1
|
Xie Z, Sokolov I, Osmala M, Yue X, Bower G, Pett JP, Chen Y, Wang K, Cavga AD, Popov A, Teichmann SA, Morgunova E, Kvon EZ, Yin Y, Taipale J. DNA-guided transcription factor interactions extend human gene regulatory code. Nature 2025:10.1038/s41586-025-08844-z. [PMID: 40205063 DOI: 10.1038/s41586-025-08844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/26/2025] [Indexed: 04/11/2025]
Abstract
In the same way that the mRNA-binding specificities of transfer RNAs define the genetic code, the DNA-binding specificities of transcription factors (TFs) form the molecular basis of the gene regulatory code1,2. The human gene regulatory code is much more complex than the genetic code, in particular because there are more than 1,600 TFs that commonly interact with each other. TF-TF interactions are required for specifying cell fate and executing cell-type-specific transcriptional programs. Despite this, the landscape of interactions between DNA-bound TFs is poorly defined. Here we map the biochemical interactions between DNA-bound TFs using CAP-SELEX, a method that can simultaneously identify individual TF binding preferences, TF-TF interactions and the DNA sequences that are bound by the interacting complexes. A screen of more than 58,000 TF-TF pairs identified 2,198 interacting TF pairs, 1,329 of which preferentially bound to their motifs arranged in a distinct spacing and/or orientation. We also discovered 1,131 TF-TF composite motifs that were markedly different from the motifs of the individual TFs. In total, we estimate that the screen identified between 18% and 47% of all human TF-TF motifs. The novel composite motifs we found were enriched in cell-type-specific elements, active in vivo and more likely to be formed between developmentally co-expressed TFs. Furthermore, TFs that define embryonic axes commonly interacted with different TFs and bound to distinct motifs, explaining how TFs with a similar specificity can define distinct cell types along developmental axes.
Collapse
Affiliation(s)
- Zhiyuan Xie
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ilya Sokolov
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Generative and Synthetic Genomics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Maria Osmala
- Applied Tumor Genomics Program, Biomedicum, University of Helsinki, Helsinki, Finland
| | - Xue Yue
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Grace Bower
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - J Patrick Pett
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Yinan Chen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Generative and Synthetic Genomics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Kai Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ayse Derya Cavga
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alexander Popov
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Sarah A Teichmann
- Department of Medicine and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Yimeng Yin
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
| | - Jussi Taipale
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Generative and Synthetic Genomics Programme, Wellcome Sanger Institute, Hinxton, UK.
- Applied Tumor Genomics Program, Biomedicum, University of Helsinki, Helsinki, Finland.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Li T, Chen H, Ma N, Jiang D, Wu J, Zhang X, Li H, Su J, Chen P, Liu Q, Guan Y, Zhu X, Lin J, Zhang J, Wang Q, Guo H, Zhu F. Specificity landscapes of 40 R2R3-MYBs reveal how paralogs target different cis-elements by homodimeric binding. IMETA 2025; 4:e70009. [PMID: 40236784 PMCID: PMC11995187 DOI: 10.1002/imt2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 04/17/2025]
Abstract
Paralogous transcription factors (TFs) frequently recognize highly similar DNA motifs. Homodimerization can help distinguish them according to their different dimeric configurations. Here, by studying R2R3-MYB TFs, we show that homodimerization can also directly change the recognized DNA motifs to distinguish between similar TFs. By high-throughput SELEX, we profiled the specificity landscape for 40 R2R3-MYBs of subfamily VIII and curated 833 motif models. The dimeric models show that homodimeric binding has evoked specificity changes for AtMYBs. Focusing on AtMYB2 as an example, we show that homodimerization has modified its specificity and allowed it to recognize additional cis-regulatory sequences that are different from the closely related CCWAA-box AtMYBs and are unique among all AtMYBs. Genomic sites described by the modified dimeric specificities of AtMYB2 are conserved in evolution and involved in AtMYB2-specific transcriptional activation. Collectively, this study provides rich data on sequence preferences of VIII R2R3-MYBs and suggests an alternative mechanism that guides closely related TFs to respective cis-regulatory sites.
Collapse
Affiliation(s)
- Tian Li
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hao Chen
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Nana Ma
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dingkun Jiang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiacheng Wu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xinfeng Zhang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hao Li
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiaqing Su
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Piaojuan Chen
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Yuefeng Guan
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaoyue Zhu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Juncheng Lin
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jilin Zhang
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
- Tung Biomedical Sciences CentreCity University of Hong KongHong KongChina
- Department of Precision Diagnostic and Therapeutic TechnologyThe City University of Hong Kong Shenzhen Futian Research InstituteShenzhenChina
| | - Qin Wang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Honghong Guo
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fangjie Zhu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
3
|
Petroll R, Papareddy RK, Krela R, Laigle A, Rivière Q, Bišova K, Mozgová I, Borg M. The Expansion and Diversification of Epigenetic Regulatory Networks Underpins Major Transitions in the Evolution of Land Plants. Mol Biol Evol 2025; 42:msaf064. [PMID: 40127687 PMCID: PMC11982613 DOI: 10.1093/molbev/msaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
Epigenetic silencing is essential for regulating gene expression and cellular diversity in eukaryotes. While DNA and H3K9 methylation silence transposable elements (TEs), H3K27me3 marks deposited by the Polycomb repressive complex 2 (PRC2) silence varying proportions of TEs and genes across different lineages. Despite the major development role epigenetic silencing plays in multicellular eukaryotes, little is known about how epigenetic regulatory networks were shaped over evolutionary time. Here, we analyze epigenomes from diverse species across the green lineage to infer the chronological epigenetic recruitment of genes during land plant evolution. We first reveal the nature of plant heterochromatin in the unicellular chlorophyte microalga Chlorella sorokiniana and identify several genes marked with H3K27me3, highlighting the deep origin of PRC2-regulated genes in the green lineage. By incorporating genomic phylostratigraphy, we show how genes of differing evolutionary age occupy distinct epigenetic states in plants. While young genes tend to be silenced by H3K9 methylation, genes that emerged in land plants are preferentially marked with H3K27me3, some of which form part of a common network of PRC2-repressed genes across distantly related species. Finally, we analyze the potential recruitment of PRC2 to plant H3K27me3 domains and identify conserved DNA-binding sites of ancient transcription factor families known to interact with PRC2. Our findings shed light on the conservation and potential origin of epigenetic regulatory networks in the green lineage, while also providing insight into the evolutionary dynamics and molecular triggers that underlie the adaptation and elaboration of epigenetic regulation, laying the groundwork for its future consideration in other eukaryotic lineages.
Collapse
Affiliation(s)
- Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Ranjith K Papareddy
- Gregor Mendel Institute for Molecular Plant Biology, Vienna Biocenter, Vienna, Austria
| | - Rafal Krela
- Biology Centre CAS—Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Alice Laigle
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Quentin Rivière
- Biology Centre CAS—Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Kateřina Bišova
- Institute of Microbiology CAS, Centre Algatech, Třeboň, Czech Republic
| | - Iva Mozgová
- Biology Centre CAS—Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
4
|
Morgunova E, Nagy G, Yin Y, Zhu F, Nayak SP, Xiao T, Sokolov I, Popov A, Laughton C, Grubmuller H, Taipale J. Interfacial water confers transcription factors with dinucleotide specificity. Nat Struct Mol Biol 2025; 32:650-661. [PMID: 39753777 PMCID: PMC11996681 DOI: 10.1038/s41594-024-01449-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/12/2024] [Indexed: 04/16/2025]
Abstract
Transcription factors (TFs) recognize specific bases within their DNA-binding motifs, with each base contributing nearly independently to total binding energy. However, the energetic contributions of particular dinucleotides can deviate strongly from the additive approximation, indicating that some TFs can specifically recognize DNA dinucleotides. Here we solved high-resolution (<1 Å) structures of MYF5 and BARHL2 bound to DNAs containing sets of dinucleotides that have different affinities to the proteins. The dinucleotides were recognized either enthalpically, by an extensive water network that connects the adjacent bases to the TF, or entropically, by a hydrophobic patch that maintained interfacial water mobility. This mechanism confers differential temperature sensitivity to the optimal sites, with implications for thermal regulation of gene expression. Our results uncover the enigma of how TFs can recognize more complex local features than mononucleotides and demonstrate that water-mediated recognition is important for predicting affinities of macromolecules from their sequence.
Collapse
Affiliation(s)
- Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gabor Nagy
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yimeng Yin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangjie Zhu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sonali Priyadarshini Nayak
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
| | - Tianyi Xiao
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ilya Sokolov
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Charles Laughton
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Helmut Grubmuller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Generative and Synthetic Genomics Programme, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
5
|
Rumley JD, Kim JH, Hobert O. Protocol to identify transcription factor target genes using TargetOrtho2. STAR Protoc 2025; 6:103680. [PMID: 40056408 PMCID: PMC11930065 DOI: 10.1016/j.xpro.2025.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 03/10/2025] Open
Abstract
TargetOrtho2 uses transcription factor binding site information to predict transcription factor targets in C. elegans, based on an in silico phylogenetic footprinting approach. Here, we present a protocol to identify transcription factor target genes using a new version of TargetOrtho2. We provide instructions for installing TargetOrtho2 and its required suite of programs, for predicting transcription factor target genes, and for updating and adding new genomes to TargetOrtho2.
Collapse
Affiliation(s)
- Jonathan D Rumley
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY 10027, USA.
| | - Jee Hun Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY 10027, USA.
| |
Collapse
|
6
|
Perez MF. CelEst: a unified gene regulatory network for estimating transcription factor activities in C. elegans. Genetics 2025; 229:iyae189. [PMID: 39705007 PMCID: PMC11912867 DOI: 10.1093/genetics/iyae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024] Open
Abstract
Transcription factors (TFs) play a pivotal role in orchestrating critical intricate patterns of gene regulation. Although gene expression is complex, differential expression of hundreds of genes is often due to regulation by just a handful of TFs. Despite extensive efforts to elucidate TF-target regulatory relationships in Caenorhabditis elegans, existing experimental datasets cover distinct subsets of TFs and leave data integration challenging. Here, I introduce CelEst, a unified gene regulatory network designed to estimate the activity of 487 distinct C. elegans TFs-∼58% of the total-from gene expression data. To integrate data from ChIP-seq, DNA-binding motifs, and eY1H screens, optimal processing of each data type was benchmarked against a set of TF perturbation RNA-seq experiments. Moreover, I showcase how leveraging TF motif conservation in target promoters across genomes of related species can distinguish highly informative interactions, a strategy which can be applied to many model organisms. Integrated analyses of data from commonly studied conditions including heat shock, bacterial infection, and sex differences validates CelEst's performance and highlights overlooked TFs that likely play major roles in coordinating the transcriptional response to these conditions. CelEst can infer TF activity on a standard laptop computer within minutes. Furthermore, an R Shiny app with a step-by-step guide is provided for the community to perform rapid analysis with minimal coding required. I anticipate that widespread adoption of CelEsT will significantly enhance the interpretive power of transcriptomic experiments, both present and retrospective, thereby advancing our understanding of gene regulation in C. elegans and beyond.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Parc Científic de Barcelona, C. Baldiri Reixac, 4-8, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Mekkaoui F, Drewell RA, Dresch JM, Spratt DE. Experimental approaches to investigate biophysical interactions between homeodomain transcription factors and DNA. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195074. [PMID: 39644990 PMCID: PMC11832328 DOI: 10.1016/j.bbagrm.2024.195074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Homeodomain transcription factors (TFs) bind to specific DNA sequences to regulate the expression of target genes. Structural work has provided insight into molecular identities and aided in unraveling structural features of these TFs. However, the detailed affinity and specificity by which these TFs bind to DNA sequences is still largely unknown. Qualitative methods, such as DNA footprinting, Electrophoretic Mobility Shift Assays (EMSAs), Systematic Evolution of Ligands by Exponential Enrichment (SELEX), Bacterial One Hybrid (B1H) systems, Surface Plasmon Resonance (SPR), and Protein Binding Microarrays (PBMs) have been widely used to investigate the biochemical characteristics of TF-DNA binding events. In addition to these qualitative methods, bioinformatic approaches have also assisted in TF binding site discovery. Here we discuss the advantages and limitations of these different approaches, as well as the benefits of utilizing more quantitative approaches, such as Mechanically Induced Trapping of Molecular Interactions (MITOMI), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC), in determining the biophysical basis of binding specificity of TF-DNA complexes and improving upon existing computational approaches aimed at affinity predictions.
Collapse
Affiliation(s)
- Fadwa Mekkaoui
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America.
| |
Collapse
|
8
|
Mukherjee A, Ashraf F, Nongthomba U. Bioinformatic meta-analysis of transcriptomics of developing Drosophila muscles identifies temporal regulatory transcription factors including a Notch effector. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195066. [PMID: 39522719 DOI: 10.1016/j.bbagrm.2024.195066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The intricate mechanism of gene regulation coordinates the precise control of when, where, and to what extent genes are activated or repressed, directing the complex processes that govern cellular functions and development. Dysregulation of gene expression can lead to diseases such as autoimmune disorders, cancer, and neurodegeneration. Transcriptional regulation, especially involving transcription factors (TFs), plays a major role in controlling gene expression. This study focuses on identifying gene regulatory mechanisms that generate distinct gene expression patterns during Drosophila muscle development. Utilising a bioinformatics approach, we analysed the developmental time-point-specific transcriptomics resource generated by Spletter et al., which includes mRNA sequencing data at eight stages of indirect flight muscle (IFM) development. They had identified 40 distinct genome-wide clusters representing various temporal expression dynamics using 'soft' clustering. Promoter sequences of genes in these clusters were analysed to predict novel motifs that act as TF binding sites. Comparative analysis with known motifs revealed significant overlaps, indicating shared transcriptional regulation. The physiological relevance of predicted TFs was confirmed by cross-referencing with experimental ChIP-seq data. We focused on Cluster 36, characterised by a unique bimodal temporal expression profile, and identified candidate genes, Rbfox1 and zfh1, for further study. Ectopic overexpression experiments revealed that the TF Enhancer of split m8 helix-loop-helix [E(spl)m8-HLH], part of the Notch signalling pathway, acts as a transcriptional repressor for Rbfox1 and zfh1. Our findings highlight the complexity of transcriptional regulation during myogenesis, and identify key TFs that could be targeted for further research in muscle development and related disorders.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India.
| | - Fathima Ashraf
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India.
| |
Collapse
|
9
|
Dziurdzik SK, Sridhar V, Eng H, Neuman SD, Yan J, Davey M, Taubert S, Bashirullah A, Conibear E. Hoi1 targets the yeast BLTP2 protein to ER-PM contact sites to regulate lipid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637747. [PMID: 39990326 PMCID: PMC11844476 DOI: 10.1101/2025.02.11.637747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Membrane contact sites between organelles are important for maintaining cellular lipid homeostasis. Members of the recently identified family of bridge-like lipid transfer proteins (BLTPs) span opposing membranes at these contact sites to enable the rapid transfer of bulk lipids between organelles. While the VPS13 and ATG2 family members use organelle-specific adaptors for membrane targeting, the mechanisms that regulate other bridge-like transporters remain unknown. Here, we identify the conserved protein Ybl086c, which we name Hoi1 (Hob interactor 1), as an adaptor that targets the yeast BLTP2-like proteins Fmp27/Hob1 and Hob2 to ER-PM contact sites. Two separate Hoi1 domains interface with alpha-helical projections that decorate the central hydrophobic channel on Fmp27, and loss of these interactions disrupts cellular sterol homeostasis. The mutant phenotypes of BLTP2 and HOI1 orthologs indicate these proteins act in a shared pathway in worms and flies. Together, this suggests that Hoi1-mediated recruitment of BLTP2-like proteins represents an evolutionarily conserved mechanism for regulating lipid transport at membrane contact sites.
Collapse
Affiliation(s)
- Samantha K. Dziurdzik
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V6H 3N1
| | - Vaishnavi Sridhar
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6H 3N1
| | - Hailey Eng
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6H 3N1
| | - Sarah D. Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Junran Yan
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6H 3N1
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V6H 3N1
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6H 3N1
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V6H 3N1
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6H 3N1
| |
Collapse
|
10
|
Catta-Preta R, Lindtner S, Ypsilanti A, Seban N, Price JD, Abnousi A, Su-Feher L, Wang Y, Cichewicz K, Boerma SA, Juric I, Jones IR, Akiyama JA, Hu M, Shen Y, Visel A, Pennacchio LA, Dickel DE, Rubenstein JLR, Nord AS. Combinatorial transcription factor binding encodes cis-regulatory wiring of mouse forebrain GABAergic neurogenesis. Dev Cell 2025; 60:288-304.e6. [PMID: 39481376 PMCID: PMC11753952 DOI: 10.1016/j.devcel.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Transcription factors (TFs) bind combinatorially to cis-regulatory elements, orchestrating transcriptional programs. Although studies of chromatin state and chromosomal interactions have demonstrated dynamic neurodevelopmental cis-regulatory landscapes, parallel understanding of TF interactions lags. To elucidate combinatorial TF binding driving mouse basal ganglia development, we integrated chromatin immunoprecipitation sequencing (ChIP-seq) for twelve TFs, H3K4me3-associated enhancer-promoter interactions, chromatin and gene expression data, and functional enhancer assays. We identified sets of putative regulatory elements with shared TF binding (TF-pRE modules) that orchestrate distinct processes of GABAergic neurogenesis and suppress other cell fates. The majority of pREs were bound by one or two TFs; however, a small proportion were extensively bound. These sequences had exceptional evolutionary conservation and motif density, complex chromosomal interactions, and activity as in vivo enhancers. Our results provide insights into the combinatorial TF-pRE interactions that activate and repress expression programs during telencephalon neurogenesis and demonstrate the value of TF binding toward modeling developmental transcriptional wiring.
Collapse
Affiliation(s)
- Rinaldo Catta-Preta
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Athena Ypsilanti
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicolas Seban
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - James D Price
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Linda Su-Feher
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Yurong Wang
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Karol Cichewicz
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Sally A Boerma
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Ian R Jones
- Institute for Human Genetics, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Yin Shen
- Institute for Human Genetics, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Alex S Nord
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA.
| |
Collapse
|
11
|
Jiang D, Zhang X, Luo L, Li T, Chen H, Ma N, Fu L, Tian P, Mao F, Lü P, Guo H, Zhu F. Cytosine Methylation Changes the Preferred Cis-Regulatory Configuration of Arabidopsis WUSCHEL-Related Homeobox 14. Int J Mol Sci 2025; 26:763. [PMID: 39859480 PMCID: PMC11765556 DOI: 10.3390/ijms26020763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The Arabidopsis transcription factor WUSCHEL-related homeobox 14 (AtWOX14) plays versatile roles in plant growth and development. However, its biochemical specificity of DNA binding, its genome-wide regulatory targets, and how these are affected by DNA methylation remain uncharacterized. To clarify the biochemistry underlying the regulatory function of AtWOX14, using the recently developed 5mC-incorporation strategy, this study performed SELEX and DAP-seq for AtWOX14 both in the presence and absence of cytosine methylation, systematically curated 65 motif models and identified 51,039 genomic binding sites for AtWOX14, and examined how 5mC affects DNA binding of AtWOX14 through bioinformatic analyses. Overall, 5mC represses the DNA binding of AtWOX14 monomers but facilitates the binding of its dimers, and the methylation effect on a cytosine's affinity to AtWOX14 is position-dependent. Notably, we found that the most preferred homodimeric configuration of AtWOX14 has changed from ER1 to ER0 upon methylation. This change has the potential to rewire the regulatory network downstream of AtWOX14, as suggested by the GO analyses and the strength changes in the DAP-seq peaks upon methylation. Therefore, this work comprehensively illustrates the specificity and targets of AtWOX14 and reports a previously unrecognized effect of DNA methylation on transcription factor binding.
Collapse
Affiliation(s)
- Dingkun Jiang
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Xinfeng Zhang
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Lin Luo
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Tian Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Hao Chen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Nana Ma
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Lufeng Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Tian
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Fei Mao
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Honghong Guo
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Fangjie Zhu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| |
Collapse
|
12
|
Russell SL, Penunuri G, Condon C. Diverse genetic conflicts mediated by molecular mimicry and computational approaches to detect them. Semin Cell Dev Biol 2025; 165:1-12. [PMID: 39079455 DOI: 10.1016/j.semcdb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 09/07/2024]
Abstract
In genetic conflicts between intergenomic and selfish elements, driver and killer elements achieve biased survival, replication, or transmission over sensitive and targeted elements through a wide range of molecular mechanisms, including mimicry. Driving mechanisms manifest at all organismal levels, from the biased propagation of individual genes, as demonstrated by transposable elements, to the biased transmission of genomes, as illustrated by viruses, to the biased transmission of cell lineages, as in cancer. Targeted genomes are vulnerable to molecular mimicry through the conserved motifs they use for their own signaling and regulation. Mimicking these motifs enables an intergenomic or selfish element to control core target processes, and can occur at the sequence, structure, or functional level. Molecular mimicry was first appreciated as an important phenomenon more than twenty years ago. Modern genomics technologies, databases, and machine learning approaches offer tremendous potential to study the distribution of molecular mimicry across genetic conflicts in nature. Here, we explore the theoretical expectations for molecular mimicry between conflicting genomes, the trends in molecular mimicry mechanisms across known genetic conflicts, and outline how new examples can be gleaned from population genomic datasets. We discuss how mimics involving short sequence-based motifs or gene duplications can evolve convergently from new mutations. Whereas, processes that involve divergent domains or fully-folded structures occur among genomes by horizontal gene transfer. These trends are largely based on a small number of organisms and should be reevaluated in a general, phylogenetically independent framework. Currently, publicly available databases can be mined for genotypes driving non-Mendelian inheritance patterns, epistatic interactions, and convergent protein structures. A subset of these conflicting elements may be molecular mimics. We propose approaches for detecting genetic conflict and molecular mimicry from these datasets.
Collapse
Affiliation(s)
- Shelbi L Russell
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Gabriel Penunuri
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Christopher Condon
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
13
|
Amiri EE, Tenger-Trolander A, Li M, Thomas Julian A, Kasan K, Sanders SA, Blythe S, Schmidt-Ott U. Conservation of symmetry breaking at the level of chromatin accessibility between fly species with unrelated anterior determinants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632851. [PMID: 39868093 PMCID: PMC11760685 DOI: 10.1101/2025.01.13.632851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Establishing the anterior-posterior body axis is a fundamental process during embryogenesis, and the fruit fly, Drosophila melanogaster, provides one of the best-known case studies of this process. In Drosophila, localized mRNA of bicoid serves as anterior determinant (AD). Bicoid engages in a concentration-dependent competition with nucleosomes and initiates symmetry-breaking along the AP axis by promoting chromatin accessibility at the loci of transcription factor (TF) genes that are expressed in the anterior of the embryo. However, ADs of other fly species are unrelated and structurally distinct, and little is known about how they function. We addressed this question in the moth fly, Clogmia albipunctata, in which a maternally expressed transcript isoform of the pair-rule segmentation gene odd-paired is localized in the anterior egg and has been co-opted as AD. We provide a de novo assembly and annotation of the Clogmia genome and describe how knockdown of zelda and maternal odd-paired transcript affect chromatin accessibility and expression of TF-encoding loci. The results of these experiments suggest direct roles of Cal-Zld in opening and closing chromatin during nuclear cleavage cycles and show that Clogmia's maternal odd-paired activity promotes chromatin accessibility and anterior expression during the early phase of zygotic genome activation at Clogmia's homeobrain and sloppy-paired loci. We conclude that unrelated dipteran ADs initiate anterior-posterior axis-specification at the level of enhancer accessibility and that homeobrain and sloppy-paired homologs may serve a more widely conserved role in the initiation of anterior pattern formation given their early anterior expression and function in head development in other insects.
Collapse
Affiliation(s)
- Ezra E. Amiri
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Ayse Tenger-Trolander
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Muzi Li
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Alexander Thomas Julian
- Illinois Institute of Technology, Department of Biology, 3105 South Dearborn Street, Chicago, Illinois 60616, USA
| | - Koray Kasan
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Sheri A. Sanders
- Notre Dame University, 252 Galvin Life Science Center/Freimann Life Science Center, Notre Dame, Indiana 46556, USA
| | - Shelby Blythe
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, Illinois 60208, USA
- Northwestern University and The University of Chicago, National Institute for Theory and Mathematics in Biology, 875 North Michigan Avenue, Suite 3500, Chicago, Illinois 60611, USA
| | - Urs Schmidt-Ott
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
14
|
Chege M, Ferretti P, Webb S, Macharia RW, Obiero G, Kamau J, Alberts SC, Tung J, Akinyi MY, Archie EA. Eukaryotic composition across seasons and social groups in the gut microbiota of wild baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628920. [PMID: 39763902 PMCID: PMC11702614 DOI: 10.1101/2024.12.17.628920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Background Animals coexist with complex microbiota, including bacteria, viruses, and eukaryotes (e.g., fungi, protists, and helminths). While the composition of bacterial and viral components of animal microbiota are increasingly well understood, eukaryotic composition remains neglected. Here we characterized eukaryotic diversity in the microbiomes in wild baboons and tested the degree to which eukaryotic community composition was predicted by host social group membership, sex, age, and season of sample collection. Results We analyzed a total of 75 fecal samples collected between 2012 and 2014 from 73 wild baboons in the Amboseli ecosystem in Kenya. DNA from these samples was subjected to shotgun metagenomic sequencing, revealing members of the kingdoms Protista, Chromista, and Fungi in 90.7%, 46.7%, and 20.3% of samples, respectively. Social group membership explained 11.2% of the global diversity in gut eukaryotic species composition, but we did not detect statistically significant effect of season, host age, and host sex. Across samples, the most prevalent protists were Entamoeba coli (74.66% of samples), Enteromonas hominis (53.33% of samples), and Blastocystis subtype 3 (38.66% of samples), while the most prevalent fungi included Pichia manshurica (14.66% of samples), and Ogataea naganishii (6.66% of samples). Conclusions Protista, Chromista, and Fungi are common members of the gut microbiome of wild baboons. More work on eukaryotic members of primate gut microbiota is essential for primate health monitoring and management strategies.
Collapse
Affiliation(s)
- Mary Chege
- One Health Centre, Kenya Institute of Primate Research, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Pamela Ferretti
- Department of Medicine, Genetic Medicine Section, University of Chicago, Chicago, USA
| | - Shasta Webb
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Joseph Kamau
- One Health Centre, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Susan C. Alberts
- Departments of Biology and Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Departments of Biology and Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Mercy Y. Akinyi
- One Health Centre, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
15
|
Vorontsov IE, Kozin I, Abramov S, Boytsov A, Jolma A, Albu M, Ambrosini G, Faltejskova K, Gralak AJ, Gryzunov N, Inukai S, Kolmykov S, Kravchenko P, Kribelbauer-Swietek JF, Laverty KU, Nozdrin V, Patel ZM, Penzar D, Plescher ML, Pour SE, Razavi R, Yang AWH, Yevshin I, Zinkevich A, Weirauch MT, Bucher P, Deplancke B, Fornes O, Grau J, Grosse I, Kolpakov FA, Makeev VJ, Hughes TR, Kulakovskiy IV. Cross-platform DNA motif discovery and benchmarking to explore binding specificities of poorly studied human transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.619379. [PMID: 39605530 PMCID: PMC11601219 DOI: 10.1101/2024.11.11.619379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A DNA sequence pattern, or "motif", is an essential representation of DNA-binding specificity of a transcription factor (TF). Any particular motif model has potential flaws due to shortcomings of the underlying experimental data and computational motif discovery algorithm. As a part of the Codebook/GRECO-BIT initiative, here we evaluated at large scale the cross-platform recognition performance of positional weight matrices (PWMs), which remain popular motif models in many practical applications. We applied ten different DNA motif discovery tools to generate PWMs from the "Codebook" data comprised of 4,237 experiments from five different platforms profiling the DNA-binding specificity of 394 human proteins, focusing on understudied transcription factors of different structural families. For many of the proteins, there was no prior knowledge of a genuine motif. By benchmarking-supported human curation, we constructed an approved subset of experiments comprising about 30% of all experiments and 50% of tested TFs which displayed consistent motifs across platforms and replicates. We present the Codebook Motif Explorer (https://mex.autosome.org), a detailed online catalog of DNA motifs, including the top-ranked PWMs, and the underlying source and benchmarking data. We demonstrate that in the case of high-quality experimental data, most of the popular motif discovery tools detect valid motifs and generate PWMs, which perform well both on genomic and synthetic data. Yet, for each of the algorithms, there were problematic combinations of proteins and platforms, and the basic motif properties such as nucleotide composition and information content offered little help in detecting such pitfalls. By combining multiple PMWs in decision trees, we demonstrate how our setup can be readily adapted to train and test binding specificity models more complex than PWMs. Overall, our study provides a rich motif catalog as a solid baseline for advanced models and highlights the power of the multi-platform multi-tool approach for reliable mapping of DNA binding specificities.
Collapse
Affiliation(s)
- Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 121205, Moscow, Russia
| | - Ivan Kozin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Sergey Abramov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
- Altius Institute for Biomedical Sciences, 98121, Seattle, WA, USA
| | - Alexandr Boytsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
- Altius Institute for Biomedical Sciences, 98121, Seattle, WA, USA
| | - Arttu Jolma
- Donnelly Centre and Department of Molecular Genetics, Toronto, ON M5S 3E1, Canada
| | - Mihai Albu
- Donnelly Centre and Department of Molecular Genetics, Toronto, ON M5S 3E1, Canada
| | | | - Katerina Faltejskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Praha 6, Czech Republic
- Computer Science Institute, Faculty of Mathematics and Physics, Charles University, 118 00 Praha 1, Czech Republic
| | - Antoni J Gralak
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Nikita Gryzunov
- Life Improvement by Future Technologies (LIFT) Center, 121205, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Sachi Inukai
- Chugai Pharmaceutical Co., Ltd, Tokyo, 103-8324, Japan
| | - Semyon Kolmykov
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar region, Russia
| | | | - Judith F Kribelbauer-Swietek
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Kaitlin U Laverty
- Donnelly Centre and Department of Molecular Genetics, Toronto, ON M5S 3E1, Canada
| | - Vladimir Nozdrin
- Life Improvement by Future Technologies (LIFT) Center, 121205, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Zain M Patel
- Donnelly Centre and Department of Molecular Genetics, Toronto, ON M5S 3E1, Canada
| | - Dmitry Penzar
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Marie-Luise Plescher
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06099, Halle, Germany
| | - Sara E Pour
- Donnelly Centre and Department of Molecular Genetics, Toronto, ON M5S 3E1, Canada
| | - Rozita Razavi
- Donnelly Centre and Department of Molecular Genetics, Toronto, ON M5S 3E1, Canada
| | - Ally W H Yang
- Donnelly Centre and Department of Molecular Genetics, Toronto, ON M5S 3E1, Canada
| | | | - Arsenii Zinkevich
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - Philipp Bucher
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Oriol Fornes
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06099, Halle, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06099, Halle, Germany
| | - Fedor A Kolpakov
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar region, Russia
- Bioinformatics Laboratory, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
- Moscow Center for Advanced Studies, 123592, Moscow, Russia
| | - Timothy R Hughes
- Donnelly Centre and Department of Molecular Genetics, Toronto, ON M5S 3E1, Canada
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 121205, Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Russia
| |
Collapse
|
16
|
Dai A, Lan W, Lyu Y, Zhou X, Mi X, Tang T, Liufu Z. MicroRNA-mediated network redundancy is constrained by purifying selection and contributes to expression robustness in Drosophila melanogaster. Commun Biol 2024; 7:1431. [PMID: 39496904 PMCID: PMC11535065 DOI: 10.1038/s42003-024-07162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional, non-coding regulatory RNAs that function coordinately with transcription factors (TFs) in gene regulatory networks. TFs and their targets are often co-regulated by miRNAs, forming composite feedforward circuits (cFFCs) with varying degrees of redundancy, primarily mediated by miRNAs. However, the maintenance of miRNA-mediated regulatory redundancy and its impact on gene expression evolution remain elusive. By integrating ChIP-seq data from ENCODE and miRNA targeting from TargetScanFly, we quantified miRNA-mediated cFFC redundancy in Drosophila melanogaster embryos and larvae, revealing more than three quarters of miRNA targets are involved in redundant cFFCs. Higher cFFC redundancy, where more miRNAs target the same gene within a cFFC, is correlated with stronger purifying selection, reduced expression divergence between species, and increased expression stability under heat shock stress. Redundant cFFCs primarily regulate older or broadly expressed young genes. These findings highlight the role of miRNA-mediated cFFC redundancy in enhancing gene expression robustness through natural selection.
Collapse
Affiliation(s)
- Aimei Dai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Wenqi Lan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yang Lyu
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Xuanyi Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Xin Mi
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Zhongqi Liufu
- State Key Laboratory of Genetic Resources and Evolution / Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
17
|
Jones BM, Webb AE, Geib SM, Sim S, Schweizer RM, Branstetter MG, Evans JD, Kocher SD. Repeated Shifts in Sociality Are Associated With Fine-tuning of Highly Conserved and Lineage-Specific Enhancers in a Socially Flexible Bee. Mol Biol Evol 2024; 41:msae229. [PMID: 39487572 PMCID: PMC11568387 DOI: 10.1093/molbev/msae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Comparative genomic studies of social insects suggest that changes in gene regulation are associated with evolutionary transitions in social behavior, but the activity of predicted regulatory regions has not been tested empirically. We used self-transcribing active regulatory region sequencing, a high-throughput enhancer discovery tool, to identify and measure the activity of enhancers in the socially variable sweat bee, Lasioglossum albipes. We identified over 36,000 enhancers in the L. albipes genome from 3 social and 3 solitary populations. Many enhancers were identified in only a subset of L. albipes populations, revealing rapid divergence in regulatory regions within this species. Population-specific enhancers were often proximal to the same genes across populations, suggesting compensatory gains and losses of regulatory regions may preserve gene activity. We also identified 1,182 enhancers with significant differences in activity between social and solitary populations, some of which are conserved regulatory regions across species of bees. These results indicate that social trait variation in L. albipes is associated with the fine-tuning of ancient enhancers as well as lineage-specific regulatory changes. Combining enhancer activity with population genetic data revealed variants associated with differences in enhancer activity and identified a subset of differential enhancers with signatures of selection associated with social behavior. Together, these results provide the first empirical map of enhancers in a socially flexible bee and highlight links between cis-regulatory variation and the evolution of social behavior.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Entomology, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Scott M Geib
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Sheina Sim
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Rena M Schweizer
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Jay D Evans
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Bee Research Laboratory BARC-E, Beltsville, MD 20705, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
18
|
Zhang Z, Li W, Wang Z, Ma S, Zheng F, Liu H, Zhang X, Ding Y, Yin Z, Zheng X. Codon Bias of the DDR1 Gene and Transcription Factor EHF in Multiple Species. Int J Mol Sci 2024; 25:10696. [PMID: 39409024 PMCID: PMC11477322 DOI: 10.3390/ijms251910696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Milk production is an essential economic trait in cattle, and understanding the genetic regulation of this trait can enhance breeding strategies. The discoidin domain receptor 1 (DDR1) gene has been identified as a key candidate gene that influences milk production, and ETS homologous factor (EHF) is recognized as a critical transcription factor that regulates DDR1 expression. Codon usage bias, which affects gene expression and protein function, has not been fully explored in cattle. This study aims to examine the codon usage bias of DDR1 and EHF transcription factors to understand their roles in dairy production traits. Data from 24 species revealed that both DDR1 and EHF predominantly used G/C-ending codons, with the GC3 content averaging 75.49% for DDR1 and 61.72% for EHF. Synonymous codon usage analysis identified high-frequency codons for both DDR1 and EHF, with 17 codons common to both genes. Correlation analysis indicated a negative relationship between the effective number of codons and codon adaptation index for both DDR1 and EHF. Phylogenetic and clustering analyses revealed similar codon usage patterns among closely related species. These findings suggest that EHF plays a crucial role in regulating DDR1 expression, offering new insights into genetically regulating milk production in cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Z.Z.); (W.L.); (Z.W.); (S.M.); (F.Z.); (H.L.); (X.Z.); (Y.D.)
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Z.Z.); (W.L.); (Z.W.); (S.M.); (F.Z.); (H.L.); (X.Z.); (Y.D.)
| |
Collapse
|
19
|
Chen JH, Li JJ, Yuan Y, Tian Q, Feng DD, Zhuang LL, Cao Q, Zhou GP, Jin R. ETS1 and RBPJ transcriptionally regulate METTL14 to suppress TGF-β1-induced epithelial-mesenchymal transition in human bronchial epithelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167349. [PMID: 39002703 DOI: 10.1016/j.bbadis.2024.167349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Asthma is a chronic respiratory disease characterized by airway inflammation and remodeling. Epithelial-mesenchymal transition (EMT) of bronchial epithelial cells is considered to be a crucial player in asthma. Methyltransferase-like 14 (METTL14), an RNA methyltransferase, is implicated in multiple pathological processes, including EMT, cell proliferation and migration. However, the role of METTL14 in asthma remains uncertain. This research aimed to explore the biological functions of METTL14 in asthma and its underlying upstream mechanisms. METTL14 expression was down-regulated in asthmatic from three GEO datasets (GSE104468, GSE165934, and GSE74986). Consistent with this trend, METTL14 was decreased in the lung tissues of OVA-induced asthmatic mice and transforming growth factor-β1 (TGF-β1)-stimulated human bronchial epithelial cells (Beas-2B) in this study. Overexpression of METTL14 caused reduction in mesenchymal markers (FN1, N-cad, Col-1 and α-SMA) in TGF-β1-treated cells, but caused increase in epithelial markers (E-cad), thus inhibiting EMT. Also, METTL14 suppressed the proliferation and migration ability of TGF-β1-treated Beas-2B cells. Two transcription factors, ETS1 and RBPJ, could both bind to the promoter region of METTL14 and drive its expression. Elevating METTL14 expression could reversed EMT, cell proliferation and migration promoted by ETS1 or RBPJ deficiency. These results indicate that the ETS1/METTL14 and RBPJ/METTL14 transcription axes exhibit anti-EMT, anti-proliferation and anti-migration functions in TGF-β1-induced bronchial epithelial cells, implying that METTL14 may be considered an alternative candidate target for the treatment of asthma.
Collapse
Affiliation(s)
- Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jiao-Jiao Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Yue Yuan
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qiang Tian
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Dan-Dan Feng
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; Clinical Allergy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; Clinical Allergy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
20
|
Mao F, Luo L, Ma N, Qu Q, Chen H, Yi C, Cao M, Shao E, Lin H, Lin Z, Zhu F, Lu G, Lin D. A Spatiotemporal Transcriptome Reveals Stalk Development in Pearl Millet. Int J Mol Sci 2024; 25:9798. [PMID: 39337286 PMCID: PMC11432187 DOI: 10.3390/ijms25189798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Pearl millet is a major cereal crop that feeds more than 90 million people worldwide in arid and semi-arid regions. The stalk phenotypes of Poaceous grasses are critical for their productivity and stress tolerance; however, the molecular mechanisms governing stalk development in pearl millet remain to be deciphered. In this study, we spatiotemporally measured 19 transcriptomes for stalk internodes of four different early developmental stages. Data analysis of the transcriptomes defined four developmental zones on the stalks and identified 12 specific gene sets with specific expression patterns across the zones. Using weighted gene co-expression network analysis (WGCNA), we found that two co-expression modules together with candidate genes were involved in stalk elongation and the thickening of pearl millet. Among the elongation-related candidate genes, we established by SELEX that a MYB-family transcription factor PMF7G02448 can bind to the promoters of three cell wall synthases genes (CesAs). In summary, these findings provide insights into stalk development and offer potential targets for future genetic improvement in pearl millet.
Collapse
Affiliation(s)
- Fei Mao
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Luo
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nana Ma
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Qu
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Chen
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Yi
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengxue Cao
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ensi Shao
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Lin
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanxi Lin
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangjie Zhu
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Zeng X, Gyoja F, Cui Y, Loza M, Kusakabe T, Nakai K. Comparative single-cell transcriptomic analysis reveals putative differentiation drivers and potential origin of vertebrate retina. NAR Genom Bioinform 2024; 6:lqae149. [PMID: 39534499 PMCID: PMC11555436 DOI: 10.1093/nargab/lqae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Despite known single-cell expression profiles in vertebrate retinas, understanding of their developmental and evolutionary expression patterns among homologous cell classes remains limited. We examined and compared approximately 240 000 retinal cells from four species and found significant similarities among homologous cell classes, indicating inherent regulatory patterns. To understand these shared patterns, we constructed gene regulatory networks for each developmental stage for three of these species. We identified 690 regulons governed by 530 regulators across three species, along with 10 common cell class-specific regulators and 16 highly preserved regulons. RNA velocity analysis pinpointed conserved putative driver genes and regulators to retinal cell differentiation in both mouse and zebrafish. Investigation of the origins of retinal cells by examining conserved expression patterns between vertebrate retinal cells and invertebrate Ciona intestinalis photoreceptor-related cells implied functional similarities in light transduction mechanisms. Our findings offer insights into the evolutionarily conserved regulatory frameworks and differentiation drivers of vertebrate retinal cells.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8563, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Fuki Gyoja
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Yang Cui
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8563, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Martin Loza
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8563, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
22
|
LaFoya B, Penkert RR, Prehoda KE. The cytokinetic midbody mediates asymmetric fate specification at mitotic exit during neural stem cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609974. [PMID: 39253494 PMCID: PMC11383292 DOI: 10.1101/2024.08.27.609974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Asymmetric cell division (ACD) is a broadly used mechanism for generating cellular diversity. Molecules known as fate determinants are segregated during ACD to generate distinct sibling cell fates, but determinants should not be activated until fate can be specified asymmetrically. Determinants could be activated after cell division but many animal cells complete division long after mitosis ends, raising the question of how activation could occur at mitotic exit taking advantage of the unique state plasticity at this time point. Here we show that the midbody, a microtubule-rich structure that forms in the intercellular bridge connecting nascent siblings, mediates fate determinant activation at mitotic exit in neural stem cells (NSCs) of the Drosophila larval brain. The fate determinants Prospero (Pros) and Brain tumor (Brat) are sequestered at the NSC membrane at metaphase but are released immediately following nuclear division when the midbody forms, well before cell division completes. The midbody isolates nascent sibling cytoplasms, allowing determinant release from the membrane via the cell cycle phosphatase String, without influencing the fate of the incorrect sibling. Our results identify the midbody as a key facilitator of ACD that allows asymmetric fate determinant activation to be initiated before division.
Collapse
Affiliation(s)
- Bryce LaFoya
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| | - Rhiannon R Penkert
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| | - Kenneth E. Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| |
Collapse
|
23
|
Okamoto AS, Capellini TD. Parallel Evolution at the Regulatory Base-Pair Level Contributes to Mammalian Interspecific Differences in Polygenic Traits. Mol Biol Evol 2024; 41:msae157. [PMID: 39073613 PMCID: PMC11321361 DOI: 10.1093/molbev/msae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Parallel evolution occurs when distinct lineages with similar ancestral states converge on a new phenotype. Parallel evolution has been well documented at the organ, gene pathway, and amino acid sequence level but in theory, it can also occur at individual nucleotides within noncoding regions. To examine the role of parallel evolution in shaping the biology of mammalian complex traits, we used data on single-nucleotide polymorphisms (SNPs) influencing human intraspecific variation to predict trait values in other species for 11 complex traits. We found that the alleles at SNP positions associated with human intraspecific height and red blood cell (RBC) count variation are associated with interspecific variation in the corresponding traits across mammals. These associations hold for deeper branches of mammalian evolution as well as between strains of collaborative cross mice. While variation in RBC count between primates uses both ancient and more recently evolved genomic regions, we found that only primate-specific elements were correlated with primate body size. We show that the SNP positions driving these signals are flanked by conserved sequences, maintain synteny with target genes, and overlap transcription factor binding sites. This work highlights the potential of conserved but tunable regulatory elements to be reused in parallel to facilitate evolutionary adaptation in mammals.
Collapse
Affiliation(s)
- Alexander S Okamoto
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
24
|
Vo NNT, Yang A, Leesutthiphonchai W, Liu Y, Hughes TR, Judelson HS. Transcription factor binding specificities of the oomycete Phytophthora infestans reflect conserved and divergent evolutionary patterns and predict function. BMC Genomics 2024; 25:710. [PMID: 39044130 PMCID: PMC11267843 DOI: 10.1186/s12864-024-10630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Identifying the DNA-binding specificities of transcription factors (TF) is central to understanding gene networks that regulate growth and development. Such knowledge is lacking in oomycetes, a microbial eukaryotic lineage within the stramenopile group. Oomycetes include many important plant and animal pathogens such as the potato and tomato blight agent Phytophthora infestans, which is a tractable model for studying life-stage differentiation within the group. RESULTS Mining of the P. infestans genome identified 197 genes encoding proteins belonging to 22 TF families. Their chromosomal distribution was consistent with family expansions through unequal crossing-over, which were likely ancient since each family had similar sizes in most oomycetes. Most TFs exhibited dynamic changes in RNA levels through the P. infestans life cycle. The DNA-binding preferences of 123 proteins were assayed using protein-binding oligonucleotide microarrays, which succeeded with 73 proteins from 14 families. Binding sites predicted for representatives of the families were validated by electrophoretic mobility shift or chromatin immunoprecipitation assays. Consistent with the substantial evolutionary distance of oomycetes from traditional model organisms, only a subset of the DNA-binding preferences resembled those of human or plant orthologs. Phylogenetic analyses of the TF families within P. infestans often discriminated clades with canonical and novel DNA targets. Paralogs with similar binding preferences frequently had distinct patterns of expression suggestive of functional divergence. TFs were predicted to either drive life stage-specific expression or serve as general activators based on the representation of their binding sites within total or developmentally-regulated promoters. This projection was confirmed for one TF using synthetic and mutated promoters fused to reporter genes in vivo. CONCLUSIONS We established a large dataset of binding specificities for P. infestans TFs, representing the first in the stramenopile group. This resource provides a basis for understanding transcriptional regulation by linking TFs with their targets, which should help delineate the molecular components of processes such as sporulation and host infection. Our work also yielded insight into TF evolution during the eukaryotic radiation, revealing both functional conservation as well as diversification across kingdoms.
Collapse
Affiliation(s)
- Nguyen N T Vo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Ally Yang
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wiphawee Leesutthiphonchai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
- Current address: Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Yulong Liu
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
25
|
Sokolov V, Kyrchanova O, Klimenko N, Fedotova A, Ibragimov A, Maksimenko O, Georgiev P. New Drosophila promoter-associated architectural protein Mzfp1 interacts with CP190 and is required for housekeeping gene expression and insulator activity. Nucleic Acids Res 2024; 52:6886-6905. [PMID: 38769058 PMCID: PMC11229372 DOI: 10.1093/nar/gkae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
In Drosophila, a group of zinc finger architectural proteins recruits the CP190 protein to the chromatin, an interaction that is essential for the functional activity of promoters and insulators. In this study, we describe a new architectural C2H2 protein called Madf and Zinc-Finger Protein 1 (Mzfp1) that interacts with CP190. Mzfp1 has an unusual structure that includes six C2H2 domains organized in a C-terminal cluster and two tandem MADF domains. Mzfp1 predominantly binds to housekeeping gene promoters located in both euchromatin and heterochromatin genome regions. In vivo mutagenesis studies showed that Mzfp1 is an essential protein, and both MADF domains and the CP190 interaction region are required for its functional activity. The C2H2 cluster is sufficient for the specific binding of Mzfp1 to regulatory elements, while the second MADF domain is required for Mzfp1 recruitment to heterochromatin. Mzfp1 binds to the proximal part of the Fub boundary that separates regulatory domains of the Ubx and abd-A genes in the Bithorax complex. Mzfp1 participates in Fub functions in cooperation with the architectural proteins Pita and Su(Hw). Thus, Mzfp1 is a new architectural C2H2 protein involved in the organization of active promoters and insulators in Drosophila.
Collapse
Affiliation(s)
- Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
26
|
Kisor KP, Ruiz DG, Jacobson MP, Barber DL. A role for pH dynamics regulating transcription factor DNA binding selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595212. [PMID: 38826444 PMCID: PMC11142074 DOI: 10.1101/2024.05.21.595212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Intracellular pH (pHi) dynamics regulates diverse cell processes such as proliferation, dysplasia, and differentiation, often mediated by the protonation state of a functionally critical histidine residue in endogenous pH sensing proteins. How pHi dynamics can directly regulate gene expression and whether transcription factors can function as pH sensors has received limited attention. We tested the prediction that transcription factors with a histidine in their DNA binding domain (DBD) that forms hydrogen bonds with nucleotides can have pH-regulated activity, which is relevant to more than 85 transcription factors in distinct families, including FOX, KLF, SOX and MITF/Myc. Focusing on FOX family transcription factors, we used unbiased SELEX-seq to identify pH-dependent DNA binding motif preferences, then confirm pH-regulated binding affinities for FOXC2, FOXM1, and FOXN1 to a canonical FkhP DNA motif that are 2.5 to 7.5 greater at pH 7.0 compared with pH 7.5. For FOXC2, we also find greater activity for an FkhP motif at lower pHi in cells and that pH-regulated binding and activity are dependent on a conserved histidine (His122) in the DBD. RNA-seq with FOXC2 also reveals pH-dependent differences in enriched promoter motifs. Our findings identify pH-regulated transcription factor-DNA binding selectivity with relevance to how pHi dynamics can regulate gene expression for myriad cell behaviours.
Collapse
|
27
|
Lambourne L, Mattioli K, Santoso C, Sheynkman G, Inukai S, Kaundal B, Berenson A, Spirohn-Fitzgerald K, Bhattacharjee A, Rothman E, Shrestha S, Laval F, Yang Z, Bisht D, Sewell JA, Li G, Prasad A, Phanor S, Lane R, Campbell DM, Hunt T, Balcha D, Gebbia M, Twizere JC, Hao T, Frankish A, Riback JA, Salomonis N, Calderwood MA, Hill DE, Sahni N, Vidal M, Bulyk ML, Fuxman Bass JI. Widespread variation in molecular interactions and regulatory properties among transcription factor isoforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584681. [PMID: 38617209 PMCID: PMC11014633 DOI: 10.1101/2024.03.12.584681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Most human Transcription factors (TFs) genes encode multiple protein isoforms differing in DNA binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators", both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.
Collapse
Affiliation(s)
- Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clarissa Santoso
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Gloria Sheynkman
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Babita Kaundal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Berenson
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Kerstin Spirohn-Fitzgerald
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anukana Bhattacharjee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Zhipeng Yang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared A Sewell
- Department of Biology, Boston University, Boston, MA, USA
| | - Guangyuan Li
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anisa Prasad
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge MA, USA
| | - Sabrina Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan Lane
- Department of Biology, Boston University, Boston, MA, USA
| | | | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marinella Gebbia
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Jean-Claude Twizere
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam Frankish
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Josh A Riback
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juan I Fuxman Bass
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| |
Collapse
|
28
|
Ertl HA, Bayala EX, Siddiq MA, Wittkopp PJ. Divergence of Grainy head affects chromatin accessibility, gene expression, and embryonic viability in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588430. [PMID: 38645200 PMCID: PMC11030446 DOI: 10.1101/2024.04.07.588430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pioneer factors are critical for gene regulation and development because they bind chromatin and make DNA more accessible for binding by other transcription factors. The pioneer factor Grainy head (Grh) is present across metazoans and has been shown to retain a role in epithelium development in fruit flies, nematodes, and mice despite extensive divergence in both amino acid sequence and length. Here, we investigate the evolution of Grh function by comparing the effects of the fly (Drosophila melanogaster) and worm (Caenorhabditis elegans) Grh orthologs on chromatin accessibility, gene expression, embryonic development, and viability in transgenic D. melanogaster. We found that the Caenorhabditis elegans ortholog rescued cuticle development but not full embryonic viability in Drosophila melanogaster grh null mutants. At the molecular level, the C. elegans ortholog only partially rescued chromatin accessibility and gene expression. Divergence in the disordered N-terminus of the Grh protein contributes to these differences in embryonic viability and molecular phenotypes. These data show how pioneer factors can diverge in sequence and function at the molecular level while retaining conserved developmental functions at the organismal level.
Collapse
Affiliation(s)
- Henry A. Ertl
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erick X. Bayala
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohammad A. Siddiq
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patricia J. Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Zhimulev I, Vatolina T, Levitsky V, Tsukanov A. Developmental and Housekeeping Genes: Two Types of Genetic Organization in the Drosophila Genome. Int J Mol Sci 2024; 25:4068. [PMID: 38612878 PMCID: PMC11012173 DOI: 10.3390/ijms25074068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
We developed a procedure for locating genes on Drosophila melanogaster polytene chromosomes and described three types of chromosome structures (gray bands, black bands, and interbands), which differed markedly in morphological and genetic properties. This was reached through the use of our original methods of molecular and genetic analysis, electron microscopy, and bioinformatics data processing. Analysis of the genome-wide distribution of these properties led us to a bioinformatics model of the Drosophila genome organization, in which the genome was divided into two groups of genes. One was constituted by 65, in which the genome was divided into two groups, 62 genes that are expressed in most cell types during life cycle and perform basic cellular functions (the so-called "housekeeping genes"). The other one was made up of 3162 genes that are expressed only at particular stages of development ("developmental genes"). These two groups of genes are so different that we may state that the genome has two types of genetic organization. Different are the timings of their expression, chromatin packaging levels, the composition of activating and deactivating proteins, the sizes of these genes, the lengths of their introns, the organization of the promoter regions of the genes, the locations of origin recognition complexes (ORCs), and DNA replication timings.
Collapse
Affiliation(s)
- Igor Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Tatyana Vatolina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Victor Levitsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (V.L.); (A.T.)
| | - Anton Tsukanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (V.L.); (A.T.)
| |
Collapse
|
30
|
Lee GM, Rodríguez-Deliz CL, Bushnell BN, Majaj NJ, Movshon JA, Kiorpes L. Developmentally stable representations of naturalistic image structure in macaque visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581889. [PMID: 38463955 PMCID: PMC10925106 DOI: 10.1101/2024.02.24.581889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We studied visual development in macaque monkeys using texture stimuli, matched in local spectral content but varying in "naturalistic" structure. In adult monkeys, naturalistic textures preferentially drive neurons in areas V2 and V4, but not V1. We paired behavioral measurements of naturalness sensitivity with separately-obtained neuronal population recordings from neurons in areas V1, V2, V4, and inferotemporal cortex (IT). We made behavioral measurements from 16 weeks of age and physiological measurements as early as 20 weeks, and continued through 56 weeks. Behavioral sensitivity reached half of maximum at roughly 25 weeks of age. Neural sensitivities remained stable from the earliest ages tested. As in adults, neural sensitivity to naturalistic structure increased from V1 to V2 to V4. While sensitivities in V2 and IT were similar, the dimensionality of the IT representation was more similar to V4's than to V2's.
Collapse
Affiliation(s)
- Gerick M. Lee
- Center for Neural Science New York University New York, NY, USA 10003
| | | | | | - Najib J. Majaj
- Center for Neural Science New York University New York, NY, USA 10003
| | | | - Lynne Kiorpes
- Center for Neural Science New York University New York, NY, USA 10003
| |
Collapse
|
31
|
Margiotta-Casaluci L, Owen SF, Winter MJ. Cross-Species Extrapolation of Biological Data to Guide the Environmental Safety Assessment of Pharmaceuticals-The State of the Art and Future Priorities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:513-525. [PMID: 37067359 DOI: 10.1002/etc.5634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The extrapolation of biological data across species is a key aspect of biomedical research and drug development. In this context, comparative biology considerations are applied with the goal of understanding human disease and guiding the development of effective and safe medicines. However, the widespread occurrence of pharmaceuticals in the environment and the need to assess the risk posed to wildlife have prompted a renewed interest in the extrapolation of pharmacological and toxicological data across the entire tree of life. To address this challenge, a biological "read-across" approach, based on the use of mammalian data to inform toxicity predictions in wildlife species, has been proposed as an effective way to streamline the environmental safety assessment of pharmaceuticals. Yet, how effective has this approach been, and are we any closer to being able to accurately predict environmental risk based on known human risk? We discuss the main theoretical and experimental advancements achieved in the last 10 years of research in this field. We propose that a better understanding of the functional conservation of drug targets across species and of the quantitative relationship between target modulation and adverse effects should be considered as future research priorities. This pharmacodynamic focus should be complemented with the application of higher-throughput experimental and computational approaches to accelerate the prediction of internal exposure dynamics. The translation of comparative (eco)toxicology research into real-world applications, however, relies on the (limited) availability of experts with the skill set needed to navigate the complexity of the problem; hence, we also call for synergistic multistakeholder efforts to support and strengthen comparative toxicology research and education at a global level. Environ Toxicol Chem 2024;43:513-525. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luigi Margiotta-Casaluci
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
32
|
Zeng B, Knapp EM, Skaritanov E, Oramas R, Sun J. ETS transcription factors regulate precise matrix metalloproteinase expression and follicle rupture in Drosophila. Development 2024; 151:dev202276. [PMID: 38345299 PMCID: PMC10946439 DOI: 10.1242/dev.202276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Drosophila matrix metalloproteinase 2 (MMP2) is specifically expressed in posterior follicle cells of stage-14 egg chambers (mature follicles) and is crucial for the breakdown of the follicular wall during ovulation, a process that is highly conserved from flies to mammals. The factors that regulate spatiotemporal expression of MMP2 in follicle cells remain unknown. Here, we demonstrate crucial roles for the ETS-family transcriptional activator Pointed (Pnt) and its endogenous repressor Yan in the regulation of MMP2 expression. We found that Pnt is expressed in posterior follicle cells and overlaps with MMP2 expression in mature follicles. Genetic analysis demonstrated that pnt is both required and sufficient for MMP2 expression in follicle cells. In addition, Yan was temporally upregulated in stage-13 follicle cells to fine-tune Pnt activity and MMP2 expression. Furthermore, we identified a 1.1 kb core enhancer that is responsible for the spatiotemporal expression of MMP2 and contains multiple pnt/yan binding motifs. Mutation of pnt/yan binding sites significantly impaired the Mmp2 enhancer activity. Our data reveal a mechanism of transcriptional regulation of Mmp2 expression in Drosophila ovulation, which could be conserved in other biological systems.
Collapse
Affiliation(s)
- Baosheng Zeng
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Elizabeth M. Knapp
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ekaterina Skaritanov
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Rebecca Oramas
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
33
|
Xu J, Gao J, Ni P, Gerstein M. Less-is-more: selecting transcription factor binding regions informative for motif inference. Nucleic Acids Res 2024; 52:e20. [PMID: 38214231 PMCID: PMC10899791 DOI: 10.1093/nar/gkad1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024] Open
Abstract
Numerous statistical methods have emerged for inferring DNA motifs for transcription factors (TFs) from genomic regions. However, the process of selecting informative regions for motif inference remains understudied. Current approaches select regions with strong ChIP-seq signal for a given TF, assuming that such strong signal primarily results from specific interactions between the TF and its motif. Additionally, these selection approaches do not account for non-target motifs, i.e. motifs of other TFs; they presume the occurrence of these non-target motifs infrequent compared to that of the target motif, and thus assume these have minimal interference with the identification of the target. Leveraging extensive ChIP-seq datasets, we introduced the concept of TF signal 'crowdedness', referred to as C-score, for each genomic region. The C-score helps in highlighting TF signals arising from non-specific interactions. Moreover, by considering the C-score (and adjusting for the length of genomic regions), we can effectively mitigate interference of non-target motifs. Using these tools, we find that in many instances, strong ChIP-seq signal stems mainly from non-specific interactions, and the occurrence of non-target motifs significantly impacts the accurate inference of the target motif. Prioritizing genomic regions with reduced crowdedness and short length markedly improves motif inference. This 'less-is-more' effect suggests that ChIP-seq region selection warrants more attention.
Collapse
Affiliation(s)
- Jinrui Xu
- Department of Biology, Howard University, Washington, DC 20059, USA
- Center for Applied Data Science and Analytics, Howard University, Washington, DC 20059, USA
| | - Jiahao Gao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
34
|
Zhang F, Zhou H, Xue J, Zhang Y, Zhou L, Leng J, Fang G, Liu Y, Wang Y, Liu H, Wu Y, Qi L, Duan R, He X, Wang Y, Liu Y, Li L, Yang J, Liang D, Chen YH. Deficiency of Transcription Factor Sp1 Contributes to Hypertrophic Cardiomyopathy. Circ Res 2024; 134:290-306. [PMID: 38197258 DOI: 10.1161/circresaha.123.323272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disorder. However, the pathogenesis of HCM, especially its nongenetic mechanisms, remains largely unclear. Transcription factors are known to be involved in various biological processes including cell growth. We hypothesized that SP1 (specificity protein 1), the first purified TF in mammals, plays a role in the cardiomyocyte growth and cardiac hypertrophy of HCM. METHODS Cardiac-specific conditional knockout of Sp1 mice were constructed to investigate the role of SP1 in the heart. The echocardiography, histochemical experiment, and transmission electron microscope were performed to analyze the cardiac phenotypes of cardiac-specific conditional knockout of Sp1 mice. RNA sequencing, chromatin immunoprecipitation sequencing, and adeno-associated virus experiments in vivo were performed to explore the downstream molecules of SP1. To examine the therapeutic effect of SP1 on HCM, an SP1 overexpression vector was constructed and injected into the mutant allele of Myh6 R404Q/+ (Myh6 c. 1211C>T) HCM mice. The human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with HCM were used to detect the potential therapeutic effects of SP1 in human HCM. RESULTS The cardiac-specific conditional knockout of Sp1 mice developed a typical HCM phenotype, displaying overt myocardial hypertrophy, interstitial fibrosis, and disordered myofilament. In addition, Sp1 knockdown dramatically increased the cell area of hiPSC-CMs and caused intracellular myofibrillar disorganization, which was similar to the hypertrophic cardiomyocytes of HCM. Mechanistically, Tuft1 was identified as the key target gene of SP1. The hypertrophic phenotypes induced by Sp1 knockdown in both hiPSC-CMs and mice could be rescued by TUFT1 (tuftelin 1) overexpression. Furthermore, SP1 overexpression suppressed the development of HCM in the mutant allele of Myh6 R404Q/+ mice and also reversed the hypertrophic phenotype of HCM hiPSC-CMs. CONCLUSIONS Our study demonstrates that SP1 deficiency leads to HCM. SP1 overexpression exhibits significant therapeutic effects on both HCM mice and HCM hiPSC-CMs, suggesting that SP1 could be a potential intervention target for HCM.
Collapse
Affiliation(s)
- Fulei Zhang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Huixing Zhou
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Jinfeng Xue
- Department of Regenerative Medicine (J.X., L.Q.), Tongji University School of Medicine, Shanghai, China
| | - Yuemei Zhang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Liping Zhou
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Junwei Leng
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Guojian Fang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yuanyuan Liu
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Yan Wang
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Hongyu Liu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yahan Wu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Lingbin Qi
- Department of Regenerative Medicine (J.X., L.Q.), Tongji University School of Medicine, Shanghai, China
| | - Ran Duan
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Xiaoyu He
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yan Wang
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Yi Liu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Li Li
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Jian Yang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Dandan Liang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Yi-Han Chen
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| |
Collapse
|
35
|
Lim F, Solvason JJ, Ryan GE, Le SH, Jindal GA, Steffen P, Jandu SK, Farley EK. Affinity-optimizing enhancer variants disrupt development. Nature 2024; 626:151-159. [PMID: 38233525 PMCID: PMC10830414 DOI: 10.1038/s41586-023-06922-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Enhancers control the location and timing of gene expression and contain the majority of variants associated with disease1-3. The ZRS is arguably the most well-studied vertebrate enhancer and mediates the expression of Shh in the developing limb4. Thirty-one human single-nucleotide variants (SNVs) within the ZRS are associated with polydactyly4-6. However, how this enhancer encodes tissue-specific activity, and the mechanisms by which SNVs alter the number of digits, are poorly understood. Here we show that the ETS sites within the ZRS are low affinity, and identify a functional ETS site, ETS-A, with extremely low affinity. Two human SNVs and a synthetic variant optimize the binding affinity of ETS-A subtly from 15% to around 25% relative to the strongest ETS binding sequence, and cause polydactyly with the same penetrance and severity. A greater increase in affinity results in phenotypes that are more penetrant and more severe. Affinity-optimizing SNVs in other ETS sites in the ZRS, as well as in ETS, interferon regulatory factor (IRF), HOX and activator protein 1 (AP-1) sites within a wide variety of enhancers, cause gain-of-function gene expression. The prevalence of binding sites with suboptimal affinity in enhancers creates a vulnerability in genomes whereby SNVs that optimize affinity, even slightly, can be pathogenic. Searching for affinity-optimizing SNVs in genomes could provide a mechanistic approach to identify causal variants that underlie enhanceropathies.
Collapse
Affiliation(s)
- Fabian Lim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Joe J Solvason
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Genevieve E Ryan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sophia H Le
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Granton A Jindal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Paige Steffen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Simran K Jandu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emma K Farley
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
Tang J, Hu Z, Zhang J, Daroch M. Genome-scale identification and comparative analysis of transcription factors in thermophilic cyanobacteria. BMC Genomics 2024; 25:44. [PMID: 38195395 PMCID: PMC10775510 DOI: 10.1186/s12864-024-09969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The transcription factors (TFs) in thermophilic cyanobacteria might represent a uniquely evolved gene repertoire in light of the strong selective pressure caused by hostile habitats. Understanding the molecular composition of the TF genes in thermophilic cyanobacteria will facilitate further studies regarding verifying their exact biochemical functions and genetic engineering. However, limited information is available on the TFs of thermophilic cyanobacteria. Herein, a thorough investigation and comparative analysis were performed to gain insights into the molecular composition of the TFs in 22 thermophilic cyanobacteria. RESULTS The results suggested a fascinating diversity of the TFs among these thermophiles. The abundance and type of TF genes were diversified in these genomes. The identified TFs are speculated to play various roles in biological regulations. Further comparative and evolutionary genomic analyses revealed that HGT may be associated with the genomic plasticity of TF genes in Thermostichus and Thermosynechococcus strains. Comparative analyses also indicated different pattern of TF composition between thermophiles and corresponding mesophilic reference cyanobacteria. Moreover, the identified unique TFs of thermophiles are putatively involved in various biological regulations, mainly as responses to ambient changes, may facilitating the thermophiles to survive in hot springs. CONCLUSION The findings herein shed light on the TFs of thermophilic cyanobacteria and fundamental knowledge for further research regarding thermophilic cyanobacteria with a broad potential for transcription regulations in responses to environmental fluctuations.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Zhe Hu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Jing Zhang
- Food Safety Detection Key Laboratory of Sichuan, Technical Center of Chengdu Customs, Chengdu, 610041, China.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
37
|
Vorontsov IE, Eliseeva IA, Zinkevich A, Nikonov M, Abramov S, Boytsov A, Kamenets V, Kasianova A, Kolmykov S, Yevshin I, Favorov A, Medvedeva YA, Jolma A, Kolpakov F, Makeev V, Kulakovskiy I. HOCOMOCO in 2024: a rebuild of the curated collection of binding models for human and mouse transcription factors. Nucleic Acids Res 2024; 52:D154-D163. [PMID: 37971293 PMCID: PMC10767914 DOI: 10.1093/nar/gkad1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
We present a major update of the HOCOMOCO collection that provides DNA binding specificity patterns of 949 human transcription factors and 720 mouse orthologs. To make this release, we performed motif discovery in peak sets that originated from 14 183 ChIP-Seq experiments and reads from 2554 HT-SELEX experiments yielding more than 400 thousand candidate motifs. The candidate motifs were annotated according to their similarity to known motifs and the hierarchy of DNA-binding domains of the respective transcription factors. Next, the motifs underwent human expert curation to stratify distinct motif subtypes and remove non-informative patterns and common artifacts. Finally, the curated subset of 100 thousand motifs was supplied to the automated benchmarking to select the best-performing motifs for each transcription factor. The resulting HOCOMOCO v12 core collection contains 1443 verified position weight matrices, including distinct subtypes of DNA binding motifs for particular transcription factors. In addition to the core collection, HOCOMOCO v12 provides motif sets optimized for the recognition of binding sites in vivo and in vitro, and for annotation of regulatory sequence variants. HOCOMOCO is available at https://hocomoco12.autosome.org and https://hocomoco.autosome.org.
Collapse
Affiliation(s)
- Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Arsenii Zinkevich
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mikhail Nikonov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey Abramov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Altius Institute for Biomedical Sciences, 98121 Seattle, WA, USA
| | - Alexandr Boytsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Altius Institute for Biomedical Sciences, 98121 Seattle, WA, USA
| | - Vasily Kamenets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Alexandra Kasianova
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Semyon Kolmykov
- Department of Computational Biology, Sirius University of Science and Technology, 354340 Sirius, Krasnodar region, Russia
| | | | - Alexander Favorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yulia A Medvedeva
- Research Center of Biotechnology RAS, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Arttu Jolma
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Fedor Kolpakov
- Department of Computational Biology, Sirius University of Science and Technology, 354340 Sirius, Krasnodar region, Russia
- Bioinformatics Laboratory, Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
38
|
Arbel-Groissman M, Menuhin-Gruman I, Yehezkeli H, Naki D, Bergman S, Udi Y, Tuller T. The Causes for Genomic Instability and How to Try and Reduce Them Through Rational Design of Synthetic DNA. Methods Mol Biol 2024; 2760:371-392. [PMID: 38468099 DOI: 10.1007/978-1-0716-3658-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Genetic engineering has revolutionized our ability to manipulate DNA and engineer organisms for various applications. However, this approach can lead to genomic instability, which can result in unwanted effects such as toxicity, mutagenesis, and reduced productivity. To overcome these challenges, smart design of synthetic DNA has emerged as a promising solution. By taking into consideration the intricate relationships between gene expression and cellular metabolism, researchers can design synthetic constructs that minimize metabolic stress on the host cell, reduce mutagenesis, and increase protein yield. In this chapter, we summarize the main challenges of genomic instability in genetic engineering and address the dangers of unknowingly incorporating genomically unstable sequences in synthetic DNA. We also demonstrate the instability of those sequences by the fact that they are selected against conserved sequences in nature. We highlight the benefits of using ESO, a tool for the rational design of DNA for avoiding genetically unstable sequences, and also summarize the main principles and working parameters of the software that allow maximizing its benefits and impact.
Collapse
Affiliation(s)
- Matan Arbel-Groissman
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hader Yehezkeli
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yarin Udi
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
39
|
Feldmeyer B, Bornberg-Bauer E, Dohmen E, Fouks B, Heckenhauer J, Huylmans AK, Jones ARC, Stolle E, Harrison MC. Comparative Evolutionary Genomics in Insects. Methods Mol Biol 2024; 2802:473-514. [PMID: 38819569 DOI: 10.1007/978-1-0716-3838-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity. Here we summarize some of the most important methods for carrying out a comparative genomics study on insects. We describe available tools and offer concrete tips on all stages of such an endeavor from DNA extraction through genome sequencing, annotation, and several evolutionary analyses. Along the way we describe important insect-specific aspects, such as DNA extraction difficulties or gene families that are particularly difficult to annotate, and offer solutions. We describe results from several examples of comparative genomics analyses on insects to illustrate the fascinating questions that can now be addressed in this new age of genomics research.
Collapse
Affiliation(s)
- Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Frankfurt, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Bertrand Fouks
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Ann Kathrin Huylmans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Alun R C Jones
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Eckart Stolle
- Museum Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
40
|
Salomone J, Farrow E, Gebelein B. Homeodomain complex formation and biomolecular condensates in Hox gene regulation. Semin Cell Dev Biol 2024; 152-153:93-100. [PMID: 36517343 PMCID: PMC10258226 DOI: 10.1016/j.semcdb.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Hox genes are a family of homeodomain transcription factors that regulate specialized morphological structures along the anterior-posterior axis of metazoans. Over the past few decades, researchers have focused on defining how Hox factors with similar in vitro DNA binding activities achieve sufficient target specificity to regulate distinct cell fates in vivo. In this review, we highlight how protein interactions with other transcription factors, many of which are also homeodomain proteins, result in the formation of transcription factor complexes with enhanced DNA binding specificity. These findings suggest that Hox-regulated enhancers utilize distinct combinations of homeodomain binding sites, many of which are low-affinity, to recruit specific Hox complexes. However, low-affinity sites can only yield reproducible responses with high transcription factor concentrations. To overcome this limitation, recent studies revealed how transcription factors, including Hox factors, use intrinsically disordered domains (IDRs) to form biomolecular condensates that increase protein concentrations. Moreover, Hox factors with altered IDRs have been associated with altered transcriptional activity and human disease states, demonstrating the importance of IDRs in mediating essential Hox output. Collectively, these studies highlight how Hox factors use their DNA binding domains, protein-protein interaction domains, and IDRs to form specific transcription factor complexes that yield accurate gene expression.
Collapse
Affiliation(s)
- Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward Farrow
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
41
|
Russell ND, Jorde LB, Chow CY. Characterizing genetic variation in the regulation of the ER stress response through computational and cis-eQTL analyses. G3 (BETHESDA, MD.) 2023; 13:jkad229. [PMID: 37792690 PMCID: PMC10700025 DOI: 10.1093/g3journal/jkad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/17/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) elicit the ER stress response, a large transcriptional response driven by 3 well-characterized transcription factors (TFs). This transcriptional response is variable across different genetic backgrounds. One mechanism in which genetic variation can lead to transcriptional variability in the ER stress response is through altered binding and activity of the 3 main TFs: XBP1, ATF6, and ATF4. This work attempts to better understand this mechanism by first creating a computational pipeline to identify potential binding sites throughout the human genome. We utilized GTEx data sets to identify cis-eQTLs that fall within predicted TF binding sites (TFBSs). We also utilized the ClinVar database to compare the number of pathogenic vs benign variants at different positions of the binding motifs. Finally, we performed a cis-eQTL analysis on human cell lines experiencing ER stress to identify cis-eQTLs that regulate the variable ER stress response. The majority of these cis-eQTLs are unique to a given condition: control or ER stress. Some of these stress-specific cis-eQTLs fall within putative binding sites of the 3 main ER stress response TFs, providing a potential mechanism by which these cis-eQTLs might be impacting gene expression under ER stress conditions through altered TF binding. This study represents the first cis-eQTL analysis on human samples experiencing ER stress and is a vital step toward identifying the genetic components responsible for the variable ER stress response.
Collapse
Affiliation(s)
- Nikki D Russell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
42
|
Wen C, Yuan Z, Zhang X, Chen H, Luo L, Li W, Li T, Ma N, Mao F, Lin D, Lin Z, Lin C, Xu T, Lü P, Lin J, Zhu F. Sea-ATI unravels novel vocabularies of plant active cistrome. Nucleic Acids Res 2023; 51:11568-11583. [PMID: 37850650 PMCID: PMC10681729 DOI: 10.1093/nar/gkad853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.
Collapse
Affiliation(s)
- Chenjin Wen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhen Yuan
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaotian Zhang
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hao Chen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Lin Luo
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wanying Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tian Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Nana Ma
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fei Mao
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Dongmei Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhanxi Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chentao Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tongda Xu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Juncheng Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fangjie Zhu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
43
|
Jindal GA, Bantle AT, Solvason JJ, Grudzien JL, D'Antonio-Chronowska A, Lim F, Le SH, Song BP, Ragsac MF, Klie A, Larsen RO, Frazer KA, Farley EK. Single-nucleotide variants within heart enhancers increase binding affinity and disrupt heart development. Dev Cell 2023; 58:2206-2216.e5. [PMID: 37848026 PMCID: PMC10720985 DOI: 10.1016/j.devcel.2023.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Transcriptional enhancers direct precise gene expression patterns during development and harbor the majority of variants associated with phenotypic diversity, evolutionary adaptations, and disease. Pinpointing which enhancer variants contribute to changes in gene expression and phenotypes is a major challenge. Here, we find that suboptimal or low-affinity binding sites are necessary for precise gene expression during heart development. Single-nucleotide variants (SNVs) can optimize the affinity of ETS binding sites, causing gain-of-function (GOF) gene expression, cell migration defects, and phenotypes as severe as extra beating hearts in the marine chordate Ciona robusta. In human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a SNV within a human GATA4 enhancer increases ETS binding affinity and causes GOF enhancer activity. The prevalence of suboptimal-affinity sites within enhancers creates a vulnerability whereby affinity-optimizing SNVs can lead to GOF gene expression, changes in cellular identity, and organismal-level phenotypes that could contribute to the evolution of novel traits or diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis T Bantle
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joe J Solvason
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Fabian Lim
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin P Song
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Klie
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reid O Larsen
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Lees J, Pèrtille F, Løtvedt P, Jensen P, Bosagna CG. The mitoepigenome responds to stress, suggesting novel mito-nuclear interactions in vertebrates. BMC Genomics 2023; 24:561. [PMID: 37736707 PMCID: PMC10515078 DOI: 10.1186/s12864-023-09668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The mitochondria are central in the cellular response to changing environmental conditions resulting from disease states, environmental exposures or normal physiological processes. Although the influences of environmental stressors upon the nuclear epigenome are well characterized, the existence and role of the mitochondrial epigenome remains contentious. Here, by quantifying the mitochondrial epigenomic response of pineal gland cells to circadian stress, we confirm the presence of extensive cytosine methylation within the mitochondrial genome. Furthermore, we identify distinct epigenetically plastic regions (mtDMRs) which vary in cytosinic methylation, primarily in a non CpG context, in response to stress and in a sex-specific manner. Motifs enriched in mtDMRs contain recognition sites for nuclear-derived DNA-binding factors (ATF4, HNF4A) important in the cellular metabolic stress response, which we found to be conserved across diverse vertebrate taxa. Together, these findings suggest a new layer of mito-nuclear interaction in which the nuclear metabolic stress response could alter mitochondrial transcriptional dynamics through the binding of nuclear-derived transcription factors in a methylation-dependent context.
Collapse
Affiliation(s)
- John Lees
- Evolutionsbiologiskt Centrum (EBC), Uppsala University, Uppsala, 75236, Sweden
| | - Fábio Pèrtille
- Evolutionsbiologiskt Centrum (EBC), Uppsala University, Uppsala, 75236, Sweden
| | - Pia Løtvedt
- Institutionen För Fysik, Kemi Och Biologi (IFM), Linköping University, Linköping, 58330, Sweden
| | - Per Jensen
- Institutionen För Fysik, Kemi Och Biologi (IFM), Linköping University, Linköping, 58330, Sweden
| | | |
Collapse
|
45
|
Wang Y, Beukeboom LW, Wertheim B, Hut RA. Transcriptomic Analysis of Light-Induced Genes in Nasonia vitripennis: Possible Implications for Circadian Light Entrainment Pathways. BIOLOGY 2023; 12:1215. [PMID: 37759614 PMCID: PMC10525998 DOI: 10.3390/biology12091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Circadian entrainment to the environmental day-night cycle is essential for the optimal use of environmental resources. In insects, opsin-based photoreception in the compound eye and ocelli and CRYPTOCHROME1 (CRY1) in circadian clock neurons are thought to be involved in sensing photic information, but the genetic regulation of circadian light entrainment in species without light-sensitive CRY1 remains unclear. To elucidate a possible CRY1-independent light transduction cascade, we analyzed light-induced gene expression through RNA-sequencing in Nasonia vitripennis. Entrained wasps were subjected to a light pulse in the subjective night to reset the circadian clock, and light-induced changes in gene expression were characterized at four different time points in wasp heads. We used co-expression, functional annotation, and transcription factor binding motif analyses to gain insight into the molecular pathways in response to acute light stimulus and to form hypotheses about the circadian light-resetting pathway. Maximal gene induction was found after 2 h of light stimulation (1432 genes), and this included the opsin gene opblue and the core clock genes cry2 and npas2. Pathway and cluster analyses revealed light activation of glutamatergic and GABA-ergic neurotransmission, including CREB and AP-1 transcription pathway signaling. This suggests that circadian photic entrainment in Nasonia may require pathways that are similar to those in mammals. We propose a model for hymenopteran circadian light-resetting that involves opsin-based photoreception, glutamatergic neurotransmission, and gene induction of cry2 and npas2 to reset the circadian clock.
Collapse
Affiliation(s)
- Yifan Wang
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, The Netherlands; (L.W.B.); (R.A.H.)
| | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, The Netherlands; (L.W.B.); (R.A.H.)
| | | |
Collapse
|
46
|
Gardner CC, Abele JA, Winkler TJ, Reckers CN, Anas SA, James PF. Common as well as unique methylation-sensitive DNA regulatory elements in three mammalian SLC9C1 genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555319. [PMID: 37693488 PMCID: PMC10491193 DOI: 10.1101/2023.08.29.555319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The SLC9C1 gene (which encodes the NHE10 protein) is essential for male fertility in both mice and humans, however the epigenetic mechanisms regulating its testis/sperm-specific gene expression have yet to be studied. Here we identify and characterize DNA regulatory elements of the SLC9C1 gene across three mammalian species: mouse, rat, and human. First, in silico analysis of these mammalian SLC9C1 genes identified a CpG island located upstream of the transcription start site in the same relative position in all three genes. Further analysis reveals that this CpG island behaves differently, with respect to gene regulatory activity, in the mouse SLC9C1 gene than it does in the rat and human SLC9C1 gene. The mouse SLC9C1 CpG island displays strong promoter activity by itself and seems to have a stronger gene regulatory effect than either the rat or human SLC9C1 CpG islands. While the function of the upstream SLC9C1 CpG island may be divergent across the three studied species, it appears that the promoters of these three mammalian SLC9C1 genes share similar DNA methylation-sensitive regulatory mechanisms. All three SLC9C1 promoter regions are differentially methylated in lung and testis, being more hypermethylated in lung relative to the testis, and DNA sequence alignments provide strong evidence of primary sequence conservation. Luciferase assays reveal that in vitro methylation of constructs containing different elements of the three SLC9C1 genes largely exhibit methylation-sensitive promoter activity (reduced promoter activity when methylated) in both HEK 293 and GC-1spg cells. In total, our data suggest that the DNA methylation-sensitive elements of the mouse, rat, and human SLC9C1 promoters are largely conserved, while the upstream SLC9C1 CpG island common to all three species seems to perform a different function in mouse than it does in rat and human. This work provides evidence that while homologous genes can all be regulated by DNA methylation-dependent epigenetic mechanisms, the location of the specific cis-regulatory elements responsible for this regulation can differ across species.
Collapse
|
47
|
McClanahan PD, Golinelli L, Le TA, Temmerman L. Automated scoring of nematode nictation on a textured background. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533066. [PMID: 36993316 PMCID: PMC10055289 DOI: 10.1101/2023.03.16.533066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Entomopathogenic nematodes including Steinernema spp. play an increasingly important role as biological alternatives to chemical pesticides. The infective juveniles of these worms use nictation - a behavior in which animals stand on their tails - as a host-seeking strategy. The developmentally-equivalent dauer larvae of the free-living nematode Caenorhabditis elegans also nictate, but as a means of phoresy or "hitching a ride" to a new food source. Advanced genetic and experimental tools have been developed for C. elegans , but time-consuming manual scoring of nictation slows efforts to understand this behavior, and the textured substrates required for nictation can frustrate traditional machine vision segmentation algorithms. Here we present a Mask R-CNN-based tracker capable of segmenting C. elegans dauers and S. carpocapsae infective juveniles on a textured background suitable for nictation, and a machine learning pipeline that scores nictation behavior. We use our system to show that the nictation propensity of C. elegans from high-density liquid cultures largely mirrors their development into dauers, and to quantify nictation in S. carpocapsae infective juveniles in the presence of a potential host. This system is an improvement upon existing intensity-based tracking algorithms and human scoring which can facilitate large-scale studies of nictation and potentially other nematode behaviors.
Collapse
Affiliation(s)
- Patrick D. McClanahan
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Luca Golinelli
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tuan Anh Le
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Bhimsaria D, Rodríguez-Martínez JA, Mendez-Johnson JL, Ghoshdastidar D, Varadarajan A, Bansal M, Daniels DL, Ramanathan P, Ansari AZ. Hidden modes of DNA binding by human nuclear receptors. Nat Commun 2023; 14:4179. [PMID: 37443151 PMCID: PMC10345098 DOI: 10.1038/s41467-023-39577-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Human nuclear receptors (NRs) are a superfamily of ligand-responsive transcription factors that have central roles in cellular function. Their malfunction is linked to numerous diseases, and the ability to modulate their activity with synthetic ligands has yielded 16% of all FDA-approved drugs. NRs regulate distinct gene networks, however they often function from genomic sites that lack known binding motifs. Here, to annotate genomic binding sites of known and unexamined NRs more accurately, we use high-throughput SELEX to comprehensively map DNA binding site preferences of all full-length human NRs, in complex with their ligands. Furthermore, to identify non-obvious binding sites buried in DNA-protein interactomes, we develop MinSeq Find, a search algorithm based on the MinTerm concept from electrical engineering and digital systems design. The resulting MinTerm sequence set (MinSeqs) reveal a constellation of binding sites that more effectively annotate NR-binding profiles in cells. MinSeqs also unmask binding sites created or disrupted by 52,106 single-nucleotide polymorphisms associated with human diseases. By implicating druggable NRs as hidden drivers of multiple human diseases, our results not only reveal new biological roles of NRs, but they also provide a resource for drug-repurposing and precision medicine.
Collapse
Affiliation(s)
- Devesh Bhimsaria
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | | | | | | | - Ashwin Varadarajan
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Danette L Daniels
- Promega Corporation, Madison, WI, 53711, USA
- Foghorn Therapeutics, Cambridge, MA, 02139, USA
| | - Parameswaran Ramanathan
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Aseem Z Ansari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
49
|
Hale B, Ratnayake S, Flory A, Wijeratne R, Schmidt C, Robertson AE, Wijeratne AJ. Gene regulatory network inference in soybean upon infection by Phytophthora sojae. PLoS One 2023; 18:e0287590. [PMID: 37418376 PMCID: PMC10328377 DOI: 10.1371/journal.pone.0287590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/07/2023] [Indexed: 07/09/2023] Open
Abstract
Phytophthora sojae is a soil-borne oomycete and the causal agent of Phytophthora root and stem rot (PRR) in soybean (Glycine max [L.] Merrill). Yield losses attributed to P. sojae are devastating in disease-conducive environments, with global estimates surpassing 1.1 million tonnes annually. Historically, management of PRR has entailed host genetic resistance (both vertical and horizontal) complemented by disease-suppressive cultural practices (e.g., oomicide application). However, the vast expansion of complex and/or diverse P. sojae pathotypes necessitates developing novel technologies to attenuate PRR in field environments. Therefore, the objective of the present study was to couple high-throughput sequencing data and deep learning to elucidate molecular features in soybean following infection by P. sojae. In doing so, we generated transcriptomes to identify differentially expressed genes (DEGs) during compatible and incompatible interactions with P. sojae and a mock inoculation. The expression data were then used to select two defense-related transcription factors (TFs) belonging to WRKY and RAV families. DNA Affinity Purification and sequencing (DAP-seq) data were obtained for each TF, providing putative DNA binding sites in the soybean genome. These bound sites were used to train Deep Neural Networks with convolutional and recurrent layers to predict new target sites of WRKY and RAV family members in the DEG set. Moreover, we leveraged publicly available Arabidopsis (Arabidopsis thaliana) DAP-seq data for five TF families enriched in our transcriptome analysis to train similar models. These Arabidopsis data-based models were used for cross-species TF binding site prediction on soybean. Finally, we created a gene regulatory network depicting TF-target gene interactions that orchestrate an immune response against P. sojae. Information herein provides novel insight into molecular plant-pathogen interaction and may prove useful in developing soybean cultivars with more durable resistance to P. sojae.
Collapse
Affiliation(s)
- Brett Hale
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR, United States of America
- Arkansas Biosciences Institute, Arkansas State University, State University, AR, United States of America
- College of Science and Mathematics, Arkansas State University, State University, AR, United States of America
| | - Sandaruwan Ratnayake
- Arkansas Biosciences Institute, Arkansas State University, State University, AR, United States of America
- College of Science and Mathematics, Arkansas State University, State University, AR, United States of America
| | - Ashley Flory
- Arkansas Biosciences Institute, Arkansas State University, State University, AR, United States of America
| | | | - Clarice Schmidt
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States of America
| | - Alison E. Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States of America
| | - Asela J. Wijeratne
- Arkansas Biosciences Institute, Arkansas State University, State University, AR, United States of America
- College of Science and Mathematics, Arkansas State University, State University, AR, United States of America
| |
Collapse
|
50
|
van den Berg L, Kokki K, Wowro SJ, Petricek KM, Deniz O, Stegmann CA, Robciuc M, Teesalu M, Melvin RG, Nieminen AI, Schupp M, Hietakangas V. Sugar-responsive inhibition of Myc-dependent ribosome biogenesis by Clockwork orange. Cell Rep 2023; 42:112739. [PMID: 37405919 DOI: 10.1016/j.celrep.2023.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
The ability to feed on a sugar-containing diet depends on a gene regulatory network controlled by the intracellular sugar sensor Mondo/ChREBP-Mlx, which remains insufficiently characterized. Here, we present a genome-wide temporal clustering of sugar-responsive gene expression in Drosophila larvae. We identify gene expression programs responding to sugar feeding, including downregulation of ribosome biogenesis genes, known targets of Myc. Clockwork orange (CWO), a component of the circadian clock, is found to be a mediator of this repressive response and to be necessary for survival on a high-sugar diet. CWO expression is directly activated by Mondo-Mlx, and it counteracts Myc through repression of its gene expression and through binding to overlapping genomic regions. CWO mouse ortholog BHLHE41 has a conserved role in repressing ribosome biogenesis genes in primary hepatocytes. Collectively, our data uncover a cross-talk between conserved gene regulatory circuits balancing the activities of anabolic pathways to maintain homeostasis during sugar feeding.
Collapse
Affiliation(s)
- Linda van den Berg
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Krista Kokki
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Sylvia J Wowro
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Konstantin M Petricek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Onur Deniz
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Catrin A Stegmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Marius Robciuc
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Mari Teesalu
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Richard G Melvin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3083, Australia
| | - Anni I Nieminen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Michael Schupp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|