of IBD segments. We developed Ped-sim, a method for simulating relatives that can utilize either sex-specific or sex averaged genetic maps and also either a model of crossover interference or the traditional Poisson model for inter-crossover distances. To characterize the impact of previously ignored mechanisms, we simulated data for all four combinations of these factors. We found that modeling crossover interference decreases the standard deviation of pairwise IBD proportions by 10.4% on average in full siblings through second cousins. By contrast, sex-specific maps increase this standard deviation by 4.2% on average, and also impact the number of segments relatives share. Most notably, using sex-specific maps, the number of segments half-siblings share is bimodal; and when combined with interference modeling, the probability that sixth cousins have non-zero IBD sharing ranges from 9.0 to 13.1%, depending on the sexes of the individuals through which they are related. We present new analytical results for the distributions of IBD segments under these models and show they match results from simulations. Finally, we compared IBD sharing rates between simulated and real relatives and find that the combination of sex-specific maps and interference modeling most accurately captures IBD rates in real data. Ped-sim is open source and available from https://github.com/williamslab/ped-sim.
Collapse
Affiliation(s)
- Madison Caballero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel N. Seidman
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Ying Qiao
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Jens Sannerud
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Thomas D. Dyer
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Donna M. Lehman
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - John Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amy L. Williams
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
44
|
Li R, Bitoun E, Altemose N, Davies RW, Davies B, Myers SR. A high-resolution map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination. Nat Commun 2019; 10:3900. [PMID: 31467277 PMCID: PMC6715734 DOI: 10.1038/s41467-019-11675-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
During meiotic recombination, homologue-templated repair of programmed DNA double-strand breaks (DSBs) produces relatively few crossovers and many difficult-to-detect non-crossovers. By intercrossing two diverged mouse subspecies over five generations and deep-sequencing 119 offspring, we detect thousands of crossover and non-crossover events genome-wide with unprecedented power and spatial resolution. We find that both crossovers and non-crossovers are strongly depleted at DSB hotspots where the DSB-positioning protein PRDM9 fails to bind to the unbroken homologous chromosome, revealing that PRDM9 also functions to promote homologue-templated repair. Our results show that complex non-crossovers are much rarer in mice than humans, consistent with complex events arising from accumulated non-programmed DNA damage. Unexpectedly, we also find that GC-biased gene conversion is restricted to non-crossover tracts containing only one mismatch. These results demonstrate that local genetic diversity profoundly alters meiotic repair pathway decisions via at least two distinct mechanisms, impacting genome evolution and Prdm9-related hybrid infertility. During meiotic recombination, genetic information is transferred or exchanged between parental chromosome copies. Using a large hybrid mouse pedigree, the authors generated high-resolution maps of these transfer/exchange events and discovered new properties governing their processing and resolution.
Collapse
Affiliation(s)
- Ran Li
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.,Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
| | - Emmanuelle Bitoun
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Nicolas Altemose
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.,Department of Bioengineering, Stanley Hall, University of California, Berkeley, CA, 94720, USA
| | - Robert W Davies
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Benjamin Davies
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon R Myers
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK. .,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
| |
Collapse
|
45
|
Kawakami T, Wallberg A, Olsson A, Wintermantel D, de Miranda JR, Allsopp M, Rundlöf M, Webster MT. Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and Bumblebees. Genetics 2019; 212:1101-1119. [PMID: 31152071 PMCID: PMC6707477 DOI: 10.1534/genetics.119.302008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
Meiotic recombination shuffles genetic variation and promotes correct segregation of chromosomes. Rates of recombination vary on several scales, both within genomes and between individuals, and this variation is affected by both genetic and environmental factors. Social insects have extremely high rates of recombination, although the evolutionary causes of this are not known. Here, we estimate rates of crossovers and gene conversions in 22 colonies of the honeybee, Apis mellifera, and 9 colonies of the bumblebee, Bombus terrestris, using direct sequencing of 299 haploid drone offspring. We confirm that both species have extremely elevated crossover rates, with higher rates measured in the highly eusocial honeybee than the primitively social bumblebee. There are also significant differences in recombination rate between subspecies of honeybee. There is substantial variation in genome-wide recombination rate between individuals of both A. mellifera and B. terrestris and the distribution of these rates overlap between species. A large proportion of interindividual variation in recombination rate is heritable, which indicates the presence of variation in trans-acting factors that influence recombination genome-wide. We infer that levels of crossover interference are significantly lower in honeybees compared to bumblebees, which may be one mechanism that contributes to higher recombination rates in honeybees. We also find a significant increase in recombination rate with distance from the centromere, mirrored by methylation differences. We detect a strong transmission bias due to GC-biased gene conversion associated with noncrossover gene conversions. Our results shed light on the mechanistic causes of extreme rates of recombination in social insects and the genetic architecture of recombination rate variation.
Collapse
Affiliation(s)
- Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 752 36, Sweden
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, United Kingdom
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| | - Dimitry Wintermantel
- INRA, UE 1255 APIS, Le Magneraud, 17700 Surgères, France
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS and Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Mike Allsopp
- Plant Protection Research Institute, Agricultural Research Council, Stellenbosch, 7608, South Africa
| | - Maj Rundlöf
- Department of Biology, Lund University, 223 62, Sweden
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| |
Collapse
|
46
|
A century of bias in genetics and evolution. Heredity (Edinb) 2019; 123:33-43. [PMID: 31189901 DOI: 10.1038/s41437-019-0194-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Mendel proposed that the heritable material is particulate and that transmission of alleles is unbiased. An assumption of unbiased transmission was necessary to show how variation can be preserved in the absence of selection, so overturning an early objection to Darwinism. In the second half of the twentieth century, it was widely recognised that even strongly deleterious alleles can invade if they have strongly biased transmission (i.e. strong segregation distortion). The spread of alleles with distorted segregation can explain many curiosities. More recently, the selectionist-neutralist duopoly was broken by the realisation that biased gene conversion can explain phenomena such as mammalian isochore structures. An initial focus on unbiased transmission in 1919, has thus given way to an interest in biased transmission in 2019. A focus on very weak bias is now possible owing to technological advances, although technical biases may put a limit on resolving power. To understand the relevance of weak bias we could profit from having the concept of the effectively Mendelian allele, a companion to the effectively neutral allele. Understanding the implications of unbiased and biased transmission may, I suggest, be a good way to teach evolution so as to avoid psychological biases.
Collapse
|
47
|
Hermann P, Heissl A, Tiemann‐Boege I, Futschik A. LDJump: Estimating variable recombination rates from population genetic data. Mol Ecol Resour 2019; 19:623-638. [PMID: 30666785 PMCID: PMC6519033 DOI: 10.1111/1755-0998.12994] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/13/2018] [Accepted: 01/11/2019] [Indexed: 11/27/2022]
Abstract
As recombination plays an important role in evolution, its estimation and the identification of hotspot positions is of considerable interest. We propose a novel approach for estimating population recombination rates based on genotyping or sequence data that involves a sequential multiscale change point estimator. Our method also permits demography to be taken into account. It uses several summary statistics within a regression model fitted on suitable scenarios. Our proposed method is accurate, computationally fast, and provides a parsimonious solution by ensuring a type I error control against too many changes in the recombination rate. An application to human genome data suggests a good congruence between our estimated and experimentally identified hotspots. Our method is implemented in the R-package LDJump, which is freely available at https://github.com/PhHermann/LDJump.
Collapse
Affiliation(s)
- Philipp Hermann
- Department of Applied StatisticsJohannes Kepler University LinzLinzAustria
| | - Angelika Heissl
- Institute of BiophysicsJohannes Kepler University LinzLinzAustria
| | | | - Andreas Futschik
- Department of Applied StatisticsJohannes Kepler University LinzLinzAustria
| |
Collapse
|
48
|
Heissl A, Betancourt AJ, Hermann P, Povysil G, Arbeithuber B, Futschik A, Ebner T, Tiemann-Boege I. The impact of poly-A microsatellite heterologies in meiotic recombination. Life Sci Alliance 2019; 2:e201900364. [PMID: 31023833 PMCID: PMC6485458 DOI: 10.26508/lsa.201900364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Meiotic recombination has strong, but poorly understood effects on short tandem repeat (STR) instability. Here, we screened thousands of single recombinant products with sperm typing to characterize the role of polymorphic poly-A repeats at a human recombination hotspot in terms of hotspot activity and STR evolution. We show that the length asymmetry between heterozygous poly-A's strongly influences the recombination outcome: a heterology of 10 A's (9A/19A) reduces the number of crossovers and elevates the frequency of non-crossovers, complex recombination products, and long conversion tracts. Moreover, the length of the heterology also influences the STR transmission during meiotic repair with a strong and significant insertion bias for the short heterology (6A/7A) and a deletion bias for the long heterology (9A/19A). In spite of this opposing insertion-/deletion-biased gene conversion, we find that poly-A's are enriched at human recombination hotspots that could have important consequences in hotspot activation.
Collapse
Affiliation(s)
- Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Philipp Hermann
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | - Gundula Povysil
- Institute of Bioinformatics, Johannes Kepler University, Linz, Austria
| | | | - Andreas Futschik
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Clinic, Linz, Austria
| | | |
Collapse
|
49
|
Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glémin S, Bierne N, Duret L. Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion. Mol Biol Evol 2019; 35:1092-1103. [PMID: 29390090 DOI: 10.1093/molbev/msy015] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selection on codon usage bias is well documented in a number of microorganisms. Whether codon usage is also generally shaped by natural selection in large organisms, despite their relatively small effective population size (Ne), is unclear. In animals, the population genetics of codon usage bias has only been studied in a handful of model organisms so far, and can be affected by confounding, nonadaptive processes such as GC-biased gene conversion and experimental artefacts. Using population transcriptomics data, we analyzed the relationship between codon usage, gene expression, allele frequency distribution, and recombination rate in 30 nonmodel species of animals, each from a different family, covering a wide range of effective population sizes. We disentangled the effects of translational selection and GC-biased gene conversion on codon usage by separately analyzing GC-conservative and GC-changing mutations. We report evidence for effective translational selection on codon usage in large-Ne species of animals, but not in small-Ne ones, in agreement with the nearly neutral theory of molecular evolution. C- and T-ending codons tend to be preferred over synonymous G- and A-ending ones, for reasons that remain to be determined. In contrast, we uncovered a conspicuous effect of GC-biased gene conversion, which is widespread in animals and the main force determining the fate of AT↔GC mutations. Intriguingly, the strength of its effect was uncorrelated with Ne.
Collapse
Affiliation(s)
- Nicolas Galtier
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Camille Roux
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,UMR 8198 - Evo-Eco-Paleo, CNRS, Université de Lille-Sciences et Technologies, Villeneuve d'Ascq, France
| | - Marjolaine Rousselle
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jonathan Romiguier
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emeric Figuet
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Glémin
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Nicolas Bierne
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
50
|
Rousselle M, Laverré A, Figuet E, Nabholz B, Galtier N. Influence of Recombination and GC-biased Gene Conversion on the Adaptive and Nonadaptive Substitution Rate in Mammals versus Birds. Mol Biol Evol 2019; 36:458-471. [PMID: 30590692 PMCID: PMC6389324 DOI: 10.1093/molbev/msy243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombination is expected to affect functional sequence evolution in several ways. On the one hand, recombination is thought to improve the efficiency of multilocus selection by dissipating linkage disequilibrium. On the other hand, natural selection can be counteracted by recombination-associated transmission distorters such as GC-biased gene conversion (gBGC), which tends to promote G and C alleles irrespective of their fitness effect in high-recombining regions. It has been suggested that gBGC might impact coding sequence evolution in vertebrates, and particularly the ratio of nonsynonymous to synonymous substitution rates (dN/dS). However, distinctive gBGC patterns have been reported in mammals and birds, maybe reflecting the documented contrasts in evolutionary dynamics of recombination rate between these two taxa. Here, we explore how recombination and gBGC affect coding sequence evolution in mammals and birds by analyzing proteome-wide data in six species of Galloanserae (fowls) and six species of catarrhine primates. We estimated the dN/dS ratio and rates of adaptive and nonadaptive evolution in bins of genes of increasing recombination rate, separately analyzing AT → GC, GC → AT, and G ↔ C/A ↔ T mutations. We show that in both taxa, recombination and gBGC entail a decrease in dN/dS. Our analysis indicates that recombination enhances the efficiency of purifying selection by lowering Hill-Robertson effects, whereas gBGC leads to an overestimation of the adaptive rate of AT → GC mutations. Finally, we report a mutagenic effect of recombination, which is independent of gBGC.
Collapse
Affiliation(s)
| | - Alexandre Laverré
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Emeric Figuet
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Benoit Nabholz
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Nicolas Galtier
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|