1
|
Li L, Zhang T, Farhab M, Xia XX, Reza AMMT, Kyaw PO, Chen F, Aly Sayed Ismail E, Xue G, Zhong P, Cheng Y, Yuan YG. Comprehensive analysis of circRNAs and lncRNAs involvement in the development of skeletal muscle in myostatin-deficient rabbits. Anim Biotechnol 2025; 36:2465624. [PMID: 40009466 DOI: 10.1080/10495398.2025.2465624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/10/2024] [Indexed: 02/28/2025]
Abstract
Myostatin (MSTN) protein, lncRNAs, and circRNAs regulate skeletal muscle growth and development. This work aims to compare the expression patterns of circRNAs and lncRNAs in the gluteus maximus tissue of wild-type (WT) and MSTN gene knockout (KO) rabbits. Within the gluteus maximus tissue of three WT and four MSTN KO rabbits, we analyzed the expression profiles of circRNAs and lncRNAs. After identifying the differently expressed RNAs, the biological pathways implicated were ascertained by performing enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). We identified differences in the expression of 251 circRNAs (79 upregulated and 172 downregulated), 176 lncRNAs (53 upregulated and 123 downregulated), and 1178 mRNAs (408 upregulated and 770 downregulated) between WT and MSTN KO rabbits. Target genes were significantly enriched in pathways associated with protein synthesis and catabolism, such as oxidative phosphorylation, ubiquitin-mediated proteolysis, the FoxO signaling pathway, and the pentose phosphate pathway, as identified through GO and KEGG enrichment analyses. The constructed network indicates that a class of circRNAs and lncRNAs is engaged in MSTN-mediated regulation of skeletal muscle development. These findings provide valuable insights for innovative therapeutic, diagnostic, and preventive approaches to muscle disorders.
Collapse
Affiliation(s)
- Ling Li
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Ting Zhang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Muhammad Farhab
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Xiao-Xiao Xia
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Basic Sciences, Gebze Technical University, Gebze, Kocaeli, Republic of Turkiye
| | - Paing Oo Kyaw
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Fenglei Chen
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | | | - Gang Xue
- Nantong City Haimen District Yangtze River Delta White Goat Breeding Research Institute, Jiangsu, Nantong, China
| | - Ping Zhong
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
| | - Yong Cheng
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
| | - Yu-Guo Yuan
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| |
Collapse
|
2
|
Gao F, Ma Y, Yu C, Duan Q. miR-125b-5p regulates FFA-induced hepatic steatosis in L02 cells by targeting estrogen-related receptor alpha. Gene 2025; 959:149419. [PMID: 40113187 DOI: 10.1016/j.gene.2025.149419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND & AIMS NAFLD is a global and complex liver disease caused by multiple factors. Intrahepatocellular steatosis is the primary prerequisite for the occurrence and development of NAFLD. It has been shown that miR-125b-5p is highly correlated with NAFLD, and ESRRA is a factor that regulates lipid metabolism. The purpose of our study is to investigate whether miR-125b-5p regulates FFA-induced steatosis in L02 cells by targeting ESRRA. APPROACHES AND RESULTS Estrogen-related receptor alpha (ESRRA) was identified as a direct target of miR-125b-5p through database prediction and a dual-luciferase reporter gene assay. L02 cells were induced with free fatty acids (OA:PA, 2:1) at concentrations of 0.3 mM, 0.6 mM, 0.9 mM, 1.2 mM and 1.5 mM for 24 h, 48 h and 72 h, respectively. The degree of hepatocyte steatosis and triglyceride content were separately manifested by oil red O staining and colorimetric method. Cell viability per group was detected by CCK-8 assay. Eventually, 0.9 mM and 24 h were screened out as the optimal concentration and time for establishing the in-vitro model of hepatic steatosis. Followingly, miR-125b-5p and ESRRA were knocked down by transient transfection. We monitored the expressions of lipid metabolism factors SREBP-1c, ACC1 and FAS and determine triglyceride content within the cells per group. The data showed that knockdown of ESRRA led to down-regulation of the expressions of SREBP-1, ACC1, FAS and triglyceride content. Meanwhile, knockdown of ESRRA and miR-125b-5p resulted that the expressions of ESRRA, SREBP-1, ACC1, FAS and triglyceride content rebounded. CONCLUSIONS MiR-125b-5p down-regulates the expressions of lipid metabolism-related factors by negatively regulating ESRRA, thereby improving hepatic steatosis.
Collapse
Affiliation(s)
- Fen Gao
- Gansu University of Chinese Medicine, Gansu 730000, China.
| | - Yanhua Ma
- Gansu University of Chinese Medicine, Gansu 730000, China.
| | - Chun Yu
- Gansu University of Chinese Medicine, Gansu 730000, China
| | | |
Collapse
|
3
|
Xie Y, Xie J, Huang G, Zhang J, Song C, Luo Y, Tang H, Tang Y, Xiao X, Zhang C, Shuang Z, Li X. Isoliquiritigenin reduces brain metastasis by circNAV3-ST6GALNAC5-EGFR axis in triple-negative breast cancer. Cancer Lett 2025; 624:217734. [PMID: 40268132 DOI: 10.1016/j.canlet.2025.217734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Brain metastasis (BM) is a serious complication of increasing incidence in patients with advanced breast cancer, which is characterized by swift deterioration in quality of life with few efficient therapy strategies. There is an urgent clinical requirement to devise potent therapeutic strategies for the prevention and management of brain metastases. Here, we report isoliquiritigenin (ISL), a key bioactive substance extracted from licorice root, which effectively inhibited triple-negative breast cancer (TNBC) brain metastasis (BM) by downregulation of circNAV3. CircRNAs expression analyses and functional studies, coupled with clinical significance investigations identified circNAV3 as a key molecule promoting TNBC BM. Functionally, circNAV3 could promote proliferation, migration, invasion, angiogenesis and capacity to penetrate the blood-brain barrier of TNBC cells. Mechanistically, circNAV3 could competitively bind with miR-4262, hence intercepting the suppressive effect of miR-4262 on ST6GALNAC5. Subsequently, this interplay enhanced EGFR sialylation and activation, initiating the PI3K/Akt pathway and ultimately fostering the development of TNBC brain metastases. In conclusion, our research establishes that ISL impede the initiation and advancement of TNBC brain metastasis by modulation of circNAV3/miR-4262/ST6GALNAC5/EGFR axis, laying a theoretical groundwork for the therapeutic use of ISL in this scenario.
Collapse
Affiliation(s)
- Yi Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Guoxian Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yongzhou Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangsheng Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zeyu Shuang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Luo T, Vattathil SM, Lori A, Schneider JA, Bennett DA, Wingo TS, Wingo AP. Brain microRNAs differentially expressed in age-related cerebral pathologies. Neurobiol Aging 2025; 151:42-53. [PMID: 40228357 DOI: 10.1016/j.neurobiolaging.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Multiple brain pathologies accumulate with age, but their underlying biology remains unclear. We investigated the role of microRNAs (miRNAs) in ten age-related cerebral pathologies. Using miRNA sequencing profiles from the dorsolateral prefrontal cortex of 617 brain donors, we identified miRNAs associated with Alzheimer's disease (AD) pathology, Lewy body pathology, arteriolosclerosis, cerebral amyloid angiopathy, and LATE-NC after adjusting for age, sex, and education. After additionally adjusting for co-existing cerebral pathologies, we found miRNAs specifically associated with AD pathology (n = 75), Lewy body pathology (n = 45), arteriolosclerosis (n = 3), cerebral amyloid angiopathy (n = 1), and LATE-NC (n = 4). While some miRNAs were pathology-specific, 14 miRNAs (including those in the miR-132/212 cluster) were associated with both AD pathology and Lewy body pathology, and one (miR-193a-5p) was associated with both AD pathology and cerebral amyloid angiopathy. Gene set enrichment analysis showed that miRNAs associated with arteriolosclerosis target genes involved in glutathione metabolism, synaptic functions, cellular transport, and innate immune response. These findings highlight the role of miRNAs in age-related cerebral pathologies and provide a foundation for future mechanistic studies.
Collapse
Affiliation(s)
- Tianze Luo
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Selina M Vattathil
- Department of Neurology, University of California Davis, Sacramento, CA, USA
| | - Adriana Lori
- Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Thomas S Wingo
- Department of Neurology, University of California Davis, Sacramento, CA, USA; Alzheimer's Disease Research Center, University of California Davis, Sacramento, CA, USA.
| | - Aliza P Wingo
- Department of Psychiatry, University of California Davis, Sacramento, CA, USA; Veterans Affairs Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
5
|
Li L, Lam I, Wang J, Yu H, Chan C, Cai S. Epigenetic mechanism of iPSC-MSC-EVs in colonic epithelial cell pyroptosis in ulcerative colitis cell models via modulation of ELF3/miR-342-3p/KDM6B axis and histone methylation. Int Immunopharmacol 2025; 157:114704. [PMID: 40315630 DOI: 10.1016/j.intimp.2025.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/09/2025] [Accepted: 04/19/2025] [Indexed: 05/04/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease in the colon and rectum. Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs) have emerged as promising cell-free therapeutics for UC, leveraging their immunomodulatory and tissue-protective properties. However, the specific epigenetic mechanisms by which EVs regulate pyroptosis (an inflammatory cell death pathway) remain poorly understood. This study explores how EVs derived from induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) regulate pyroptosis in colonic epithelial cells of UC by targeting the histone-modifying protein KDM6B, aiming to provide new therapeutic insights for UC. iPSCs were differentiated into MSCs, and their EVs were isolated and characterized. EVs were engineered to carry the circular RNA circ-CCND1 and co-cultured with UC model cells induced by DSS. Cell viability, inflammatory cytokine levels, and key molecular markers related to pyroptosis (NLRP3, cleaved Caspase-1, GSDMD-N) were measured. The molecular mechanism was dissected using RNA-protein binding assays and gene expression analysis, focusing on the circ-CCND1/KDM6B/ELF3/miR-342-3p signaling axis. EV treatment reduced pyroptosis in UC model cells, with enhanced efficacy when EVs carried circ-CCND1. Mechanistically, circ-CCND1 in EVs entered cells and bound to KDM6B, inhibiting its activation of the ELF3 gene, leading to increased miR-342-3p, which in turn suppressed KDM6B expression, forming a feedback loop that dampened pyroptosis. In conclusions, iPSC-MSC-derived EVs inhibit inflammatory cell death in colonic epithelial cells by regulating histone modification-related pathways, highlighting their potential as a novel therapeutic strategy for UC.
Collapse
Affiliation(s)
- Lixuan Li
- Department of Gastroenterology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510000, China.
| | - Ienghou Lam
- Department of Gastroenterology, Kiang Wu Hospital, Macau SAR 999078, China
| | - Jintao Wang
- Department of Gastroenterology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510000, China
| | - Honho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau SAR 999078, China
| | - Chonin Chan
- Department of Gastroenterology, Kiang Wu Hospital, Macau SAR 999078, China
| | - Shaowei Cai
- Department of Gastroenterology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510000, China
| |
Collapse
|
6
|
Arabi K, Nazemi Salman B, Rahimzadeh-Bajgiran F, Moghbeli M, Moghadas S, Saburi E. miRNAs in oral cancer; diagnostic and prognostic roles. Gene 2025; 951:149382. [PMID: 40049425 DOI: 10.1016/j.gene.2025.149382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Oral cancer (OC) has become increasingly prevalent in recent years, making it one of the most often occurring types of cancer in patients. The clinical identification of OC is usually a time-consuming procedure, and the outlook for individuals with OC is generally unfavorable, as no particular biomarkers have been established to far. The main risk factors linked to OC are high levels of tobacco and alcohol intake, together with a reduced occurrence of viral infections, such as human papillomavirus. Furthermore, there is evidence suggesting that genetic characteristics that can be passed down from parents to offspring play a role in increasing the likelihood of getting ovarian cancer. MicroRNAs (miRNAs) are brief RNA molecules that do not code for proteins and have the ability to either repress or promote the growth of tumors during cancer development. They have been discovered to control multiple signaling pathways within cells, and their abnormal regulation has been demonstrated to be crucial in initiating and furthering the development of cancer. Additionally, they have the ability to either facilitate or impede the entire multi-stage process of cancer metastasis, including epithelial-mesenchymal transition (EMT), migration, and invasion, by selectively targeting essential genes involved in these pathways. Several microRNAs have the ability to regulate gene expression through various ways. In addition, like other types of cancer, OC has shown alterations in the expression of miRNAs, and certain miRNAs may have the ability to be used for diagnosis and treatment. The investigation of these miRNA could perhaps result in advancements in the specified instances of OC.
Collapse
Affiliation(s)
- Kimia Arabi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Bahareh Nazemi Salman
- Department of Pediatric Dentistry, School of Dentistry, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.
| | | | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sepehr Moghadas
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Márquez-Mendoza JM, Baranda-Ávila N, Lizano M, Langley E. Micro-RNAs targeting the estrogen receptor alpha involved in endocrine therapy resistance in breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167783. [PMID: 40057206 DOI: 10.1016/j.bbadis.2025.167783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Endocrine therapy resistance (ETR) in breast cancer (BC) is a multicausal phenomenon with diverse alterations in the tumor cell interactome. Within these alterations, non-coding RNAs (ncRNAs) such as micro-RNAs (miRNAs) modulate the expression of tumor suppressor genes and proto-oncogenes, such as the ESR1 gene encoding estrogen receptor alpha (ERα). This work aims to review the effects of miRNAs targeting ERα mRNA and their mechanisms related to ETR in BC. A thorough review of the literature and an in silico study were carried out to elucidate the involvement of each miRNA, thus contributing to the understanding of ETR in BC.
Collapse
Affiliation(s)
- J M Márquez-Mendoza
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - N Baranda-Ávila
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - M Lizano
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - E Langley
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| |
Collapse
|
8
|
Liu M, Fang K, Wang XR, Wang K, Zhang LH, He MY, Xu YY, Wu Y, Ge JF. Serum exosomal hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p as candidate biomarkers for recurrent depressive disorder diagnosis and ECT treatment response: A preliminary investigation. Brain Res Bull 2025; 225:111345. [PMID: 40220964 DOI: 10.1016/j.brainresbull.2025.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE This study investigated the differential expression of serum exosomal miRNAs in female patients with recurrent depressive disorder (RDD) before and after non-convulsive electroconvulsive therapy (ECT), aiming to explore potential diagnostic and therapeutic biomarkers. METHOD Serum samples were collected from three groups: healthy female volunteers aged 30-50, female patients with RDD prior to ECT, and female patients post-ECT who had achieved remission. Exosomes were isolated from serum, identified through transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis of exosomal markers. Total RNA was extracted from exosomes, and miRNA sequencing was conducted to identify differentially expressed miRNAs. Gene target prediction, Gene Ontology, and KEGG pathway enrichment analyses were also performed. RESULTS miRNA sequencing revealed significant differences in exosomal miRNA profiles among the three groups. Compared to controls, 69 miRNAs were upregulated and 98 downregulated in the model group, while the recovery group showed 41 upregulated and 51 downregulated miRNAs compared to the model group. Furthermore, the recovery group exhibited 35 upregulated and 59 downregulated miRNAs compared to controls. Analysis identified hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p as potential biomarkers for RDD diagnosis and ECT treatment response, with functional roles likely related to inflammation, neurotransmission, and synaptic plasticity. CONCLUSION Serum exosomal miRNAs, particularly hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p, emerged as promising candidates for further investigation as biomarkers for RDD diagnosis and treatment monitoring. Larger, multi-center studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Meng Liu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Ke Fang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Xiao-Rui Wang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Kun Wang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Li-Hong Zhang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Man-Yun He
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Yan-Yan Xu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Yuan Wu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Aloliqi AA, Alnuqaydan AM, Albutti A, Alharbi BF, Rahmani AH, Khan AA. Current updates regarding biogenesis, functions and dysregulation of microRNAs in cancer: Innovative approaches for detection using CRISPR/Cas13‑based platforms (Review). Int J Mol Med 2025; 55:90. [PMID: 40242952 PMCID: PMC12021393 DOI: 10.3892/ijmm.2025.5531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
MicroRNAs (miRNAs) are short non‑coding RNAs, which perform a key role in cellular differentiation and development. Most human diseases, particularly cancer, are linked to miRNA functional dysregulation implicated in the expression of tumor‑suppressive or oncogenic targets. Cancer hallmarks such as continued proliferative signaling, dodging growth suppressors, invasion and metastasis, triggering angiogenesis, and avoiding cell death have all been demonstrated to be affected by dysregulated miRNAs. Thus, for the treatment of different cancer types, the detection and quantification of this type of RNA is significant. The classical and current methods of RNA detection, including northern blotting, reverse transcription‑quantitative PCR, rolling circle amplification and next‑generation sequencing, may be effective but differ in efficiency and accuracy. Furthermore, these approaches are expensive, and require special instrumentation and expertise. Thus, researchers are constantly looking for more innovative approaches for miRNA detection, which can be advantageous in all aspects. In this regard, an RNA manipulation tool known as the CRISPR and CRISPR‑associated sequence 13 (CRISPR/Cas13) system has been found to be more advantageous in miRNA detection. The Cas13‑based miRNA detection approach is cost effective and requires no special instrumentation or expertise. However, more research and validation are required to confirm the growing body of CRISPR/Cas13‑based research that has identified miRNAs as possible cancer biomarkers for diagnosis and prognosis, and as targets for treatment. In the present review, current updates regarding miRNA biogenesis, structural and functional aspects, and miRNA dysregulation during cancer are described. In addition, novel approaches using the CRISPR/Cas13 system as a next‑generation tool for miRNA detection are discussed. Furthermore, challenges and prospects of CRISPR/Cas13‑based miRNA detection approaches are described.
Collapse
Affiliation(s)
- Abdulaziz A. Aloliqi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Abdullah M. Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Aqel Albutti
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| |
Collapse
|
10
|
Yu H, Li QS, Guo JN, Zhang Z, Lang XZ, Liu YN, Qin L, Su X, Zhang QW, Xue YD, Gong LL, Xu N, Li M, Zhao WS, Zhao XM, Zhang WY, Yao YJ, Chen XM, Zhang Z, Li W, Wang HX, Cai BZ, Li JM, Wang N. METTL14-mediated m 6A methylation of pri-miR-5099 to facilitate cardiomyocyte pyroptosis in myocardial infarction. Acta Pharmacol Sin 2025; 46:1639-1651. [PMID: 39939804 PMCID: PMC12099011 DOI: 10.1038/s41401-025-01485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
N6-methyladenosine (m6A) modification is an important mechanism in microRNA processing and maturation. Previous studies show the involvement of pri-miRNA methylation in regulating the occurrence and development of tumor-related diseases. In this study, we investigated the role of its aberrant regulation in cardiac diseases. Myocardial infarction (MI) mouse were established by ligation of the left anterior descending branch of the coronary artery. We showed that the expression of methyltransferase 14 (METTL14) was significantly increased in myocardium of MI mice. We demonstrated that METTL14 methylated the primary transcript miRNA (pri-miR-5099), promoting the recognition by DiGeorge critical region 8 (DGCR8) and the maturation processing of pri-miR-5099. Mature microRNA-5099-3p (miR-5099-3p) inhibited the expression of E74 like ETS transcription factor 1 (ELF1), which transcriptionally regulated pyroptosis factors such as acysteinyl aspartate-specific proteinase 1 (caspase-1) and gasdermin D (GSDMD), ultimately leading to cardiomyocyte pyroptosis. This study reveals that myocardial infarction-induced miR-5099-3p excessive maturation via m6A modification promotes the development and progression of cardiomyocyte pyroptosis.
Collapse
Affiliation(s)
- Hang Yu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qing-Sui Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jun-Nan Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Zhen Zhang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xian-Zhi Lang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi-Ning Liu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Long Qin
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xu Su
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qing-Wei Zhang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ya-Dong Xue
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Li-Ling Gong
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ning Xu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ming Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wen-Shuang Zhao
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xing-Miao Zhao
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wan-Yu Zhang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi-Jing Yao
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xi-Ming Chen
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhen Zhang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Han-Xiang Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ben-Zhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150080, China.
| | - Jia-Min Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150080, China.
| | - Ning Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150080, China.
| |
Collapse
|
11
|
Brancaglion GA, de Souza GAP, de Araújo LP, Silva EN, da Silva LL, de Lima Tana F, Corsetti PP, Coelho LFL, de Almeida LA. Sequential macrophage DENV and ZIKV infection shows differential expression of CD86, IFN-β, and regulation of TNF-α and IL-1β depending on DENV serotype. Braz J Microbiol 2025; 56:1083-1094. [PMID: 39969815 PMCID: PMC12095828 DOI: 10.1007/s42770-025-01639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
Dengue virus (DENV) is an RNA virus belonging to the Flaviviridae family, comprising four antigenically distinct serotypes. Dengue is the primary arthropod-transmitted virus globally, posing a significant public health challenge, especially in Brazil, where the largest outbreak of Zika virus (ZIKV) was also recorded in 2016. ZIKV shares genomic and structural similarities with DENV, and their co-circulation in Brazil provides evidence of co-infection. The innate immune response against DENV and ZIKV is mediated by pattern recognition receptors that initiate intracellular signaling, leading to antiviral or inflammatory responses. This study aims to better understand the innate immune response to ZIKV in macrophages previously infected with DENV. To achieve this, bone marrow cells from C57BL/6 mice were differentiated into macrophages (BMDMs) and independently infected with each of the four DENV serotypes for 12 h, followed by ZIKV infection for an additional 12 h. Twenty-four hours post-infection, macrophage activation markers CD86 were assessed using flow cytometry and fluorescence microscopy. Pro-inflammatory and antiviral gene expressions were evaluated by qPCR. IFN-β was found to be down-regulated in all analyzed groups. No differences in CD86 expression were observed in ZIKV-infected BMDMs previously infected with DENV, except for serotype 4, which showed an increase in both activation markers. Conversely, TNF-α and IL-1β were down-regulated compared to non-infected or only DENV4-infected cells, correlating with increased cell viability and decreased production of the cytokine TNF-α. Bioinformatic analysis suggested that the expression of both cytokines might be regulated by miRNAs, including miR-181a-5p, which is also up-regulated in the innate immune response. Taken together, the results indicated that co-infection with DENV serotype 4 and ZIKV in mice BMDMs increases the expression of CD86, promoting macrophage activation, but reduces the expression of pro-inflammatory genes TNF-α and IL-1β, indicating enhanced cell viability what can be modulated by miRNAs.
Collapse
Affiliation(s)
- Gustavo Andrade Brancaglion
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil
| | | | - Leonardo Pereira de Araújo
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil
| | - Evandro Neves Silva
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil
| | - Laura Leone da Silva
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil
| | - Fernanda de Lima Tana
- Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Alfenas, 31270-901, Minas Gerais, Brazil
| | - Patrícia Paiva Corsetti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratory of Vaccines, Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Leonardo Augusto de Almeida
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Yuan J, Liao YS, Zhang TC, Tang YQ, Yu P, Liu YN, Cai DJ, Yu SG, Zhao L. Integrating Bulk RNA and Single-Cell Sequencing Data Unveils Efferocytosis Patterns and ceRNA Network in Ischemic Stroke. Transl Stroke Res 2025; 16:733-746. [PMID: 38678526 DOI: 10.1007/s12975-024-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/17/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Excessive inflammatory response following ischemic stroke (IS) injury is a key factor affecting the functional recovery of patients. The efferocytic clearance of apoptotic cells within ischemic brain tissue is a critical mechanism for mitigating inflammation, presenting a promising avenue for the treatment of ischemic stroke. However, the cellular and molecular mechanisms underlying efferocytosis in the brain after IS and its impact on brain injury and recovery are poorly understood. This study explored the roles of inflammation and efferocytosis in IS with bioinformatics. Three Gene Expression Omnibus Series (GSE) (GSE137482-3 m, GSE137482-18 m, and GSE30655) were obtained from NCBI (National Center for Biotechnology Information) and GEO (Gene Expression Omnibus). Differentially expressed genes (DEGs) were processed for GSEA (Gene Set Enrichment Analysis), GO (Gene Ontology Functional Enrichment Analysis), and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses. Efferocytosis-related genes were identified from the existing literature, following which the relationship between Differentially Expressed Genes (DEGs) and efferocytosis-related genes was examined. The single-cell dataset GSE174574 was employed to investigate the distinct expression profiles of efferocytosis-related genes. The identified hub genes were verified using the dataset of human brain and peripheral blood sample datasets GSE56267 and GSE122709. The dataset GSE215212 was used to predict competing endogenous RNA (ceRNA) network, and GSE231431 was applied to verify the expression of differential miRNAs. At last, the middle cerebral artery (MCAO) model was established to validate the efferocytosis process and the expression of hub genes. DEGs in two datasets were significantly enriched in pathways involved in inflammatory response and immunoregulation. Based on the least absolute shrinkage and selection operator (LASSO) analyses, we identified hub efferocytosis-related genes (Abca1, C1qc, Ptx3, Irf5, and Pros1) and key transcription factors (Stat5). The scRNA-seq analysis showed that these hub genes were mainly expressed in microglia and macrophages which are the main cells with efferocytosis function in the brain. We then identified miR-125b-5p as a therapeutic target of IS based on the ceRNA network. Finally, we validated the phagocytosis and clearance of dead cells by efferocytosis and the expression of hub gene Abca1 in MCAO mice models.
Collapse
Affiliation(s)
- Jing Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Yu-Sha Liao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Tie-Chun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Yu-Qi Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Pei Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Ya-Ning Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Ding-Jun Cai
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Shu-Guang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
13
|
Thakur P, Lackinger M, Diamantopoulou A, Rao S, Chen Y, Khalizova K, Ferng A, Mazur C, Kordasiewicz H, Shprintzen RJ, Markx S, Xu B, Gogos JA. An antisense oligonucleotide-based strategy to ameliorate cognitive dysfunction in the 22q11.2 Deletion Syndrome. eLife 2025; 13:RP103328. [PMID: 40420562 DOI: 10.7554/elife.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Adults and children with the 22q11.2 Deletion Syndrome demonstrate cognitive, social, and emotional impairments and high risk for schizophrenia. Work in mouse model of the 22q11.2 deletion provided compelling evidence for abnormal expression and processing of microRNAs. A major transcriptional effect of the microRNA dysregulation is upregulation of Emc10, a component of the ER membrane complex, which promotes membrane insertion of a subset of polytopic and tail-anchored membrane proteins. We previously uncovered a key contribution of EMC10 in mediating the behavioral phenotypes observed in 22q11.2 deletion mouse models. Here, we show that expression and processing of miRNAs is abnormal and EMC10 expression is elevated in neurons derived from 22q11.2 deletion carriers. Reduction of EMC10 levels restores defects in neurite outgrowth and calcium signaling in patient neurons. Furthermore, antisense oligonucleotide administration and normalization of Emc10 in the adult mouse brain not only alleviates cognitive deficits in social and spatial memory but remarkably sustains these improvements for over 2 months post-injection, indicating its therapeutic potential. Broadly, our study integrates findings from both animal models and human neurons to elucidate the translational potential of modulating EMC10 levels and downstream targets as a specific venue to ameliorate disease progression in 22q11.2 Deletion Syndrome.
Collapse
Affiliation(s)
- Pratibha Thakur
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| | - Martin Lackinger
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia University, New York, United States
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| | - Sneha Rao
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| | - Yijing Chen
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, United States
| | - Khakima Khalizova
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia University, New York, United States
| | - Annie Ferng
- Ionis Pharmaceuticals, Inc, Carlsbad, United States
| | - Curt Mazur
- Ionis Pharmaceuticals, Inc, Carlsbad, United States
| | | | - Robert J Shprintzen
- The Virtual Center for Velo-Cardio-Facial-Syndrome, Inc, Manlius, United States
| | - Sander Markx
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia University, New York, United States
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Bin Xu
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia University, New York, United States
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Joseph A Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia University, New York, United States
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, United States
- Department of Neuroscience, Columbia University, New York, United States
| |
Collapse
|
14
|
Anuarbekov A, Kléma J. Utilizing RNA-seq data in monotone iterative generalized linear model to elevate prior knowledge quality of the circRNA-miRNA-mRNA regulatory axis. BMC Bioinformatics 2025; 26:139. [PMID: 40426030 DOI: 10.1186/s12859-025-06161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Current experimental data on RNA interactions remain limited, particularly for non-coding RNAs, many of which have only recently been discovered and operate within complex regulatory networks. Researchers often rely on in-silico interaction detection algorithms, such as TargetScan, which are based on biochemical sequence alignment. However, these algorithms have limited performance. RNA-seq expression data can provide valuable insights into regulatory networks, especially for understudied interactions such as circRNA-miRNA-mRNA. By integrating RNA-seq data with prior interaction networks obtained experimentally or through in-silico predictions, researchers can discover novel interactions, validate existing ones, and improve interaction prediction accuracy. RESULTS This paper introduces Pi-GMIFS, an extension of the generalized monotone incremental forward stagewise (GMIFS) regression algorithm that incorporates prior knowledge. The algorithm first estimates prior response values through a prior-only regression, interpolates between these prior values and the original data, and then applies the GMIFS method. Our experimental results on circRNA-miRNA-mRNA regulatory interaction networks demonstrate that Pi-GMIFS consistently enhances precision and recall in RNA interaction prediction by leveraging implicit information from bulk RNA-seq expression data, outperforming the initial prior knowledge. CONCLUSION Pi-GMIFS is a robust algorithm for inferring acyclic interaction networks when the variable ordering is known. Its effectiveness was confirmed through extensive experimental validation. We proved that RNA-seq data of a representative size help infer previously unknown interactions available in TarBase v9 and improve the quality of circRNA disease annotation.
Collapse
Affiliation(s)
- Alikhan Anuarbekov
- Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627, Prague, Czech Republic.
| |
Collapse
|
15
|
Beck A, Gabler-Pamer L, Alencastro Veiga Cruzeiro G, Lambo S, Englinger B, Shaw ML, Hack OA, Liu I, Haase RD, de Biagi CAO, Baumgartner A, Nascimento Silva AD, Klenner M, Freidel PS, Herms J, von Baumgarten L, Tonn JC, Thon N, Bruckner K, Madlener S, Mayr L, Senfter D, Peyrl A, Slavc I, Lötsch D, Dorfer C, Geyregger R, Amberg N, Haberler C, Mack N, Schwalm B, Pfister SM, Korshunov A, Baird LC, Yang E, Chi SN, Alexandrescu S, Gojo J, Kool M, Hovestadt V, Filbin MG. Cellular hierarchies of embryonal tumors with multilayered rosettes are shaped by oncogenic microRNAs and receptor-ligand interactions. NATURE CANCER 2025:10.1038/s43018-025-00964-9. [PMID: 40419763 DOI: 10.1038/s43018-025-00964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 04/01/2025] [Indexed: 05/28/2025]
Abstract
Embryonal tumor with multilayered rosettes (ETMR) is a pediatric brain tumor with dismal prognosis. Characteristic alterations of the chromosome 19 microRNA cluster (C19MC) are observed in most ETMR; however, the ramifications of C19MC activation and the complex cellular architecture of ETMR remain understudied. Here we analyze 11 ETMR samples from patients using single-cell transcriptomics and multiplexed spatial imaging. We reveal a spatially distinct cellular hierarchy that spans highly proliferative neural stem-like cells and more differentiated neuron-like cells. C19MC is predominantly expressed in stem-like cells and controls a transcriptional network governing stemness and lineage commitment, as resolved by genome-wide analysis of microRNA-mRNA binding. Systematic analysis of receptor-ligand interactions between malignant cell types reveals fibroblast growth factor receptor and Notch signaling as oncogenic pathways that can be successfully targeted in preclinical models and in one patient with ETMR. Our study provides fundamental insights into ETMR pathobiology and a powerful rationale for more effective targeted therapies.
Collapse
Affiliation(s)
- Alexander Beck
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Neuropathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lisa Gabler-Pamer
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurosurgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sander Lambo
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - McKenzie L Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olivia A Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca D Haase
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carlos A O de Biagi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alicia Baumgartner
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrezza Do Nascimento Silva
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marbod Klenner
- Center for Neuropathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pia S Freidel
- Center for Neuropathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Katharina Bruckner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Daniela Lötsch
- Department of Neurosurgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rene Geyregger
- Clinical Cell Biology and FACS Core Unit, St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Nicole Amberg
- Department of Neurology, Division of Neuropathology and Neurochemistry and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Department of Neurology, Division of Neuropathology and Neurochemistry and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Norman Mack
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Benjamin Schwalm
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lissa C Baird
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Susan N Chi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht (UMCU), Utrecht, the Netherlands
| | - Volker Hovestadt
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
16
|
He Y, Sun Y, Zheng Y, Jiang Y, Li N, Zhao W, Ren W. Hsa_circ_0006837 suppresses gastric cancer cell proliferation, migration, and invasion via the modulation of miR-424-5p. Hereditas 2025; 162:85. [PMID: 40405299 PMCID: PMC12100860 DOI: 10.1186/s41065-025-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/05/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND The mechanism by which circRERE (hsa_circ_0006837) modulates the malignant progression of gastric cancer was investigated to identify a novel biomarker and therapeutic target for this disease. METHODS Hsa_circ_0006837 expression in GC tissues and cells was detected by RT-qPCR. Several data analysis methods were used to evaluate the significance of dysregulated hsa_circ_0006837 in GC. The patients were followed up for five years, and survival analysis was conducted using Kaplan-Meier curves. Cox regression was subsequently performed to analyze the risk factors for prognosis. The malignant behaviors of the cells were detected by the CCK-8 and Transwell assays. The relationship between hsa_circ_0006837 and miR-424-5p was assessed by conducting Spearman correlation analysis and verified by dual-luciferase reporter assay. RESULTS Hsa_circ_0006837 expression decreased in patients with GC, indicating a poorer patient prognosis. In GC cells, hsa_circ_0006837 overexpression suppressed malignant behaviors. Mechanistically, miR-424-5p was identified as a target of hsa_circ_0006837. The overexpression of miR-424-5p partially counteracted the suppressive effects of upregulated hsa_circ_0006837 on the malignant behaviors of GC cells. FBXO21 was identified as a downstream gene of the hsa_circ_0006837/miR-424-5p axis. CONCLUSIONS To summarize, hsa_circ_0006837 is a biomarker for the prognosis of GC. Mechanistically, hsa_circ_0006837 overexpression can modulate the malignant behaviors of GC cells through miR-424-5p.
Collapse
Affiliation(s)
- Yanxin He
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Yeyu Sun
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
- Qingdao University, Qingdao, 266042, China
| | - Yinglan Zheng
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Yanfang Jiang
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Na Li
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Wenjie Zhao
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Wanhua Ren
- Department of Gastroenterology, Shandong Provincial Hospital, No. 324, Jingwuweiqi Road, Jinan, 250021, China.
| |
Collapse
|
17
|
Zolboot N, Xiao Y, Du JX, Ghanem MM, Choi SY, Junn MJ, Zampa F, Huang Z, MacRae IJ, Lippi G. MicroRNA mechanisms instructing Purkinje cell specification. Neuron 2025; 113:1629-1646.e15. [PMID: 40179877 DOI: 10.1016/j.neuron.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/22/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
MicroRNAs (miRNAs) are critical for brain development; however, if, when, and how miRNAs drive neuronal subtype specification remains poorly understood. To address this, we engineered technologies with vastly improved spatiotemporal resolution that allow the dissection of cell-type-specific miRNA-target networks. Fast and reversible miRNA loss of function showed that miRNAs are necessary for Purkinje cell (PC) differentiation, which previously appeared to be miRNA independent, and identified distinct critical miRNA windows for dendritogenesis and climbing fiber synaptogenesis, structural features defining PC identity. Using new mouse models that enable miRNA-target network mapping in rare cell types, we uncovered PC-specific post-transcriptional programs. Manipulation of these programs revealed that the PC-enriched miR-206 and targets Shank3, Prag1, En2, and Vash1, which are uniquely repressed in PCs, are critical regulators of PC-specific dendritogenesis and synaptogenesis, with miR-206 knockdown and target overexpression partially phenocopying miRNA loss of function. Our results suggest that gene expression regulation by miRNAs, beyond transcription, is critical for neuronal subtype specification.
Collapse
Affiliation(s)
- Norjin Zolboot
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica X Du
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marwan M Ghanem
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Su Yeun Choi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Miranda J Junn
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Federico Zampa
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zeyi Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Giordano Lippi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Li J, Zhang B, Liu R, Li X, Sun X, Zhang Q. miRNA-200a suppresses GNAI1 and PLCB4 to modulate skin pigmentation in cashmere goats. Sci Rep 2025; 15:17456. [PMID: 40394057 PMCID: PMC12092684 DOI: 10.1038/s41598-025-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Coat colour formation in mammals is influenced by melanogenesis and pigmentation processes regulated by miRNAs, including miRNA-200a. Although miRNA-200a is differentially expressed in the skin of cashmere goats with varying coat colours, its regulatory mechanism remains unclear. In this study, miRNA-200a target genes were predicted using miRBase and TargetScan, identifying GNAI1 and PLCB4 as the target genes through GO and KEGG analyses. Dual-luciferase assays using wild-type and mutant plasmids confirmed a direct interaction between miRNA-200a and the 3'UTR regions of these genes. RT-qPCR and Western blot analyses demonstrated that the expression levels of miRNA-200a and its target genes differed significantly between black and white goat skin. In HaCaT cells, transfection with miRNA-200a mimics or inhibitors altered GNAI1 and PLCB4 expression at both mRNA and protein levels. To validate these findings in vivo, subcutaneous injection of antagomiR-200a into BALB/c mice significantly reduced melanin content (P < 0.01) and increased the expression of GNAI1 and PLCB4. These results indicate that miRNA-200a modulates skin pigmentation by suppressing GNAI1 and PLCB4, thereby influencing coat colour in cashmere goats. This study provides a foundational understanding for leveraging genetic regulation to enhance coat colour diversity and develop naturally pigmented breeds.
Collapse
Affiliation(s)
- Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Baoyu Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Runlai Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xinyu Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xuezhao Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China.
| | - Qiaoling Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
19
|
Niu RZ, Feng WQ, Chen L, Bao TH. Single-Cell Transcriptomic Profiling Reveals Regional Differences in the Prefrontal and Entorhinal Cortex of Alzheimer's Disease Brain. Int J Mol Sci 2025; 26:4841. [PMID: 40429980 DOI: 10.3390/ijms26104841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Previous studies have largely overlooked cellular differential alterations across differentially affected brain regions in both disease mechanisms and therapeutic development of Alzheimer's disease (AD). This study aimed to compare the differential cellular and transcriptional changes in the prefrontal cortex (PFC) and entorhinal cortex (EC) of AD patients through an integrated single-cell transcriptomic analysis. We integrated three single-cell RNA sequencing (scRNA-seq) datasets comprising PFC and EC samples from AD patients and age-matched healthy controls. A total of 124,658 nuclei and 31 cell clusters were obtained and classified into eight major cell types, with EC exhibiting much more pronounced transcriptional alterations than PFC. Through network analysis, we pinpointed hub regulatory genes that form interconnected networks driving AD pathogenesis, findings validated by RT-qPCR showing more pronounced expression changes in EC versus PFC of AD mice. Moreover, dysregulation of the LINC01099-associated regulatory networks in the PFC and EC, showing correlation with AD progression, may present new therapeutic targets for AD. Together, these results suggest that effective AD biomarkers and therapeutic strategies may require simultaneous, precise targeting of specific cell populations across multiple brain regions.
Collapse
Affiliation(s)
- Rui-Ze Niu
- Mental Health Center, Kunming Medical University, No. 733, Chuanjin Road, Panlong District, Kunming 650034, China
| | - Wan-Qing Feng
- Laboratory Zoology Department, Kunming Medical University, Kunming 650034, China
| | - Li Chen
- Mental Health Center, Kunming Medical University, No. 733, Chuanjin Road, Panlong District, Kunming 650034, China
| | - Tian-Hao Bao
- Mental Health Center, Kunming Medical University, No. 733, Chuanjin Road, Panlong District, Kunming 650034, China
| |
Collapse
|
20
|
Fan T, Su Z, Wang X, Wei T, Zhao L, Liu S. TarP: A microRNA target gene prediction tool utilizing a polymorphic structured alignment approach. Int J Biol Macromol 2025; 314:144320. [PMID: 40383335 DOI: 10.1016/j.ijbiomac.2025.144320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
MicroRNAs (miRNAs) represent a vital class of small non-coding RNAs that play key regulatory roles in gene expression. Accurate identification of miRNA-mRNA interactions is essential for understanding their biological functions. However, current computational prediction tools suffer from several limitations, including species-specific biases, suboptimal accuracy, high false discovery rates, and incomplete target gene coverage. To address these challenges, we present TarP, a novel miRNA target prediction algorithm employing a Polymorphic structured alignment (PMS) approach. Our method mimics the natural binding process between miRNAs and their target mRNAs by integrating key biological interaction features. The algorithm utilizes five distinct nucleotide-binding motifs to perform a structured decomposition and alignment of potential mRNA targets. Predictions are then rigorously evaluated through a dual scoring system: a Structure (St) coefficient assessing binding conformation and an Energy (En) coefficient evaluating thermodynamic stability, ensuring high-confidence target selection. Using experimentally validated human miRNA-mRNA interaction datasets, we benchmarked TarP against four widely used prediction tools (miRanda, RNAhybrid, PITA, and TargetScan). Comparative analyses demonstrate that TarP achieves superior performance in both sensitivity and specificity, exhibiting enhanced accuracy in positive target identification and improved discrimination between true and false interactions. The TarP algorithm is freely available at: https://github.com/Whimonk/TarP.
Collapse
Affiliation(s)
- Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Zhuanzhuan Su
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Xin Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
21
|
Schuh GM, Maschhoff KR, Minor A, Hu W. Repression of AGO1 by AGO2 via let-7 microRNAs facilitates embryonic stem cell differentiation. RNA (NEW YORK, N.Y.) 2025; 31:772-780. [PMID: 40132882 DOI: 10.1261/rna.080426.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Argonaute (AGO) proteins are critical regulators of gene expression. Of the four AGOs in mammals, AGO1 and AGO2 are expressed in mouse embryonic stem cells (mESCs). These two proteins have opposing functions in controlling mESCs' fate decisions between pluripotency and differentiation. AGO2 promotes differentiation predominantly via the let-7 microRNAs, whereas AGO1 maintains pluripotency via modulating protein folding independent of small RNAs. These recent findings raise the question of whether and how these two AGOs are mutually regulated in mESCs. Here, using loss-of-function and gain-of-function approaches, we show that AGO2 represses the expression of AGO1 mRNA via a conserved let-7-microRNA-binding site in its 3' UTR. Mutating this binding site at the endogenous locus abolishes the AGO2-mediated repression of AGO1 mRNA and compromises the exit pluripotency of mESCs. These results indicate that the posttranscriptional regulation of AGO1 by AGO2 and let-7 microRNAs is important for stem cell differentiation, but also reveal a regulatory mechanism between the two AGO paralogs with opposing functions in controlling stem cell fate decisions.
Collapse
Affiliation(s)
- Gabrielle M Schuh
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Katharine R Maschhoff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Annastasia Minor
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
22
|
Zhang X, Zhao J, Ge R, Zhang X, Sun H, Guo Y, Wang Y, Chen L, Li S, Yang J, Sun D. Arg-Gly-Asp engineered mesenchymal stem cells as targeted nanotherapeutics against kidney fibrosis by modulating m6A. Acta Biomater 2025; 198:85-101. [PMID: 40158765 DOI: 10.1016/j.actbio.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Background The recent surge in research on extracellular vesicles has generated considerable interest in their clinical applications. Extracellular vesicles derived from mesenchymal stem cells (MSC-EV) have emerged as a promising cell-free therapy for chronic kidney disease (CKD), offering an alternative to traditional Mesenchymal stem/stromal cells (MSCs) in extracellular vesicle-based nanotherapeutics. However, challenges such as in vivo off-target effects and limited bioavailability have impeded the wider adoption of MSC-EV in clinical settings. Methods Arginyl-glycyl-aspartic acid peptide-modified MSC-EV (RGD-MSC-EV) were developed using a donor cell-assisted membrane modification strategy. The targeting capability and therapeutic efficacy of RGD-MSC-EV were thoroughly evaluated both in vitro and in vivo. Additionally, the mechanisms of RNA N6-methyladenosine (m6A) methylation-mediated angiogenesis were extensively investigated to elucidate how RGD-MSC-EV mitigates renal fibrosis. Results RGD-MSC-EV demonstrated exceptional targeted delivery efficiency, exhibiting optimal biodistribution and retention within the target tissue. This breakthrough positions them as significantly enhanced anti-fibrotic therapeutics. Notably, RGD-MSC-EV sustains the viability of renal peritubular capillary (PTCs) endothelial cells by transporting microRNA-126-5p (miR-126-5p) and modulating alkB homolog 5 (ALKBH5)-mediated m6A modification of SIRT1(Sirtuin 1), a crucial regulator in angiogenesis. By revitalizing endothelial cells and promoting microcirculation, this approach restored oxygen metabolism homeostasis, ultimately delaying fibrogenesis associated with CKD. Conclusions RGD-MSC-EV offers a feasible and effective strategy to alleviate renal interstitial fibrosis by restoring m6A and mitigating the loss of renal PTCs. STATEMENT OF SIGNIFICANCE: Chronic kidney disease (CKD) often leads to renal fibrosis, which worsens disease progression. This study introduces a novel strategy using engineered extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EV). By modifying these EVs with RGD peptides, we significantly enhance their targeting ability to hypoxic kidney tissues. The research reveals how these EVs deliver microRNA (miR-126-5p) to restore key molecular mechanisms, stabilizing SIRT1 expression through m6A RNA modifications. This approach promotes blood vessel health and delays fibrosis. Compared to current treatments, RGD-MSC-EV offers a safe, effective, and cell-free therapeutic alternative. These findings advance the understanding of EV-based therapies and their clinical potential, bridging basic research and real-world CKD treatment applications.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Jiaqi Zhao
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Rui Ge
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Xiangyu Zhang
- Department of Nephrology, Ningbo City first Hospital, Ningbo, China
| | - Haihan Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China
| | - Yuhan Guo
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Lu Chen
- Department of Rheumatology, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Jing Yang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
23
|
Chen X, Wan Z, Wu L, Cai X, Si H, Liu X, Zhao Q, Xu F, Deng H. CiR-EIS alleviates metabolic dysfunction-associated steatohepatitis by modulating macrophage polarization involving the miR-548m/IGF1 axis. Clin Nutr 2025; 50:104-116. [PMID: 40409233 DOI: 10.1016/j.clnu.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/22/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is a significant public health concern, with macrophage phenotypes implicated in its progression. Although extensive inflammation-suppressing circular RNA (ciR-EIS, formerly named as hsa_circ_0008882) has been implicated in inflammation regulation, its role in macrophage polarization within the context of MASH remains unexplored. This study aimed to clarify the effect of ciR-EIS on macrophage polarization in MASH. METHODS Immunofluorescence-fluorescence in situ hybridization was used to evaluate the localization of ciR-EIS in human liver sections. THP-1-derived macrophages (TDMs) were utilized to study ciR-EIS functions in vitro. Flow cytometry and RT-qPCR were employed to evaluate macrophage polarization after transfection. Bodipy assay was used to measure lipid buildup in HepG2 cells. Immunohistochemistry was used to confirm liver insulin-like growth factor 1 (IGF1) expression. Retrospective clinical records were analyzed to examine the association between cir-EIS, IGF1, and MASH. RESULTS CiR-EIS was downregulated in patients with MASH and colocalized with the macrophage marker CD68. CiR-EIS and mitochondrially encoded NADH dehydrogenase 5 (MT-ND5) were downregulated in M1 macrophages and upregulated in M2 macrophages. TDM-derived supernatants overexpressed ciR-EIS, significantly reducing HepG2 lipid deposition and inhibiting LX2 proliferation. Overexpression of ciR-EIS in TDMs significantly inhibited M1 macrophage markers CD86, interleukin-1 beta, and tumor necrosis factor-alpha while enhancing M2 macrophage markers CD163 and CD206. CiR-EIS regulated macrophage polarization in a manner involving the miR-548m/IGF1 axis. Serum IGF1 levels were positively correlated with ciR-EIS, and both of them were notably reduced in patients with MASH and inversely correlated with APRI and FIB-4 scores. CONCLUSIONS CiR-EIS regulates macrophage polarization in a manner involving the miR-548/IGF1 axis, thereby reducing hepatocyte lipid accumulation and stellate cell proliferation in MASH. It demonstrates potential as a diagnostic marker and therapeutic target for MASH.
Collapse
Affiliation(s)
- Xiaoman Chen
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhiping Wan
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Lili Wu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiang Cai
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hang Si
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoquan Liu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qiyi Zhao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Fen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Hong Deng
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
24
|
Lin Q, Liu H, Xu Q. Identification of dysregulated competitive endogenous RNA network driven by copy number variation in colon adenocarcinoma. Comput Methods Biomech Biomed Engin 2025:1-12. [PMID: 40357733 DOI: 10.1080/10255842.2025.2498718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Competitive endogenous RNA (ceRNA) network modulation plays a crucial role in pathogenesis of colon adenocarcinoma (COAD). This study analyzed The Cancer Genome Atlas(TCGA) data to identify 151 copy number variation (CNV)-driven lncRNAs in COAD, constructing a ceRNA network (6 lncRNAs-14 miRNAs-68 mRNAs). Functional enrichment revealed their roles in muscle system processes , blood vessel development and extracellular matrix organization. Survival analysis linked LINC00941 amplification to poor prognosis. Two CNV-driven lncRNA-targeting drugs were identified, offering insights into COAD mechanisms and potential biomarkers.
Collapse
Affiliation(s)
- Qingliang Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fuzhou, China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Haiyu Liu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qian Xu
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| |
Collapse
|
25
|
Toft K, Mardahl M, Hedberg-Alm Y, Anlén K, Tydén E, Nielsen MK, Honoré ML, Fromm B, Nielsen LN, Nejsum P, Thamsborg SM, Cirera S, Pihl TH. Evaluation of circulating microRNAs in plasma from horses with non-strangulating intestinal infarction and idiopathic peritonitis. Vet J 2025; 313:106378. [PMID: 40374098 DOI: 10.1016/j.tvjl.2025.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Non-strangulating intestinal infarctions (NSII) associated with Strongylus vulgaris infection and idiopathic peritonitis (IP) share similar clinical presentation but require different treatment approaches. Horses with NSII need surgical intervention, while idiopathic peritonitis cases can be successfully treated with antimicrobials. A correct diagnosis is thus crucial, but because the two diseases overlap in clinicopathological features, differentiation is difficult in clinical practice. MicroRNAs (miRNAs) are non-coding RNAs that exhibit measurable changes in abundance in tissues and circulation during disease. This study aimed to explore differences in plasma miRNA abundance between patients with NSII and IP. Plasma samples were collected from 43 horses, consisting of 21 with NSII and 22 with IP. A subset (n = 12) was submitted for deep small RNA sequencing to identify miRNAs differing between the groups. Next, a panel of nine miRNAs (two were potential normalizers) were selected for evaluation and confirmation by reverse transcription quantitative real-time PCR (RT-qPCR). Small RNA sequencing detected 628 miRNAs in the blood samples, but no miRNAs were differentially abundant between the disease groups. This finding was confirmed by qPCR. In agreement with previous studies, the top abundant miRNAs in both groups included Eca-Mir-122-5p and Eca-Mir-486-5p, as well as Eca-Mir-223-3p, which has previously been associated with inflammation. Target prediction for the most abundant miRNAs additionally predicted targets in inflammatory pathways. Evaluation of clinicopathological parameters revealed differences between the groups in two measures (white blood cell count and blood neutrophil count), which aligns with findings from previous studies. The results demonstrate that NSII and IP elicit similar miRNA profiles in plasma and are characterized by systemic inflammation.
Collapse
Affiliation(s)
- Katrine Toft
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Ylva Hedberg-Alm
- Department of Biomedical Science and Veterinary Public Health, Parasitology Unit, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Anlén
- Evidensia Equine Hospital Helsingborg, Helsingborg, Sweden
| | - Eva Tydén
- Department of Biomedical Science and Veterinary Public Health, Parasitology Unit, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Marie Louise Honoré
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT The Arctic University of Norway, Tromsø, Norway
| | - Lise N Nielsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Holberg Pihl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Lin X, Zhao Y, Bai Y, Meng K, Chen Y, Hu M, Liu F, Luo D. Integrating gonadal RNA-seq and small RNA-seq to analyze mRNA and miRNA changes in medaka sex differentiation. Sci Data 2025; 12:778. [PMID: 40355444 PMCID: PMC12069655 DOI: 10.1038/s41597-025-05129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
MicroRNAs are important post-transcriptional regulators, yet the molecular crosstalk between miRNAs and their target genes during sex differentiation remains poorly understood. Medaka (Oryzias latipes), the first fish in which the sex determination gene was identified, serves as an ideal model for studying this process. Here, we generated gonadal RNA-seq and small RNA-seq data from XYDMY- females, wild-type females and males to explore this crosstalk. A total of twenty-seven RNA-seq datasets, comprising 188 Gb of raw reads, and twenty-seven small RNA-seq datasets, totaling 18 Gb of raw reads, were collected, covering 10, 30 and 120 days. After optimizing the mapping and normalizing, we conducted transcriptional and post-transcriptional dynamic analyses of differentially expressed genes and miRNAs between WT females and males, as well as between WT females and XYDMY- females. Additionally, we integrated the RNA-seq and small RNA-seq data to construct comprehensive interaction networks and performed a detailed analysis of the temporal dynamics in gene and miRNA expression. These resources offer valuable insights into the transcriptional regulation of gonadal differentiation and development in vertebrates.
Collapse
Affiliation(s)
- Xing Lin
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanli Zhao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yifan Bai
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaifeng Meng
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Chen
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meidi Hu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Fei Liu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Daji Luo
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Fisheries College, Ocean University of China, Qingdao, 266001, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
27
|
Wang M, Zheng S, Zhang Y, Zhang J, Lai F, Zhou C, Zhou Q, Li X, Li G. Transcriptome analysis reveals PTBP1 as a key regulator of circRNA biogenesis. BMC Biol 2025; 23:127. [PMID: 40350413 PMCID: PMC12067716 DOI: 10.1186/s12915-025-02233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 05/02/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of non-coding RNAs generated through back splicing. High expression of circRNAs is often associated with numerous abnormal cellular biological processes. However, the regulatory factors of circRNAs are not fully understood. RESULTS In this study, we identified PTBP1 as a crucial regulator of circRNA biogenesis through a comprehensive analysis of the whole transcriptome profiles across 10 diverse cell lines. Knockdown of PTBP1 led to a significant decrease in circRNA expression, concomitant with a distinct reduction in cell proliferation. To investigate the regulatory mechanism of PTBP1 on circRNA biogenesis, we constructed a minigene reporter based on SPPL3 gene. The results showed that PTBP1 can bind to the flanking introns of circSPPL3, and the mutation of PTBP1 motif impedes the back splicing of circSPPL3. Subsequently, to demonstrate that this observation is not an exception, the comprehensive regulatory effects of PTBP1 on circRNAs were confirmed by miniGFP, reflecting the necessity of the binding site in the flanking introns. Analysis of data from clinical samples showed that both PTBP1 and circRNAs exhibited substantial upregulation in acute myeloid leukemia, further demonstrating a potential role for PTBP1 in promoting circRNA biogenesis under in vivo conditions. Competitive endogenous RNA (ceRNA) network revealed that PTBP1-associated circRNAs participated in biological processes associated with cell proliferation. CONCLUSIONS In summary, our study is the first to identify the regulatory effect of PTBP1 on circRNA biogenesis and indicates a possible link between PTBP1 and circRNA expression in leukemia.
Collapse
Affiliation(s)
- Mohan Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shanshan Zheng
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuming Lai
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cong Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiangwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
28
|
Tellai AD, Haghnejad V, Antoine J, Khemiri Merouani B, Bronowicki JP, Dreumont N. The complex post-transcriptional regulation of genes coding for methionine adenosyl transferase: New insights for liver cancer. Biochimie 2025:S0300-9084(25)00082-3. [PMID: 40348354 DOI: 10.1016/j.biochi.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Methionine adenosyltransferases (MATs) catalyze the synthesis of S-adenosylmethionine (SAM), the universal methyl donor involved in methylation reactions, redox balance, and polyamine synthesis. In mammals, three MAT genes, MAT1A, MAT2A, and MAT2B, exhibit tissue-specific expression, with MAT1A predominating in healthy liver and MAT2A/MAT2B upregulated during liver injury and malignancy. A shift from MAT1A to MAT2A/MAT2B expression is a hallmark of hepatocellular carcinoma (HCC), contributing to decreased SAM levels and promoting tumorigenesis. Recent findings highlight the pivotal role of post-transcriptional regulation in controlling MAT gene expression. N6-methyladenosine (m6A) modification, the most prevalent internal mRNA modification, plays a dynamic role in determining the fate of MAT2A mRNA. m6A marks regulate MAT2A mRNA splicing and stability in response to stress and metabolic changes. Additionally, RNA-binding proteins (RBPs) such as ELAVL1 and hnRNPD bind to MAT mRNAs, modulating their stability and translation. Dysregulation of these RBPs in liver disease alters MAT expression profiles. Non-coding RNAs, including microRNAs such as miR-29, miR-21, and miR-485, and long non-coding RNAs such as LINC00662 and SNGH6, modulate MAT expression post-transcriptionally by targeting MAT transcripts directly or influencing RNA-binding proteins (RBPs) and m6A writers/readers. Together, these mechanisms form a complex and intricate post-transcriptional regulatory network that governs MAT activity in physiological and pathological states. This review examines emerging insights into MAT post-transcriptional regulation, focusing on its implications for liver cancer, and opens new avenues for developing therapies that target these regulatory mechanisms.
Collapse
Affiliation(s)
| | - Vincent Haghnejad
- Université de Lorraine, Inserm, NGERE, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Department of Hepatology and Gastroenterology, F-54000, France
| | - Justine Antoine
- Université de Lorraine, Inserm, NGERE, F-54000, Nancy, France
| | | | - Jean-Pierre Bronowicki
- Université de Lorraine, Inserm, NGERE, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Department of Hepatology and Gastroenterology, F-54000, France
| | | |
Collapse
|
29
|
Lv Z, Zhang Z, Liu Y, Wang J, Liu W, Wan P, Ni J, Lu C, Liu C. Differences in microRNA within plasma extracellular vesicles at various time points during early pregnancy in sheep revealed by high-throughput sequencing data. Anim Reprod Sci 2025; 276:107833. [PMID: 40262514 DOI: 10.1016/j.anireprosci.2025.107833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
Exosome microRNAs are vital for gene transcription and expression, influencing target genes. They may play direct and indirect roles in pregnancy across animal models and humans. The objective of this research was to comprehensively explore the expression profiles of plasma exosomal miRNAs during the early pregnancy stage in sheep. This study specifically delved into the differences in the expression of plasma exosomal miRNAs between Chinese Merino and Suffolk sheep. The primary focus was on clearly elucidating the changes in plasma exosomal miRNAs, pinpointing potential biomarkers that might exert an impact on early pregnancy, and thoroughly exploring their biological functions as well as the possible underlying molecular mechanisms. Chinese Merino and Suffolk sheep were divided into two groups of 20 for artificial insemination. Blood samples were collected at various pregnancy stages (day 0, day 14, and day 30), Ultrasound diagnosis was carried out five weeks following artificial insemination. Three pregnant sheep from each group were selected for isolating extracellular vesicle-derived miRNAs from plasma. High-throughput sequencing identified differentially expressed miRNAs, and their target genes were analyzed using bioinformatics methods. In plasma exosomal samples derived from all sheep of both breeds at various time points during the early pregnancy stage, a cumulative total of 80 known miRNAs and 182 novel miRNAs were successfully identified. Compared to day 0 gestation controls, both sheep breeds showed differential expression of six known miRNAs: four were up- regulated and two down- regulated. Pathway analysis linked these miRNAs to biological processes such as ECM receptor interactions, growth hormone synthesis, carbohydrate digestion, adrenergic signaling in cardiomyocytes, and MAPK signaling regulation. Notably, Oar-mir-27a differed between the two groups at various time points. In summary, this research meticulously carried out a profiling analysis of the expression of plasma exosomal miRNAs in Chinese Merino and Suffolk sheep. Through this analysis, several exosomal miRNAs were identified, which display distinct abundance levels during the early pregnancy period. These findings strongly imply that these miRNAs have the potential to serve as biomarkers for precisely assessing the reproductive status of sheep.
Collapse
Affiliation(s)
- Zhanmin Lv
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; National Key Laboratory of Genetic Improvement and Healthy Sheep Breeding, Shihezi 832000, China
| | - Zhenliang Zhang
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; National Key Laboratory of Genetic Improvement and Healthy Sheep Breeding, Shihezi 832000, China
| | - Yucheng Liu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; National Key Laboratory of Genetic Improvement and Healthy Sheep Breeding, Shihezi 832000, China
| | - Jingjing Wang
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; National Key Laboratory of Genetic Improvement and Healthy Sheep Breeding, Shihezi 832000, China
| | - Weijun Liu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; National Key Laboratory of Genetic Improvement and Healthy Sheep Breeding, Shihezi 832000, China
| | - Pengcheng Wan
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; National Key Laboratory of Genetic Improvement and Healthy Sheep Breeding, Shihezi 832000, China
| | - Jianhong Ni
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; National Key Laboratory of Genetic Improvement and Healthy Sheep Breeding, Shihezi 832000, China
| | - Chunxia Lu
- Life Science and Technology Institute, Yangtze Normal University, Chongqing 408100, China.
| | - Changbin Liu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; National Key Laboratory of Genetic Improvement and Healthy Sheep Breeding, Shihezi 832000, China.
| |
Collapse
|
30
|
Kazeminia S, Rajagopalan KS, Zhu XY, Tang H, Chade AR, Irazabal MV, Lerman LO, Eirin A. Renal ischemia alters the mRNA and miRNA profile of vasculature-related genes in scattered tubular-like cells from female pigs. Am J Physiol Renal Physiol 2025; 328:F724-F735. [PMID: 40241609 DOI: 10.1152/ajprenal.00334.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Scattered tubular-like cells (STCs) are renal tubular cells that survive episodes of renal injury and acquire progenitor-like characteristics to repair other damaged kidney cells. STCs release proangiogenic factors in culture and induce microvascular proliferation in injured murine kidneys in vivo. Renovascular disease (RVD) compromises the reparative capacity of STCs, but the underlying mechanisms remain unknown. We hypothesized that RVD alters the expression of vasculature-related genes in swine STCs and impair their vasculoprotective properties. CD24+/CD133+ STCs were harvested from female pig kidneys after 10 wk of RVD or sham (n = 6 each), and the mRNA profiles of vasculature-related genes were analyzed using mRNA and microRNA seq (n = 3/group). STC expression of candidate differentially expressed (DE) genes and their capacity to induce human umbilical endothelial cells (HUVECs) to form tube-like networks were subsequently assessed in vitro before and after micro-RNA (miRNA) modulation (n = 6 each). mRNA-seq identified 67 upregulated and 42 downregulated vasculature-related genes in RVD-STCs. Four miRNAs were upregulated and 12 downregulated in RVD-STCs and found to target 31.3% to 40.5% of DE vasculature-related genes. Modulation in vitro of representative miRNAs decreased RVD-STC expression of anti-angiogenic and increased expression of proangiogenic target genes, respectively. Furthermore, this restored the ability of STCs to induce HUVEC tube formation on Matrigel that was impaired in RVD. Chronic renal ischemia alters the expression of vasculature-related genes in swine STCs, likely through posttranscriptional mechanisms, impairing their proangiogenic activity. These observations may contribute to develop novel approaches to preserve the reparative capacity of STCs in individuals with RVD.NEW & NOTEWORTHY The intrinsic reparative capacity of the adult mammalian kidney is restricted to the ability of scattered tubular-like cells (STCs) to repair damaged kidney cells. Our study provides evidence that chronic renal ischemia alters the mRNA/miRNA profile of angiogenic/vascular development genes of swine STCs, limiting their potential to repair injured tubular cells. Our observations may assist in developing new therapies to improve renal repair in individuals with chronic renal ischemia.
Collapse
Affiliation(s)
- Sara Kazeminia
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Kamalnath S Rajagopalan
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Xiang-Yang Zhu
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Hui Tang
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Alejandro R Chade
- Department of Medical Pharmacology and Physiology and Department of Medicine, University of Missouri-Columbia, Columbia, Missouri, United States
| | - Maria V Irazabal
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Lilach O Lerman
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | - Alfonso Eirin
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
31
|
Sarropoulou E, Katharios P, Kaitetzidou E, Scapigliati G, Miccoli A. Circulating miRNAs involved in the immune response of the European seabass (Dicentrarchus labrax). FISH & SHELLFISH IMMUNOLOGY 2025; 160:110232. [PMID: 40010615 DOI: 10.1016/j.fsi.2025.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/31/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Understanding the immune response in fish through transcriptomic and microRNA (miRNA) profiling may unlock critical insights into disease resistance mechanisms. The objective of the present study was to examine the immune modulation of the European seabass (Dicentrarchus labrax) following bacterial infection and vaccination. Therefore, sequencing of circulating miRNA isolated from blood serum and 3'UTR transcriptome sequencing of head kidney was conducted. In the infected fish 19 miRNAs were found to be differentially expressed. This included two novel miRNAs exhibiting high levels in the infected fish. Regarding circulating miRNAs following vaccination, three specific miRNAs have been identified that demonstrated a substantial increase in expression. Two of them, miR-216b and miR-30a-5p, have been documented to possess the capacity to delay the progression of viral infections. 3'UTR sequencing analysis of the infected fish revealed no significant enrichment of down-regulated transcripts. However, there was a significant enrichment of up-regulated transcripts related to ribosome biogenesis and protein processing. In vaccinated fish up-regulated transcripts did not demonstrate substantial enrichment. Down-regulated genes on the other hand were involved in cytoskeleton organization and apoptosis, indicating that cellular disruption might be a potential hindrance to effective immunity. Overall, these results provide first insights into the progression and regulation of host immune responses to pathogen infection and vaccination. Moreover, the detection of in total 13 differential expressed circulating miRNAs, including regulators of critical innate immunity-related genes such as Toll-like receptor 18, suggests a potential for circulating miRNAs to play a significant role in the post-transcriptional control of fish immune defenses.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Thalassocosomos, Heraklion, Crete, Greece.
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Thalassocosomos, Heraklion, Crete, Greece
| | - Elisavet Kaitetzidou
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Thalassocosomos, Heraklion, Crete, Greece
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100, Viterbo, Italy
| | - Andrea Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| |
Collapse
|
32
|
Dong C, Sun Y, Xu X, Li H, Song X, Wei W, Jiao C, Xu H, Liu Y, Mierzhakenmu Z, Li L, Ma B. c-Myc knockdown restores tamoxifen sensitivity in triple-negative breast cancer by reactivating the expression of ERα: the central role of miR-152 and miR-148a. Breast Cancer 2025; 32:529-542. [PMID: 40029493 DOI: 10.1007/s12282-025-01683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Poor prognosis of triple-negative breast cancer (TNBC) is owing to its intrinsic heterogeneity and lack of targeted therapies. Emerging evidence has characterized that targeting c-Myc might be a promising way to treat TNBC. METHODS c-Myc knocked down TNBC cells were generated and the tamoxifen sensitivity was determined. Methylation-specific PCR analysis was used to detect the methylation status of ERα promoter, and c-Myc-mediated miRNA transcription was examined using chromatin immunoprecipitation and dual-luciferase reporter assays. The in vivo tamoxifen sensitivity was determined by mouse xenograft model. RESULTS c-Myc knockdown in TNBC cells leads to the reactivation of ERα and consequent acquisition its sensitivity to tamoxifen. c-Myc depletion decreased the methylation in the promoter of ERα and DNMT1 was identified as the main executor. c-Myc knockdown-induced tamoxifen sensitivity was reversed by DNMT1 overexpression. The expression of miR-152-3p and miR-148a-3p was largely induced in c-Myc knockdown TNBC cells, and both miR-152-3p and miR-148a-3p could target DNMT1 to regulate its expression. c-Myc binds to the promoter regions of miR-152-3p and miR-148a-3p to exert transcriptional suppression. By suppressing miR-152-3p or miR-148a-3p expression using inhibitors, enhanced sensitivity to tamoxifen induced by c-Myc knockdown was partially reversed. In vivo xenograft tumor model demonstrated that c-Myc knockdown mildly inhibits the growth of tumor, and a dramatic decline was observed when administrated with tamoxifen combined with c-Myc knockdown. CONCLUSION Our study first illustrated that c-Myc knockdown in TNBC cells reactivate ERα expression in a miR-152/miR-148a-DNMT1-dependent manner, and brought new sights into treating TNBC using hormonal therapies.
Collapse
Affiliation(s)
- Chao Dong
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Yonghong Sun
- Department of Central Operating Room, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiaoli Xu
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Huiling Li
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xinyu Song
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Wenxin Wei
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Chong Jiao
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Haoyi Xu
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Yuanjing Liu
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Zuliyaer Mierzhakenmu
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Li Li
- Department of Gynecological Oncology (First Ward), The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
33
|
Nian X, Wang B, Holford P, Beattie GAC, Tan S, Yuan W, Cen Y, He Y, Zhang S. Neuropeptide Ecdysis-Triggering Hormone and Its Receptor Mediate the Fecundity Improvement of 'Candidatus Liberibacter Asiaticus'-Infected Diaphorina citri Females and CLas Proliferation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412384. [PMID: 40112150 PMCID: PMC12079412 DOI: 10.1002/advs.202412384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Indexed: 03/22/2025]
Abstract
The severe Asiatic form of huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), threatens global citrus production via the citrus psyllid, Diaphorina citri. Culturing challenges of CLas necessitate reducing D. citri populations for disease management. CLas boosts the fecundity of CLas-positive (CLas+) D. citri and fosters its own proliferation by modulating the insect host's juvenile hormone (JH), but the intricate endocrine regulatory mechanisms remain elusive. Here, it is reported that the D. citri ecdysis-triggering hormone (DcETH) and its receptor DcETHR play pivotal roles in the reciprocal benefits between CLas and D. citri within the ovaries, influencing energy metabolism and reproductive development in host insects; miR-210, negatively regulates DcETHR expression, contributing to this symbiotic interaction. CLas infection reduces 20-hydroxyecdysone (20E) levels and stimulates DcETH release, elevating JH production via DcETHR, enhancing fecundity and CLas proliferation. Furthermore, circulating JH levels suppress 20E production in CLas+ ovaries. Collectively, the orchestrated functional interplay involving 20E, ETH, and JH increases energy metabolism and promotes the fecundity of CLas+ D. citri and CLas proliferation. These insights not only broaden the knowledge of how plant pathogens manipulate the reproductive behavior of insect hosts but also offer novel targets and strategies for combatting HLB and D. citri.
Collapse
Affiliation(s)
- Xiaoge Nian
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Bo Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Paul Holford
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | | | - Shijian Tan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Weiwei Yuan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yijing Cen
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yurong He
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Songdou Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| |
Collapse
|
34
|
Padam KSR, Basavarajappa DS, Kumar NAN, Gadicherla S, Chakrabarty S, Hunter KD, Radhakrishnan R. Epigenetic regulation of HOXA3 and its impact on oral squamous cell carcinoma progression. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 139:550-563. [PMID: 39658479 DOI: 10.1016/j.oooo.2024.11.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVE The role of homeobox A3 (HOXA3) in cancer progression is gaining prominence, however, to date, no studies have investigated its regulatory function in oral cancer. In this study, we explored the role of HOXA3 through epigenetic mechanisms. METHODS Clinical samples were collected from 25 potentially malignant oral lesions and 50 oral squamous cell carcinoma (OSCC) patients, categorized into low-stage and high-stage tumors. The promoter activity of HOXA3 was determined through cloning and luciferase assays. CpG methylation patterns across the gene were identified using methyl-capture sequencing. Gene expression was analyzed using RT‒qPCR. The Survminer R package was used to assess the clinical significance of 3' UTR methylation associated with overall survival. RNA‒RNA interactions were analyzed using RNAInter and TargetScan v8.0. RESULTS HOXA3 expression was upregulated in dysplasia and downregulated in advanced cancer stages, showing an inverse correlation with promoter methylation, suggesting epigenetic regulation by DNA methylation. Hypermethylation of the 3' UTR was associated with poor overall survival in advanced stages. Long noncoding RNAs and microRNAs may post-transcriptionally modulate HOXA3 in oral carcinogenesis. CONCLUSION CpG-specific hypermethylation in the 3' UTR may serve as a potential biomarker in OSCC.
Collapse
Affiliation(s)
- Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Dhanraj Salur Basavarajappa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Naveena A N Kumar
- Department of Surgical Oncology, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srikanth Gadicherla
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health & Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India; Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, ST10 2TN, UK; Academic Unit of Oral Biology and Oral Pathology, Oman Dental College, P.O Box 835, Mina Al Fahal, Muscat, Wattayah 116, Oman.
| |
Collapse
|
35
|
Gheitanchi F, Giambra IJ, Hecker AS, Strube C, König S, May K. Relationships between liver and rumen fluke infections, milk somatic cells and polymorphisms in the Toll-like receptor 5 gene and vitamin D metabolism-related genes in Holstein dairy cows. Vet Immunol Immunopathol 2025; 283:110911. [PMID: 40058098 DOI: 10.1016/j.vetimm.2025.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
This study investigated polymorphisms in the genes CYP3A4, CYP2R1, and TLR5, and their associations with liver fluke (Fasciola hepatica) and rumen fluke (Calicophoron / Paramphistomum spp.) infections as well as with milk somatic cell count (SCC) as an indicator for mastitis in Holstein Friesian dairy cows. DNA sequencing of the genes' exons, 5'-, 3'-untranslated regions (UTR), introns, and flanking regions of 24 cows revealed 442 variants (388 SNPs and 54 InDels) including 116 previously unknown variants. We detected three novel non-synonymous variants leading to the derived amino acid exchanges, i.e. CYP3A4 p.Gly197Ser, CYP3A4 p.Ile388Val, and CYP2R1 p.Val11Ala. The newly identified SNP 25:36589922 T > C (ss11846100002) is positioned in the splice site of CYP3A4, but showed no impact on the binding score of the splice enzymes. The CYP2R1 and TLR5 genes presented 11 SNPs in the 5'- and 3'-UTR, partly influencing transcription factor binding or microRNA target sites. Associations between polymorphisms and constructed haplotypes with infection traits were analysed via (generalized) linear mixed models including further potential confounders. In total, 109 variants in CYP3A4, 37 variants in CYP2R1, and 18 variants in TLR5 were significantly associated with F. hepatica and rumen fluke infections, and with SCC. The CYP2R1 and TLR5 variants were mostly linked to SCC, indicating the genes' roles in immune responses to bacterial infections. Haplotype analysis revealed significant associations between specific CYP3A4 haplotypes and F. hepatica worm count and faecal egg counts. This study revealed significant insights into gene polymorphisms related to vitamin D metabolism and immune response, which seem to play a role in helminth and udder infections.
Collapse
Affiliation(s)
- Fatemeh Gheitanchi
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany.
| | - Isabella Jasmin Giambra
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany
| | - Anna Sophie Hecker
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany; Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| |
Collapse
|
36
|
Liu H, Liu H, Meng Z, Zhang W. Mechanism of KMT2D-mediated epigenetic modification in IL-1β-induced nucleus pulposus cell degeneration. Histol Histopathol 2025; 40:733-743. [PMID: 39380528 DOI: 10.14670/hh-18-813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration (IVDD) is characterized by structural destruction accompanied by accelerated signs of aging. This study aimed to investigate the mechanism of lysine methyltransferase 2D (KMT2D) in the proliferation, apoptosis, and inflammation of nucleus pulposus cells (NPCs) in IVDD. METHODS Mouse-derived NPCs were cultured and induced with interleukin-1 beta (IL-1β) to establish cell models. KMT2D expression was detected by western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). KMT2D expression was interfered with, and the contents of IL-18, IL-6, and tumor necrosis factor (TNF) were detected by enzyme-linked immunosorbent assay. Cell proliferation, apoptosis, and the expression of miR-133a-5p and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2) were measured. The enrichment of KMT2D and Histone 3 Lysine 4 monomethylation/dimethylation (H3K4me1/2) on the miR-133a-5p promoter was analyzed by chromatin immunoprecipitation and qPCR. The binding of miR-133a-5p and PFKFB2 was analyzed by a dual-luciferase assay. RESULTS IL-1β treatment promoted KMT2D expression in NPCs. KMT2D knockdown reduced inflammation and apoptosis and promoted the proliferation of IL-1β-induced NPCs. Mechanistically, KMT2D upregulated miR-133a-5p expression by increasing the level of H3K4me2 at the miR-133a-5p promoter, thereby promoting the binding between miR-133a-5p and PFKFB2 and downregulating the transcription of PFKFB2. miR-133a-5p overexpression or PFKFB2 knockdown alleviated the protective effect of KMT2D knockdown on IL-1β-induced NPCs. CONCLUSION KMT2D promoted miR-133a-5p expression through H3K4me2 methylation, thereby promoting the binding of miR-133a-5p to PFKFB2, reducing the mRNA level of PFKFB2, promoting inflammation and apoptosis of IL-1β-induced NPCs, and inhibiting NPC proliferation.
Collapse
Affiliation(s)
- Hongjiang Liu
- Department of Spine, Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, PR China.
| | - Haiquan Liu
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou City, PR China
| | - Zuyu Meng
- College of Chinese Medicine, Jinan University, Guangzhou City, PR China
| | - Wensheng Zhang
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Institute of Traditional Chinese Medicine Bone Injury, Guangzhou City, PR China
| |
Collapse
|
37
|
Wang Q, Wang S, Zhuang Z, Wu X, Gao H, Zhang T, Zou G, Ge X, Liu Y. Identification of potential crucial genes and mechanisms associated with metabolically unhealthy obesity based on the gene expression profile. Front Genet 2025; 16:1540721. [PMID: 40376303 PMCID: PMC12078199 DOI: 10.3389/fgene.2025.1540721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/10/2025] [Indexed: 05/18/2025] Open
Abstract
Background Obesity is an epidemic and systemic metabolic disease that seriously endangers human health. This study aimed to understand the transcriptomic characteristics of the blood of metabolically unhealthy obesity (MUO) and provide insight into the target genes of differently expressed microRNAs in the occurrence and development of MUO. Methods The GSE146869, GSE145412, GSE23561, and GSE169290 datasets were analyzed to understand the transcriptome characteristics of the blood of MUO and provide insights into the target genes of differently expressed microRNAs (DEMs) in MUO. Functional and pathway enrichment analyses and gene interaction network analyses were performed to profile the function of differentially expressed genes (DEGs). In addition, miRNet 2.0, TransmiR v2.0, RNA22, TargetScan 7.2, miRDB, and miRWalk databases were used to predict the target genes of effective microRNAs. Results A total of 189 co-DEGs were identified in at least two datasets. The 156 co-upregulated genes were enriched into 29 biological process (BP) terms and 12 KEGG pathways. Among the 29 BP terms, the immune- and metabolism-related BP terms were enriched. The 33 co-downregulated genes were enriched into two BP terms, including apoptotic process and regulation of the apoptotic process, with no KEGG pathway. The hub genes EGF, STAT3, IL1B, PF4, SELP, and ITGA2B in the gene interaction network might play important roles in abnormal BP in MUO. Among the 19 DEMs identified in the blood of the MUO group by the GSE169290 dataset, 18 microRNAs targeted 85 genes as risk factors in MUO. Conclusion A network consisting of 18 microRNAs and 85 target genes might serve as a risk factor for metabolically unhealthy obesity.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Nephrology, Xuzhou Children’s Hospital, Xuzhou, Jiangsu, China
| | - Silu Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhanyu Zhuang
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Xueting Wu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Hongkun Gao
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianyi Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Guorong Zou
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Xing Ge
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Yapeng Liu
- Yunlong District Center for Disease Control and Prevention, Xuzhou, Jiangsu, China
| |
Collapse
|
38
|
Ke XL, Shi JG, Fan LZ. Serum miR-26a level is decreased in cataract patients with glaucoma and related to visual quality. Clin Exp Optom 2025; 108:474-483. [PMID: 38806402 DOI: 10.1080/08164622.2024.2350596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
CLINICAL RELEVANCE microRNAs have been found to be involved in the progression of a variety of ocular diseases. BACKGROUND Cataract and glaucoma often coexist, and combined surgery is a common treatment. The aim of this study is to analyse the correlation between miR-26a and visual quality in cataract patients with glaucoma. METHODS Seventy patients with cataract and glaucoma and 70 healthy volunteers were enrolled and received phacoemulsification and trabeculectomy. The patients were divided into low and high miR-26a expression groups according to miR-26a mean expression. The objective scattering index, strehl ratio, and modulated transfer function cut-off were analysed by optical quality analysis system II. The changes of miR-26a, objective scattering index, strehl ratio, modulated transfer function cut-off, and the correlation between the indicators were analysed. The downstream genes of miR-26a were analysed by Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes functional enrichment. RESULTS There were significant differences between patients and controls in lipid biomarker levels and visual indicators. miR-26a was decreased in the patient group. Strehl ratio and modulated transfer function cut-off in the miR-26a low-expression group were lower than in high-expression group, while mean defect of the visual field and objective scattering index were higher than in high-expression group. The miR-26a expression was negatively correlated with the severity of disease and objective scattering index, and positively correlated with strehl ratio and modulated transfer function cut-off. After surgery, miR-26a, strehl ratio, and modulated transfer function cut-off were increased, and objective scattering index was decreased. The downstream genes of miR-26a were related to several biological processes and signalling pathways. CONCLUSION In cataract patients with glaucoma, miR-26a expression was lower than matched controls and increased following combined cataract removal and trabeculectomy.
Collapse
Affiliation(s)
- Xian-Lin Ke
- Specialized Department of Glaucoma and Cataract, Enshi Huiyi Ophthalmology Hospital, Enshi, China
| | - Ji-Guang Shi
- Ophthalmology Department, Enshi Huiyi Ophthalmology Hospital, Enshi, China
| | - Ling-Zhi Fan
- Specialized Department of Glaucoma and Cataract, Enshi Huiyi Ophthalmology Hospital, Enshi, China
| |
Collapse
|
39
|
Yao Y, Zhou R, Yan C, Yan S, Han G, Liu Y, Fan D, Chen Z, Fan X, Chen Y, Li J, Yang Y, Tang Z. LncRNA RMG controls liquid-liquid phase separation of MEIS2 to regulate myogenesis. Int J Biol Macromol 2025; 310:143309. [PMID: 40252346 DOI: 10.1016/j.ijbiomac.2025.143309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Long non-coding RNAs (lncRNAs) regulate liquid-liquid phase separation (LLPS), driving the formation of biomolecular condensates essential for cellular function. However, this regulatory mechanism is yet to be reported in skeletal muscles. In this study, we comprehensively analyzed lncRNAs in skeletal muscle across multiple pig breeds, developmental stages, and tissues. Our analysis identified over 10,000 novel lncRNAs. We found that the lnc-regulator of muscle growth (lnc-RMG) regulates myogenesis by modulating the LLPS of Meis homeobox 2 (MEIS2). Lnc-RMG was specifically expressed in the skeletal muscle, with significantly higher expression in the fetal stage than in the embryonic stage. Notably, lnc-RMG was highly conserved between pigs and humans and exhibits similar biological functions in myogenesis. Furthermore, lnc-RMG knockdown promoted skeletal muscle regeneration. Mechanistically, lnc-RMG produces mature microRNA (miR)-133a-3p, which targets and inhibits MEIS2 expression, thereby inhibiting MEIS2 LLPS. This inhibition promoted the transcription of transforming growth factor-β receptor II (TGFβR2), ultimately regulating myogenesis. Overall, our findings revealed a novel lnc-RMG/miR-133a-3p/MEIS2/TGFβR2 axis that regulated myogenesis through LLPS and provided new insights into the molecular mechanisms that drive muscle development and regeneration. These findings highlight potential therapeutic targets for muscle-related diseases and novel strategies for livestock improvement.
Collapse
Affiliation(s)
- Yilong Yao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Rong Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shanying Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Guohao Han
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yanwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Danyang Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilong Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Chen
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Jiaying Li
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
40
|
Dykxhoorn DM, Da Fonseca Ferreira A, Gomez K, Shi J, Zhu S, Zhang L, Wang H, Wei J, Zhang Q, Macon CJ, Hare JM, Marzouka GR, Wang L, Dong C. MicroRNA-29c-3p and -126a Contribute to the Decreased Angiogenic Potential of Aging Endothelial Progenitor Cells. Int J Mol Sci 2025; 26:4259. [PMID: 40362495 PMCID: PMC12072698 DOI: 10.3390/ijms26094259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
EPCs play important roles in the maintenance of vascular repair and health. Aging is associated with both reduced numbers and functional impairment of EPCs, leading to diminished angiogenic capacity, impaired cardiac repair, and increased risk for cardiovascular disease (CVD). The molecular mechanisms that govern EPC function in cardiovascular health are not fully understood, but there is increasing evidence that microRNAs (miRNAs) play key roles in modulating EPC functionality, endothelial homeostasis, and vascular repair. We aimed to determine how aging alters endothelial progenitor (EPC) health and functionality by altering key miRNA-mRNA pathways. To identify key miRNA-mRNA pathways contributing to diminished EPC functionality associated with aging, microRNA and mRNA profiling were conducted in EPCs from young and aged C57BL/6 mice. We identified a complex aging-associated regulatory network involving two miRNAs-miR-29c-3p and -126a-that acted in tandem to impair vascular endothelial growth factor signaling through targeting Klf2 and Spred1, respectively. The modulation of components of the miR-29c-3p-Klf2-miR-126a-Spred-1-Vegf signaling pathway altered EPC self-renewal capacity, vascular tube formation, and migration in vitro, as well as cardiac repair in vivo. The miR-29c-3p-Klf2-miR-126a-Spred1-Vegf signaling axis plays a critical role in regulating the aging-associated deficits in EPC-mediated vascular repair and CVD risk.
Collapse
Affiliation(s)
- Derek M. Dykxhoorn
- John T. Macdonald Foundation Department of Human Genetics and, the John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.M.D.)
| | - Andrea Da Fonseca Ferreira
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Karenn Gomez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Jianjun Shi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Shoukang Zhu
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Lukun Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Huilan Wang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Jianqin Wei
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Qianhuan Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Conrad J. Macon
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George R. Marzouka
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liyong Wang
- John T. Macdonald Foundation Department of Human Genetics and, the John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.M.D.)
| | - Chunming Dong
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
41
|
Eneh S, Hartikainen JM, Heikkinen S, Sironen R, Tengström M, Kosma VM, Ahuja S, Mannermaa A. High expression of miR-7974 predicts poor prognosis and is associated with autophagy in estrogen receptor-positive breast cancer. PLoS One 2025; 20:e0322179. [PMID: 40300005 PMCID: PMC12040258 DOI: 10.1371/journal.pone.0322179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
Estrogen receptor-positive (ER+) breast cancers (BC) cause death despite well-established treatments. MicroRNAs (miRNAs) have potential as biomarkers specific to cancer subtypes and tissues, therefore miRNA-based biomarkers could help improve patient survival. In this study, we investigated a relatively unknown miRNA, miR-7974. We utilized small RNA data from 204 breast tissue samples to study miR-7974 association with clinicopathological features and outcomes for BC patients. Additionally, in vitro and in ovo methods were used to identify miR-7974 role at molecular and cellular level in MCF-7 cells. Findings were validated using MDA-MB-453 cells. MiR-7974 was upregulated in many clinicopathological features of BC (P<0.05). Furthermore, the highest expression of miR-7974 was associated with poor relapse-free survival in ER+ BC patients [hazard ratio (HR)=8.70; 95% confidence interval (CI)=3.28-23.06; P=1.37x10-05] and poor BC-specific survival in patients receiving only surgical treatment (HR=8.36; 95% CI=1.01-69.06; P=0.049). Our studies revealed that miR-7974 targets autophagy gene, MAP1LC3B, identified as direct miR-7974 target (P<0.05) in MCF-7 cells. In vitro analyses indicated overexpressing miR-7974 had anti-proliferative effect in MCF7 and MDA-MB-453 cells. Overall, our results demonstrate potential prognostic role of miR-7974 in ER+ BC.
Collapse
Affiliation(s)
- Stralina Eneh
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jaana M. Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Genome Center of Eastern Finland, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Tengström
- Cancer Center, Department of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland.
| | - Saket Ahuja
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
42
|
Wang J, Liu Y, Li H, Nguyen TP, Soto-Vargas JL, Wilson R, Wang W, Lam TT, Zhang C, Lin C, Lewis DA, Glausier J, Holtzheimer PE, Friedman MJ, Williams KR, Picciotto MR, Nairn AC, Krystal JH, Duman RS, Young KA, Zhao H, Girgenti MJ. A multi-omic approach implicates novel protein dysregulation in post-traumatic stress disorder. Genome Med 2025; 17:43. [PMID: 40301990 PMCID: PMC12042318 DOI: 10.1186/s13073-025-01473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a common and disabling psychiatric disorder. PTSD involves multiple brain regions and is often comorbid with other psychiatric disorders, such as major depressive disorder (MDD). Recent genome-wide association studies (GWASs) have identified many PTSD risk loci and transcriptomics studies of postmortem brain have found differentially expressed genes associated with PTSD cases. In this study, we integrated genome-wide measures across modalities to identify convergent molecular effects in the PTSD brain. METHODS We performed tandem mass spectrometry (MS/MS) on a large cohort of donors (N = 66) in two prefrontal cortical areas, dorsolateral prefrontal cortex (DLPFC), and subgenual prefrontal cortex (sgPFC). We also coupled the proteomics data with transcriptomics and microRNA (miRNA) profiling from RNA-seq and small-RNA sequencing, respectively for the same cohort. Additionally, we utilized published GWAS results of multiple psychiatric disorders for integrative analysis. RESULTS We found differentially expressed proteins and co-expression protein modules disrupted by PTSD. Integrative analysis with transcriptomics and miRNA data from the same cohort pointed to hsa-mir-589 as a regulatory miRNA responsible for dysregulation of neuronal protein networks for PTSD, including the gamma-aminobutyric acid (GABA) vesicular transporter, SLC32A1. In addition, we identified significant enrichment of risk genes for other psychiatric disorders, such as autism spectrum disorder (ASD) and major depressive disorder (MDD) within PTSD protein co-expression modules, suggesting shared molecular pathology. CONCLUSIONS We integrated genome-wide measures of mRNA and miRNA expression and proteomics profiling from PTSD, MDD, and control (CON) brains to identify convergent and divergent molecular processes across genomic modalities. We substantially expand the number of differentially expressed genes and proteins in PTSD and identify downregulation of GABAergic processes in the PTSD proteome. This provides a novel framework for future studies integrating proteomic profiling with transcriptomics and non-coding RNAs in the human brain studies.
Collapse
Affiliation(s)
- Jiawei Wang
- Program of Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Yujing Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Hongyu Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Tuan P Nguyen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | | | - Rashaun Wilson
- NIDA Neuroproteomics Center, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Weiwei Wang
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - TuKiet T Lam
- NIDA Neuroproteomics Center, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06511, USA
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Chi Zhang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Chen Lin
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jill Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Paul E Holtzheimer
- National Center for PTSD, United States Department of Veterans Affairs, White River Junction, VT, 05009, USA
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Matthew J Friedman
- National Center for PTSD, United States Department of Veterans Affairs, White River Junction, VT, 05009, USA
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Kenneth R Williams
- NIDA Neuroproteomics Center, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- NIDA Neuroproteomics Center, Yale School of Medicine, New Haven, CT, 06511, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- National Center for PTSD, United States Department of Veterans Affairs, White River Junction, VT, 05009, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- National Center for PTSD, United States Department of Veterans Affairs, White River Junction, VT, 05009, USA
| | - Keith A Young
- Central Texas Veterans Health Care System, Research Service, Temple, TX, 76504, USA
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| | - Hongyu Zhao
- Program of Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06511, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
- National Center for PTSD, United States Department of Veterans Affairs, White River Junction, VT, 05009, USA.
| |
Collapse
|
43
|
Thiagarajan L, Sanchez-Alvarez R, Kambara C, Rajasekar P, Wang Y, Halloy F, Hall J, Stark HJ, Martin I, Boukamp P, Kurinna S. miRNA-29 regulates epidermal and mesenchymal functions in skin repair. FEBS Lett 2025. [PMID: 40285401 DOI: 10.1002/1873-3468.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 04/29/2025]
Abstract
MicroRNAs (miRNAs) control organogenesis in mammals by inhibiting translation of mRNA. Skin is an excellent model to study the role of miRNAs in epidermis and the mesenchyme. Previous research demonstrated miRNA-29 family functions in skin; however, the mRNA targets and the downstream mechanisms of miRNA-29-mediated regulation are missing. We used the miRNA crosslinking and immunoprecipitation method to find direct targets of miRNA-29 in keratinocytes and fibroblasts from human skin. miRNA-29 inhibition using modified antisense oligonucleotides in 2D and 3D cultures of keratinocytes and fibroblasts enhanced cell-to-matrix adhesion through autocrine and paracrine mechanisms of miRNA-29-dependent tissue growth. We reveal a full transcriptome of human keratinocytes with enhanced adhesion to the matrix, which supports regeneration of the epidermis and is regulated by miRNA-29. Impact statement The functions of small, therapeutically targetable microRNA molecules identified in our study can provide a new approach to improve wound healing by restoring and enhancing the inner molecular mechanisms of a cell and its surrounding matrix. We also provide a plethora of new mRNA targets for follow-up studies of cell adhesion and extracellular matrix formation in humans.
Collapse
Affiliation(s)
- Lalitha Thiagarajan
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, UK
| | - Rosa Sanchez-Alvarez
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, UK
| | - Chiho Kambara
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, UK
| | | | - Yuluang Wang
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - François Halloy
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | | | - Iris Martin
- German Cancer Research Center, Heidelberg, Germany
| | | | - Svitlana Kurinna
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
44
|
Zhou Y, Gao Y, Peng Y, Cai C, Han Y, Chen Y, Deng G, Ouyang Y, Shen H, Zeng S, Du Y, Xiao Z. QKI-induced circ_0001766 inhibits colorectal cancer progression and rapamycin resistance by miR-1203/PPP1R3C/mTOR/Myc axis. Cell Death Discov 2025; 11:192. [PMID: 40263288 PMCID: PMC12015279 DOI: 10.1038/s41420-025-02478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/25/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and remains a significant challenge due to high rates of drug resistance and limited therapeutic options. Circular RNAs (circRNAs) are increasingly recognized for their roles in CRC initiation, progression, and drug resistance. However, no circRNA-based therapies have yet entered clinical development, underscoring the need for comprehensive detection and mechanistic studies of circRNAs in CRC. Here, we identified and characterized a circular RNA, circ_0001766 (hsa_circ_0001766), through microarray analysis of CRC tissues. Our results showed that circ_0001766 is downregulated in CRC tissues and closely associated with patient survival and metastasis. Functional experiments demonstrated that circ_0001766 inhibits CRC cell proliferation, migration and invasion both in-vitro and in-vivo. Mechanistically, hypoxia downregulates Quaking (QKI), an RNA-binding protein essential for the biogenesis of circ_0001766 by binding to introns 1 and 3 of PDIA4 pre-mRNA. Reduced QKI expression under hypoxic conditions leads to decreased circ_0001766 levels in CRC. Circ_0001766 acts as a competitive endogenous RNA, sponging miR-1203 to prevent the degradation of PPP1R3C mRNA. Loss of circ_0001766 results in decreased PPP1R3C expression, leading to the activation of mTOR signaling and increased phosphorylation of Myc, which promotes CRC progression and rapamycin resistance. Our study reveals that overexpression of circ_0001766 or PPP1R3C in CRC cells inhibits the mTOR and Myc pathway, thereby resensitizing cells to rapamycin. The combination of circ_0001766 or PPP1R3C with rapamycin markedly inhibits CRC cell proliferation and induces apoptosis by reducing rapamycin-induced Myc phosphorylation. In summary, our study elucidates a critical circ_0001766/miR-1203/PPP1R3C axis that modulates CRC progression and rapamycin resistance. Our findings highlight circ_0001766 as a promising therapeutic target in CRC, providing a new avenue for enhancing the efficacy of existing treatments and overcoming drug resistance.
Collapse
Grants
- This study was supported by grants from the National Natural Science Foundation of China (No. 82373275, 81974384, 82173342 & 82203015), the China Postdoctoral Science Foundation (No.2023JJ40942), three projects from the Nature Science Foundation of Hunan Province (No.2021JJ3109, 2021JJ31048, 2023JJ40942), Nature Science Foundation of Changsha (No.73201), CSCO Cancer Research Foundation (No.Y-HR2019-0182 & Y-2019Genecast-043), the Key Research and Development Program of Hainan Province (No.ZDYF2020228 & ZDYF2020125), Natural Science Foundation (Youth Funding) of Hunan Province of China (2022JJ40458), Hunan Provincial Natural Science Foundation of China (2024JJ6662), The Youth Science Foundation of Xiangya Hospital (2023Q01) and Scientific Research Program of Hunan Provincial Health Commission (202203105261). The graphical abstract was created using BioRender (BioRender.com).This study was supported by grants from the National Natural Science Foundation of China (No. 82373275, 81974384, 82173342 & 82203015), the China Postdoctoral Science Foundation (No.2023JJ40942), three projects from the Nature Science Foundation of Hunan Province (No.2021JJ3109, 2021JJ31048, 2023JJ40942), Nature Science Foundation of Changsha (No.73201), CSCO Cancer Research Foundation (No.Y-HR2019-0182 & Y-2019Genecast-043), the Key Research and Development Program of Hainan Province (No.ZDYF2020228 & ZDYF2020125), Natural Science Foundation (Youth Funding) of Hunan Province of China (2022JJ40458), Hunan Provincial Natural Science Foundation of China (2024JJ6662), The Youth Science Foundation of Xiangya Hospital (2023Q01) and Scientific Research Program of Hunan Provincial Health Commission (202203105261). The graphical abstract was created using BioRender (BioRender.com).
Collapse
Affiliation(s)
- Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, USA
| | - Yan Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gongping Deng
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Yanhong Ouyang
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangfeng Du
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China.
| | - Zemin Xiao
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China.
| |
Collapse
|
45
|
Kosek DM, Petzold K, Andersson ER. Mapping effective microRNA pairing beyond the seed using abasic modifications. Nucleic Acids Res 2025; 53:gkaf364. [PMID: 40298108 PMCID: PMC12038393 DOI: 10.1093/nar/gkaf364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by base-pairing to complementary sites in messenger RNAs (mRNAs). The primary element for site recognition is the seed region (nucleotides 2-8 in the miRNA), but for a minority of sites pairing outside the seed increases efficiency, with the supplementary region (nucleotides 13-16) typically having the greatest impact. However, the structural determinants of effective pairing outside the seed are not fully understood. Here, we use abasic modified nucleotides to disrupt pairing to residues 13 and 14 of miR-34a and measure the effect of this modification compared to wild-type miR-34a on the cellular transcriptome and proteome using RNA-seq and mass spectrometry. We find that a subset of sites with predicted supplementary pairing are affected by miRNA transfection, with up to two-fold decreases in site repression at the mRNA level. We show that miR-34a 3'-pairing is sensitive to GU wobble pairs in a position-specific manner and favors bulges in the miRNA over the target. These results were validated with luciferase reporter assays. Overall, this study demonstrates a novel methodological approach for elucidating the role of specific miRNA residues in target site selection, advancing our understanding of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- David M Kosek
- Department of Cell and Molecular Biology, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 171 77Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Centre D9:3, Husargatan 3, 752 37 Uppsala, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Centre D9:3, Husargatan 3, 752 37 Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Uppsala Biomedical Centre, Uppsala University, 75237 Uppsala, Sweden
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, 75237 Uppsala, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 171 77Stockholm, Sweden
| |
Collapse
|
46
|
Li YJ, Liu H, Zhang YD, Li A, Pu LX, Gao Y, Zhang SR, Otecko NO, Liu L, Liu YY, Peng MS, Irwin DM, Yi C, Xie W, Qin Y, Wang Z, Wei HJ, Zhou ZY, Zhang YP. Genome wide analysis of allele-specific circular RNAs in mammals and their role in cell proliferation. Gene 2025; 946:149317. [PMID: 39921049 DOI: 10.1016/j.gene.2025.149317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Circular RNAs (circRNAs) are a large class of widely expressed RNAs with covalently closed continuous structures. However, it is currently unknown if circRNAs shows allele-specific expression, as are the consequences of genetic variation on their circularization efficiency and subsequent biological function. Here, we propose a novel pipeline, ASE-circRNA, to accurately quantify both circRNA and their related linear RNA for each allele, and then assess the allele-specificity of the expression of a circular RNA. We identified and analyzed allele-specific circRNAs from human tissue, as well as brains from reciprocal crosses between pairs of highly divergent strains of both mice and pigs by next generation sequencing. Droplet digital PCR (ddPCR) was used to confirm the circularization efficiency measured by next generation sequencing. We found that variation in intron sequences affect the circularization efficiency of circRNAs. Furthermore, we demonstrate that a circRNA, circHK1, regulates the expression of POLR2A to influence the rate of cell proliferation. Our study provides new insight into the molecular mechanisms impacted by variation in genome sequence in the origin of human disease and phenotype.
Collapse
Affiliation(s)
- Ying-Ju Li
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming 650091, Yunnan, China; School of Life Science, Yunnan University, Kunming 650091, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Hang Liu
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Yue-Dong Zhang
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming 650091, Yunnan, China; School of Life Science, Yunnan University, Kunming 650091, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Aimin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Li-Xia Pu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Yun Gao
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Shu-Run Zhang
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Lu Liu
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Yu-Yan Liu
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming 650091, Yunnan, China; School of Life Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Chungen Yi
- Beijing Geneway Technology Co., Ltd, Beijing 100007, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Qin
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Zefeng Wang
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650251, China; College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650251, China.
| | - Zhong-Yin Zhou
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
47
|
Huang Z, Yang Y, Lai J, Chen Q, Wang X, Wang S, Li M, Lu S. Identification of Key Genes Related to Intramuscular Fat Content of Psoas Major Muscle in Saba Pigs by Integrating Bioinformatics and Machine Learning Based on Transcriptome Data. Animals (Basel) 2025; 15:1181. [PMID: 40282015 PMCID: PMC12024254 DOI: 10.3390/ani15081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
The psoas major muscle (PMM) is a piece of pork with good tenderness and high value. Intramuscular fat (IMF) content, serving as a pivotal indicator of pork quality, varies greatly among pigs within the same breed. However, there is a paucity of studies focusing on investigating the molecular mechanism of PMM IMF deposition in the same pig breed. The present study aimed to identify the potential genes related to the IMF content of PMM in low- and high-IMF Saba pigs based on transcriptome data analysis. The data used in this study were the RNA sequences of PMM from 12 Saba pigs (PRJNA1223630, from our laboratory) and gene expression profiles (GSE207279) acquired from the NCBI Sequence Read Archive database and the GEO database, respectively, together with data on the fatty acid and amino acid composition of the 12 Saba pigs' PMM. It was found that the high-IMF pigs exhibited significantly elevated levels of saturated fatty acids and (mono)unsaturated fatty acids, especially C14:0, C16:0, C20:0, C16:1, C18:1n9c, and C20:2, compared with those in the low-IMF pigs (p < 0.05 or p < 0.01). A total of 370 differentially expressed genes (DEGs) (221 up- and 149 down-regulated) were identified based on PRJNA1223630. Then, 20 hub genes were identified through protein-protein interaction (PPI) network analysis. Four potential fat-deposition-related genes (DGAT2, PCK1, MELK, and FASN) were further screened via the intersection of the candidate genes identified by the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and the top five genes ranked by the Random Forest (RF) method based on the 20 hub genes and were validated in the test gene set (GSE207279). The constructed mRNA (gene)-miRNA-lncRNA network, involving miRNAs (miR-103a-3p, miR-107, and miR-485-5p), lncRNAs (XIST, NEAT1, and KCNQ1OT1), and FASN, might be crucial for IMF deposition in pigs. These findings might delineate valuable regulatory molecular mechanisms coordinating IMF deposition and could serve as a beneficial foundation for the genetic improvement of pork quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.H.); (Y.Y.); (J.L.); (Q.C.); (X.W.); (S.W.); (M.L.)
| |
Collapse
|
48
|
Shi W, Hu J, Wang H, Zhong H, Zhang W, Wang J, Shao H, Shen H, Bo H, Tao C, Wu F. miR-143-3p Promotes T SCM Differentiation and Inhibits Progressive T Cell Differentiation via Inhibiting ABL2 and PAG1. Genes (Basel) 2025; 16:466. [PMID: 40282426 PMCID: PMC12027245 DOI: 10.3390/genes16040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT), including CAR-T and TCR-T therapies, shows promise for cancer treatment, depending on infused T cell expansion, persistence and activity. We previously characterized four T-cell subsets (TN, TSCM, TCM and TEM) and their miRNA profiles. OBJECTIVES This study investigates miR-143-3p's role in T cell differentiation. METHODS Using qPCR, we analyzed miR-143-3p expression. Target genes were validated by dual-luciferase assays. Functional assays assessed differentiation markers, proliferation, apoptosis and cytokine secretion. RESULTS miR-143-3p was upregulated in early-differentiated TSCM but downregulated during progression. We confirmed ABL2 and PAG1 as direct targets suppressed by miR-143-3p. Overexpression increased early markers (LEF1, CCR7 and CD62L) while decreasing late markers (EOMES, KLRG1 and CD45RO). It also enhanced proliferation, reduced apoptosis and suppressed cytokine secretion. CONCLUSIONS miR-143-3p promotes TSCM differentiation and inhibits progressive differentiation by targeting ABL2/PAG1, suggesting new ACT optimization strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fenglin Wu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.S.); (J.H.); (H.W.); (H.Z.); (W.Z.); (J.W.); (H.S.); (H.S.); (H.B.); (C.T.)
| |
Collapse
|
49
|
Bresesti C, Carito E, Notaro M, Giacca G, Breggion S, Kerzel T, Mercado CM, Beretta S, Monti M, Merelli I, Canu T, Naldini L, Squadrito ML. Reprogramming liver metastasis-associated macrophages toward an anti-tumoral phenotype through enforced miR-342 expression. Cell Rep 2025; 44:115592. [PMID: 40253698 DOI: 10.1016/j.celrep.2025.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/24/2025] [Accepted: 03/29/2025] [Indexed: 04/22/2025] Open
Abstract
Upon metastatic seeding in the liver, liver macrophages, including Kupffer cells, acquire a transcriptional profile typical of tumor-associated macrophages (TAMs), which support tumor progression. MicroRNAs (miRNAs) fine-tune TAM pro-tumoral functions, making their modulation a promising strategy for macrophage reprogramming into an anti-tumoral phenotype. Here, we analyze the transcriptomic profiles of liver and splenic macrophages, identifying miR-342-3p as a key regulator of liver macrophage function. miR-342-3p is highly active in healthy liver macrophages but significantly downregulated in colorectal cancer liver metastases (CRLMs). Lentiviral vector-engineered liver macrophages enforcing miR-342-3p expression acquire a pro-inflammatory phenotype and reduce CRLM growth. We identify Slc7a11, a cysteine-glutamate antiporter linked to pro-tumoral activity, as a direct miR-342-3p target, which may be at least partially responsible for TAM phenotypic reprogramming. Our findings highlight the potential of in vivo miRNA modulation as a therapeutic strategy for TAM reprogramming, offering an approach to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Chiara Bresesti
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Eleonora Carito
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Notaro
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giovanna Giacca
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sara Breggion
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Thomas Kerzel
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Carl Mirko Mercado
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Monti
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tamara Canu
- Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Naldini
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mario Leonardo Squadrito
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
50
|
Shen YZ, Luo B, Zhang Q, Hu L, Hu YC, Chen MH. Exploration potential sepsis-ferroptosis mechanisms through the use of CETSA technology and network pharmacology. Sci Rep 2025; 15:13527. [PMID: 40253433 PMCID: PMC12009306 DOI: 10.1038/s41598-025-95451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/20/2025] [Indexed: 04/21/2025] Open
Abstract
As an important self-protection response mechanism of the body, inflammation can not only remove the necrotic or even malignant cells in the body, but also take a series of targeted measures to eliminate the pathogen of foreign invasion and block the foreign substances that may affect the life and health of the body. Flavonoids have known anti-inflammatory, anti-oxidation, anti-cancer and other effects, including glycyrrhizin molecules is one of the representatives. Licochalcone D has known anti-inflammatory and antioxidant properties and is effective in the treatment of a variety of inflammatory diseases. However, the underlying mechanism for the treatment of sepsis remains unclear. In this study, the therapeutic potential of Licochalcone D for sepsis was studied by analyzing network pharmacology and molecular dynamics simulation methods. Sepsis-related genes were collected from the database to construct PPI network maps and drug-targeting network profiles. The potential mechanism of Licochalcone D in sepsis was predicted by gene ontology, KEGG and molecular dynamics simulation. Sixty drug-disease genes were subsequently validated. Go analysis showed that monomeric small molecule Licochalcone D could regulate the process of intracellular enzyme system. The KEGG pathway analysis showed that the signal pathway of the main effect was related to the calcium pathway. The results of intersections with iron death-related target genes showed that ALOX5, ALOX15B and other nine targets all had the effect of possibly improving sepsis, while GSE 54,514, GSE 95,233 and GSE 69,528 were used to analyze the survival rate and ROC curve. Five genes were screened, including ALOX5, ALOX15B, NFE2L2 and NR4A1, HIF1A. The results of molecular docking showed that ALOX5 and Licochalcone D had strong binding activity. Finally, the results of molecular dynamics simulation showed that there was good binding power between drug and target. In the present study, we utilized molecular dynamics simulation techniques to assess the binding affinity between the small-molecule ligand and the protein receptor. The simulation outcomes demonstrate that the binding interface between the ligand and receptor remains stable, with a calculated binding free energy (ΔG) of -32.47 kJ/mol. This signifies a high-affinity interaction between the ligand and receptor, suggesting the long-term stability of the small molecule under physiological conditions. These findings provide critical insights for drug development efforts. This study elucidates the therapeutic potential of Licochalcone D, a traditional Chinese medicine monomer, in improving sepsis through the regulation of ferroptosis, thereby providing a new direction and option for subsequent clinical drug development in the treatment of sepsis.
Collapse
Affiliation(s)
- Yu Zhou Shen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Sichuan, People's Republic of China
| | - Bin Luo
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Sichuan, People's Republic of China
| | - Qian Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Sichuan, People's Republic of China
| | - Li Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Sichuan, People's Republic of China.
| | - Ying Chun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Sichuan, People's Republic of China.
| | - Mu Hu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Sichuan, People's Republic of China.
| |
Collapse
|